Datasets:
Matthew Franglen
commited on
Commit
•
cdea156
1
Parent(s):
cfa80ae
Drop the old convert code
Browse filesThat was from the blog and was a bit wip
- src/convert.py +0 -276
src/convert.py
DELETED
@@ -1,276 +0,0 @@
|
|
1 |
-
from typing import Optional
|
2 |
-
|
3 |
-
import Levenshtein
|
4 |
-
import pandas as pd
|
5 |
-
|
6 |
-
from .data import read_aste_file, read_sem_eval_file
|
7 |
-
from .types import CharacterIndices, WordSpan
|
8 |
-
|
9 |
-
|
10 |
-
def get_original_text(
|
11 |
-
aste_file: str,
|
12 |
-
sem_eval_file: str,
|
13 |
-
debug: bool = False,
|
14 |
-
) -> pd.DataFrame:
|
15 |
-
approximate_matches = 0
|
16 |
-
|
17 |
-
def best_match(text: str) -> str:
|
18 |
-
comparison = text.replace(" ", "")
|
19 |
-
if comparison in comparison_to_text:
|
20 |
-
return comparison_to_text[comparison]
|
21 |
-
|
22 |
-
nonlocal approximate_matches
|
23 |
-
approximate_matches += 1
|
24 |
-
distances = sem_eval_comparison.apply(
|
25 |
-
lambda se_comparison: Levenshtein.distance(comparison, se_comparison)
|
26 |
-
)
|
27 |
-
best = sem_eval_df.iloc[distances.argmin()].text
|
28 |
-
return best
|
29 |
-
|
30 |
-
sem_eval_df = read_sem_eval_file(sem_eval_file)
|
31 |
-
sem_eval_comparison = sem_eval_df.text.str.replace(" ", "")
|
32 |
-
comparison_to_text = dict(zip(sem_eval_comparison, sem_eval_df.text))
|
33 |
-
|
34 |
-
aste_df = read_aste_file(aste_file)
|
35 |
-
aste_df = aste_df.rename(columns={"text": "preprocessed_text"})
|
36 |
-
aste_df["text"] = aste_df.preprocessed_text.apply(best_match)
|
37 |
-
if debug:
|
38 |
-
print(f"Read {len(aste_df):,} rows")
|
39 |
-
print(f"Had to use {approximate_matches:,} approximate matches")
|
40 |
-
return aste_df[["text", "preprocessed_text", "triples"]]
|
41 |
-
|
42 |
-
|
43 |
-
def edit(original: str, preprocessed: str) -> list[Optional[int]]:
|
44 |
-
indices: list[Optional[int]] = list(range(len(preprocessed)))
|
45 |
-
for operation, _source_position, destination_position in Levenshtein.editops(
|
46 |
-
preprocessed, original
|
47 |
-
):
|
48 |
-
if operation == "replace":
|
49 |
-
indices[destination_position] = None
|
50 |
-
elif operation == "insert":
|
51 |
-
indices.insert(destination_position, None)
|
52 |
-
elif operation == "delete":
|
53 |
-
del indices[destination_position]
|
54 |
-
return indices
|
55 |
-
|
56 |
-
|
57 |
-
def has_unmapped(indicies: list[Optional[int]]) -> bool:
|
58 |
-
return any(index is None for index in indicies)
|
59 |
-
|
60 |
-
|
61 |
-
def has_unmapped_non_space(row: pd.Series) -> bool:
|
62 |
-
letter_and_index: list[tuple[str, Optional[int]]] = list(
|
63 |
-
zip(row.text, row.text_indices)
|
64 |
-
)
|
65 |
-
return any(index is None for letter, index in letter_and_index if letter != " ")
|
66 |
-
|
67 |
-
|
68 |
-
def row_to_character_indices(row: pd.Series) -> pd.Series:
|
69 |
-
try:
|
70 |
-
return pd.Series(
|
71 |
-
to_character_indices(
|
72 |
-
triplet=row.triples,
|
73 |
-
preprocessed=row.preprocessed_text,
|
74 |
-
text=row.text,
|
75 |
-
text_indices=row.text_indices,
|
76 |
-
)
|
77 |
-
)
|
78 |
-
except:
|
79 |
-
print(f"failed to process row {row.name}")
|
80 |
-
print(row)
|
81 |
-
raise
|
82 |
-
|
83 |
-
|
84 |
-
def to_character_indices(
|
85 |
-
*,
|
86 |
-
triplet: tuple[tuple[int], tuple[int], str],
|
87 |
-
preprocessed: str,
|
88 |
-
text: str,
|
89 |
-
text_indices: list[Optional[int]],
|
90 |
-
) -> CharacterIndices:
|
91 |
-
def find_start_index(span: WordSpan) -> int:
|
92 |
-
# the starting letter in the lookup can be missing or None
|
93 |
-
# this would cause a lookup failure
|
94 |
-
# to recover from this we can find the following letter index and backtrack
|
95 |
-
for index in range(span.start_index, span.end_index):
|
96 |
-
try:
|
97 |
-
text_index = text_indices.index(index)
|
98 |
-
for _ in range(index - span.start_index):
|
99 |
-
if text_index - 1 <= 0:
|
100 |
-
break
|
101 |
-
if text_indices[text_index - 1] is not None:
|
102 |
-
break
|
103 |
-
text_index -= 1
|
104 |
-
return text_index
|
105 |
-
except ValueError:
|
106 |
-
pass
|
107 |
-
# not present in list
|
108 |
-
raise ValueError(f"cannot find any part of {span}")
|
109 |
-
|
110 |
-
def find_end_index(span: WordSpan) -> int:
|
111 |
-
# the ending letter in the lookup can be missing or None
|
112 |
-
# this would cause a lookup failure
|
113 |
-
# to recover from this we can find the preceding letter index and backtrack
|
114 |
-
for index in range(span.end_index - 1, span.start_index - 1, -1):
|
115 |
-
try:
|
116 |
-
text_index = text_indices.index(index)
|
117 |
-
for _ in range(span.end_index - index):
|
118 |
-
if text_index + 1 >= len(text_indices):
|
119 |
-
break
|
120 |
-
if text_indices[text_index + 1] is not None:
|
121 |
-
break
|
122 |
-
text_index += 1
|
123 |
-
return text_index
|
124 |
-
except ValueError:
|
125 |
-
pass
|
126 |
-
# not present in list
|
127 |
-
raise ValueError(f"cannot find any part of {span}")
|
128 |
-
|
129 |
-
def to_indices(span: tuple[int]) -> tuple[int, int]:
|
130 |
-
word_start = span[0]
|
131 |
-
word_start_span = word_indices[word_start]
|
132 |
-
|
133 |
-
word_end = span[-1]
|
134 |
-
word_end_span = word_indices[word_end]
|
135 |
-
|
136 |
-
start_index = find_start_index(word_start_span)
|
137 |
-
end_index = find_end_index(word_end_span)
|
138 |
-
return start_index, end_index
|
139 |
-
|
140 |
-
aspect_span, opinion_span, sentiment = triplet
|
141 |
-
assert is_sequential(aspect_span), f"aspect span not sequential: {aspect_span}"
|
142 |
-
assert is_sequential(opinion_span), f"opinion span not sequential: {opinion_span}"
|
143 |
-
assert sentiment in {"POS", "NEG", "NEU"}, f"unknown sentiment: {sentiment}"
|
144 |
-
|
145 |
-
word_indices = WordSpan.to_spans(preprocessed)
|
146 |
-
|
147 |
-
aspect_start_index, aspect_end_index = to_indices(aspect_span)
|
148 |
-
aspect_term = text[aspect_start_index : aspect_end_index + 1]
|
149 |
-
opinion_start_index, opinion_end_index = to_indices(opinion_span)
|
150 |
-
opinion_term = text[opinion_start_index : opinion_end_index + 1]
|
151 |
-
|
152 |
-
nice_sentiment = {
|
153 |
-
"POS": "positive",
|
154 |
-
"NEG": "negative",
|
155 |
-
"NEU": "neutral",
|
156 |
-
}[sentiment]
|
157 |
-
|
158 |
-
return CharacterIndices(
|
159 |
-
aspect_start_index=aspect_start_index,
|
160 |
-
aspect_end_index=aspect_end_index,
|
161 |
-
aspect_term=aspect_term,
|
162 |
-
opinion_start_index=opinion_start_index,
|
163 |
-
opinion_end_index=opinion_end_index,
|
164 |
-
opinion_term=opinion_term,
|
165 |
-
sentiment=nice_sentiment,
|
166 |
-
)
|
167 |
-
|
168 |
-
|
169 |
-
def convert_sem_eval_text(
|
170 |
-
aste_file: str,
|
171 |
-
sem_eval_file: str,
|
172 |
-
debug: bool = False,
|
173 |
-
) -> pd.DataFrame:
|
174 |
-
df = get_original_text(
|
175 |
-
aste_file=aste_file,
|
176 |
-
sem_eval_file=sem_eval_file,
|
177 |
-
debug=debug,
|
178 |
-
)
|
179 |
-
df = df.explode("triples")
