Structural O insights O and O in B-experimental_method vitro I-experimental_method reconstitution I-experimental_method of O membrane O targeting O and O activation O of O human B-species PI4KB B-protein by O the O ACBD3 B-protein protein O Phosphatidylinositol B-protein 4 I-protein - I-protein kinase I-protein beta I-protein ( O PI4KB B-protein ) O is O one O of O four O human B-species PI4K B-protein_type enzymes O that O generate O phosphatidylinositol B-chemical 4 I-chemical - I-chemical phosphate I-chemical ( O PI4P B-chemical ), O a O minor O but O essential O regulatory O lipid O found O in O all O eukaryotic B-taxonomy_domain cells O . O To O convert O their O lipid O substrates O , O PI4Ks B-protein_type must O be O recruited O to O the O correct O membrane O compartment O . O PI4KB B-protein is O critical O for O the O maintenance O of O the O Golgi O and O trans O Golgi O network O ( O TGN O ) O PI4P B-chemical pools O , O however O , O the O actual O targeting O mechanism O of O PI4KB B-protein to O the O Golgi O and O TGN O membranes O is O unknown O . O Here O , O we O present O an O NMR B-experimental_method structure B-evidence of O the O complex O of O PI4KB B-protein and O its O interacting O partner O , O Golgi B-protein_type adaptor I-protein_type protein I-protein_type acyl B-protein - I-protein coenzyme I-protein A I-protein binding I-protein domain I-protein containing I-protein protein I-protein 3 I-protein ( O ACBD3 B-protein ). O We O show O that O ACBD3 B-protein is O capable O of O recruiting O PI4KB B-protein to O membranes O both O in O vitro O and O in O vivo O , O and O that O membrane O recruitment O of O PI4KB B-protein by O ACBD3 B-protein increases O its O enzymatic B-evidence activity I-evidence and O that O the O ACBD3 B-complex_assembly : I-complex_assembly PI4KB I-complex_assembly complex O formation O is O essential O for O proper O function O of O the O Golgi O . O Phosphatidylinositol B-protein 4 I-protein - I-protein kinase I-protein beta I-protein ( O PI4KB B-protein , O also O known O as O PI4K B-protein IIIβ I-protein ) O is O a O soluble O cytosolic O protein O yet O its O function O is O to O phosphorylate O membrane O lipids O . O It O is O one O of O four O human B-species PI4K B-protein_type enzymes O that O phosphorylate O phosphatidylinositol B-chemical ( O PI B-chemical ) O to O generate O phosphatidylinositol B-chemical 4 I-chemical - I-chemical phosphate I-chemical ( O PI4P B-chemical ). O PI4P B-chemical is O an O essential O lipid O found O in O various O membrane O compartments O including O the O Golgi O and O trans O - O Golgi O network O ( O TGN O ), O the O plasma O membrane O and O the O endocytic O compartments O . O In O these O locations O , O PI4P B-chemical plays O an O important O role O in O cell O signaling O and O lipid O transport O , O and O serves O as O a O precursor O for O higher O phosphoinositides B-chemical or O as O a O docking O site O for O clathrin B-protein_type adaptor O or O lipid O transfer O proteins O . O A O wide O range O of O positive B-taxonomy_domain - I-taxonomy_domain sense I-taxonomy_domain single I-taxonomy_domain - I-taxonomy_domain stranded I-taxonomy_domain RNA I-taxonomy_domain viruses I-taxonomy_domain (+ O RNA B-taxonomy_domain viruses I-taxonomy_domain ), O including O many O that O are O important O human B-species pathogens O , O hijack O human B-species PI4KA B-protein or O PI4KB B-protein enzymes O to O generate O specific O PI4P B-chemical - O enriched O organelles O called O membranous O webs O or O replication O factories O . O These O structures B-evidence are O essential O for O effective O viral B-taxonomy_domain replication O . O Recently O , O highly O specific O PI4KB B-protein inhibitors O were O developed O as O potential O antivirals O . O PI4K B-protein_type kinases B-protein_type must O be O recruited O to O the O correct O membrane O type O to O fulfill O their O enzymatic O functions O . O Type B-protein_type II I-protein_type PI4Ks I-protein_type ( O PI4K2A B-protein and O PI4K2B B-protein ) O are O heavily B-protein_state palmitoylated I-protein_state and O thus O behave O as O membrane B-protein proteins I-protein . O In O contrast O , O type B-protein_type III I-protein_type PI4Ks I-protein_type ( O PI4KA B-protein and O PI4KB B-protein ) O are O soluble O cytosolic O proteins O that O are O recruited O to O appropriate O membranes O indirectly O via O protein O - O protein O interactions O . O The O recruitment O of O PI4KA B-protein to O the O plasma O membrane O by O EFR3 B-protein and O TTC7 B-protein is O relatively O well O understood O even O at O the O structural O level O , O but O , O the O actual O molecular O mechanism O of O PI4KB B-protein recruitment O to O the O Golgi O is O still O poorly O understood O . O Acyl B-protein - I-protein coenzyme I-protein A I-protein binding I-protein domain I-protein containing I-protein protein I-protein 3 I-protein ( O ACBD3 B-protein , O also O known O as O GCP60 B-protein and O PAP7 B-protein ) O is O a O Golgi O resident O protein O . O Its O membrane O localization O is O mediated O by O the O interaction O with O the O Golgi O integral O protein O golgin B-protein B1 I-protein / O giantin B-protein . O ACBD3 B-protein functions O as O an O adaptor O protein O and O signaling O hub O across O cellular O signaling O pathways O . O ACBD3 B-protein can O interact O with O a O number O of O proteins O including O golgin B-protein A3 I-protein / O golgin B-protein - I-protein 160 I-protein to O regulate O apoptosis O , O Numb B-protein_type proteins I-protein_type to O control O asymmetric O cell O division O and O neuronal O differentiation O , O metal B-protein_type transporter I-protein_type DMT1 B-protein and O monomeric B-oligomeric_state G B-protein_type protein I-protein_type Dexras1 B-protein to O maintain O iron B-chemical homeostasis O , O and O the O lipid B-protein_type kinase I-protein_type PI4KB B-protein to O regulate O lipid O homeostasis O . O ACBD3 B-protein has O been O also O implicated O in O the O pathology O of O neurodegenerative O diseases O such O as O Huntington O ’ O s O disease O due O to O its O interactions O with O a O polyglutamine B-structure_element repeat I-structure_element - O containing O mutant B-protein_state huntingtin B-protein and O the O striatal O - O selective O monomeric B-oligomeric_state G B-protein_type