Datasets:
Update README.md
Browse files
README.md
CHANGED
@@ -73,7 +73,7 @@ dataset_info:
|
|
73 |
dtype: float64
|
74 |
- name: "logBB"
|
75 |
dtype: float64
|
76 |
-
- name: "
|
77 |
dtype:
|
78 |
class_label:
|
79 |
names:
|
@@ -114,7 +114,7 @@ dataset_info:
|
|
114 |
dtype: float64
|
115 |
- name: "logBB"
|
116 |
dtype: float64
|
117 |
-
- name: "
|
118 |
dtype:
|
119 |
class_label:
|
120 |
names:
|
@@ -3379,7 +3379,7 @@ dataset_info:
|
|
3379 |
dtype: string
|
3380 |
- name: "CID"
|
3381 |
dtype: string
|
3382 |
-
- name: "
|
3383 |
dtype: float64
|
3384 |
- name: "Inchi"
|
3385 |
dtype: string
|
@@ -3412,7 +3412,7 @@ dataset_info:
|
|
3412 |
dtype: string
|
3413 |
- name: "CID"
|
3414 |
dtype: string
|
3415 |
-
- name: "
|
3416 |
dtype: float64
|
3417 |
- name: "Inchi"
|
3418 |
dtype: string
|
@@ -6705,11 +6705,11 @@ and inspecting the loaded dataset
|
|
6705 |
B3DB_classification
|
6706 |
DatasetDict({
|
6707 |
test: Dataset({
|
6708 |
-
features: ['B3DB_classification_index', 'compound_name', 'IUPAC_name', 'SMILES', 'CID', 'logBB', '
|
6709 |
num_rows: 1951
|
6710 |
})
|
6711 |
train: Dataset({
|
6712 |
-
features: ['B3DB_classification_index', 'compound_name', 'IUPAC_name', 'SMILES', 'CID', 'logBB', '
|
6713 |
num_rows: 5856
|
6714 |
})
|
6715 |
})
|
@@ -6741,7 +6741,7 @@ then load, featurize, split, fit, and evaluate the a catboost model
|
|
6741 |
"name": "cat_boost_classifier",
|
6742 |
"config": {
|
6743 |
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
|
6744 |
-
"y_features": ['
|
6745 |
|
6746 |
model.train(split_featurised_dataset["train"])
|
6747 |
preds = model.predict(split_featurised_dataset["test"])
|
@@ -6749,8 +6749,8 @@ then load, featurize, split, fit, and evaluate the a catboost model
|
|
6749 |
classification_suite = load_suite("classification")
|
6750 |
|
6751 |
scores = classification_suite.compute(
|
6752 |
-
references=split_featurised_dataset["test"]['
|
6753 |
-
predictions=preds["cat_boost_classifier::
|
6754 |
|
6755 |
|
6756 |
## About the DB3B
|
|
|
73 |
dtype: float64
|
74 |
- name: "logBB"
|
75 |
dtype: float64
|
76 |
+
- name: "Y"
|
77 |
dtype:
|
78 |
class_label:
|
79 |
names:
|
|
|
114 |
dtype: float64
|
115 |
- name: "logBB"
|
116 |
dtype: float64
|
117 |
+
- name: "Y"
|
118 |
dtype:
|
119 |
class_label:
|
120 |
names:
|
|
|
3379 |
dtype: string
|
3380 |
- name: "CID"
|
3381 |
dtype: string
|
3382 |
+
- name: "Y"
|
3383 |
dtype: float64
|
3384 |
- name: "Inchi"
|
3385 |
dtype: string
|
|
|
3412 |
dtype: string
|
3413 |
- name: "CID"
|
3414 |
dtype: string
|
3415 |
+
- name: "Y"
|
3416 |
dtype: float64
|
3417 |
- name: "Inchi"
|
3418 |
dtype: string
|
|
|
6705 |
B3DB_classification
|
6706 |
DatasetDict({
|
6707 |
test: Dataset({
|
6708 |
+
features: ['B3DB_classification_index', 'compound_name', 'IUPAC_name', 'SMILES', 'CID', 'logBB', 'Y', 'Inchi', 'threshold', 'reference', 'group', 'comments', 'ClusterNo', 'MolCount'],
|
6709 |
num_rows: 1951
|
6710 |
})
|
6711 |
train: Dataset({
|
6712 |
+
features: ['B3DB_classification_index', 'compound_name', 'IUPAC_name', 'SMILES', 'CID', 'logBB', 'Y', 'Inchi', 'threshold', 'reference', 'group', 'comments', 'ClusterNo', 'MolCount'],
|
6713 |
num_rows: 5856
|
6714 |
})
|
6715 |
})
|
|
|
6741 |
"name": "cat_boost_classifier",
|
6742 |
"config": {
|
6743 |
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
|
6744 |
+
"y_features": ['Y']}})
|
6745 |
|
6746 |
model.train(split_featurised_dataset["train"])
|
6747 |
preds = model.predict(split_featurised_dataset["test"])
|
|
|
6749 |
classification_suite = load_suite("classification")
|
6750 |
|
6751 |
scores = classification_suite.compute(
|
6752 |
+
references=split_featurised_dataset["test"]['Y'],
|
6753 |
+
predictions=preds["cat_boost_classifier::Y"])
|
6754 |
|
6755 |
|
6756 |
## About the DB3B
|