Datasets:
license: cc-by-4.0
task_categories:
- image-segmentation
- keypoint-detection
- object-detection
language:
- en
tags:
- document-detection
- corner-detection
- document-scanner
- quadrilateral-detection
- perspective-correction
- computer-vision
size_categories:
- 10K<n<100K
DocCornerDataset
A comprehensive dataset for document corner detection and quadrilateral localization. This dataset is designed for training models that detect the four corners of documents in natural images, enabling applications like document scanning, perspective correction, and automatic document cropping.
Dataset Description
DocCornerDataset contains 27,860 images with precise corner annotations:
- 23,496 training samples
- 4,364 validation samples
- Includes both positive samples (with documents) and negative samples (without documents)
Key Features
- High-quality annotations: 4-corner coordinates (TL, TR, BR, BL) in normalized format [0-1]
- Diverse sources: Aggregated from multiple public datasets covering various document types
- Negative samples: Non-document images to reduce false positives
- Pre-split data: Ready-to-use train/validation splits
- Parquet format: Efficient storage with embedded images
Dataset Structure
The dataset is stored in Parquet format with the following columns:
| Column | Type | Description |
|---|---|---|
image_bytes |
bytes | Raw JPEG image data |
filename |
string | Original filename |
has_document |
bool | True if image contains a document |
x0, y0 |
float32 | Top-left corner (normalized 0-1) |
x1, y1 |
float32 | Top-right corner (normalized 0-1) |
x2, y2 |
float32 | Bottom-right corner (normalized 0-1) |
x3, y3 |
float32 | Bottom-left corner (normalized 0-1) |
Source Datasets
This dataset aggregates and re-annotates images from multiple public sources:
| Source Dataset | Samples | Description |
|---|---|---|
| MIDV-500 | ~9,500 | Mobile Identity Document Video dataset |
| AutoCapture | ~8,000 | Auto-captured document images |
| MIDV-2019 | ~1,400 | Extended mobile ID document dataset |
| SmartDoc-QA | ~1,400 | Document images for QA tasks |
| Sample Dataset | ~1,000 | Mixed document samples |
| Four Corners Detection | ~950 | Corner detection focused dataset |
| Document Segmentation | ~950 | Curated segmentation samples |
| ReceiptExtractor | ~620 | Receipt and ticket images |
| Receipt Instance Segmentation | ~200 | Receipt instance annotations |
| CORD v2 | ~80 | Consolidated Receipt Dataset |
| Negative Samples | ~4,300 | Non-document background images |
Loading the Dataset
Using PyArrow/Pandas
import pyarrow.parquet as pq
import pandas as pd
from PIL import Image
import io
# Load train data
train_df = pd.read_parquet("hf://datasets/mapo80/DocCornerDataset/data/train_chunk000.parquet")
# View a sample
sample = train_df.iloc[0]
image = Image.open(io.BytesIO(sample['image_bytes']))
corners = [sample['x0'], sample['y0'], sample['x1'], sample['y1'],
sample['x2'], sample['y2'], sample['x3'], sample['y3']]
print(f"Filename: {sample['filename']}")
print(f"Has document: {sample['has_document']}")
print(f"Corners: {corners}")
image.show()
Using HuggingFace Datasets
from datasets import load_dataset
from PIL import Image
import io
# Load the dataset
dataset = load_dataset("mapo80/DocCornerDataset", data_files={
"train": "data/train_chunk*.parquet",
"validation": "data/val_chunk*.parquet"
})
# View a sample
sample = dataset["train"][0]
image = Image.open(io.BytesIO(sample['image_bytes']))
print(f"Filename: {sample['filename']}")
print(f"Corners: x0={sample['x0']:.3f}, y0={sample['y0']:.3f}, ...")
Using PyTorch DataLoader
import torch
from torch.utils.data import Dataset, DataLoader
import pyarrow.parquet as pq
from PIL import Image
import io
import torchvision.transforms as T
class DocCornerDataset(Dataset):
def __init__(self, parquet_files, transform=None):
self.data = pq.ParquetDataset(parquet_files).read().to_pandas()
self.transform = transform or T.Compose([
T.Resize((224, 224)),
T.ToTensor(),
T.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
row = self.data.iloc[idx]
image = Image.open(io.BytesIO(row['image_bytes'])).convert('RGB')
image = self.transform(image)
corners = torch.tensor([
row['x0'], row['y0'], row['x1'], row['y1'],
row['x2'], row['y2'], row['x3'], row['y3']
], dtype=torch.float32)
has_doc = torch.tensor(row['has_document'], dtype=torch.float32)
return image, corners, has_doc
# Usage
train_files = ["data/train_chunk000.parquet", "data/train_chunk001.parquet", ...]
dataset = DocCornerDataset(train_files)
loader = DataLoader(dataset, batch_size=32, shuffle=True)
Use Cases
- Document Corner Detection: Train models to localize document corners
- Document Scanning Apps: Build automatic document capture features
- Perspective Correction: Detect quadrilaterals for perspective transformation
- Document Segmentation: Segment documents from background
- OCR Preprocessing: Improve OCR accuracy with proper document alignment
Citation
If you use this dataset in your research, please cite:
@dataset{doccornerdataset2024,
title={DocCornerDataset: A Comprehensive Dataset for Document Corner Detection},
author={mapo80},
year={2024},
publisher={Hugging Face},
url={https://huggingface.co/datasets/mapo80/DocCornerDataset}
}
Source Dataset Citations
Please also consider citing the original source datasets:
- MIDV-500/2019: Bulatov et al., "MIDV-500: A Dataset for Identity Documents Analysis and Recognition on Mobile Devices in Video Stream"
- SmartDoc: Burie et al., "ICDAR 2015 Competition on Smartphone Document Capture and OCR"
- CORD: Park et al., "CORD: A Consolidated Receipt Dataset for Post-OCR Parsing"
License
This dataset is released under the CC-BY-4.0 license. Please respect the licenses of the original source datasets when using this data.
Acknowledgments
This dataset was created by aggregating and re-annotating images from multiple public document datasets. We thank the creators of the original datasets for making their data publicly available.