evalstate
commited on
Commit
·
7093da7
1
Parent(s):
eb23fb4
update preferences prefer uv
Browse files- trl/SKILL.md +67 -27
- trl/references/troubleshooting.md +1 -1
- trl/references/uv_scripts_guide.md +0 -414
trl/SKILL.md
CHANGED
|
@@ -40,7 +40,7 @@ Use this skill when users want to:
|
|
| 40 |
|
| 41 |
When assisting with training jobs:
|
| 42 |
|
| 43 |
-
1. **Submit jobs
|
| 44 |
|
| 45 |
2. **Always include Trackio** - Every training script should include Trackio for real-time monitoring. Use example scripts in `scripts/` as templates.
|
| 46 |
|
|
@@ -116,27 +116,9 @@ The job is running in the background. Ask me to check status/logs when ready!
|
|
| 116 |
|
| 117 |
## Quick Start: Three Approaches
|
| 118 |
|
| 119 |
-
### Approach 1:
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
```bash
|
| 124 |
-
# Install (users only, not needed for this environment)
|
| 125 |
-
pip install trl-jobs
|
| 126 |
-
|
| 127 |
-
# Train with SFT (simplest possible)
|
| 128 |
-
trl-jobs sft \
|
| 129 |
-
--model_name Qwen/Qwen2.5-0.5B \
|
| 130 |
-
--dataset_name trl-lib/Capybara
|
| 131 |
-
```
|
| 132 |
-
|
| 133 |
-
**Benefits:** Pre-configured settings, automatic Trackio integration, automatic Hub push, one-line commands
|
| 134 |
-
**When to use:** User is new to training, standard scenarios, quick experimentation
|
| 135 |
-
**Repository:** https://github.com/huggingface/trl-jobs
|
| 136 |
-
|
| 137 |
-
### Approach 2: UV Scripts (Recommended for Custom Training)
|
| 138 |
-
|
| 139 |
-
UV scripts use PEP 723 inline dependencies for clean, self-contained training. **Submit script content directly inline:**
|
| 140 |
|
| 141 |
```python
|
| 142 |
hf_jobs("uv", {
|
|
@@ -183,11 +165,50 @@ trackio.finish()
|
|
| 183 |
})
|
| 184 |
```
|
| 185 |
|
| 186 |
-
**Benefits:**
|
| 187 |
-
**When to use:**
|
| 188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 189 |
|
| 190 |
-
### Approach
|
| 191 |
|
| 192 |
TRL provides battle-tested scripts for all methods. Can be run from URLs:
|
| 193 |
|
|
@@ -225,6 +246,26 @@ hub_repo_details(["uv-scripts/classification"], repo_type="dataset", include_rea
|
|
| 225 |
|
| 226 |
**Popular collections:** ocr, classification, synthetic-data, vllm, dataset-creation
|
| 227 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
## Hardware Selection
|
| 229 |
|
| 230 |
| Model Size | Recommended Hardware | Cost (approx/hr) | Use Case |
|
|
@@ -545,7 +586,6 @@ Add to PEP 723 header:
|
|
| 545 |
- `references/training_patterns.md` - Common training patterns and examples
|
| 546 |
- `references/gguf_conversion.md` - Complete GGUF conversion guide
|
| 547 |
- `references/trackio_guide.md` - Trackio monitoring setup
|
| 548 |
-
- `references/uv_scripts_guide.md` - Complete UV scripts guide
|
| 549 |
- `references/hardware_guide.md` - Hardware specs and selection
|
| 550 |
- `references/hub_saving.md` - Hub authentication troubleshooting
|
| 551 |
- `references/troubleshooting.md` - Common issues and solutions
|
|
@@ -577,7 +617,7 @@ Add to PEP 723 header:
|
|
| 577 |
4. **Always enable Hub push** - Environment is ephemeral; without push, all results lost
|
| 578 |
5. **Include Trackio** - Use example scripts as templates for real-time monitoring
|
| 579 |
6. **Offer cost estimation** - When parameters are known, use `scripts/estimate_cost.py`
|
| 580 |
-
7. **
|
| 581 |
8. **Use hf_doc_fetch/hf_doc_search** for latest TRL documentation
|
| 582 |
9. **Validate dataset format** before training with dataset inspector (see Dataset Validation section)
|
| 583 |
10. **Choose appropriate hardware** for model size; use LoRA for models >7B
|
|
|
|
| 40 |
|
| 41 |
When assisting with training jobs:
|
| 42 |
|
| 43 |
+
1. **ALWAYS use `hf_jobs()` MCP tool** - Submit jobs using `hf_jobs("uv", {...})`, NOT bash `trl-jobs` commands. The `script` parameter accepts Python code directly. Do NOT save to local files unless the user explicitly requests it. Pass the script content as a string to `hf_jobs()`. If user asks to "train a model", "fine-tune", or similar requests, you MUST create the training script AND submit the job immediately using `hf_jobs()`.
