|
import glob |
|
import os |
|
from pathlib import Path |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{boonkwan2020annotation, |
|
title={The Annotation Guideline of LST20 Corpus}, |
|
author={Boonkwan, Prachya and Luantangsrisuk, Vorapon and Phaholphinyo, Sitthaa and Kriengket, Kanyanat and Leenoi, Dhanon and Phrombut, Charun and Boriboon, Monthika and Kosawat, Krit and Supnithi, Thepchai}, |
|
journal={arXiv preprint arXiv:2008.05055}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
LST20 Corpus is a dataset for Thai language processing developed by National Electronics and Computer Technology Center (NECTEC), Thailand. |
|
It offers five layers of linguistic annotation: word boundaries, POS tagging, named entities, clause boundaries, and sentence boundaries. |
|
At a large scale, it consists of 3,164,002 words, 288,020 named entities, 248,181 clauses, and 74,180 sentences, while it is annotated with |
|
16 distinct POS tags. All 3,745 documents are also annotated with one of 15 news genres. Regarding its sheer size, this dataset is |
|
considered large enough for developing joint neural models for NLP. |
|
Manually download at https://aiforthai.in.th/corpus.php |
|
""" |
|
|
|
|
|
class Lst20Config(datasets.BuilderConfig): |
|
"""BuilderConfig for Lst20""" |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for Lst20. |
|
|
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(Lst20Config, self).__init__(**kwargs) |
|
|
|
|
|
class Lst20(datasets.GeneratorBasedBuilder): |
|
"""Lst20 dataset.""" |
|
|
|
_SENTENCE_SPLITTERS = ["", " ", "\n"] |
|
_TRAINING_FOLDER = "train" |
|
_VALID_FOLDER = "eval" |
|
_TEST_FOLDER = "test" |
|
_POS_TAGS = ["NN", "VV", "PU", "CC", "PS", "AX", "AV", "FX", "NU", "AJ", "CL", "PR", "NG", "PA", "XX", "IJ"] |
|
_NER_TAGS = [ |
|
"O", |
|
"B_BRN", |
|
"B_DES", |
|
"B_DTM", |
|
"B_LOC", |
|
"B_MEA", |
|
"B_NUM", |
|
"B_ORG", |
|
"B_PER", |
|
"B_TRM", |
|
"B_TTL", |
|
"I_BRN", |
|
"I_DES", |
|
"I_DTM", |
|
"I_LOC", |
|
"I_MEA", |
|
"I_NUM", |
|
"I_ORG", |
|
"I_PER", |
|
"I_TRM", |
|
"I_TTL", |
|
"E_BRN", |
|
"E_DES", |
|
"E_DTM", |
|
"E_LOC", |
|
"E_MEA", |
|
"E_NUM", |
|
"E_ORG", |
|
"E_PER", |
|
"E_TRM", |
|
"E_TTL", |
|
] |
|
_CLAUSE_TAGS = ["O", "B_CLS", "I_CLS", "E_CLS"] |
|
|
|
BUILDER_CONFIGS = [ |
|
Lst20Config(name="lst20", version=datasets.Version("1.0.0"), description="LST20 dataset"), |
|
] |
|
|
|
@property |
|
def manual_download_instructions(self): |
|
return """\ |
|
You need to |
|
1. Manually download `AIFORTHAI-LST20Corpus.tar.gz` from https://aiforthai.in.th/corpus.php (login required; website mostly in Thai) |
|
2. Extract the .tar.gz; this will result in folder `LST20Corpus` |
|
The <path/to/folder> can e.g. be `~/Downloads/LST20Corpus`. |
|
lst20 can then be loaded using the following command `datasets.load_dataset("lst20", data_dir="<path/to/folder>")`. |
|
""" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"fname": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"pos_tags": datasets.Sequence(datasets.features.ClassLabel(names=self._POS_TAGS)), |
|
"ner_tags": datasets.Sequence(datasets.features.ClassLabel(names=self._NER_TAGS)), |
|
"clause_tags": datasets.Sequence(datasets.features.ClassLabel(names=self._CLAUSE_TAGS)), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://aiforthai.in.th/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
|
|
|
|
if not os.path.exists(data_dir): |
|
raise FileNotFoundError( |
|
f"{data_dir} does not exist. Make sure you insert a manual dir via `datasetts.load_dataset('lst20', data_dir=...)`. Manual download instructions: {self.manual_download_instructions})" |
|
) |
|
|
|
|
|
nb_train = len(glob.glob(os.path.join(data_dir, "train", "*.txt"))) |
|
nb_valid = len(glob.glob(os.path.join(data_dir, "eval", "*.txt"))) |
|
nb_test = len(glob.glob(os.path.join(data_dir, "test", "*.txt"))) |
|
assert ( |
|
nb_train > 0 |
|
), f"No files found in train/*.txt.\nManual download instructions:{self.manual_download_instructions})" |
|
assert ( |
|
nb_valid > 0 |
|
), f"No files found in eval/*.txt.\nManual download instructions:{self.manual_download_instructions})" |
|
assert ( |
|
nb_test > 0 |
|
), f"No files found in test/*.txt.\nManual download instructions:{self.manual_download_instructions})" |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": os.path.join(data_dir, self._TRAINING_FOLDER)}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": os.path.join(data_dir, self._VALID_FOLDER)}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": os.path.join(data_dir, self._TEST_FOLDER)}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
for file_idx, fname in enumerate(sorted(glob.glob(os.path.join(filepath, "*.txt")))): |
|
with open(fname, encoding="utf-8") as f: |
|
guid = 0 |
|
tokens = [] |
|
pos_tags = [] |
|
ner_tags = [] |
|
clause_tags = [] |
|
|
|
for line in f: |
|
if line in self._SENTENCE_SPLITTERS: |
|
if tokens: |
|
yield f"{file_idx}_{guid}", { |
|
"id": str(guid), |
|
"fname": Path(fname).name, |
|
"tokens": tokens, |
|
"pos_tags": pos_tags, |
|
"ner_tags": ner_tags, |
|
"clause_tags": clause_tags, |
|
} |
|
guid += 1 |
|
tokens = [] |
|
pos_tags = [] |
|
ner_tags = [] |
|
clause_tags = [] |
|
else: |
|
|
|
splits = line.split("\t") |
|
|
|
ner_tag = splits[2] if splits[2] in self._NER_TAGS else "O" |
|
tokens.append(splits[0]) |
|
pos_tags.append(splits[1]) |
|
ner_tags.append(ner_tag) |
|
clause_tags.append(splits[3].rstrip()) |
|
|
|
if tokens: |
|
yield f"{file_idx}_{guid}", { |
|
"id": str(guid), |
|
"fname": Path(fname).name, |
|
"tokens": tokens, |
|
"pos_tags": pos_tags, |
|
"ner_tags": ner_tags, |
|
"clause_tags": clause_tags, |
|
} |
|
|