Datasets:
Update preprocessing scripts/Firefly Luciferase Interference_ preprocessing script.py
bd448a6
verified
# 1. Load Modules | |
pip install rdkit | |
pip install molvs | |
import pandas as pd | |
import numpy as np | |
import rdkit | |
import molvs | |
from rdkit import Chem | |
standardizer = molvs.Standardizer() | |
fragment_remover = molvs.fragment.FragmentRemover() | |
# 2. Convert the SDF file from the original paper into data frame | |
# Before running the code, please download SDF files from the original paper | |
# https://pubs.acs.org/doi/10.1021/acs.jmedchem.3c00482 | |
from rdkit.Chem import PandasTools | |
sdfFile = 'Firefly_Luciferase_counter_assay_training_set_curated.sdf' | |
dataframe = PandasTools.LoadSDF(sdfFile) | |
dataframe.to_csv('Firefly_Luciferase.csv', index=False) | |
df = pd.read_csv('Firefly_Luciferase.csv') | |
# 3. Resolve SMILES parse error | |
# Some of the 'Raw_SMILES' rows contain TWO SMILES separated by ';'' and, they cause SMILES parse error (which means they cannot be read) | |
# So we separated the SMILES and renamed the columns | |
df.rename(columns = {'PUBCHEM_EXT_DATASOURCE_REGID': 'REGID_1'}, inplace = True) | |
df.rename(columns = {'Other REGIDs': 'REGID_2'}, inplace = True) | |
df.insert(2, 'REGID_3', np.NaN) | |
df['REGID_3'] = df['REGID_2'].str.split(',').str[1] | |
df['REGID_2'] = df['REGID_2'].str.split(',').str[0] | |
df.insert(4, 'SMILES_2', np.NaN) | |
df.insert(5, 'SMILES_3', np.NaN) | |
df[['Raw_SMILES', 'SMILES_2', 'SMILES_3']] = df['Raw_SMILES'].str.split(';', expand=True) | |
df.rename(columns= {'Raw_SMILES' : 'SMILES_1'}, inplace = True) | |
# 4. Sanitize with MolVS and print problems | |
df['X_1'] = [ \ | |
rdkit.Chem.MolToSmiles( | |
fragment_remover.remove( | |
standardizer.standardize( | |
rdkit.Chem.MolFromSmiles( | |
smiles)))) | |
for smiles in df['SMILES_1']] | |
def process_smiles(smiles): | |
if pd.isna(smiles): | |
return None | |
try: | |
return rdkit.Chem.MolToSmiles( | |
fragment_remover.remove( | |
standardizer.standardize( | |
rdkit.Chem.MolFromSmiles(smiles)))) | |
except Exception as e: | |
print(f"Error processing SMILES {smiles}: {e}") | |
return None | |
df['X_2'] = df['SMILES_2'].apply(process_smiles) | |
def process_smiles(smiles): | |
if pd.isna(smiles): | |
return None | |
try: | |
return rdkit.Chem.MolToSmiles( | |
fragment_remover.remove( | |
standardizer.standardize( | |
rdkit.Chem.MolFromSmiles(smiles)))) | |
except Exception as e: | |
print(f"Error processing SMILES {smiles}: {e}") | |
return None | |
df['X_3'] = df['SMILES_3'].apply(process_smiles) | |
# 5. Rename the columns | |
df.rename(columns={'X_1' : 'SMILES_1', 'X_2' : 'SMILES_2', 'X_3' : 'SMILES_3'}, inplace = True) | |
# 6. Create a file with sanitized SMILES | |
df[['REGID_1', | |
'REGID_2', | |
'REGID_3', | |
'SMILES_1', | |
'SMILES_2', | |
'SMILES_3', | |
'log_AC50_M', | |
'Efficacy', | |
'CC-v2', | |
'Outcome', | |
'InChIKey', | |
'ID', | |
'ROMol']].to_csv('Firefly Luciferase Interference.csv', index = False) | |