|
| 44 |
|
| 45 |
2. **Always include Trackio** - Every training script should include Trackio for real-time monitoring. Use example scripts in `scripts/` as templates.
|
| 46 |
|
|
|
|
| 116 |
|
| 117 |
## Quick Start: Three Approaches
|
| 118 |
|
| 119 |
+
### Approach 1: UV Scripts (Recommended—Default Choice)
|
| 120 |
|
| 121 |
+
UV scripts use PEP 723 inline dependencies for clean, self-contained training. **This is the primary approach for Claude Code.**
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
```python
|
| 124 |
hf_jobs("uv", {
|
|
|
|
| 165 |
})
|
| 166 |
```
|
| 167 |
|
| 168 |
+
**Benefits:** Direct MCP tool usage, clean code, dependencies declared inline (PEP 723), no file saving required, full control
|
| 169 |
+
**When to use:** Default choice for all training tasks in Claude Code, custom training logic, any scenario requiring `hf_jobs()`
|
| 170 |
+
|
| 171 |
+
#### Working with Scripts
|
| 172 |
+
|
| 173 |
+
⚠️ **Important:** The `script` parameter accepts either inline code (as shown above) OR a URL. **Local file paths do NOT work.**
|
| 174 |
+
|
| 175 |
+
**Why local paths don't work:**
|
| 176 |
+
Jobs run in isolated Docker containers without access to your local filesystem. Scripts must be:
|
| 177 |
+
- Inline code (recommended for custom training)
|
| 178 |
+
- Publicly accessible URLs
|
| 179 |
+
- Private repo URLs (with HF_TOKEN)
|
| 180 |
+
|
| 181 |
+
**Common mistakes:**
|
| 182 |
+
```python
|
| 183 |
+
# ❌ These will all fail
|
| 184 |
+
hf_jobs("uv", {"script": "train.py"})
|
| 185 |
+
hf_jobs("uv", {"script": "./scripts/train.py"})
|
| 186 |
+
hf_jobs("uv", {"script": "/path/to/train.py"})
|
| 187 |
+
```
|
| 188 |
+
|
| 189 |
+
**Correct approaches:**
|
| 190 |
+
```python
|
| 191 |
+
# ✅ Inline code (recommended)
|
| 192 |
+
hf_jobs("uv", {"script": "# /// script\n# dependencies = [...]\n# ///\n\n<your code>"})
|
| 193 |
+
|
| 194 |
+
# ✅ From Hugging Face Hub
|
| 195 |
+
hf_jobs("uv", {"script": "https://huggingface.co/user/repo/resolve/main/train.py"})
|
| 196 |
+
|
| 197 |
+
# ✅ From GitHub
|
| 198 |
+
hf_jobs("uv", {"script": "https://raw.githubusercontent.com/user/repo/main/train.py"})
|
| 199 |
+
|
| 200 |
+
# ✅ From Gist
|
| 201 |
+
hf_jobs("uv", {"script": "https://gist.githubusercontent.com/user/id/raw/train.py"})
|
| 202 |
+
```
|
| 203 |
+
|
| 204 |
+
**To use local scripts:** Upload to HF Hub first:
|
| 205 |
+
```bash
|
| 206 |
+
huggingface-cli repo create my-training-scripts --type model
|
| 207 |
+
huggingface-cli upload my-training-scripts ./train.py train.py
|
| 208 |
+
# Use: https://huggingface.co/USERNAME/my-training-scripts/resolve/main/train.py
|
| 209 |
+
```
|
| 210 |
|
| 211 |
+
### Approach 2: TRL Maintained Scripts (Official Examples)
|
| 212 |
|
| 213 |
TRL provides battle-tested scripts for all methods. Can be run from URLs:
|
| 214 |
|
|
|
|
| 246 |
|
| 247 |
**Popular collections:** ocr, classification, synthetic-data, vllm, dataset-creation
|
| 248 |
|
| 249 |
+
### Approach 3: TRL Jobs Package (For Terminal Use)
|
| 250 |
+
|
| 251 |
+
The `trl-jobs` package provides optimized defaults and one-liner training. **Note: This approach uses bash commands, not `hf_jobs()` MCP tool.**
|
| 252 |
+
|
| 253 |
+
```bash
|
| 254 |
+
