|
from typing import Optional |
|
|
|
import Levenshtein |
|
import pandas as pd |
|
|
|
from .data import read_aste_file, read_sem_eval_file |
|
from .types import CharacterIndices, WordSpan |
|
|
|
|
|
def get_original_text( |
|
aste_file: str, |
|
sem_eval_file: str, |
|
debug: bool = False, |
|
) -> pd.DataFrame: |
|
approximate_matches = 0 |
|
|
|
def best_match(text: str) -> str: |
|
comparison = text.replace(" ", "") |
|
if comparison in comparison_to_text: |
|
return comparison_to_text[comparison] |
|
|
|
nonlocal approximate_matches |
|
approximate_matches += 1 |
|
distances = sem_eval_comparison.apply( |
|
lambda se_comparison: Levenshtein.distance(comparison, se_comparison) |
|
) |
|
best = sem_eval_df.iloc[distances.argmin()].text |
|
return best |
|
|
|
sem_eval_df = read_sem_eval_file(sem_eval_file) |
|
sem_eval_comparison = sem_eval_df.text.str.replace(" ", "") |
|
comparison_to_text = dict(zip(sem_eval_comparison, sem_eval_df.text)) |
|
|
|
aste_df = read_aste_file(aste_file) |
|
aste_df = aste_df.rename(columns={"text": "preprocessed_text"}) |
|
aste_df["text"] = aste_df.preprocessed_text.apply(best_match) |
|
if debug: |
|
print(f"Read {len(aste_df):,} rows") |
|
print(f"Had to use {approximate_matches:,} approximate matches") |
|
return aste_df[["text", "preprocessed_text", "triples"]] |
|
|
|
|
|
def edit(original: str, preprocessed: str) -> list[Optional[int]]: |
|
indices: list[Optional[int]] = list(range(len(preprocessed))) |
|
for operation, _source_position, destination_position in Levenshtein.editops( |
|
preprocessed, original |
|
): |
|
if operation == "replace": |
|
indices[destination_position] = None |
|
elif operation == "insert": |
|
indices.insert(destination_position, None) |
|
elif operation == "delete": |
|
del indices[destination_position] |
|
return indices |
|
|
|
|
|
def has_unmapped(indicies: list[Optional[int]]) -> bool: |
|
return any(index is None for index in indicies) |
|
|
|
|
|
def has_unmapped_non_space(row: pd.Series) -> bool: |
|
letter_and_index: list[tuple[str, Optional[int]]] = list( |
|
zip(row.text, row.text_indices) |
|
) |
|
return any(index is None for letter, index in letter_and_index if letter != " ") |
|
|
|
|
|
def row_to_character_indices(row: pd.Series) -> pd.Series: |
|
try: |
|
return pd.Series( |
|
to_character_indices( |
|
triplet=row.triples, |
|
preprocessed=row.preprocessed_text, |
|
text=row.text, |
|
text_indices=row.text_indices, |
|
) |
|
) |
|
except: |
|
print(f"failed to process row {row.name}") |
|
print(row) |
|
raise |
|
|
|
|
|
def to_character_indices( |
|
*, |
|
triplet: tuple[tuple[int], tuple[int], str], |
|
preprocessed: str, |
|
text: str, |
|
text_indices: list[Optional[int]], |
|
) -> CharacterIndices: |
|
def find_start_index(span: WordSpan) -> int: |
|
|
|
|
|
|
|
for index in range(span.start_index, span.end_index): |
|
try: |
|
text_index = text_indices.index(index) |
|
for _ in range(index - span.start_index): |
|
if text_index - 1 <= 0: |
|
break |
|
if text_indices[text_index - 1] is not None: |
|
break |
|
text_index -= 1 |
|
return text_index |
|
except ValueError: |
|
pass |
|
|
|
raise ValueError(f"cannot find any part of {span}") |
|
|
|
def find_end_index(span: WordSpan) -> int: |
|
|
|
|
|
|
|
for index in range(span.end_index - 1, span.start_index - 1, -1): |
|
try: |
|
text_index = text_indices.index(index) |
|
for _ in range(span.end_index - index): |
|
if text_index + 1 >= len(text_indices): |
|
break |
|
if text_indices[text_index + 1] is not None: |
|
break |
|
text_index += 1 |
|
return text_index |
|
except ValueError: |
|
pass |
|
|
|
raise ValueError(f"cannot find any part of {span}") |
|
|
|
def to_indices(span: tuple[int]) -> tuple[int, int]: |
|
word_start = span[0] |
|
word_start_span = word_indices[word_start] |
|
|
|
word_end = span[-1] |
|
word_end_span = word_indices[word_end] |
|
|
|
start_index = find_start_index(word_start_span) |
|
end_index = find_end_index(word_end_span) |
|
return start_index, end_index |
|
|
|
aspect_span, opinion_span, sentiment = triplet |
|
