|
--- |
|
language: |
|
- tr |
|
paperswithcode_id: winogrande |
|
pretty_name: WinoGrande |
|
dataset_info: |
|
- config_name: winogrande_xs |
|
features: |
|
- name: sentence |
|
dtype: string |
|
- name: option1 |
|
dtype: string |
|
- name: option2 |
|
dtype: string |
|
- name: answer |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 20704 |
|
num_examples: 160 |
|
- name: test |
|
num_bytes: 227649 |
|
num_examples: 1767 |
|
- name: validation |
|
num_bytes: 164199 |
|
num_examples: 1267 |
|
download_size: 3395492 |
|
dataset_size: 412552 |
|
- config_name: winogrande_s |
|
features: |
|
- name: sentence |
|
dtype: string |
|
- name: option1 |
|
dtype: string |
|
- name: option2 |
|
dtype: string |
|
- name: answer |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 82308 |
|
num_examples: 640 |
|
- name: test |
|
num_bytes: 227649 |
|
num_examples: 1767 |
|
- name: validation |
|
num_bytes: 164199 |
|
num_examples: 1267 |
|
download_size: 3395492 |
|
dataset_size: 474156 |
|
- config_name: winogrande_m |
|
features: |
|
- name: sentence |
|
dtype: string |
|
- name: option1 |
|
dtype: string |
|
- name: option2 |
|
dtype: string |
|
- name: answer |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 329001 |
|
num_examples: 2558 |
|
- name: test |
|
num_bytes: 227649 |
|
num_examples: 1767 |
|
- name: validation |
|
num_bytes: 164199 |
|
num_examples: 1267 |
|
download_size: 3395492 |
|
dataset_size: 720849 |
|
- config_name: winogrande_l |
|
features: |
|
- name: sentence |
|
dtype: string |
|
- name: option1 |
|
dtype: string |
|
- name: option2 |
|
dtype: string |
|
- name: answer |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1319576 |
|
num_examples: 10234 |
|
- name: test |
|
num_bytes: 227649 |
|
num_examples: 1767 |
|
- name: validation |
|
num_bytes: 164199 |
|
num_examples: 1267 |
|
download_size: 3395492 |
|
dataset_size: 1711424 |
|
- config_name: winogrande_xl |
|
features: |
|
- name: sentence |
|
dtype: string |
|
- name: option1 |
|
dtype: string |
|
- name: option2 |
|
dtype: string |
|
- name: answer |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 5185832 |
|
num_examples: 40398 |
|
- name: test |
|
num_bytes: 227649 |
|
num_examples: 1767 |
|
- name: validation |
|
num_bytes: 164199 |
|
num_examples: 1267 |
|
download_size: 3395492 |
|
dataset_size: 5577680 |
|
- config_name: winogrande_debiased |
|
features: |
|
- name: sentence |
|
dtype: string |
|
- name: option1 |
|
dtype: string |
|
- name: option2 |
|
dtype: string |
|
- name: answer |
|
dtype: string |
|
splits: |
|
- name: train |
|
num_bytes: 1203420 |
|
num_examples: 9248 |
|
- name: test |
|
num_bytes: 227649 |
|
num_examples: 1767 |
|
- name: validation |
|
num_bytes: 164199 |
|
num_examples: 1267 |
|
download_size: 3395492 |
|
dataset_size: 1595268 |
|
configs: |
|
- config_name: winogrande_debiased |
|
data_files: |
|
- split: train |
|
path: winogrande_debiased/*_train-* |
|
- split: test |
|
path: winogrande_debiased/*_test-* |
|
- split: validation |
|
path: winogrande_debiased/*_validation-* |
|
- config_name: winogrande_m |
|
data_files: |
|
- split: train |
|
path: winogrande_m/winogrande_m_train-* |
|
- split: test |
|
path: winogrande_m/winogrande_m_test-* |
|
- split: validation |
|
path: winogrande_m/winogrande_m_validation-* |
|
license: apache-2.0 |
|
--- |
|
|
|
# Dataset Card for "winogrande" |
|
|
|
This Dataset is part of a series of datasets aimed at advancing Turkish LLM Developments by establishing rigid Turkish benchmarks to evaluate the performance of LLM's Produced in the Turkish Language. |
|
malhajar/winogrande-tr is a translated version of [`winogrande`]( https://huggingface.co/datasets/winogrande) aimed specifically to be used in the [`OpenLLMTurkishLeaderboard`](https://huggingface.co/spaces/malhajar/OpenLLMTurkishLeaderboard) |