# Install (users only, not needed for this environment)
|
| 255 |
+
pip install trl-jobs
|
| 256 |
+
|
| 257 |
+
# Train with SFT (simplest possible)
|
| 258 |
+
trl-jobs sft \
|
| 259 |
+
--model_name Qwen/Qwen2.5-0.5B \
|
| 260 |
+
--dataset_name trl-lib/Capybara
|
| 261 |
+
```
|
| 262 |
+
|
| 263 |
+
**Benefits:** Pre-configured settings, automatic Trackio integration, automatic Hub push, one-line commands
|
| 264 |
+
**When to use:** User working in terminal directly (not Claude Code context), quick local experimentation
|
| 265 |
+
**Repository:** https://github.com/huggingface/trl-jobs
|
| 266 |
+
|
| 267 |
+
⚠️ **In Claude Code context, use Approach 1 (UV Scripts) with `hf_jobs()` instead.**
|
| 268 |
+
|
| 269 |
## Hardware Selection
|
| 270 |
|
| 271 |
| Model Size | Recommended Hardware | Cost (approx/hr) | Use Case |
|
|
|
|
| 586 |
- `references/training_patterns.md` - Common training patterns and examples
|
| 587 |
- `references/gguf_conversion.md` - Complete GGUF conversion guide
|
| 588 |
- `references/trackio_guide.md` - Trackio monitoring setup
|
|
|
|
| 589 |
- `references/hardware_guide.md` - Hardware specs and selection
|
| 590 |
- `references/hub_saving.md` - Hub authentication troubleshooting
|
| 591 |
- `references/troubleshooting.md` - Common issues and solutions
|
|
|
|
| 617 |
4. **Always enable Hub push** - Environment is ephemeral; without push, all results lost
|
| 618 |
5. **Include Trackio** - Use example scripts as templates for real-time monitoring
|
| 619 |
6. **Offer cost estimation** - When parameters are known, use `scripts/estimate_cost.py`
|
| 620 |
+
7. **Use UV scripts (Approach 1)** - Default to `hf_jobs("uv", {...})` with inline scripts; TRL maintained scripts for standard training; avoid bash `trl-jobs` commands in Claude Code
|
| 621 |
8. **Use hf_doc_fetch/hf_doc_search** for latest TRL documentation
|
| 622 |
9. **Validate dataset format** before training with dataset inspector (see Dataset Validation section)
|
| 623 |
10. **Choose appropriate hardware** for model size; use LoRA for models >7B
|
trl/references/troubleshooting.md
CHANGED
|
@@ -257,7 +257,7 @@ If issues persist:
|
|
| 257 |
3. **Review related guides:**
|
| 258 |
- `references/hub_saving.md` - Hub authentication issues
|
| 259 |
- `references/hardware_guide.md` - Hardware selection and specs
|
| 260 |
-
- `references/uv_scripts_guide.md` - UV script format issues
|
| 261 |
- `references/training_patterns.md` - Eval dataset requirements
|
|
|
|
| 262 |
|
| 263 |
4. **Ask in HF forums:** https://discuss.huggingface.co/
|
|
|
|
| 257 |
3. **Review related guides:**
|
| 258 |
- `references/hub_saving.md` - Hub authentication issues
|
| 259 |
- `references/hardware_guide.md` - Hardware selection and specs
|
|
|
|
| 260 |
- `references/training_patterns.md` - Eval dataset requirements
|
| 261 |
+
- SKILL.md "Working with Scripts" section - Script format and URL issues
|
| 262 |
|
| 263 |
4. **Ask in HF forums:** https://discuss.huggingface.co/
|
trl/references/uv_scripts_guide.md
DELETED
|
@@ -1,414 +0,0 @@
|
|
| 1 |
-
# UV Scripts Guide for TRL Training
|
| 2 |
-
|
| 3 |
-
UV scripts are self-contained Python scripts with inline dependency declarations (PEP 723). They're the modern, recommended approach for custom TRL training.
