Datasets:
haneulpark
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -49,7 +49,7 @@ dataset_info:
|
|
49 |
dtype: string
|
50 |
- name: CAS RN
|
51 |
dtype: string
|
52 |
-
- name:
|
53 |
dtype:
|
54 |
class_label:
|
55 |
names:
|
@@ -90,7 +90,7 @@ dataset_info:
|
|
90 |
dtype: string
|
91 |
- name: CAS RN
|
92 |
dtype: string
|
93 |
-
- name:
|
94 |
dtype:
|
95 |
class_label:
|
96 |
names:
|
@@ -155,11 +155,11 @@ and inspecting the loaded dataset
|
|
155 |
>>> Corr_Neg
|
156 |
DatasetDict({
|
157 |
test: Dataset({
|
158 |
-
features: ['Name', 'Synonym', 'CAS RN', '
|
159 |
num_rows: 181
|
160 |
})
|
161 |
train: Dataset({
|
162 |
-
features: ['Name', 'Synonym', 'CAS RN', '
|
163 |
num_rows: 1755
|
164 |
})
|
165 |
})
|
@@ -192,7 +192,7 @@ then load, featurize, split, fit, and evaluate the catboost model
|
|
192 |
"name": "cat_boost_classifier",
|
193 |
"config": {
|
194 |
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
|
195 |
-
"y_features": ['
|
196 |
|
197 |
model.train(split_featurised_dataset["train"])
|
198 |
preds = model.predict(split_featurised_dataset["test"])
|
@@ -200,8 +200,8 @@ then load, featurize, split, fit, and evaluate the catboost model
|
|
200 |
classification_suite = load_suite("classification")
|
201 |
|
202 |
scores = classification_suite.compute(
|
203 |
-
references=split_featurised_dataset["test"]['
|
204 |
-
predictions=preds["cat_boost_classifier::
|
205 |
|
206 |
|
207 |
### Data splits
|
|
|
49 |
dtype: string
|
50 |
- name: CAS RN
|
51 |
dtype: string
|
52 |
+
- name: Y
|
53 |
dtype:
|
54 |
class_label:
|
55 |
names:
|
|
|
90 |
dtype: string
|
91 |
- name: CAS RN
|
92 |
dtype: string
|
93 |
+
- name: Y
|
94 |
dtype:
|
95 |
class_label:
|
96 |
names:
|
|
|
155 |
>>> Corr_Neg
|
156 |
DatasetDict({
|
157 |
test: Dataset({
|
158 |
+
features: ['Name', 'Synonym', 'CAS RN', 'Y', 'Detailed Page', 'Evidence', 'OECD TG 404', 'Data Source', 'Frequency', 'SMILES', 'SMILES URL', 'SMILES Source', 'Canonical SMILES', 'Split'],
|
159 |
num_rows: 181
|
160 |
})
|
161 |
train: Dataset({
|
162 |
+
features: ['Name', 'Synonym', 'CAS RN', 'Y', 'Detailed Page', 'Evidence', 'OECD TG 404', 'Data Source', 'Frequency', 'SMILES', 'SMILES URL', 'SMILES Source', 'Canonical SMILES', 'Split'],
|
163 |
num_rows: 1755
|
164 |
})
|
165 |
})
|
|
|
192 |
"name": "cat_boost_classifier",
|
193 |
"config": {
|
194 |
"x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
|
195 |
+
"y_features": ['Y']}})
|
196 |
|
197 |
model.train(split_featurised_dataset["train"])
|
198 |
preds = model.predict(split_featurised_dataset["test"])
|
|
|
200 |
classification_suite = load_suite("classification")
|
201 |
|
202 |
scores = classification_suite.compute(
|
203 |
+
references=split_featurised_dataset["test"]['Y'],
|
204 |
+
predictions=preds["cat_boost_classifier::Y"])
|
205 |
|
206 |
|
207 |
### Data splits
|