haneulpark commited on
Commit
56c06e4
1 Parent(s): b866f4b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -45,7 +45,7 @@ dataset_info:
45
  dtype: string
46
  - name: ID
47
  dtype: int64
48
- - name: endpoint
49
  dtype:
50
  class_label:
51
  names:
@@ -64,7 +64,7 @@ dataset_info:
64
  features:
65
  - name: SMILES
66
  dtype: string
67
- - name: endpoint
68
  dtype:
69
  class_label:
70
  names:
@@ -110,11 +110,11 @@ and inspecting the loaded dataset
110
  >>> train_test
111
  DatasetDict({
112
  train: Dataset({
113
- features: ['SMILES', 'ID', 'endpoint', 'MW'],
114
  num_rows: 6862
115
  })
116
  test: Dataset({
117
- features: ['SMILES', 'ID', 'endpoint', 'MW'],
118
  num_rows: 1714
119
  })
120
  })
@@ -148,7 +148,7 @@ then load, featurize, split, fit, and evaluate the a catboost model
148
  "name": "cat_boost_classifier",
149
  "config": {
150
  "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
151
- "y_features": ['endpoint']}})
152
 
153
  model.train(split_featurised_dataset["train"])
154
 
@@ -157,8 +157,8 @@ then load, featurize, split, fit, and evaluate the a catboost model
157
  classification_suite = load_suite("classification")
158
 
159
  scores = classification_suite.compute(
160
- references=split_featurised_dataset["test"]['endpoint'],
161
- predictions=preds["cat_boost_classifier::endpoint"])
162
 
163
  ### Citation
164
 
 
45
  dtype: string
46
  - name: ID
47
  dtype: int64
48
+ - name: Y
49
  dtype:
50
  class_label:
51
  names:
 
64
  features:
65
  - name: SMILES
66
  dtype: string
67
+ - name: Y
68
  dtype:
69
  class_label:
70
  names:
 
110
  >>> train_test
111
  DatasetDict({
112
  train: Dataset({
113
+ features: ['SMILES', 'ID', 'Y', 'MW'],
114
  num_rows: 6862
115
  })
116
  test: Dataset({
117
+ features: ['SMILES', 'ID', 'Y', 'MW'],
118
  num_rows: 1714
119
  })
120
  })
 
148
  "name": "cat_boost_classifier",
149
  "config": {
150
  "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
151
+ "y_features": ['Y']}})
152
 
153
  model.train(split_featurised_dataset["train"])
154
 
 
157
  classification_suite = load_suite("classification")
158
 
159
  scores = classification_suite.compute(
160
+ references=split_featurised_dataset["test"]['Y'],
161
+ predictions=preds["cat_boost_classifier::Y"])
162
 
163
  ### Citation
164