|
| 4 |
-
|
| 5 |
-
## What are UV Scripts?
|
| 6 |
-
|
| 7 |
-
UV scripts declare dependencies at the top of the file using special comment syntax:
|
| 8 |
-
|
| 9 |
-
```python
|
| 10 |
-
# /// script
|
| 11 |
-
# dependencies = [
|
| 12 |
-
# "trl>=0.12.0",
|
| 13 |
-
# "transformers>=4.36.0",
|
| 14 |
-
# ]
|
| 15 |
-
# ///
|
| 16 |
-
|
| 17 |
-
# Your training code here
|
| 18 |
-
from trl import SFTTrainer
|
| 19 |
-
```
|
| 20 |
-
|
| 21 |
-
## Benefits
|
| 22 |
-
|
| 23 |
-
1. **Self-contained**: Dependencies are part of the script
|
| 24 |
-
2. **Version control**: Pin exact versions for reproducibility
|
| 25 |
-
3. **No setup files**: No requirements.txt or setup.py needed
|
| 26 |
-
4. **Portable**: Run anywhere UV is installed
|
| 27 |
-
5. **Clean**: Much cleaner than bash + pip + python strings
|
| 28 |
-
|
| 29 |
-
## Creating a UV Script
|
| 30 |
-
|
| 31 |
-
### Step 1: Define Dependencies
|
| 32 |
-
|
| 33 |
-
Start with dependency declaration:
|
| 34 |
-
|
| 35 |
-
```python
|
| 36 |
-
# /// script
|
| 37 |
-
# dependencies = [
|
| 38 |
-
# "trl>=0.12.0", # TRL for training
|
| 39 |
-
# "transformers>=4.36.0", # Transformers library
|
| 40 |
-
# "datasets>=2.14.0", # Dataset loading
|
| 41 |
-
# "accelerate>=0.24.0", # Distributed training
|
| 42 |
-
# "peft>=0.7.0", # LoRA/PEFT (optional)
|
| 43 |
-
# ]
|
| 44 |
-
# ///
|
| 45 |
-
```
|
| 46 |
-
|
| 47 |
-
### Step 2: Add Training Code
|
| 48 |
-
|
| 49 |
-
```python
|
| 50 |
-
# /// script
|
| 51 |
-
# dependencies = ["trl", "peft"]
|
| 52 |
-
# ///
|
| 53 |
-
|
| 54 |
-
from datasets import load_dataset
|
| 55 |
-
from peft import LoraConfig
|
| 56 |
-
from trl import SFTTrainer, SFTConfig
|
| 57 |
-
|
| 58 |
-
# Load dataset
|
| 59 |
-
dataset = load_dataset("trl-lib/Capybara", split="train")
|
| 60 |
-
|
| 61 |
-
# Configure training
|
| 62 |
-
config = SFTConfig(
|
| 63 |
-
output_dir="my-model",
|
| 64 |
-
num_train_epochs=3,
|
| 65 |
-
push_to_hub=True,
|
| 66 |
-
hub_model_id="username/my-model",
|
| 67 |
-
)
|
| 68 |
-
|
| 69 |
-
# Train
|
| 70 |
-
trainer = SFTTrainer(
|
| 71 |
-
model="Qwen/Qwen2.5-0.5B",
|
| 72 |
-
train_dataset=dataset,
|
| 73 |
-
args=config,
|
| 74 |
-
peft_config=LoraConfig(r=16, lora_alpha=32),
|
| 75 |
-
)
|
| 76 |
-
|
| 77 |
-
trainer.train()
|
| 78 |
-
trainer.push_to_hub()
|
| 79 |
-
```
|
| 80 |
-
|
| 81 |
-
### Step 3: Run on Jobs
|
| 82 |
-
|
| 83 |
-
```python
|
| 84 |
-
hf_jobs("uv", {
|
| 85 |
-
"script": "train.py", # or URL
|
| 86 |
-
"flavor": "a10g-large",
|
| 87 |
-
"timeout": "2h",
|
| 88 |
-
"secrets": {"HF_TOKEN": "$HF_TOKEN"}
|
| 89 |
-
})
|
| 90 |
-
```
|
| 91 |
-
|
| 92 |
-
## Running Scripts from URLs
|
| 93 |
-
|
| 94 |
-
UV scripts can be run directly from URLs:
|
| 95 |
-
|
| 96 |
-
```python
|
| 97 |
-
hf_jobs("uv", {
|
| 98 |
-
"script": "https://gist.github.com/username/abc123/raw/train.py",
|
| 99 |
-
"flavor": "a10g-large",