protein I-protein_type Rhes B-protein / O Dexras2 B-protein . O ACBD3 B-protein is O a O binding O partner O of O viral B-taxonomy_domain non B-protein_type - I-protein_type structural I-protein_type 3A I-protein_type proteins I-protein_type and O a O host O factor O of O several O picornaviruses B-taxonomy_domain including O poliovirus B-taxonomy_domain , O coxsackievirus B-taxonomy_domain B3 I-taxonomy_domain , O and O Aichi B-taxonomy_domain virus I-taxonomy_domain . O We O present O a O biochemical B-experimental_method and I-experimental_method structural I-experimental_method characterization I-experimental_method of O the O molecular O complex O composed O of O the O ACBD3 B-protein protein O and O the O PI4KB B-protein enzyme O . O We O show O that O ACBD3 B-protein can O recruit O PI4KB B-protein to O model O membranes O as O well O as O redirect O PI4KB B-protein to O cellular O membranes O where O it O is O not O naturally O found O . O Our O data O also O show O that O ACBD3 B-protein regulates O the O enzymatic B-evidence activity I-evidence of O PI4KB B-protein kinase B-protein_type through O membrane O recruitment O rather O than O allostery O . O ACBD3 B-protein and O PI4KB B-protein interact O with O 1 O : O 1 O stoichiometry O with O submicromolar O affinity O In O order O to O verify O the O interactions O between O ACBD3 B-protein and O PI4KB B-protein we O expressed B-experimental_method and I-experimental_method purified I-experimental_method both O proteins O . O To O increase O yields O of O bacterial B-experimental_method expression I-experimental_method the O intrinsically B-structure_element disordered I-structure_element region I-structure_element of O PI4KB B-protein ( O residues O 423 B-residue_range – I-residue_range 522 I-residue_range ) O was O removed B-experimental_method ( O Fig O . O 1A O ). O This O internal O deletion B-experimental_method does O not O significantly O affect O the O kinase B-protein_type activity O ( O SI O Fig O . O 1A O ) O or O interaction O with O ACBD3 B-protein ( O SI O Fig O . O 1B O , O C O ). O In O an O in B-experimental_method vitro I-experimental_method binding I-experimental_method assay I-experimental_method , O ACBD3 B-protein co B-experimental_method - I-experimental_method purified I-experimental_method with I-experimental_method the I-experimental_method NiNTA I-experimental_method - I-experimental_method immobilized I-experimental_method N O - O terminal O His6GB1 B-protein_state - I-protein_state tagged I-protein_state PI4KB B-protein ( O Fig O . O 1B O , O left O panel O ), O suggesting O a O direct O interaction O . O Using O a O mammalian B-experimental_method two I-experimental_method - I-experimental_method hybrid I-experimental_method assay I-experimental_method Greninger O and O colleagues O localized B-evidence this O interaction O to O the O Q B-structure_element domain I-structure_element of O ACBD3 B-protein ( O named O according O to O its O high O content O of O glutamine B-residue_name residues O ) O and O the O N B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O PI4KB B-protein preceding O its O helical B-structure_element domain I-structure_element . O We O expressed B-experimental_method the O Q B-structure_element domain I-structure_element of O ACBD3 B-protein ( O residues O 241 B-residue_range – I-residue_range 308 I-residue_range ) O and O the O N B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O PI4KB B-protein ( O residues O 1 B-residue_range – I-residue_range 68 I-residue_range ) O in O E B-species . I-species coli I-species and O using O purified O recombinant O proteins O , O we O confirmed O that O these O two O domains O are O sufficient O to O maintain O the O interaction O ( O Fig O . O 1B O , O middle O and O right O panel O ). O Because O it O has O been O reported O that O ACBD3 B-protein can O dimerize B-oligomeric_state in O a O mammalian B-experimental_method two I-experimental_method - I-experimental_method hybrid I-experimental_method assay I-experimental_method , O we O were O interested O in O determining O the O stoichiometry O of O the O ACBD3 B-complex_assembly : I-complex_assembly PI4KB I-complex_assembly protein O complex O . O The O sedimentation B-evidence coefficients I-evidence of O ACBD3 B-protein and O PI4KB B-protein alone B-protein_state , O or O ACBD3 B-complex_assembly : I-complex_assembly PI4KB I-complex_assembly complex O were O determined O by O analytical B-experimental_method ultracentrifugation I-experimental_method and O found O to O be O 3 O . O 1 O S O , O 4 O . O 1 O S O , O and O 5 O . O 1 O S O . O These O values O correspond O to O molecular B-evidence weights I-evidence of O approximately O 55 O kDa O , O 80 O kDa O , O and O 130 O kDa O , O respectively O . O This O result O suggests O that O both O proteins O are O monomeric B-oligomeric_state and O the O stoichiometry O of O the O ACBD3 B-complex_assembly : I-complex_assembly PI4KB I-complex_assembly protein O complex O is O 1 O : O 1 O ( O Fig O . O 1C O , O left O panel O ). O Similar O results O were O obtained O for O the O complex O of O the O Q B-structure_element domain I-structure_element of O ACBD3 B-protein and O the O N B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O PI4KB B-protein ( O Fig O . O 1C O , O right O panel O ). O We O also O determined O the O strength O of O the O interaction O between O recombinant O full B-protein_state length I-protein_state ACBD3 B-protein and O PI4KB B-protein using O surface B-experimental_method plasmon I-experimental_method resonance I-experimental_method ( O SPR B-experimental_method ). O SPR B-experimental_method measurements O revealed O a O strong O interaction O with O a O Kd B-evidence value O of O 320 O +/− O 130 O nM O ( O Fig O . O 1D O , O SI O Fig O . O 1D O ). O We O concluded O that O ACBD3 B-protein and O PI4KB B-protein interact O directly O through O the O Q B-structure_element domain I-structure_element of O ACBD3 B-protein and O the O N B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O PI4KB B-protein forming O a O 1 O : O 1 O complex O with O a O dissociation B-evidence constant I-evidence in O the O submicromolar O range O . O Structural B-experimental_method analysis I-experimental_method of O the O ACBD3 B-complex_assembly : I-complex_assembly PI4KB I-complex_assembly complex O Full B-protein_state length I-protein_state ACBD3 B-protein and