assert is_sequential(aspect_span), f"aspect span not sequential: {aspect_span}" |
|
assert is_sequential(opinion_span), f"opinion span not sequential: {opinion_span}" |
|
assert sentiment in {"POS", "NEG", "NEU"}, f"unknown sentiment: {sentiment}" |
|
|
|
word_indices = WordSpan.to_spans(preprocessed) |
|
|
|
aspect_start_index, aspect_end_index = to_indices(aspect_span) |
|
aspect_term = text[aspect_start_index : aspect_end_index + 1] |
|
opinion_start_index, opinion_end_index = to_indices(opinion_span) |
|
opinion_term = text[opinion_start_index : opinion_end_index + 1] |
|
|
|
nice_sentiment = { |
|
"POS": "positive", |
|
"NEG": "negative", |
|
"NEU": "neutral", |
|
}[sentiment] |
|
|
|
return CharacterIndices( |
|
aspect_start_index=aspect_start_index, |
|
aspect_end_index=aspect_end_index, |
|
aspect_term=aspect_term, |
|
opinion_start_index=opinion_start_index, |
|
opinion_end_index=opinion_end_index, |
|
opinion_term=opinion_term, |
|
sentiment=nice_sentiment, |
|
) |
|
|
|
|
|
def convert_sem_eval_text( |
|
aste_file: str, |
|
sem_eval_file: str, |
|
debug: bool = False, |
|
) -> pd.DataFrame: |
|
df = get_original_text( |
|
aste_file=aste_file, |
|
sem_eval_file=sem_eval_file, |
|
debug=debug, |
|
) |
|
df = df.explode("triples") |
|
df = df.reset_index(drop=False) |
|
df["text_indices"] = df.apply( |
|
lambda row: edit(original=row.text, preprocessed=row.preprocessed_text), |
|
axis="columns", |
|
) |
|
df = df.merge( |
|
df.apply(row_to_character_indices, axis="columns"), |
|
left_index=True, |
|
right_index=True, |
|
) |
|
df = df.drop(columns=["preprocessed_text", "triples", "text_indices"]) |
|
return df |
|
|
|
|
|
def convert_aste_text(aste_file: str) -> pd.DataFrame: |
|
df = read_aste_file(aste_file) |
|
df = df.explode("triples") |
|
df = df.reset_index(drop=False) |
|
df = df.merge( |
|
df.apply(aste_row_to_character_indices, axis="columns"), |
|
left_index=True, |
|
right_index=True, |
|
) |
|
df = df.drop(columns=["triples"]) |
|
return df |
|
|
|
|
|
def aste_row_to_character_indices(row: pd.Series) -> pd.Series: |
|
try: |
|
return pd.Series( |
|
aste_to_character_indices( |
|
triplet=row.triples, |
|
text=row.text, |
|
) |
|
) |
|
except: |
|
print(f"failed to process row {row.name}") |
|
print(row) |
|
raise |
|
|
|
|
|
def is_sequential(span: tuple[int]) -> bool: |
|
return all(span[index + 1] - span[index] == 1 for index in range(len(span) - 1)) |
|
|
|
|
|
def aste_to_character_indices( |
|
*, |
|
triplet: tuple[tuple[int], tuple[int], str], |
|
text: str, |
|
) -> CharacterIndices: |
|
def to_indices(span: tuple[int]) -> tuple[int, int]: |
|
word_start = span[0] |
|
word_start_span = word_indices[word_start] |
|
|
|
word_end = span[-1] |
|
word_end_span = word_indices[word_end] |
|
|
|
return word_start_span.start_index, word_end_span.end_index - 1 |
|
|
|
aspect_span, opinion_span, sentiment = triplet |
|
assert is_sequential(aspect_span), f"aspect span not sequential: {aspect_span}" |
|
assert is_sequential(opinion_span), f"opinion span not sequential: {opinion_span}" |
|
assert sentiment in {"POS", "NEG", "NEU"}, f"unknown sentiment: {sentiment}" |
|
|
|
word_indices = WordSpan.to_spans(text) |
|
|
|
aspect_start_index, aspect_end_index = to_indices(aspect_span) |
|
aspect_term = text[aspect_start_index : aspect_end_index + 1] |
|
opinion_start_index, opinion_end_index = to_indices(opinion_span) |
|
opinion_term = text[opinion_start_index : opinion_end_index + 1] |
|
|
|
nice_sentiment = { |
|
"POS": "positive", |
|
"NEG": "negative", |
|
"NEU": "neutral", |
|
}[sentiment] |
|
|
|
return CharacterIndices( |
|
aspect_start_index=aspect_start_index, |
|
aspect_end_index=aspect_end_index, |
|
aspect_term=aspect_term, |
|
opinion_start_index=opinion_start_index, |
|
opinion_end_index=opinion_end_index, |
|
opinion_term=opinion_term, |
|
sentiment=nice_sentiment, |
|
) |
|
|
|
|
|
label_to_sentiment = { |
|
"POS": "positive", |
|
"NEG": "negative", |
|
"NEU": "neutral", |
|
} |
|
|
|
|
|
def to_nice_sentiment(label: str) -> str: |
|
return label_to_sentiment[sentiment] |
|
|