|
| 100 |
-
"timeout": "2h",
|
| 101 |
-
"secrets": {"HF_TOKEN": "$HF_TOKEN"}
|
| 102 |
-
})
|
| 103 |
-
```
|
| 104 |
-
|
| 105 |
-
**Benefits:**
|
| 106 |
-
- Share scripts via GitHub Gists
|
| 107 |
-
- Version control in Git repos
|
| 108 |
-
- Scripts accessible from anywhere
|
| 109 |
-
|
| 110 |
-
## Working with Local Scripts
|
| 111 |
-
|
| 112 |
-
⚠️ **Important:** The `hf_jobs("uv", ...)` command does NOT support local file paths directly. You must make scripts accessible via URL.
|
| 113 |
-
|
| 114 |
-
### Why Local Paths Don't Work
|
| 115 |
-
|
| 116 |
-
The Jobs API runs in isolated Docker containers without access to your local filesystem. Scripts must be:
|
| 117 |
-
- Publicly accessible URLs, OR
|
| 118 |
-
- Accessible via authentication (HF_TOKEN for private repos)
|
| 119 |
-
|
| 120 |
-
**Don't:**
|
| 121 |
-
```python
|
| 122 |
-
# ❌ These will all fail
|
| 123 |
-
hf_jobs("uv", {"script": "train.py"})
|
| 124 |
-
hf_jobs("uv", {"script": "./scripts/train.py"})
|
| 125 |
-
hf_jobs("uv", {"script": "/path/to/train.py"})
|
| 126 |
-
```
|
| 127 |
-
|
| 128 |
-
**Do:**
|
| 129 |
-
```python
|
| 130 |
-
# ✅ These work
|
| 131 |
-
hf_jobs("uv", {"script": "https://huggingface.co/user/repo/resolve/main/train.py"})
|
| 132 |
-
hf_jobs("uv", {"script": "https://raw.githubusercontent.com/user/repo/main/train.py"})
|
| 133 |
-
hf_jobs("uv", {"script": "https://gist.githubusercontent.com/user/id/raw/train.py"})
|
| 134 |
-
```
|
| 135 |
-
|
| 136 |
-
### Recommended: Upload to Hugging Face Hub
|
| 137 |
-
|
| 138 |
-
The easiest way to use local scripts is to upload them to a Hugging Face repository:
|
| 139 |
-
|
| 140 |
-
```bash
|
| 141 |
-
# Create a dedicated scripts repo
|
| 142 |
-
huggingface-cli repo create my-training-scripts --type model
|
| 143 |
-
|
| 144 |
-
# Upload your script
|
| 145 |
-
huggingface-cli upload my-training-scripts ./train.py train.py
|
| 146 |
-
|
| 147 |
-
# If you update the script later
|
| 148 |
-
huggingface-cli upload my-training-scripts ./train.py train.py --commit-message "Updated training params"
|
| 149 |
-
|
| 150 |
-
# Use in jobs
|
| 151 |
-
script_url = "https://huggingface.co/USERNAME/my-training-scripts/resolve/main/train.py"
|
| 152 |
-
|
| 153 |
-
hf_jobs("uv", {
|
| 154 |
-
"script": script_url,
|
| 155 |
-
"flavor": "a10g-large",
|
| 156 |
-
"timeout": "2h",
|
| 157 |
-
"secrets": {"HF_TOKEN": "$HF_TOKEN"}
|
| 158 |
-
})
|
| 159 |
-
```
|
| 160 |
-
|
| 161 |
-
**Benefits:**
|
| 162 |
-
- ✅ Version control via Git
|
| 163 |
-
- ✅ Private repos supported (with HF_TOKEN)
|
| 164 |
-
- ✅ Easy to share and update
|
| 165 |
-
- ✅ No external dependencies
|
| 166 |
-
- ✅ Integrates with HF ecosystem
|
| 167 |
-
|
| 168 |
-
**For Private Scripts:**
|
| 169 |
-
```python
|
| 170 |
-
# Your script is in a private repo
|
| 171 |
-
hf_jobs("uv", {
|
| 172 |
-