|
|
|
**Translated by:** [`Mohamad Alhajar`](https://www.linkedin.com/in/muhammet-alhajar/) |
|
|
|
### Dataset Summary |
|
|
|
WinoGrande is a new collection of 44k problems, inspired by Winograd Schema Challenge (Levesque, Davis, and Morgenstern |
|
2011), but adjusted to improve the scale and robustness against the dataset-specific bias. Formulated as a |
|
fill-in-a-blank task with binary options, the goal is to choose the right option for a given sentence which requires |
|
commonsense reasoning. |
|
|
|
### Supported Tasks and Leaderboards |
|
|
|
aimed specifically to be used in the [`OpenLLMTurkishLeaderboard`](https://huggingface.co/spaces/malhajar/OpenLLMTurkishLeaderboard) |
|
|
|
### Languages |
|
|
|
Turkish |
|
|
|
## Dataset Structure |
|
|
|
### Data Instances |
|
|
|
#### winogrande_debiased |
|
|
|
- **Size of downloaded dataset files:** 3.40 MB |
|
- **Size of the generated dataset:** 1.59 MB |
|
- **Total amount of disk used:** 4.99 MB |
|
|
|
An example of 'train' looks as follows. |
|
``` |
|
|
|
``` |
|
|
|
#### winogrande_l |
|
|
|
- **Size of downloaded dataset files:** 3.40 MB |
|
- **Size of the generated dataset:** 1.71 MB |
|
- **Total amount of disk used:** 5.11 MB |
|
|
|
An example of 'validation' looks as follows. |
|
``` |
|
|
|
``` |
|
|
|
#### winogrande_m |
|
|
|
- **Size of downloaded dataset files:** 3.40 MB |
|
- **Size of the generated dataset:** 0.72 MB |
|
- **Total amount of disk used:** 4.12 MB |
|
|
|
An example of 'validation' looks as follows. |
|
``` |
|
|
|
``` |
|
|
|
#### winogrande_s |
|
|
|
- **Size of downloaded dataset files:** 3.40 MB |
|
- **Size of the generated dataset:** 0.47 MB |
|
- **Total amount of disk used:** 3.87 MB |
|
|
|
An example of 'validation' looks as follows. |
|
``` |
|
|
|
``` |
|
|
|
#### winogrande_xl |
|
|
|
- **Size of downloaded dataset files:** 3.40 MB |
|
- **Size of the generated dataset:** 5.58 MB |
|
- **Total amount of disk used:** 8.98 MB |
|
|
|
An example of 'train' looks as follows. |
|
``` |
|
|
|
``` |
|
|
|
### Data Fields |
|
|
|
The data fields are the same among all splits. |
|
|
|
#### winogrande_debiased |
|
- `sentence`: a `string` feature. |
|
- `option1`: a `string` feature. |
|
- `option2`: a `string` feature. |
|
- `answer`: a `string` feature. |
|
|
|
#### winogrande_l |
|
- `sentence`: a `string` feature. |
|
- `option1`: a `string` feature. |
|
- `option2`: a `string` feature. |
|
- `answer`: a `string` feature. |
|
|
|
#### winogrande_m |
|
- `sentence`: a `string` feature. |
|
- `option1`: a `string` feature. |
|
- `option2`: a `string` feature. |
|
- `answer`: a `string` feature. |
|
|
|
#### winogrande_s |
|
- `sentence`: a `string` feature. |
|
- `option1`: a `string` feature. |
|
- `option2`: a `string` feature. |
|
- `answer`: a `string` feature. |
|
|
|
#### winogrande_xl |
|
- `sentence`: a `string` feature. |
|
- `option1`: a `string` feature. |
|
- `option2`: a `string` feature. |
|
- `answer`: a `string` feature. |
|
|
|
### Data Splits |
|
|
|
| name |train|validation|test| |
|
|-------------------|----:|---------:|---:| |
|
|winogrande_debiased| 9248| 1267|1767| |
|
|winogrande_l |10234| 1267|1767| |
|
|winogrande_m | 2558| 1267|1767| |
|
|winogrande_s | 640| 1267|1767| |
|
|winogrande_xl |40398| 1267|1767| |
|
|winogrande_xs | 160| 1267|1767| |
|
|
|
|
|
### Citation Information |
|
|
|
``` |
|
@InProceedings{ai2:winogrande, |
|
title = {WinoGrande: An Adversarial Winograd Schema Challenge at Scale}, |
|
authors={Keisuke, Sakaguchi and Ronan, Le Bras and Chandra, Bhagavatula and Yejin, Choi |
|
}, |
|
year={2019} |
|
} |
|
|
|
` |