O PI4KB B-protein both O contain O large O intrinsically B-structure_element disordered I-structure_element regions I-structure_element that O impede O crystallization O . O We O used O hydrogen B-experimental_method - I-experimental_method deuterium I-experimental_method exchange I-experimental_method mass I-experimental_method spectrometry I-experimental_method ( O HDX B-experimental_method - I-experimental_method MS I-experimental_method ) O analysis O of O the O complex O to O determine O which O parts O of O the O complex O are O well B-protein_state folded I-protein_state ( O SI O Fig O . O 2 O ). O However O , O we O were O unable O to O obtain O crystals B-evidence even O when O using O significantly O truncated B-protein_state constructs O that O included O only O the O ACBD3 B-protein Q B-structure_element domain I-structure_element and O the O N B-structure_element - I-structure_element terminal I-structure_element region I-structure_element of O PI4KB B-protein . O For O this O reason O , O we O produced O an O isotopically B-protein_state labeled I-protein_state ACBD3 B-protein Q B-structure_element domain I-structure_element and O isotopically B-protein_state labeled I-protein_state ACBD3 B-protein Q B-structure_element domain I-structure_element : O PI4KB B-protein N B-structure_element - I-structure_element terminal I-structure_element region I-structure_element protein O complex O and O used O NMR B-experimental_method spectroscopy I-experimental_method for O structural O characterization O . O As O the O N B-structure_element - I-structure_element terminal I-structure_element region I-structure_element protein O complex O was O prepared O by O co B-experimental_method - I-experimental_method expression I-experimental_method of O both O proteins O , O the O samples O consisted O of O an O equimolar O mixture O of O two O uniformly O 15N B-chemical / O 13C B-chemical labelled B-protein_state molecules O . O Comprehensive O backbone O and O side O - O chain O resonance O assignments O for O the O free B-protein_state ACBD3 B-protein Q B-structure_element domain I-structure_element and O the O complex O , O as O illustrated O by O the O 2D B-experimental_method 15N I-experimental_method / I-experimental_method 1H I-experimental_method HSQC I-experimental_method spectra B-evidence ( O SI O Figs O 3 O and O 4 O ), O were O obtained O using O a O standard O combination O of O triple B-experimental_method - I-experimental_method resonance I-experimental_method experiments I-experimental_method , O as O described O previously O . O Backbone O amide O signals O ( O 15N B-chemical and O 1H B-chemical ) O for O the O free B-protein_state ACBD3 B-protein Q B-structure_element domain I-structure_element were O nearly O completely O assigned O apart O from O the O first O four O N O - O terminal O residues O ( O Met1 B-residue_range - I-residue_range Lys4 I-residue_range ) O and O Gln44 B-residue_name_number . O Over O 93 O % O of O non O - O exchangeable O side O - O chain O signals O were O assigned O for O the O free B-protein_state ACBD3 B-protein Q B-structure_element domain I-structure_element . O Apart O from O the O four O N O - O terminal O residues O , O the O side O - O chain O assignments O were O missing O for O Gln B-residue_name ( O Hg3 O ), O Gln B-residue_name ( O Ha O / O Hb O / O Hg O ), O Gln44 B-residue_name_number ( O Ha O / O Hb O / O Hg O ) O and O Gln48 B-residue_name_number ( O Hg O ) O mainly O due O to O extensive O overlaps O within O the O spectral O regions O populated O by O highly O abundant O glutamine B-residue_name side O - O chain O resonances O . O The O protein O complex O yielded O relatively O well O resolved O spectra B-evidence ( O SI O Fig O . O 4 O ) O that O resulted O in O assignment O of O backbone O amide O signals O for O all O residues O apart O from O Gln B-residue_name ( O ACBD3 B-protein ) O and O Ala2 B-residue_name_number ( O PI4KB B-protein ). O The O essentially O complete O 15N B-chemical , O 13C B-chemical and O 1H B-chemical resonance O assignments O allowed O automated O assignment O of O the O NOEs B-evidence identified O in O the O 3D B-experimental_method 15N I-experimental_method / I-experimental_method 1H I-experimental_method NOESY I-experimental_method - I-experimental_method HSQC I-experimental_method and O 13C B-experimental_method / I-experimental_method 1H I-experimental_method HMQC I-experimental_method - I-experimental_method NOESY I-experimental_method spectra B-evidence that O were O subsequently O used O in O structural B-experimental_method calculation I-experimental_method . O Structural B-evidence statistics I-evidence for O the O final O water O - O refined O sets O of O structures B-evidence are O shown O in O SI O Table O 1 O . O This O structure B-evidence revealed O that O the O Q B-structure_element domain I-structure_element forms O a O two B-structure_element helix I-structure_element hairpin I-structure_element . O The O first O helix B-structure_element bends O sharply O over O the O second O helix B-structure_element and O creates O a O fold O resembling O a O three B-structure_element helix I-structure_element bundle I-structure_element that O serves O as O a O nest O for O one O helix B-structure_element of O the O PI4KB B-protein N O - O terminus O ( O residues O 44 B-residue_range – I-residue_range 64 I-residue_range , O from O this O point O on O referred O to O as O the O kinase B-structure_element helix I-structure_element ) O ( O Fig O . O 2A O ). O Preceding O the O kinase B-structure_element helix I-structure_element are O three O ordered O residues O ( O Val42 B-residue_name_number , O Ile43 B-residue_name_number , O and O Asp44 B-residue_name_number ) O that O also O contribute O to O the O interaction O ( O Fig O . O 2B O ). O The O remaining O part O of O the O PI4KB B-protein N O - O termini O , O however O , O is O disordered O ( O SI O Fig O . O 5 O ). O Almost O all O of O the O PI4KB B-complex_assembly : I-complex_assembly ACBD3 I-complex_assembly interactions B-bond_interaction are I-bond_interaction hydrophobic I-bond_interaction with O the O exception O of O hydrogen B-bond_interaction bonds I-bond_interaction between O the O side O chains O of O ACBD3 B-protein Tyr261 B-residue_name_number and O PI4KB B-protein His63 B-residue_name_number , O and O between O the O sidechain O of O ACBD3 B-protein Tyr288 B-residue_name_number