"script": "https://huggingface.co/USERNAME/private-scripts/resolve/main/train.py",
|
| 173 |
-
"flavor": "a10g-large",
|
| 174 |
-
"secrets": {"HF_TOKEN": "$HF_TOKEN"} # Allows access to private repo
|
| 175 |
-
})
|
| 176 |
-
```
|
| 177 |
-
|
| 178 |
-
### Alternative: GitHub Gist
|
| 179 |
-
|
| 180 |
-
For quick scripts or one-off experiments:
|
| 181 |
-
|
| 182 |
-
```bash
|
| 183 |
-
# 1. Create a gist at https://gist.github.com
|
| 184 |
-
# 2. Paste your script
|
| 185 |
-
# 3. Click "Create public gist" (or secret gist)
|
| 186 |
-
# 4. Click the "Raw" button to get the raw URL
|
| 187 |
-
|
| 188 |
-
# Use in jobs
|
| 189 |
-
hf_jobs("uv", {
|
| 190 |
-
"script": "https://gist.githubusercontent.com/username/gist-id/raw/train.py",
|
| 191 |
-
"flavor": "a10g-large"
|
| 192 |
-
})
|
| 193 |
-
```
|
| 194 |
-
|
| 195 |
-
**Benefits:**
|
| 196 |
-
- ✅ Quick and easy
|
| 197 |
-
- ✅ No HF CLI setup needed
|
| 198 |
-
- ✅ Good for sharing examples
|
| 199 |
-
|
| 200 |
-
**Limitations:**
|
| 201 |
-
- ❌ Less version control than Git repos
|
| 202 |
-
- ❌ Secret gists are still publicly accessible via URL
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
## Using TRL Example Scripts
|
| 206 |
-
|
| 207 |
-
TRL provides maintained scripts that are UV-compatible:
|
| 208 |
-
|
| 209 |
-
```python
|
| 210 |
-
hf_jobs("uv", {
|
| 211 |
-
"script": "https://raw.githubusercontent.com/huggingface/trl/main/examples/scripts/sft.py",
|
| 212 |
-
"script_args": [
|
| 213 |
-
"--model_name_or_path", "Qwen/Qwen2.5-0.5B",
|
| 214 |
-
"--dataset_name", "trl-lib/Capybara",
|
| 215 |
-
"--output_dir", "my-model",
|
| 216 |
-
"--push_to_hub",
|
| 217 |
-
"--hub_model_id", "username/my-model"
|
| 218 |
-
],
|
| 219 |
-
"flavor": "a10g-large",
|
| 220 |
-
"timeout": "2h",
|
| 221 |
-
"secrets": {"HF_TOKEN": "$HF_TOKEN"}
|
| 222 |
-
})
|
| 223 |
-
```
|
| 224 |
-
|
| 225 |
-
**Available TRL scripts:**
|
| 226 |
-
- `sft.py` - Supervised fine-tuning
|
| 227 |
-
- `dpo.py` - Direct Preference Optimization
|
| 228 |
-
- `kto.py` - KTO training
|
| 229 |
-
- `grpo.py` - GRPO training
|
| 230 |
-
- `reward.py` - Reward model training
|
| 231 |
-
- `prm.py` - Process reward model
|
| 232 |
-
|
| 233 |
-
All at: https://github.com/huggingface/trl/tree/main/examples/scripts
|
| 234 |
-
|
| 235 |
-
## Best Practices
|
| 236 |
-
|
| 237 |
-
### 1. Pin Versions
|
| 238 |
-
|
| 239 |
-
Always pin dependency versions for reproducibility:
|
| 240 |
-
|
| 241 |
-
```python
|
| 242 |
-
# /// script
|
| 243 |
-
# dependencies = [
|
| 244 |
-
# "trl==0.12.0", # Exact version
|
| 245 |
-
# "transformers>=4.36.0", # Minimum version
|
| 246 |
-
# ]
|
| 247 |
-
# ///
|
| 248 |
-
```
|
| 249 |
-
|
| 250 |
-
### 2. Add Logging
|
| 251 |
-
|
| 252 |
-
Include progress logging for monitoring:
|
| 253 |
-
|
| 254 |
-
```python
|
| 255 |
-
print("✅ Dataset loaded")
|
| 256 |
-
print("🚀 Starting training...")
