evalstate commited on
Commit
e8aa09f
Β·
1 Parent(s): 7093da7

trackio guide updates

Browse files
trl/references/trackio_guide.md CHANGED
@@ -1,11 +1,12 @@
1
  # Trackio Integration for TRL Training
2
 
3
- **Trackio** is a local-first experiment tracking library that provides real-time metrics visualization via a Gradio dashboard.
4
 
5
- ⚠️ **IMPORTANT**: Trackio is local-first, which means:
6
- - It runs a dashboard on the machine where training happens
7
- - For Jobs training, sync to a Hugging Face Space to view metrics
8
- - Without a Space, metrics are only accessible during the job (then lost)
 
9
 
10
  ## Setting Up Trackio for Jobs
11
 
@@ -35,7 +36,7 @@ import trackio
35
 
36
  trackio.init(
37
  project="my-training",
38
- space_id="username/my-trackio-dashboard", # CRITICAL for Jobs!
39
  config={
40
  "model": "Qwen/Qwen2.5-0.5B",
41
  "dataset": "trl-lib/Capybara",
@@ -78,23 +79,11 @@ Trackio automatically logs:
78
  ## Viewing the Dashboard
79
 
80
  After starting training:
81
- 1. Navigate to the Space: `https://huggingface.co/spaces/username/my-trackio-dashboard`
82
  2. The Gradio dashboard shows all tracked experiments
83
  3. Filter by project, compare runs, view charts with smoothing
84
 
85
- ## Alternative: TensorBoard (Simpler for Jobs)
86
-
87
- For simpler setup without needing a Space:
88
- ```python
89
- SFTConfig(
90
- report_to="tensorboard", # Logs saved with model to Hub
91
- )
92
- ```
93
-
94
- TensorBoard logs are automatically saved with the model and viewable via TensorBoard locally after downloading.
95
-
96
  ## Recommendation
97
 
98
  - **Trackio**: Best for real-time monitoring during long training runs
99
- - **TensorBoard**: Best for post-training analysis, simpler setup
100
  - **Weights & Biases**: Best for team collaboration, requires account
 
1
  # Trackio Integration for TRL Training
2
 
3
+ **Trackio** is an experiment tracking library that provides real-time metrics visualization for remote training on Hugging Face Jobs infrastructure.
4
 
5
+ ⚠️ **IMPORTANT**: For Jobs training (remote cloud GPUs):
6
+ - Training happens on ephemeral cloud runners (not your local machine)
7
+ - Trackio syncs metrics to a Hugging Face Space for real-time monitoring
8
+ - Without a Space, metrics are lost when the job completes
9
+ - The Space dashboard persists your training metrics permanently
10
 
11
  ## Setting Up Trackio for Jobs
12
 
 
36
 
37
  trackio.init(
38
  project="my-training",
39
+ space_id="username/trackio", # CRITICAL for Jobs! Replace 'username' with your HF username
40
  config={
41
  "model": "Qwen/Qwen2.5-0.5B",
42
  "dataset": "trl-lib/Capybara",
 
79
  ## Viewing the Dashboard
80
 
81
  After starting training:
82
+ 1. Navigate to the Space: `https://huggingface.co/spaces/username/trackio`
83
  2. The Gradio dashboard shows all tracked experiments
84
  3. Filter by project, compare runs, view charts with smoothing
85
 
 
 
 
 
 
 
 
 
 
 
 
86
  ## Recommendation
87
 
88
  - **Trackio**: Best for real-time monitoring during long training runs
 
89
  - **Weights & Biases**: Best for team collaboration, requires account
trl/references/training_patterns.md CHANGED
@@ -39,7 +39,7 @@ from datasets import load_dataset
39
  from trl import DPOTrainer, DPOConfig
40
  import trackio
41
 