and O the O PI4KB B-protein backbone O ( O Asp44 B-residue_name_number ) O ( O Fig O . O 2B O ). O Interestingly O , O we O noted O that O the O PI4KB B-protein helix B-structure_element is O amphipathic B-protein_state and O its O hydrophobic B-site surface I-site leans O on O the O Q B-structure_element domain I-structure_element ( O Fig O . O 2C O ). O To O corroborate O the O structural B-evidence data I-evidence , O we O introduced B-experimental_method a O number O of O point B-experimental_method mutations I-experimental_method and O validated O their O effect O on O complex O formation O using O an O in B-experimental_method vitro I-experimental_method pull I-experimental_method - I-experimental_method down I-experimental_method assay I-experimental_method ( O Fig O . O 2D O ). O Wild B-protein_state type I-protein_state ACBD3 B-protein protein O co B-experimental_method - I-experimental_method purified I-experimental_method together O with O the O NiNTA O - O immobilized O His6 B-protein_state - I-protein_state tagged I-protein_state wild B-protein_state type I-protein_state PI4KB B-protein as O well O as O with O the O PI4KB B-protein V42A B-mutant and O V47A B-mutant mutants B-protein_state , O but O not O with O mutants B-protein_state within O the O imminent O binding B-site interface I-site ( O I43A B-mutant , O V55A B-mutant , O L56A B-mutant ). O As O predicted O , O wild B-protein_state type I-protein_state PI4KB B-protein interacted O with O the O ACBD3 B-protein Y266A B-mutant mutant B-protein_state and O slightly O with O the O Y285A B-mutant mutant B-protein_state , O but O not O with O the O F258A B-mutant , O H284A B-mutant , O and O Y288A B-mutant mutants B-protein_state ( O Fig O . O 2D O ). O ACBD3 B-protein efficiently O recruits O the O PI4KB B-protein enzyme O to O membranes O We O next O sought O to O determine O if O the O ACBD3 B-complex_assembly : I-complex_assembly PI4KB I-complex_assembly interaction O drives O membrane O localization O of O the O PI4KB B-protein enzyme O . O To O do O this O , O we O first O established O an O in B-experimental_method vitro I-experimental_method membrane I-experimental_method recruitment I-experimental_method system I-experimental_method using O Giant B-experimental_method Unilamellar I-experimental_method Vesicles I-experimental_method ( O GUVs B-experimental_method ) O containing O the O PI4KB B-protein substrate O – O the O PI B-chemical lipid O . O We O observed O that O PI4KB B-protein kinase B-protein_type was O not O membrane O localized B-evidence when O added O to O the O GUVs B-experimental_method at O 600 O nM O concentration O , O whereas O non O - O covalent O tethering O of O ACBD3 B-protein to O the O surface O of O the O GUVs B-experimental_method , O using O the O His6 O tag O on O ACBD3 B-protein and O the O DGS B-chemical - I-chemical NTA I-chemical ( I-chemical Ni I-chemical ) I-chemical lipid I-chemical , O led O to O efficient O PI4KB B-protein membrane O localization O ( O Fig O . O 3A O ). O We O hypothesized O that O if O ACBD3 B-protein is O one O of O the O main O Golgi O localization B-evidence signals I-evidence for O PI4KB B-protein , O overexpression B-experimental_method of O the O Q B-structure_element domain I-structure_element should O decrease O the O amount O of O the O endogenous O kinase B-protein_type on O the O Golgi O . O Indeed O , O we O observed O loss O for O endogenous O PI4KB B-protein signal O on O the O Golgi O in O cells O overexpressing B-experimental_method the O GFP B-experimental_method – O Q B-structure_element domain I-structure_element construct O ( O Fig O . O 3B O upper O panel O ). O We O attribute O the O loss O of O signal B-evidence to O the O immunostaining O protocol O - O the O kinase B-protein_type that O is O not O bound O to O Golgi O is O lost O during O the O permeabilization O step O and O hence O the O “ O disappearance O ” O of O the O signal B-evidence because O overexpression B-experimental_method of O GFP B-experimental_method alone O or O a O non B-protein_state - I-protein_state binding I-protein_state Q B-structure_element domain I-structure_element mutant B-protein_state has O no O effect O on O the O localization B-evidence of O the O endogenous O PI4KB B-protein ( O Fig O . O 3B O ). O Given O this O result O , O overexpression B-experimental_method of O the O Q B-structure_element domain I-structure_element should O also O interfere O with O the O PI4KB B-protein dependent O Golgi O functions O . O Ceramide B-chemical transport O and O accumulation O in O Golgi O is O a O well O - O known O PI4KB B-protein dependent O process O . O We O have O used O fluorescently B-protein_state labeled I-protein_state ceramide B-chemical and O analyzed O its O trafficking O in O non O - O transfected O cells O and O cell O overexpressing B-experimental_method the O Q B-structure_element domain I-structure_element . O As O expected O , O the O Golgi O accumulation O of O ceramide B-chemical was O not O observed O in O cells O expressing B-experimental_method the O wt B-protein_state Q B-structure_element domain I-structure_element while O cells O expressing O RFP B-experimental_method or O the O mutant B-protein_state Q B-structure_element domain I-structure_element accumulated O ceramide B-chemical normally O ( O Fig O . O 3C O ) O suggesting O that O ACBD3 B-complex_assembly : I-complex_assembly PI4KB I-complex_assembly complex O formation O is O crucial O for O the O normal O function O of O Golgi O . O We O further O analyzed O the O function O of O ACBD3 B-complex_assembly : I-complex_assembly PI4KB I-complex_assembly interaction O in O membrane O recruitment O of O PI4KB B-protein in O living O cells O using O fluorescently B-protein_state tagged I-protein_state proteins O . O We O used O the O rapamycin B-chemical - O inducible O heteromerization O of O FKBP12 B-protein ( O FK506 B-protein binding I-protein protein I-protein 12 I-protein ) O and O FRB B-structure_element ( O fragment B-structure_element of O mTOR B-protein that O binds O rapamycin B-chemical ) O system O . O We O fused B-experimental_method the O FRB B-structure_element to O residues O 34 B-residue_range – I-residue_range 63 I-residue_range of O the O mitochondrial B-structure_element localization I-structure_element signal I-structure_element from O mitochondrial B-protein A I-protein - I-protein kinase I-protein