|
| 257 |
-
print(f"📊 Training on {len(dataset)} examples")
|
| 258 |
-
```
|
| 259 |
-
|
| 260 |
-
### 3. Validate Inputs
|
| 261 |
-
|
| 262 |
-
Check dataset and configuration before training:
|
| 263 |
-
|
| 264 |
-
```python
|
| 265 |
-
dataset = load_dataset("trl-lib/Capybara", split="train")
|
| 266 |
-
assert len(dataset) > 0, "Dataset is empty!"
|
| 267 |
-
print(f"✅ Dataset loaded: {len(dataset)} examples")
|
| 268 |
-
```
|
| 269 |
-
|
| 270 |
-
### 4. Add Comments
|
| 271 |
-
|
| 272 |
-
Document the script for future reference:
|
| 273 |
-
|
| 274 |
-
```python
|
| 275 |
-
# Train Qwen-0.5B on Capybara dataset using LoRA
|
| 276 |
-
# Expected runtime: ~2 hours on a10g-large
|
| 277 |
-
# Cost estimate: ~$6-8
|
| 278 |
-
```
|
| 279 |
-
|
| 280 |
-
### 5. Test Locally First
|
| 281 |
-
|
| 282 |
-
Test scripts locally before running on Jobs:
|
| 283 |
-
|
| 284 |
-
```bash
|
| 285 |
-
uv run train.py # Runs locally with uv
|
| 286 |
-
```
|
| 287 |
-
|
| 288 |
-
## Docker Images
|
| 289 |
-
|
| 290 |
-
### Default Image
|
| 291 |
-
|
| 292 |
-
UV scripts run on default Python image with UV installed.
|
| 293 |
-
|
| 294 |
-
### TRL Image
|
| 295 |
-
|
| 296 |
-
Use official TRL image for faster startup:
|
| 297 |
-
|
| 298 |
-
```python
|
| 299 |
-
hf_jobs("uv", {
|
| 300 |
-
"script": "train.py",
|
| 301 |
-
"image": "huggingface/trl", # Pre-installed TRL dependencies
|
| 302 |
-
"flavor": "a10g-large",
|
| 303 |
-
"timeout": "2h",
|
| 304 |
-
"secrets": {"HF_TOKEN": "$HF_TOKEN"}
|
| 305 |
-
})
|
| 306 |
-
```
|
| 307 |
-
|
| 308 |
-
**Benefits:**
|
| 309 |
-
- Faster job startup (no pip install)
|
| 310 |
-
- All TRL dependencies pre-installed
|
| 311 |
-
- Tested and maintained by HF
|
| 312 |
-
|
| 313 |
-
## Template Scripts
|
| 314 |
-
|
| 315 |
-
### Basic SFT Template
|
| 316 |
-
|
| 317 |
-
```python
|
| 318 |
-
# /// script
|
| 319 |
-
# dependencies = ["trl>=0.12.0"]
|
| 320 |
-
# ///
|
| 321 |
-
|
| 322 |
-
from datasets import load_dataset
|
| 323 |
-
from trl import SFTTrainer, SFTConfig
|
| 324 |
-
|
| 325 |
-
dataset = load_dataset("DATASET_NAME", split="train")
|
| 326 |
-
|
| 327 |
-
trainer = SFTTrainer(
|
| 328 |
-
model="MODEL_NAME",
|
| 329 |
-
train_dataset=dataset,
|
| 330 |
-
args=SFTConfig(
|
| 331 |
-
output_dir="OUTPUT_DIR",
|
| 332 |
-
num_train_epochs=3,
|
| 333 |
-
push_to_hub=True,
|
| 334 |
-
hub_model_id="USERNAME/MODEL_NAME",
|
| 335 |
-
)
|
| 336 |
-
)
|
| 337 |
-
|
| 338 |
-
trainer.train()
