|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""PsyQA dataset.""" |
|
|
|
|
|
import json |
|
import os |
|
import datasets |
|
|
|
|
|
|
|
_DESCRIPTION = """ FutureWarning |
|
""" |
|
_CITATION = """ null """ |
|
_URLs = { |
|
"train": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/train.json", |
|
"valid": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/valid.json", |
|
"test": "https://huggingface.co/datasets/siyangliu/PsyQA/resolve/main/test.json", |
|
} |
|
|
|
_STRATEGY={"Approval and Reassurance": "[AR]", |
|
"Interpretation": "[IN]", |
|
"Self-disclosure": "[SELF]", |
|
"Direct Guidance": "[DG]", |
|
"Others": "[OT]", |
|
"Restatement": "[RES]", |
|
"Information": "[INFO]"} |
|
|
|
|
|
class PsyQA(datasets.GeneratorBasedBuilder): |
|
"""PsyQA dataset.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="wo strategy", |
|
description="", |
|
version=VERSION, |
|
), |
|
datasets.BuilderConfig( |
|
name="w strategy", |
|
description="", |
|
version=VERSION, |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"question": datasets.Value("string"), |
|
"questionID": datasets.Value("int16"), |
|
"description": datasets.Value("string"), |
|
"keywords": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"has_label": datasets.Value("bool"), |
|
"reference":datasets.features.Sequence(datasets.Value("string")) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://huggingface.co/datasets/siyangliu/PsyQA", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URLs) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
"strategy": self.config.name == "w strategy" |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
"strategy": self.config.name == "w strategy" |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": data_dir["valid"], |
|
"strategy": self.config.name == "w strategy" |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, label_filepath=None, strategy=False): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as input_file: |
|
dataset = json.load(input_file) |
|
idx = 0 |
|
for meta_data in dataset: |
|
reference = [ans["answer_text"] for ans in meta_data["answers"]] |
|
for ans in meta_data["answers"]: |
|
if strategy and ans["labels_sequence"] is None: |
|
continue |
|
elif strategy and ans["labels_sequence"] is not None: |
|
pieces = [] |
|
for label in ans["labels_sequence"]: |
|
pieces.append(_STRATEGY[label["type"]]+ans["answer_text"][label["start"]:label["end"]]) |
|
ans_w_strategy = "".join(pieces) |
|
yield idx, {"question": meta_data["question"], "description": meta_data["description"], "keywords": meta_data["keywords"], "answer": ans_w_strategy, \ |
|
"questionID": meta_data["questionID"], "has_label": ans["has_label"], "reference": reference} |
|
else: |
|
yield idx, {"question": meta_data["question"], "description": meta_data["description"], "keywords": meta_data["keywords"], "answer": ans["answer_text"], \ |
|
"questionID": meta_data["questionID"], "has_label": ans["has_label"], "reference":reference} |
|
idx += 1 |
|
|
|
|