anchor I-protein protein I-protein 1 I-protein ( O AKAP1 B-protein ) O and O CFP B-experimental_method . O The O ACBD3 B-protein Q B-structure_element domain I-structure_element was O then O fused B-experimental_method to I-experimental_method FKBP12 B-protein and O mRFP B-experimental_method ( O Fig O . O 3D O ). O We O analyzed O localization B-evidence of O the O ACBD3 B-protein Q B-structure_element domain I-structure_element and O GFP B-experimental_method – O PI4KB B-protein before O and O after O the O addition O of O rapamycin B-chemical . O As O a O control O we O used O H284A B-mutant mutant B-protein_state of O the O ACBD3 B-protein Q B-structure_element domain I-structure_element that O does O not O significantly O bind O PI4KB B-protein kinase B-protein_type . O In O every O case O the O ACDB3 B-protein Q B-structure_element domain I-structure_element was O rapidly O ( O within O 5 O minutes O ) O recruited O to O the O mitochondrial O membrane O upon O addition O of O rapamycin B-chemical , O but O only O the O wild B-protein_state - I-protein_state type I-protein_state protein O effectively O directed O the O kinase B-protein_type to O the O mitochondria O ( O Fig O . O 3E O , O Movie O 1 O and O 2 O ). O Notably O , O we O observed O that O when O the O GFP B-experimental_method - O PI4KB B-protein kinase B-protein_type is O co B-experimental_method - I-experimental_method expressed I-experimental_method with O the O wild B-protein_state - I-protein_state type I-protein_state ACDB3 B-protein Q B-structure_element domain I-structure_element it O loses O its O typical O Golgi O localization B-evidence ( O Fig O . O 3E O upper O panel O ). O However O , O PI4KB B-protein retains O it O Golgi O localization B-evidence when O co B-experimental_method - I-experimental_method expressed I-experimental_method with O the O non B-protein_state - I-protein_state interacting I-protein_state Q B-structure_element domain I-structure_element mutant B-protein_state ( O Fig O . O 3E O lower O panel O ). O ACBD3 B-protein increases O PI4KB B-protein enzymatic B-evidence activity I-evidence by O recruiting O PI4KB B-protein to O close O vicinity O of O its O substrate O To O test O whether O ACBD3 B-protein can O stimulate O PI4KB B-protein kinase B-protein_type enzymatic B-evidence activity I-evidence we O performed O a O standard O luminescent B-experimental_method kinase I-experimental_method assay I-experimental_method using O PI B-chemical - O containing O micelles O as O the O substrate O . O We O observed O no O effect O on O the O kinase B-protein_type activity O of O PI4KB B-protein ( O Fig O . O 4A O ) O suggesting O that O ACBD3 B-protein does O not O directly O affect O the O enzyme O ( O e O . O g O . O induction O of O a O conformation O change O ). O However O , O in O vivo O ACBD3 B-protein is O located O at O the O Golgi O membranes O , O whereas O in O this O experiment O , O ACBD3 B-protein was O located O in O the O solution O and O PI B-chemical is O provided O as O micelles O . O For O this O , O we O again O turned O to O the O GUV B-experimental_method system O with O ACBD3 B-protein localized B-evidence to O the O GUV B-experimental_method membrane O . O The O GUVs B-experimental_method contained O 10 O % O PI B-chemical to O serve O as O a O substrate O for O PI4KB B-protein kinase B-protein_type . O The O buffer O also O contained O CFP B-experimental_method - O SidC B-protein , O which O binds O to O PI4P B-chemical with O nanomolar O affinity O . O This O enabled O visualization O of O the O kinase B-protein_type reaction O using O a O confocal B-experimental_method microscope I-experimental_method . O We O compared O the O efficiency O of O the O phosphorylation B-ptm reaction O of O the O kinase B-protein_type alone B-protein_state with O that O of O kinase B-protein_type recruited O to O the O surface O of O the O GUVs B-experimental_method by O ACBD3 B-protein . O Reaction O was O also O performed O in O the O absence B-protein_state of I-protein_state ATP B-chemical as O a O negative O control O ( O Fig O . O 4B O ). O These O experiments O showed O that O PI4KB B-protein enzymatic B-evidence activity I-evidence increases O when O ACBD3 B-protein is O membrane O localized O ( O Fig O . O 4C O , O SI O Fig O . O 6 O ). O Membrane O recruitment O of O PI4KB B-protein enzyme O is O crucial O to O ensure O its O proper O function O at O the O Golgi O and O TGN O . O However O , O the O molecular O mechanism O and O structural O basis O for O PI4KB B-protein interaction O with O the O membrane O is O poorly O understood O . O In O principle O , O any O of O the O binding O partners O of O PI4KB B-protein could O play O a O role O in O membrane O recruitment O . O To O date O , O several O PI4KB B-protein interacting O proteins O have O been O reported O , O including O the O small B-protein_type GTPases I-protein_type Rab11 B-protein and O Arf1 B-protein , O the O Golgi O resident O acyl B-protein - I-protein CoA I-protein binding I-protein domain I-protein containing I-protein 3 I-protein ( O ACBD3 B-protein ) O protein O , O neuronal B-protein calcium I-protein sensor I-protein - I-protein 1 I-protein ( O NCS B-protein - I-protein 1 I-protein also O known O as O frequenin B-protein in O yeast B-taxonomy_domain ) O and O the O 14 B-protein_type - I-protein_type 3 I-protein_type - I-protein_type 3 I-protein_type proteins I-protein_type . O The O monomeric B-oligomeric_state G B-protein_type protein I-protein_type Rab11 B-protein binds O mammalian B-taxonomy_domain PI4KB B-protein through O the O helical B-structure_element domain I-structure_element of O the O kinase B-protein_type . O Although O Rab11 B-protein does O not O appear O to O be O required O for O recruitment O of O PI4KB B-protein to O the O Golgi O , O PI4KB B-protein is O required O for O Golgi O recruitment O of O Rab11 B-protein . O Arf1 B-protein , O the O other O small B-protein_type GTP I-protein_type binding I-protein_type protein I-protein_type , O is O known O to O influence O the O activity O and O localization O of O PI4KB B-protein , O but O it O does O not O appear O to O interact O directly O with O PI4KB B-protein ( O our O unpublished O data O ). O The O yeast B-taxonomy_domain homologue O of O NCS1 B-protein called O frequenin B-protein has O been O shown O to O interact O with O Pik1p B-protein , O the O yeast B-taxonomy_domain