|
| 339 |
-
trainer.push_to_hub()
|
| 340 |
-
```
|
| 341 |
-
|
| 342 |
-
### SFT with LoRA Template
|
| 343 |
-
|
| 344 |
-
```python
|
| 345 |
-
# /// script
|
| 346 |
-
# dependencies = ["trl>=0.12.0", "peft>=0.7.0"]
|
| 347 |
-
# ///
|
| 348 |
-
|
| 349 |
-
from datasets import load_dataset
|
| 350 |
-
from peft import LoraConfig
|
| 351 |
-
from trl import SFTTrainer, SFTConfig
|
| 352 |
-
|
| 353 |
-
dataset = load_dataset("DATASET_NAME", split="train")
|
| 354 |
-
|
| 355 |
-
trainer = SFTTrainer(
|
| 356 |
-
model="MODEL_NAME",
|
| 357 |
-
train_dataset=dataset,
|
| 358 |
-
peft_config=LoraConfig(r=16, lora_alpha=32),
|
| 359 |
-
args=SFTConfig(
|
| 360 |
-
output_dir="OUTPUT_DIR",
|
| 361 |
-
num_train_epochs=3,
|
| 362 |
-
push_to_hub=True,
|
| 363 |
-
hub_model_id="USERNAME/MODEL_NAME",
|
| 364 |
-
)
|
| 365 |
-
)
|
| 366 |
-
|
| 367 |
-
trainer.train()
|
| 368 |
-
trainer.push_to_hub()
|
| 369 |
-
```
|
| 370 |
-
|
| 371 |
-
### DPO Template
|
| 372 |
-
|
| 373 |
-
```python
|
| 374 |
-
# /// script
|
| 375 |
-
# dependencies = ["trl>=0.12.0"]
|
| 376 |
-
# ///
|
| 377 |
-
|
| 378 |
-
from datasets import load_dataset
|
| 379 |
-
from transformers import AutoTokenizer
|
| 380 |
-
from trl import DPOTrainer, DPOConfig
|
| 381 |
-
|
| 382 |
-
model_name = "MODEL_NAME"
|
| 383 |
-
dataset = load_dataset("DATASET_NAME", split="train")
|
| 384 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 385 |
-
|
| 386 |
-
trainer = DPOTrainer(
|
| 387 |
-
model=model_name,
|
| 388 |
-
train_dataset=dataset,
|
| 389 |
-
tokenizer=tokenizer,
|
| 390 |
-
args=DPOConfig(
|
| 391 |
-
output_dir="OUTPUT_DIR",
|
| 392 |
-
num_train_epochs=3,
|
| 393 |
-
push_to_hub=True,
|
| 394 |
-
hub_model_id="USERNAME/MODEL_NAME",
|
| 395 |
-
)
|
| 396 |
-
)
|
| 397 |
-
|
| 398 |
-
trainer.train()
|
| 399 |
-
trainer.push_to_hub()
|
| 400 |
-
```
|
| 401 |
-
|
| 402 |
-
## Troubleshooting
|
| 403 |
-
|
| 404 |
-
### Issue: Dependencies not installing
|
| 405 |
-
**Check:** Verify dependency names and versions are correct
|
| 406 |
-
|
| 407 |
-
### Issue: Script not found
|
| 408 |
-
**Check:** Verify URL is accessible and points to raw file
|
| 409 |
-
|
| 410 |
-
### Issue: Import errors
|
| 411 |
-
**Solution:** Add missing dependencies to `dependencies` list
|
| 412 |
-
|
| 413 |
-
### Issue: Slow startup
|
| 414 |
-
**Solution:** Use `image="huggingface/trl"` for pre-installed dependencies
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|