skills_go_to_github / trl /scripts /train_dpo_example.py
evalstate
trackio guide updates
e8aa09f
#!/usr/bin/env python3
# /// script
# dependencies = [
# "trl>=0.12.0",
# "transformers>=4.36.0",
# "accelerate>=0.24.0",
# "trackio",
# ]
# ///
"""
Production-ready DPO training example for preference learning.
DPO (Direct Preference Optimization) trains models on preference pairs
(chosen vs rejected responses) without requiring a reward model.
Usage with hf_jobs MCP tool:
hf_jobs("uv", {
"script": '''<paste this entire file>''',
"flavor": "a10g-large",
"timeout": "3h",
"secrets": {"HF_TOKEN": "$HF_TOKEN"},
})
Or submit the script content directly inline without saving to a file.
"""
import trackio
from datasets import load_dataset
from trl import DPOTrainer, DPOConfig
# Initialize Trackio for real-time monitoring
trackio.init(
project="qwen-dpo-alignment",
space_id="username/trackio",
config={
"model": "Qwen/Qwen2.5-0.5B-Instruct",
"dataset": "trl-lib/ultrafeedback_binarized",
"method": "DPO",
"beta": 0.1,
"num_epochs": 1,
}
)
# Load preference dataset
print("πŸ“¦ Loading dataset...")
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
print(f"βœ… Dataset loaded: {len(dataset)} preference pairs")
# Create train/eval split
print("πŸ”€ Creating train/eval split...")
dataset_split = dataset.train_test_split(test_size=0.1, seed=42)
train_dataset = dataset_split["train"]
eval_dataset = dataset_split["test"]
print(f" Train: {len(train_dataset)} pairs")
print(f" Eval: {len(eval_dataset)} pairs")
# Training configuration
config = DPOConfig(
# CRITICAL: Hub settings
output_dir="qwen-dpo-aligned",
push_to_hub=True,
hub_model_id="username/qwen-dpo-aligned",
hub_strategy="every_save",
# DPO-specific parameters
beta=0.1, # KL penalty coefficient (higher = stay closer to reference)
# Training parameters
num_train_epochs=1, # DPO typically needs fewer epochs than SFT
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
learning_rate=5e-7, # DPO uses much lower LR than SFT
# Logging & checkpointing
logging_steps=10,
save_strategy="steps",
save_steps=100,
save_total_limit=2,
# Evaluation - IMPORTANT: Only enable if eval_dataset provided
eval_strategy="steps",
eval_steps=100,
# Optimization
warmup_ratio=0.1,
lr_scheduler_type="cosine",
# Monitoring
report_to="trackio",
)
# Initialize and train
# Note: DPO requires an instruct-tuned model as the base
print("🎯 Initializing trainer...")
trainer = DPOTrainer(
model="Qwen/Qwen2.5-0.5B-Instruct", # Use instruct model, not base model
train_dataset=train_dataset,
eval_dataset=eval_dataset, # CRITICAL: Must provide eval_dataset when eval_strategy is enabled
args=config,
)
print("πŸš€ Starting DPO training...")
trainer.train()
print("πŸ’Ύ Pushing to Hub...")
trainer.push_to_hub()
# Finish Trackio tracking
trackio.finish()
print("βœ… Complete! Model at: https://huggingface.co/username/qwen-dpo-aligned")
print("πŸ“Š View metrics at: https://huggingface.co/spaces/username/trackio")