matlok's picture
adding estimated playtime to the reamde based off the 167kb takes ~56 seconds
52de702
|
raw
history blame
4.54 kB
metadata
license:
  - other
pretty_name: >-
  python copilot audio training using inheritance and polymorphism with
  knowledge graphs
dataset_info:
  - config_name: view_schema
    splits:
      - name: schema
configs:
  - config_name: view_schema
    data_files:
      - split: view_schema
        path: files/lok-python-copilot-audio.base-v1_00000291.parquet
size_categories:
  - 0<n<1k
tags:
  - python-copilot
  - python-coding
  - python-architecture
  - knowledge-graphs
  - multimodal
  - text-image-audio
  - fine-tuning
  - training
  - question-answering
  - image-knowledge-graph
  - alpaca
  - mp3
  - png
  - text
  - instruct
  - inheritance
task_categories:
  - text-to-audio
  - audio-to-audio
  - question-answering
task_ids:
  - parsing

Python Copilot Audio Training using Inheritance and Polymorphism with Knowledge Graphs

This dataset is a subset of the matlok python copilot datasets. Please refer to the Multimodal Python Copilot Training Overview for more details on how to use this dataset.

Details

Each base class for each unique class in each module file has a question and answer mp3 where one voice reads the question and another voice reads the answer. Both mp3s are stored in the parquet dbytes column and the associated source code file_path identifier.

  • Size: 29.9 GB
  • Audio playtime: ~103 days
  • Data type: mp3
  • Format: yaml with alpaca

Schema

{
    "audio_path": "string",
    "audio_type": "string",
    "dbytes": "binary",
    "dbytes_len": "int64",
    "file_path": "string",
    "file_path_len": "int64",
    "lang": "string",
    "lang_len": "int64",
    "recsize": "int64"
}

How to use the dataset

from datasets import load_dataset

ds = load_dataset("matlok/python-audio-copilot-training-using-inheritance-knowledge-graphs", data_dir="files")