Datasets:
meta_woz

Languages: English
Multilinguality: monolingual
Size Categories: 10K<n<100K
Language Creators: crowdsourced
Annotations Creators: crowdsourced
Source Datasets: original
Licenses: other
meta_woz / README.md
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- other
license_details: "Microsoft Research Data License Agreement"
multilinguality:
- monolingual
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text-generation
- fill-mask
task_ids:
- dialogue-modeling
paperswithcode_id: metalwoz
pretty_name: Meta-Learning Wizard-of-Oz
---
# Dataset Card for MetaLWOz
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [MetaLWOz Project Website](https://www.microsoft.com/en-us/research/project/metalwoz/)
- **Paper:** [Fast Domain Adaptation for Goal-Oriented Dialogue Using a Hybrid Generative-Retrieval Transformer](https://ieeexplore.ieee.org/abstract/document/9053599), and [Hybrid Generative-Retrieval Transformers for Dialogue Domain Adaptation](https://arxiv.org/pdf/2003.01680.pdf)
- **Point of Contact:** [Hannes Schulz](https://www.microsoft.com/en-us/research/people/haschulz/)
### Dataset Summary
MetaLWOz: A Dataset of Multi-Domain Dialogues for the Fast Adaptation of Conversation Models.
We introduce the Meta-Learning Wizard of Oz (MetaLWOz) dialogue dataset for developing fast adaptation methods for
conversation models. This data can be used to train task-oriented dialogue models, specifically to develop methods to
quickly simulate user responses with a small amount of data. Such fast-adaptation models fall into the research areas
of transfer learning and meta learning. The dataset consists of 37,884 crowdsourced dialogues recorded between two
human users in a Wizard of Oz setup, in which one was instructed to behave like a bot, and the other a true human
user. The users are assigned a task belonging to a particular domain, for example booking a reservation at a
particular restaurant, and work together to complete the task. Our dataset spans 47 domains having 227 tasks total.
Dialogues are a minimum of 10 turns long.
### Supported Tasks and Leaderboards
This dataset supports a range of task.
- **Generative dialogue modeling** or `dialogue-modeling`: This data can be used to train task-oriented dialogue
models, specifically to develop methods to quickly simulate user responses with a small amount of data. Such fast
-adaptation models fall into the research areas of transfer learning and meta learning. The text of the dialogues
can be used to train a sequence model on the utterances.
Example of sample input/output is given in section [Data Instances](#data-instances)
### Languages
The text in the dataset is in English (`en`).
## Dataset Structure
### Data Instances
A data instance is a full multi-turn dialogue between two crowd-workers, one had the role of being a `bot`, and the other one was the `user`. Both were
given a `domain` and a `task`. Each turn has a single utterance, e.g.:
```
Domain: Ski
User Task: You want to know if there are good ski hills an
hours drive from your current location.
Bot Task: Tell the user that there are no ski hills in their
immediate location.
Bot: Hello how may I help you?
User: Is there any good ski hills an hours drive from my
current location?
Bot: Im sorry to inform you that there are no ski hills in your
immediate location
User: Can you help me find the nearest?
Bot: Absolutely! It looks like youre about 3 hours away from
Bear Mountain. That seems to be the closest.
User: Hmm.. sounds good
Bot: Alright! I can help you get your lift tickets now!When
will you be going?
User: Awesome! please get me a ticket for 10pax
Bot: Youve got it. Anything else I can help you with?
User: None. Thanks again!
Bot: No problem!
```
Example of input/output for this dialog:
```
Input: dialog history = Hello how may I help you?; Is there
any good ski hills an hours drive from my current location?;
Im sorry to inform you that there are no ski hills in your
immediate location
Output: user response = Can you help me find the nearest?
```
### Data Fields
Each dialogue instance has the following fields:
- `id`: a unique ID identifying the dialog.
- `user_id`: a unique ID identifying the user.
- `bot_id`: a unique ID identifying the bot.
- `domain`: a unique ID identifying the domain. Provides a mapping to tasks dataset.
- `task_id`: a unique ID identifying the task. Provides a mapping to tasks dataset.
- `turns`: the sequence of utterances alternating between `bot` and `user`, starting with a prompt from `bot`.
Each task instance has following fields:
- `task_id`: a unique ID identifying the task.
- `domain`: a unique ID identifying the domain.
- `bot_prompt`: The task specification for bot.
- `bot_role`: The domain oriented role of bot.
- `user_prompt`: The task specification for user.
- `user_role`: The domain oriented role of user.
### Data Splits
The dataset is split into a `train` and `test` split with the following sizes:
| | Training MetaLWOz | Evaluation MetaLWOz | Combined |
| ----- | ------ | ----- | ---- |
| Total Domains | 47 | 4 | 51 |
| Total Tasks | 226 | 14 | 240 |
| Total Dialogs | 37884 | 2319 | 40203 |
Below are the various statistics of the dataset:
| Statistic | Mean | Minimum | Maximum |
| ----- | ------ | ----- | ---- |
| Number of tasks per domain | 4.8 | 3 | 11 |
| Number of dialogs per domain | 806.0 | 288 | 1990 |
| Number of dialogs per task | 167.6 | 32 | 285 |
| Number of turns per dialog | 11.4 | 10 | 46 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
The dataset v1 version is created by team of researchers from Microsoft Research (Montreal, Canada)
### Licensing Information
The dataset is released under [Microsoft Research Data License Agreement](https://msropendata-web-api.azurewebsites.net/licenses/2f933be3-284d-500b-7ea3-2aa2fd0f1bb2/view)
### Citation Information
You can cite the following for the various versions of MetaLWOz:
Version 1.0
```
@InProceedings{shalyminov2020fast,
author = {Shalyminov, Igor and Sordoni, Alessandro and Atkinson, Adam and Schulz, Hannes},
title = {Fast Domain Adaptation For Goal-Oriented Dialogue Using A Hybrid Generative-Retrieval Transformer},
booktitle = {2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
year = {2020},
month = {April},
url = {https://www.microsoft.com/en-us/research/publication/fast-domain-adaptation-for-goal-oriented-dialogue-using-a
-hybrid-generative-retrieval-transformer/},
}
```
### Contributions
Thanks to [@pacman100](https://github.com/pacman100) for adding this dataset.