Datasets:
license: bsd-2-clause
language:
- fr
task_categories:
- text-classification
task_ids:
- multi-input-text-classification
size_categories:
- 1K<n<10K
Dataset Card for Dataset Name
Dataset Description
- Homepage:
- Repository: https://github.com/mskandalis/daccord-dataset-contradictions
- Paper: https://aclanthology.org/2024.lrec-main.1065
- Leaderboard:
- Point of Contact:
Dataset Summary
The DACCORD dataset is an entirely new collection of 1034 sentence pairs annotated as a binary classification task for automatic detection of contradictions between sentences in French. Each pair of sentences receives a label according to whether or not the two sentences contradict each other. DACCORD currently covers the themes of Russia’s invasion of Ukraine in 2022, the Covid-19 pandemic, and the climate crisis. The sentences of the dataset were extracted from (or based on sentences from) AFP Factuel articles.
Supported Tasks and Leaderboards
The task of automatic detection of contradictions between sentences is a sentence-pair binary classification task. It can be viewed as a task related to both natural language inference task and misinformation detection task.
Dataset Structure
Data Fields
id
: Index number.premise
: The translated premise in the target language.hypothesis
: The translated premise in the target language.label
: The classification label, with possible values 0 (compatibles
), 1 (contradiction
).label_text
: The classification label, with possible valuescompatibles
(0),contradiction
(1).genre
: astring
feature .
Data Splits
theme | contradiction | compatible |
---|---|---|
Russian invasion of Ukraine | 215 | 257 |
Covid-19 | 251 | 199 |
Climate change | 49 | 63 |
Additional Information
Citation Information
BibTeX:
@inproceedings{skandalis-etal-2024-new-datasets,
title = "New Datasets for Automatic Detection of Textual Entailment and of Contradictions between Sentences in {F}rench",
author = "Skandalis, Maximos and
Moot, Richard and
Retor{\'e}, Christian and
Robillard, Simon",
editor = "Calzolari, Nicoletta and
Kan, Min-Yen and
Hoste, Veronique and
Lenci, Alessandro and
Sakti, Sakriani and
Xue, Nianwen",
booktitle = "Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)",
month = may,
year = "2024",
address = "Torino, Italy",
publisher = "ELRA and ICCL",
url = "https://aclanthology.org/2024.lrec-main.1065",
pages = "12173--12186",
abstract = "This paper introduces DACCORD, an original dataset in French for automatic detection of contradictions between sentences. It also presents new, manually translated versions of two datasets, namely the well known dataset RTE3 and the recent dataset GQNLI, from English to French, for the task of natural language inference / recognising textual entailment, which is a sentence-pair classification task. These datasets help increase the admittedly limited number of datasets in French available for these tasks. DACCORD consists of 1034 pairs of sentences and is the first dataset exclusively dedicated to this task and covering among others the topic of the Russian invasion in Ukraine. RTE3-FR contains 800 examples for each of its validation and test subsets, while GQNLI-FR is composed of 300 pairs of sentences and focuses specifically on the use of generalised quantifiers. Our experiments on these datasets show that they are more challenging than the two already existing datasets for the mainstream NLI task in French (XNLI, FraCaS). For languages other than English, most deep learning models for NLI tasks currently have only XNLI available as a training set. Additional datasets, such as ours for French, could permit different training and evaluation strategies, producing more robust results and reducing the inevitable biases present in any single dataset.",
}
@inproceedings{skandalis-etal-2023-daccord,
title = "{DACCORD} : un jeu de donn{\'e}es pour la D{\'e}tection Automatique d{'}{\'e}non{C}{\'e}s {CO}nt{R}a{D}ictoires en fran{\c{c}}ais",
author = "Skandalis, Maximos and
Moot, Richard and
Robillard, Simon",
booktitle = "Actes de CORIA-TALN 2023. Actes de la 30e Conf{\'e}rence sur le Traitement Automatique des Langues Naturelles (TALN), volume 1 : travaux de recherche originaux -- articles longs",
month = "6",
year = "2023",
address = "Paris, France",
publisher = "ATALA",
url = "https://aclanthology.org/2023.jeptalnrecital-long.22",
pages = "285--297",
abstract = "La t{\^a}che de d{\'e}tection automatique de contradictions logiques entre {\'e}nonc{\'e}s en TALN est une t{\^a}che de classification binaire, o{\`u} chaque paire de phrases re{\c{c}}oit une {\'e}tiquette selon que les deux phrases se contredisent ou non. Elle peut {\^e}tre utilis{\'e}e afin de lutter contre la d{\'e}sinformation. Dans cet article, nous pr{\'e}sentons DACCORD, un jeu de donn{\'e}es d{\'e}di{\'e} {\`a} la t{\^a}che de d{\'e}tection automatique de contradictions entre phrases en fran{\c{c}}ais. Le jeu de donn{\'e}es {\'e}labor{\'e} est actuellement compos{\'e} de 1034 paires de phrases. Il couvre les th{\'e}matiques de l{'}invasion de la Russie en Ukraine en 2022, de la pand{\'e}mie de Covid-19 et de la crise climatique. Pour mettre en avant les possibilit{\'e}s de notre jeu de donn{\'e}es, nous {\'e}valuons les performances de certains mod{\`e}les de transformeurs sur lui. Nous constatons qu{'}il constitue pour eux un d{\'e}fi plus {\'e}lev{\'e} que les jeux de donn{\'e}es existants pour le fran{\c{c}}ais, qui sont d{\'e}j{\`a} peu nombreux. In NLP, the automatic detection of logical contradictions between statements is a binary classification task, in which a pair of sentences receives a label according to whether or not the two sentences contradict each other. This task has many potential applications, including combating disinformation. In this article, we present DACCORD, a new dataset dedicated to the task of automatically detecting contradictions between sentences in French. The dataset is currently composed of 1034 sentence pairs. It covers the themes of Russia{'}s invasion of Ukraine in 2022, the Covid-19 pandemic, and the climate crisis. To highlight the possibilities of our dataset, we evaluate the performance of some recent Transformer models on it. We conclude that our dataset is considerably more challenging than the few existing datasets for French.",
language = "French",
}
ACL:
Maximos Skandalis, Richard Moot, Christian Retoré, and Simon Robillard. 2024. New Datasets for Automatic Detection of Textual Entailment and of Contradictions between Sentences in French. In Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024), pages 12173–12186, Torino, Italy. ELRA and ICCL.
And
Maximos Skandalis, Richard Moot, and Simon Robillard. 2023. DACCORD : un jeu de données pour la Détection Automatique d’énonCés COntRaDictoires en français. In Actes de CORIA-TALN 2023. Actes de la 30e Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 1 : travaux de recherche originaux -- articles longs, pages 285–297, Paris, France. ATALA.
Acknowledgements
This work was supported by the Defence Innovation Agency (AID) of the Directorate General of Armament (DGA) of the French Ministry of Armed Forces, and by the ICO, Institut Cybersécurité Occitanie, funded by Région Occitanie, France.