42
- trackio.init(project="dpo-training", space_id="username/my-dashboard")
43
 
44
  dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
45
 
 
39
  from trl import DPOTrainer, DPOConfig
40
  import trackio
41
 
42
+ trackio.init(project="dpo-training", space_id="username/trackio")
43
 
44
  dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
45
 
trl/scripts/train_dpo_example.py CHANGED
@@ -32,7 +32,7 @@ from trl import DPOTrainer, DPOConfig
32
  # Initialize Trackio for real-time monitoring
33
  trackio.init(
34
  project="qwen-dpo-alignment",
35
- space_id="username/my-trackio-dashboard",
36
  config={
37
  "model": "Qwen/Qwen2.5-0.5B-Instruct",
38
  "dataset": "trl-lib/ultrafeedback_binarized",
@@ -110,4 +110,4 @@ trainer.push_to_hub()
110
  trackio.finish()
111
 
112
  print("βœ… Complete! Model at: https://huggingface.co/username/qwen-dpo-aligned")
113
- print("πŸ“Š View metrics at: https://huggingface.co/spaces/username/my-trackio-dashboard")
 
32
  # Initialize Trackio for real-time monitoring
33
  trackio.init(
34
  project="qwen-dpo-alignment",
35
+ space_id="username/trackio",
36
  config={
37
  "model": "Qwen/Qwen2.5-0.5B-Instruct",
38
  "dataset": "trl-lib/ultrafeedback_binarized",
 
110
  trackio.finish()
111
 
112
  print("βœ… Complete! Model at: https://huggingface.co/username/qwen-dpo-aligned")
113
+ print("πŸ“Š View metrics at: https://huggingface.co/spaces/username/trackio")
trl/scripts/train_grpo_example.py CHANGED
@@ -36,7 +36,7 @@ from trl import GRPOTrainer, GRPOConfig
36
  # Initialize Trackio for real-time monitoring
37
  trackio.init(
38
  project="qwen-grpo-math",
39
- space_id="username/my-trackio-dashboard",
40
  config={
41
  "model": "Qwen/Qwen2.5-0.5B-Instruct",
42
  "dataset": "trl-lib/math_shepherd",
@@ -94,4 +94,4 @@ trainer.push_to_hub()
94
  trackio.finish()
95
 
96
  print("βœ… Complete! Model at: https://huggingface.co/username/qwen-grpo-math")
97
- print("πŸ“Š View metrics at: https://huggingface.co/spaces/username/my-trackio-dashboard")
 
36
  # Initialize Trackio for real-time monitoring
37
  trackio.init(
38
  project="qwen-grpo-math",
39
+ space_id="username/trackio",
40
  config={
41
  "model": "Qwen/Qwen2.5-0.5B-Instruct",
42
  "dataset": "trl-lib/math_shepherd",
 
94
  trackio.finish()
95
 
96
  print("βœ… Complete! Model at: https://huggingface.co/username/qwen-grpo-math")
97
+ print("πŸ“Š View metrics at: https://huggingface.co/spaces/username/trackio")
trl/scripts/train_sft_example.py CHANGED
@@ -39,7 +39,7 @@ from trl import SFTTrainer, SFTConfig
39
  # Initialize Trackio for real-time monitoring
40
  trackio.init(
41
  project="qwen-capybara-sft",
42
- space_id="username/my-trackio-dashboard", # Creates Space if it doesn't exist
43
  config={
44
  "model": "Qwen/Qwen2.5-0.5B",
45
  "dataset": "trl-lib/Capybara",
@@ -124,4 +124,4 @@ trainer.push_to_hub()
124
  trackio.finish()
125
 
126
  print("βœ… Complete! Model at: https://huggingface.co/username/qwen-capybara-sft")
127
- print("πŸ“Š View metrics at: https://huggingface.co/spaces/username/my-trackio-dashboard")
 
39
  # Initialize Trackio for real-time monitoring
40
  trackio.init(
41
  project="qwen-capybara-sft",
42
+ space_id="username/trackio", # Creates Space if it doesn't exist
43
  config={
44
  "model": "Qwen/Qwen2.5-0.5B",
45
  "dataset": "trl-lib/Capybara",
 
124
  trackio.finish()
125
 
126
  print("βœ… Complete! Model at: https://huggingface.co/username/qwen-capybara-sft")
127
+ print("πŸ“Š View metrics at: https://huggingface.co/spaces/username/trackio")