haneulpark commited on
Commit
9efc2d7
β€’
1 Parent(s): b5a1dbd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +20 -35
README.md CHANGED
@@ -3,9 +3,9 @@ tags:
3
  - chemistry
4
  - chemical information
5
  pretty_name: Hematotoxicity Dataset
6
- dataset_summary: >-
7
- The hematotoxicity dataset which contains a training set of 1330 molecules, a
8
- test set of 442 molecules, and a validation set of 610 new molecules.
9
  citation: |-
10
  @article{,
11
  author = {Teng-Zhi Long, Shao-Hua Shi, Shao Liu, Ai-Ping Lu, Zhao-Qian Liu, Min Li, Ting-Jun Hou*, and Dong-Sheng Cao},
@@ -29,29 +29,20 @@ configs:
29
  path: HematoxLong2023/test.csv
30
  - split: train
31
  path: HematoxLong2023/train.csv
32
- - split: validation
33
- path: HematoxLong2023/validation.csv
34
  dataset_info:
35
  - config_name: HematoxLong2023
36
  features:
37
- - name: canonical SMILES
38
- dtype: string
39
- - name: Label
40
- dtype:
41
- class_label:
42
- names:
43
- '0': 0
44
- '1': 1
45
  splits:
46
- - name: test
47
- num_examples: 442
48
- num_bytes: 7200
49
  - name: train
50
- num_examples: 1330
51
- num_bytes: 21408
52
- - name: validation
53
- num_examples: 610
54
- num_bytes: 9888
55
  ---
56
 
57
  # Hematotoxicity Dataset (HematoxLong2023)
@@ -80,10 +71,8 @@ and load one of the `HematoxLong2023` datasets, e.g.,
80
  Downloading readme: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5.23k/5.23k [00:00<00:00, 35.1kkB/s]
81
  Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 24.0k/24.0k [00:00<00:00, 155kB/s]
82
  Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 71.9k/71.9k [00:00<00:00, 587kB/s]
83
- Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 33.0k/33.0k [00:00<00:00, 469kB/s]
84
- Generating test split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 442/442 [00:00<00:00, 12705.92 examples/s]
85
- Generating train split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1.33k/1.33k [00:00<00:00, 43895.91 examples/s]
86
- Generating validation split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 610/610 [00:00<00:00, 20229.02 examples/s]
87
 
88
  and inspecting the loaded dataset
89
 
@@ -91,17 +80,13 @@ and inspecting the loaded dataset
91
  HematoxLong2023
92
  DatasetDict({
93
  test: Dataset({
94
- features: ['canonical SMILES', 'label'],
95
- num_rows: 442
96
  })
97
  train: Dataset({
98
- features: ['canonical SMILES', 'label'],
99
- num_rows: 1330
100
  })
101
- validation: Dataset({
102
- features: ['canonical SMILES', 'Label'],
103
- num_rows: 610
104
- })
105
  })
106
 
107
  ### Use a dataset to train a model
@@ -126,13 +111,13 @@ Split and evaluate the catboost model
126
 
127
  split_featurised_dataset = featurise_dataset(
128
  split_dataset,
129
- column = "canonical SMILES",
130
  representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
131
 
132
  model = load_model_from_dict({
133
  "name": "cat_boost_classifier",
134
  "config": {
135
- "x_features": ['canonical SMILES::morgan', 'canonical SMILES::maccs_rdkit'],
136
  "y_features": ['Label']}})
137
 
138
  model.train(split_featurised_dataset["train"])
 
3
  - chemistry
4
  - chemical information
5
  pretty_name: Hematotoxicity Dataset
6
+ dataset_summary: >-
7
+ The hematotoxicity dataset consists of a training set with 1788 molecules and a test set with 594 molecules.
8
+ The train and test datasets were created after sanitizing and splitting the original dataset in the paper below.
9
  citation: |-
10
  @article{,
11
  author = {Teng-Zhi Long, Shao-Hua Shi, Shao Liu, Ai-Ping Lu, Zhao-Qian Liu, Min Li, Ting-Jun Hou*, and Dong-Sheng Cao},
 
29
  path: HematoxLong2023/test.csv
30
  - split: train
31
  path: HematoxLong2023/train.csv
 
 
32
  dataset_info:
33
  - config_name: HematoxLong2023
34
  features:
35
+ - name: "new SMILES"
36
+ dtype: string
37
+ - name: "Label"
38
+ dtype: int64
 
 
 
 
39
  splits:
 
 
 
40
  - name: train
41
+ num_bytes: 28736
42
+ num_examples: 1788
43
+ - name: test
44
+ num_bytes: 9632
45
+ num_examples: 594
46
  ---
47
 
48
  # Hematotoxicity Dataset (HematoxLong2023)
 
71
  Downloading readme: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 5.23k/5.23k [00:00<00:00, 35.1kkB/s]
72
  Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 24.0k/24.0k [00:00<00:00, 155kB/s]
73
  Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 71.9k/71.9k [00:00<00:00, 587kB/s]
74
+ Generating test split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 594/594 [00:00<00:00, 12705.92 examples/s]
75
+ Generating train split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1788/1788 [00:00<00:00, 43895.91 examples/s]
 
 
76
 
77
  and inspecting the loaded dataset
78
 
 
80
  HematoxLong2023
81
  DatasetDict({
82
  test: Dataset({
83
+ features: ['new SMILES', 'label'],
84
+ num_rows: 594
85
  })
86
  train: Dataset({
87
+ features: ['new SMILES', 'label'],
88
+ num_rows: 1788
89
  })
 
 
 
 
90
  })
91
 
92
  ### Use a dataset to train a model
 
111
 
112
  split_featurised_dataset = featurise_dataset(
113
  split_dataset,
114
+ column = "new SMILES",
115
  representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))
116
 
117
  model = load_model_from_dict({
118
  "name": "cat_boost_classifier",
119
  "config": {
120
+ "x_features": ['new SMILES::morgan', 'new SMILES::maccs_rdkit'],
121
  "y_features": ['Label']}})
122
 
123
  model.train(split_featurised_dataset["train"])