Datasets:
task_categories:
- text-classification
language:
- tr
tags:
- hate speech
size_categories:
- 10K<n<100K
extra_gated_prompt: >-
You agree to not use the dataset to conduct any activity that causes harm to
human subjects.
extra_gated_fields:
Please provide more information on why you need this dataset and how you plan to use it:
type: text
Turkish Hate Speech Superset
This dataset is a superset (N=41,423) of posts annotated as hateful or not. It results from the preprocessing and merge of all available Turkish hate speech datasets in April 2024. These datasets were identified through a systematic survey of hate speech datasets conducted in early 2024. We only kept datasets that:
- are documented
- are publicly available
- focus on hate speech, defined broadly as "any kind of communication in speech, writing or behavior, that attacks or uses pejorative or discriminatory language with reference to a person or a group on the basis of who they are, in other words, based on their religion, ethnicity, nationality, race, color, descent, gender or other identity factor" (UN, 2019)
The survey procedure is further detailed in our survey paper.
Data access and intended use
Please send an access request detailing how you plan to use the data. The main purpose of this dataset is to train and evaluate hate speech detection models, as well as study hateful discourse online. This dataset is NOT intended to train generative LLMs to produce hateful content.
Columns
The dataset contains six columns:
text
: the annotated postlabels
: annotation of whether the post is hateful (== 1
) or not (==0
). As datasets have different annotation schemes, we systematically binarized the labels.source
: origin of the data (e.g., Twitter)dataset
: dataset the data is from (see "Datasets" part below)nb_annotators
: number of annotators by post
Datasets
The datasets that compose this superset are:
- Hate Speech Detection with Machine Learning on Turkish Tweets (
mayda_et_al_1
in thedataset
column) - Hate Speech Dataset from Turkish Tweets (
mayda_et_al_2
in thedataset
column) - Homophobic and Hate Speech Detection Using Multilingual-BERT Model (
HATC
)
Additional datasets on demand
In our survey, we identified five additional datasets that are not public but can be requested to the authors, namely:
- Large-Scale Hate Speech Detection with Cross-Domain Transfer
- A Turkish Hate Speech Dataset and Detection System (Istanbul convention and refugees datasets)
- paper link
- request info in the paper
- SIU2023-NST - Hate Speech Detection Contest. 31. IEEE Conference on Signal Processing and Communications Applications, Istanbul. (Israel-Palestine and Turkey-Greece datasets)
- paper link
- author email addresses in the paper
Preprocessing
We drop duplicates. In case of non-binary labels, the labels are binarized (hate speech or not). We replace all usernames and links by fixed tokens to maximize user privacy. Further details on preprocessing can be found in the preprocessing code here.
Citation
Please cite our survey paper if you use this dataset.
@inproceedings{tonneau-etal-2024-languages,
title = "From Languages to Geographies: Towards Evaluating Cultural Bias in Hate Speech Datasets",
author = {Tonneau, Manuel and
Liu, Diyi and
Fraiberger, Samuel and
Schroeder, Ralph and
Hale, Scott and
R{\"o}ttger, Paul},
editor = {Chung, Yi-Ling and
Talat, Zeerak and
Nozza, Debora and
Plaza-del-Arco, Flor Miriam and
R{\"o}ttger, Paul and
Mostafazadeh Davani, Aida and
Calabrese, Agostina},
booktitle = "Proceedings of the 8th Workshop on Online Abuse and Harms (WOAH 2024)",
month = jun,
year = "2024",
address = "Mexico City, Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.woah-1.23",
pages = "283--311",
abstract = "Perceptions of hate can vary greatly across cultural contexts. Hate speech (HS) datasets, however, have traditionally been developed by language. This hides potential cultural biases, as one language may be spoken in different countries home to different cultures. In this work, we evaluate cultural bias in HS datasets by leveraging two interrelated cultural proxies: language and geography. We conduct a systematic survey of HS datasets in eight languages and confirm past findings on their English-language bias, but also show that this bias has been steadily decreasing in the past few years. For three geographically-widespread languages{---}English, Arabic and Spanish{---}we then leverage geographical metadata from tweets to approximate geo-cultural contexts by pairing language and country information. We find that HS datasets for these languages exhibit a strong geo-cultural bias, largely overrepresenting a handful of countries (e.g., US and UK for English) relative to their prominence in both the broader social media population and the general population speaking these languages. Based on these findings, we formulate recommendations for the creation of future HS datasets.",
}