orthologue O of O PI4KB B-protein and O regulate O its O activity O and O perhaps O its O membrane O association O , O but O the O role O of O NCS B-protein - I-protein 1 I-protein in O PI4KB B-protein recruitment O in O mammalian B-taxonomy_domain cells O is O unclear O . O NCS B-protein - I-protein 1 I-protein is O an O N O - O terminally O myristoylated B-protein_state protein O that O participates O in O exocytosis O . O It O is O expressed O only O in O certain O cell O types O , O suggesting O that O if O it O contributes O to O PI4KB B-protein membrane O recruitment O , O it O does O so O in O a O tissues O specific O manner O . O The O interaction O of O PI4KB B-protein with O 14 B-protein_type - I-protein_type 3 I-protein_type - I-protein_type 3 I-protein_type proteins I-protein_type , O promoted O by O phosphorylation B-ptm of O PI4KB B-protein by O protein B-protein kinase I-protein D I-protein , O influences O the O activity O of O PI4KB B-protein by O stabilizing O its O active B-protein_state conformation O . O However O , O 14 B-protein_type - I-protein_type 3 I-protein_type - I-protein_type 3 I-protein_type proteins I-protein_type do O not O appear O to O interfere O with O membrane O recruitment O of O this O kinase B-protein_type . O ACBD3 B-protein is O a O Golgi O resident O protein O , O conserved B-protein_state among O vertebrates B-taxonomy_domain ( O SI O Fig O . O 7 O ), O that O interacts O directly O with O PI4KB B-protein ( O see O also O SI O Fig O . O 8 O and O SI O Discussion O ), O and O whose O genetic O inactivation O interferes O with O the O Golgi O localization O of O the O kinase B-protein_type . O For O these O reasons O we O focused O on O the O interaction O of O the O PI4KB B-protein enzyme O with O the O Golgi O resident O ACBD3 B-protein protein O in O this O study O . O Here O we O present O the O mechanism O for O membrane O recruitment O of O PI4KB B-protein by O the O Golgi O resident O ACBD3 B-protein protein O . O We O show O that O these O proteins O interact O directly O with O a O Kd B-evidence value O in O the O submicromolar O range O . O The O interaction O is O sufficient O to O recruit O PI4KB B-protein to O model O membranes O in O vitro O as O well O as O to O the O mitochondria O where O PI4KB B-protein is O never O naturally O found O . O To O understand O this O process O at O the O atomic O level O we O solved B-experimental_method the O solution B-evidence structure I-evidence of O ACBD3 B-complex_assembly : I-complex_assembly PI4KB I-complex_assembly sub O complex O ( O Fig O . O 1A O ) O and O found O that O the O PI4KB B-protein N B-structure_element - I-structure_element terminal I-structure_element region I-structure_element contains O a O short B-structure_element amphipatic I-structure_element helix I-structure_element ( O residues O 44 B-residue_range – I-residue_range 64 I-residue_range ) O that O binds O the O ACBD3 B-protein Q B-structure_element domain I-structure_element . O The O Q B-structure_element domain I-structure_element adopts O a O helical B-structure_element hairpin I-structure_element fold I-structure_element that O is O further O stabilized O upon O binding O the O kinase B-structure_element helix I-structure_element ( O Fig O . O 2A O ). O Our O data O strongly O suggest O that O formation O of O the O complex O does O not O directly O influence O the O catalytic O abilities O of O the O kinase B-protein_type but O experiments O with O model O membranes O revealed O that O ACBD3 B-protein enhances O catalytic O activity O of O the O kinase B-protein_type by O a O recruitment O based O mechanism O ; O it O recruits O the O kinase B-protein_type to O the O membrane O and O thus O increases O the O local O concentration O of O the O substrate O in O the O vicinity O of O the O kinase B-protein_type . O Based O on O our O and O previously O published O structures B-evidence we O built O a O pseudoatomic B-evidence model I-evidence of O PI4KB B-protein multi O - O protein O assembly O on O the O membrane O ( O Fig O . O 5 O ) O that O illustrates O how O the O enzyme O is O recruited O and O positioned O towards O its O lipidic O substrate O and O how O it O in O turn O recruits O Rab11 B-protein . O + B-taxonomy_domain RNA I-taxonomy_domain viruses I-taxonomy_domain replicate O at O specific O PI4P B-chemical - O enriched O membranous O compartments O . O These O are O called O replication O factories O ( O because O they O enhance O viral B-taxonomy_domain replication O ) O or O membranous O webs O ( O because O of O their O appearance O under O the O electron O microscope O ). O To O generate O replication O factories O , O viruses B-taxonomy_domain hijack O several O host O factors O including O the O PI4K B-protein_type kinases B-protein_type to O secure O high O content O of O the O PI4P B-chemical lipid B-chemical . O Non B-protein_type - I-protein_type structural I-protein_type 3A I-protein_type proteins I-protein_type from O many O picornaviruses B-taxonomy_domain from O the O Enterovirus B-taxonomy_domain ( O e O . O g O . O poliovirus B-species , O coxsackievirus B-species - I-species B3 I-species , O rhinovirus B-species - I-species 14 I-species ) O and O Kobuvirus B-taxonomy_domain ( O e O . O g O . O Aichi B-species virus I-species - I-species 1 I-species ) O genera O directly O interact O with O ACBD3 B-protein . O Our O data O suggest O that O they O could O do O this O via O 3A B-complex_assembly : I-complex_assembly ACBD3 I-complex_assembly : I-complex_assembly PI4KB I-complex_assembly complex O formation O . O The O structure B-evidence of O the O ACBD3 B-protein Q B-structure_element domain I-structure_element and O the O kinase B-structure_element helix I-structure_element described O here O provides O a O novel O opportunity O for O further O research O on O the O role O of O ACBD3 B-protein , O PI4KB B-protein , O and O the O ACBD3 B-complex_assembly : I-complex_assembly PI4KB I-complex_assembly interaction O in O picornaviral B-taxonomy_domain replication O . O This O could O eventually O have O implications O for O therapeutic O intervention O to O combat O picornaviruses B-taxonomy_domain - O mediated O diseases O ranging O from O polio O to O the O common O cold O . O Biochemical B-experimental_method characterization I-experimental_method of O the O ACBD3 B-complex_assembly : I-complex_assembly PI4KB I-complex_assembly