haneulpark commited on
Commit
b83ee17
·
verified ·
1 Parent(s): d7d63ac

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -7
README.md CHANGED
@@ -49,7 +49,7 @@ dataset_info:
49
  dtype: string
50
  - name: CAS RN
51
  dtype: string
52
- - name: GHS
53
  dtype:
54
  class_label:
55
  names:
@@ -90,7 +90,7 @@ dataset_info:
90
  dtype: string
91
  - name: CAS RN
92
  dtype: string
93
- - name: GHS
94
  dtype:
95
  class_label:
96
  names:
@@ -155,11 +155,11 @@ and inspecting the loaded dataset
155
  >>> Corr_Neg
156
  DatasetDict({
157
  test: Dataset({
158
- features: ['Name', 'Synonym', 'CAS RN', 'GHS', 'Detailed Page', 'Evidence', 'OECD TG 404', 'Data Source', 'Frequency', 'SMILES', 'SMILES URL', 'SMILES Source', 'Canonical SMILES', 'Split'],
159
  num_rows: 181
160
  })
161
  train: Dataset({
162
- features: ['Name', 'Synonym', 'CAS RN', 'GHS', 'Detailed Page', 'Evidence', 'OECD TG 404', 'Data Source', 'Frequency', 'SMILES', 'SMILES URL', 'SMILES Source', 'Canonical SMILES', 'Split'],
163
  num_rows: 1755
164
  })
165
  })
@@ -192,7 +192,7 @@ then load, featurize, split, fit, and evaluate the catboost model
192
  "name": "cat_boost_classifier",
193
  "config": {
194
  "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
195
- "y_features": ['GHS']}})
196
 
197
  model.train(split_featurised_dataset["train"])
198
  preds = model.predict(split_featurised_dataset["test"])
@@ -200,8 +200,8 @@ then load, featurize, split, fit, and evaluate the catboost model
200
  classification_suite = load_suite("classification")
201
 
202
  scores = classification_suite.compute(
203
- references=split_featurised_dataset["test"]['GHS'],
204
- predictions=preds["cat_boost_classifier::GHS"])
205
 
206
 
207
  ### Data splits
 
49
  dtype: string
50
  - name: CAS RN
51
  dtype: string
52
+ - name: Y
53
  dtype:
54
  class_label:
55
  names:
 
90
  dtype: string
91
  - name: CAS RN
92
  dtype: string
93
+ - name: Y
94
  dtype:
95
  class_label:
96
  names:
 
155
  >>> Corr_Neg
156
  DatasetDict({
157
  test: Dataset({
158
+ features: ['Name', 'Synonym', 'CAS RN', 'Y', 'Detailed Page', 'Evidence', 'OECD TG 404', 'Data Source', 'Frequency', 'SMILES', 'SMILES URL', 'SMILES Source', 'Canonical SMILES', 'Split'],
159
  num_rows: 181
160
  })
161
  train: Dataset({
162
+ features: ['Name', 'Synonym', 'CAS RN', 'Y', 'Detailed Page', 'Evidence', 'OECD TG 404', 'Data Source', 'Frequency', 'SMILES', 'SMILES URL', 'SMILES Source', 'Canonical SMILES', 'Split'],
163
  num_rows: 1755
164
  })
165
  })
 
192
  "name": "cat_boost_classifier",
193
  "config": {
194
  "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
195
+ "y_features": ['Y']}})
196
 
197
  model.train(split_featurised_dataset["train"])
198
  preds = model.predict(split_featurised_dataset["test"])
 
200
  classification_suite = load_suite("classification")
201
 
202
  scores = classification_suite.compute(
203
+ references=split_featurised_dataset["test"]['Y'],
204
+ predictions=preds["cat_boost_classifier::Y"])
205
 
206
 
207
  ### Data splits