|
180 |
-
df = df.reset_index(drop=False)
|
181 |
-
df["text_indices"] = df.apply(
|
182 |
-
lambda row: edit(original=row.text, preprocessed=row.preprocessed_text),
|
183 |
-
axis="columns",
|
184 |
-
)
|
185 |
-
df = df.merge(
|
186 |
-
df.apply(row_to_character_indices, axis="columns"),
|
187 |
-
left_index=True,
|
188 |
-
right_index=True,
|
189 |
-
)
|
190 |
-
df = df.drop(columns=["preprocessed_text", "triples", "text_indices"])
|
191 |
-
return df
|
192 |
-
|
193 |
-
|
194 |
-
def convert_aste_text(aste_file: str) -> pd.DataFrame:
|
195 |
-
df = read_aste_file(aste_file)
|
196 |
-
df = df.explode("triples")
|
197 |
-
df = df.reset_index(drop=False)
|
198 |
-
df = df.merge(
|
199 |
-
df.apply(aste_row_to_character_indices, axis="columns"),
|
200 |
-
left_index=True,
|
201 |
-
right_index=True,
|
202 |
-
)
|
203 |
-
df = df.drop(columns=["triples"])
|
204 |
-
return df
|
205 |
-
|
206 |
-
|
207 |
-
def aste_row_to_character_indices(row: pd.Series) -> pd.Series:
|
208 |
-
try:
|
209 |
-
return pd.Series(
|
210 |
-
aste_to_character_indices(
|
211 |
-
triplet=row.triples,
|
212 |
-
text=row.text,
|
213 |
-
)
|
214 |
-
)
|
215 |
-
except:
|
216 |
-
print(f"failed to process row {row.name}")
|
217 |
-
print(row)
|
218 |
-
raise
|
219 |
-
|
220 |
-
|
221 |
-
def is_sequential(span: tuple[int]) -> bool:
|
222 |
-
return all(span[index + 1] - span[index] == 1 for index in range(len(span) - 1))
|
223 |
-
|
224 |
-
|
225 |
-
def aste_to_character_indices(
|
226 |
-
*,
|
227 |
-
triplet: tuple[tuple[int], tuple[int], str],
|
228 |
-
text: str,
|
229 |
-
) -> CharacterIndices:
|
230 |
-
def to_indices(span: tuple[int]) -> tuple[int, int]:
|
231 |
-
word_start = span[0]
|
232 |
-
word_start_span = word_indices[word_start]
|
233 |
-
|
234 |
-
word_end = span[-1]
|
235 |
-
word_end_span = word_indices[word_end]
|
236 |
-
|
237 |
-
return word_start_span.start_index, word_end_span.end_index - 1
|
238 |
-
|
239 |
-
aspect_span, opinion_span, sentiment = triplet
|
240 |
-
assert is_sequential(aspect_span), f"aspect span not sequential: {aspect_span}"
|
241 |
-
assert is_sequential(opinion_span), f"opinion span not sequential: {opinion_span}"
|
242 |
-
assert sentiment in {"POS", "NEG", "NEU"}, f"unknown sentiment: {sentiment}"
|
243 |
-
|
244 |
-
word_indices = WordSpan.to_spans(text)
|
245 |
-
|
246 |
-
aspect_start_index, aspect_end_index = to_indices(aspect_span)
|
247 |
-
aspect_term = text[aspect_start_index : aspect_end_index + 1]
|
248 |
-
opinion_start_index, opinion_end_index = to_indices(opinion_span)
|
249 |
-
opinion_term = text[opinion_start_index : opinion_end_index + 1]
|
250 |
-
|
251 |
-
nice_sentiment = {
|
252 |
-
"POS": "positive",
|
253 |
-
"NEG": "negative",
|
254 |
-
"NEU": "neutral",
|
255 |
-
}[sentiment]
|
256 |
-
|
257 |
-
return CharacterIndices(
|
258 |
-
aspect_start_index=aspect_start_index,
|
259 |
-
aspect_end_index=aspect_end_index,
|
260 |
-
aspect_term=aspect_term,
|
261 |
-
opinion_start_index=opinion_start_index,
|
262 |
-
opinion_end_index=opinion_end_index,
|
263 |
-
opinion_term=opinion_term,
|
264 |
-
sentiment=nice_sentiment,
|
265 |
-
)
|
266 |
-
|
267 |
-
|
268 |
-
label_to_sentiment = {
|
269 |
-
"POS": "positive",
|
270 |
-
"NEG": "negative",
|
271 |
-
"NEU": "neutral",
|
272 |
-
}
|
273 |
-
|
274 |
-
|
275 |
-
def to_nice_sentiment(label: str) -> str:
|
276 |
-
return label_to_sentiment[sentiment]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|