complex O . O ( O A O ) O Schematic O representation O of O the O ACBD3 B-protein and O PI4KB B-protein constructs O used O for O the O experiments O . O ACBD3 B-protein contains O the O acyl B-structure_element - I-structure_element CoA I-structure_element binding I-structure_element domain I-structure_element ( O ACBD B-structure_element ), O charged B-structure_element amino I-structure_element acids I-structure_element region I-structure_element ( O CAR B-structure_element ), O glutamine B-structure_element rich I-structure_element region I-structure_element ( O Q B-structure_element ), O and O Golgi B-structure_element dynamics I-structure_element domain I-structure_element ( O GOLD B-structure_element ). O PI4KB B-protein is O composed O of O the O N B-structure_element - I-structure_element terminal I-structure_element region I-structure_element , O helical B-structure_element domain I-structure_element , O and O kinase B-structure_element domain I-structure_element which O can O be O divided O into O N B-structure_element - I-structure_element and I-structure_element C I-structure_element - I-structure_element terminal I-structure_element lobes I-structure_element . O ( O B O ) O In B-experimental_method vitro I-experimental_method pull I-experimental_method - I-experimental_method down I-experimental_method assay I-experimental_method . O Pull B-experimental_method - I-experimental_method down I-experimental_method assays I-experimental_method were O performed O using O NiNTA O - O immobilized O N O - O terminal O His6GB1 B-protein_state - I-protein_state tagged I-protein_state proteins O as O indicated O and O untagged B-protein_state full B-protein_state - I-protein_state length I-protein_state PI4KB B-protein or O ACBD3 B-protein . O The O inputs O and O bound O proteins O were O analyzed O on O SDS B-experimental_method gels I-experimental_method stained O with O Coomassie O Blue O . O Please O , O see O SI O Fig O . O 9 O for O original O full B-protein_state - I-protein_state length I-protein_state gels O . O ( O C O ) O Analytical B-experimental_method Ultracentrifugation I-experimental_method . O AUC B-experimental_method analysis O of O the O ACBD3 B-complex_assembly : I-complex_assembly PI4KB I-complex_assembly full B-protein_state - I-protein_state length I-protein_state complex O at O the O concentration O of O 5 O μM O ( O both O proteins O , O left O panel O ) O and O ACBD3 B-complex_assembly Q I-complex_assembly domain I-complex_assembly : I-complex_assembly PI4KB I-complex_assembly N I-complex_assembly terminal I-complex_assembly region I-complex_assembly complex O at O the O concentration O of O 35 O μM O ( O both O proteins O , O right O panel O ). O ( O D O ) O Surface B-experimental_method plasmon I-experimental_method resonance I-experimental_method . O SPR B-experimental_method analysis O of O the O PI4KB B-protein binding O to O immobilized O ACBD3 B-protein . O Sensorgrams B-evidence for O four O concentrations O of O PI4KB B-protein are O shown O . O Structural B-experimental_method analysis I-experimental_method of O the O ACBD3 B-complex_assembly : I-complex_assembly PI4KB I-complex_assembly complex O . O ( O A O ) O Overall O structure B-evidence of O the O ACBD3 B-protein Q B-structure_element domain I-structure_element by O itself O and O in B-protein_state complex I-protein_state with I-protein_state the O PI4KB B-protein N B-structure_element - I-structure_element terminal I-structure_element region I-structure_element . O Superposition B-experimental_method of O the O 30 O converged O structures B-evidence obtained O for O the O Q B-structure_element domain I-structure_element ( O top O ) O and O the O 45 O converged O structures B-evidence obtained O for O the O complex O ( O bottom O ), O with O only O the O folded B-protein_state part O of O PI4KB B-protein shown O ( O see O SI O Fig O . O 2 O for O the O complete O view O ). O ( O B O ) O Detailed O view O of O the O complex O . O The O interaction O is O facilitated O by O only O two O hydrogen B-bond_interaction bonds I-bond_interaction ( O ACBD3 B-protein Tyr261 B-residue_name_number : O PI4KB B-protein His63 B-residue_name_number and O ACBD3 B-protein Tyr288 B-residue_name_number : O PI4KB B-protein Asp44 B-residue_name_number ), O while O the O hydrophobic B-site surface I-site of O the O kinase B-structure_element helix I-structure_element nests O in O the O ACBD3 B-protein Q B-structure_element domain I-structure_element . O ACBD3 B-protein is O shown O in O magenta O and O PI4KB B-protein in O orange O . O ( O C O ) O Top O view O of O the O kinase B-structure_element helix I-structure_element . O The O kinase B-structure_element helix I-structure_element is O amphipathic B-protein_state and O its O hydrophobic B-site surface I-site overlaps O with O the O ACBD3 B-protein binding B-site surface I-site ( O shown O in O magenta O ). O Strong O and O weak O hydrophobes O are O in O green O and O cyan O respectively O , O basic O residues O in O blue O , O acidic O residues O in O red O and O nonpolar O hydrophilic O residues O in O orange O . O ( O D O ) O Pull B-experimental_method - I-experimental_method down I-experimental_method assay I-experimental_method with O a O NiNTA O - O immobilized O N O - O terminally O His6GB1 B-protein_state - I-protein_state tagged I-protein_state PI4KB B-protein kinase B-protein_type and O untagged B-protein_state ACBD3 B-protein protein O . O Wild B-protein_state type I-protein_state proteins O and O selected O point O mutants B-protein_state of O both O PI4KB B-protein and O ACBD3 B-protein were O used O . O Please O , O see O SI O Fig O . O 9 O for O original O full B-protein_state - I-protein_state length I-protein_state gels O . O ACBD3 B-protein is O sufficient O to O recruit O the O PI4KB B-protein kinase B-protein_type to O membranes O . O ( O A O ) O GUVs B-experimental_method recruitment I-experimental_method assay I-experimental_method . O Top O – O Virtually O no O membrane O bound O kinase B-protein_type was O observed O when O 600 O nM O PI4KB B-protein was O added O to O the O GUVs B-experimental_method . O Bottom O – O in O the O presence B-protein_state of I-protein_state 600 O nM O GUV B-protein_state tethered I-protein_state ACBD3 B-protein a O significant O signal O of O the O kinase B-protein_type is O detected O on O the O surface O of O GUVs B-experimental_method . O ( O B O ) O Golgi B-experimental_method displacement I-experimental_method experiment I-experimental_method . O Upper O panel O : O ACBD3 B-protein Q B-structure_element domain I-structure_element fused O to O GFP B-experimental_method was O overexpressed B-experimental_method and O the O endogenous O PI4KB B-protein was O immunostained B-experimental_method . O Middle O panel O : O The O same O experiment O performed O with O GFP B-experimental_method alone O . O Lower O panel O : O The O same O experiment O performed O with O mutant B-protein_state Q B-structure_element domain I-structure_element ( O F258A B-mutant , O H284A B-mutant , O Y288A B-mutant ) O that O does O not O bind O the O PI4KB B-protein . O ( O C O ) O ACBD3 B-protein Q B-structure_element domain I-structure_element overexpression B-experimental_method inhibits O ceramide B-chemical transport O to O Golgi O – O COS O - O 7 O cells O transfected O with O wild B-protein_state - I-protein_state type I-protein_state ACBD3 B-protein Q B-structure_element domain I-structure_element - O FKBP B-protein - O mRFP B-experimental_method were O loaded O with O 0 O . O 05 O μM O Bodipy B-chemical FL I-chemical - I-chemical Ceramide I-chemical for O 20 O min O , O then O washed O and O depicted O after O 20 O min O . O Middle O panel O – O The O same O experiment O performed O with O mRFP B-experimental_method - O FKBP B-protein alone O . O Lower O panel O – O The O same O experiment O performed O with O mutant B-protein_state Q B-structure_element domain I-structure_element ( O F258A B-mutant , O H284A B-mutant , O Y288A B-mutant ) O that O does O not O bind O the O PI4KB B-protein . O ( O D O ) O Scheme O of O the O mitochondria B-experimental_method recruitment I-experimental_method experiment I-experimental_method . O – O The O AKAP1 B-protein - O FRB B-structure_element - O CFP B-experimental_method construct O is O localized B-evidence at O the O outer O mitochondrial O membrane O , O while O the O GFP B-experimental_method - O PI4KB B-protein and O Q B-structure_element domain I-structure_element - O FKBP B-protein - O mRFP B-experimental_method constructs O are O localized B-evidence in O the O cytoplasm O where O they O can O form O a O complex O . O Upon O addition O of O rapamycin B-chemical the O Q B-structure_element domain I-structure_element - O FKBP B-protein - O mRFP B-experimental_method construct O translocates O to O the O mitochondria O and O takes O GFP B-experimental_method - O PI4KB B-protein with O it O . O ( O E O ) O Mitochondria B-experimental_method recruitment I-experimental_method experiment I-experimental_method . O Left O – O cells O transfected O with O AKAP1 B-protein - O FRB B-structure_element - O CFP B-experimental_method , O GFP B-experimental_method - O PI4KB B-protein and O wild B-protein_state - I-protein_state type I-protein_state Q B-structure_element domain I-structure_element - O FKBP B-protein - O mRFP B-experimental_method constructs O before O and O five O minutes O after O addition O of O rapamycin B-chemical . O Right O – O The O same O experiment O performed O using O the O H264A B-mutant Q B-structure_element domain I-structure_element mutant B-protein_state . O ACBD3 B-protein indirectly O increases O the O activity O of O PI4KB B-protein . O ( O A O ) O Micelles B-experimental_method - I-experimental_method based I-experimental_method kinase I-experimental_method assay I-experimental_method – O PI B-chemical in O TX100 O micelles O was O used O in O a O luminescent B-experimental_method kinase I-experimental_method assay I-experimental_method and O the O production O of O PI4P B-chemical was O measured O . O Bar O graph O presents O the O mean O values O of O PI4P B-chemical generated O in O the O presence B-protein_state of I-protein_state the O proteins O as O indicated O , O normalized O to O the O amount O of O PI4P B-chemical generated O by O PI4KB B-protein alone O . O Error O bars O are O standard B-evidence errors I-evidence of I-evidence the I-evidence mean I-evidence ( O SEM B-evidence ) O based O on O three O independent O experiments O . O ( O B O ) O GUV B-experimental_method - I-experimental_method based I-experimental_method phosphorylation I-experimental_method assay I-experimental_method – O GUVs B-experimental_method containing O 10 O % O PI B-chemical were O used O as O a O substrate O and O the O production O of O PI4P B-chemical was O measured O using O the O CFP B-experimental_method - I-experimental_method SidC I-experimental_method biosensor I-experimental_method . O ( O C O )– O Quantification O of O the O GUV B-experimental_method phosphorylation I-experimental_method assay I-experimental_method – O Mean B-evidence membrane I-evidence fluorescence I-evidence intensity I-evidence of O the O PI4P B-chemical reporter O ( O SidC B-protein - O label O ) O under O different O protein O / O ATP B-chemical conditions O . O The O mean B-evidence membrane I-evidence intensity I-evidence value O is O relative O to O the O background O signal O and O the O difference O between O the O membrane O and O background O signal O in O the O reference O system O lacking O ATP B-chemical . O The O error O bars O stand O for O SEM B-evidence based O on O three O independent O experiments O ( O also O SI O Fig O . O 6 O ). O Pseudoatomic B-evidence model I-evidence of O the O PI4KB B-protein multiprotein O complex O assembly O . O PI4KB B-protein in O orange O , O Rab11 B-protein in O purple O , O ACBD3 B-protein in O blue O . O The O model O is O based O on O our O NMR B-experimental_method structure B-evidence and O a O previously O published O crystal B-evidence structure I-evidence of O PI4KB B-complex_assembly : I-complex_assembly Rab11 I-complex_assembly complex O ( O PDB O code O 4D0L O ), O ACBD B-structure_element and O GOLD B-structure_element domain O were O homology B-experimental_method modeled I-experimental_method based O on O high O sequence O identity O structures B-evidence produced O by O the O Phyre2 B-experimental_method web O server O . O The O GOLD B-structure_element domain O is O tethered O to O the O membrane O by O GolginB1 B-protein ( O also O known O as O Giantin B-protein ) O which O is O not O shown O for O clarity O . O Intrinsically B-structure_element disordered I-structure_element linkers I-structure_element are O modeled O in O an O arbitrary O but O physically O plausible O conformation O . O