AlphaNum / README.md
Louis Rädisch
Update README.md
d895ff8
metadata
license: mit

AlphaNum Dataset

Abstract

The AlphaNum dataset, curated by Louis Rädisch, is an extensive repository of grayscale, handwritten characters and numerals, each of 28x28 pixel dimensions. This dataset is designed to support Optical Character Recognition (OCR) tasks, offering labels that range from 33 to 126, and 999, aligning with ASCII characters from '!' to '~', and 'null', respectively. The 'null' category includes images generated through a noise injection process, resulting in normally distributed light pixels placed randomly.

Images drawn from the MNIST dataset have undergone color inversion to ensure consistency throughout the dataset. Vision Transformer Models have been fine-tuned to unify data sourced from varied origins, thereby augmenting the overall accuracy of the dataset. Notably, the 'A-Z handwritten alphabets' dataset, which initially did not distinguish between upper and lower case letters, has been modified to correct this in the present compilation.

Data Sources

  1. Handwriting Characters Database
  2. MNIST
  3. AZ Handwritten Alphabets in CSV format

In an effort to maintain uniformity, the dataset files have been resized to 24x24 pixels and recolored from white-on-black to black-on-white.

Dataset Structure

Instance Description

Each dataset instance contains an image of a handwritten character or numeral, paired with its corresponding ASCII label.

Data Organization

The dataset, contained in a .rar file, is organized within a "dataset" folder. Each ASCII symbol is housed in a dedicated folder, the name of which corresponds to the ASCII value of the symbol.

Dataset Utility

The AlphaNum dataset caters to a variety of use cases including text recognition, document processing, and machine learning tasks. It is particularly instrumental in the development, fine-tuning, and enhancement of OCR models.

Null Category Image Generation

The 'null' category comprises images generated by injecting noise to mimic randomly distributed light pixels. The creation of these images is accomplished through the following Python script:

import os
import numpy as np
from PIL import Image, ImageOps, ImageEnhance

def generate_noisy_images(num_images, image_size=(28, 28), output_dir='NoisyImages', image_format='JPEG'):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
        
    for i in range(num_images):
        variation_scale = abs(np.random.normal(30, 15))
        # Generate random noise with reduced strength
        noise = np.random.rand(image_size[0], image_size[1]) * 0.05
        noise = (noise * 255).astype(np.uint8)
        
        # Create a PIL image from the noise
        image = Image.fromarray(noise, mode='L')  # 'L' for grayscale
        
        # Invert the image
        inverted_image = ImageOps.invert(image)
        
        # Enhance the contrast with increased amplitude
        enhancer = ImageEnhance.Contrast(inverted_image)
        contrast_enhanced_image = enhancer.enhance(variation_scale)  # Increased amplitude (e.g., 3.0)
        
        # Save the image
        contrast_enhanced_image.save(os.path.join(output_dir, f'{i}.jpg'), format=image_format)

# Generate 5000 noisy images
generate_noisy_images(5000)

ASCII Table and Corresponding File Counts

ASCII Value Character Number of Files
33 ! 207
34 " 267
35 # 152
36 $ 192
37 % 190
38 & 104
39 ' 276
40 ( 346
41 ) 359
42 * 128
43 + 146
44 , 320
45 - 447
46 . 486
47 / 259
48 0 2664
49 1 2791
50 2 2564
51 3 2671
52 4 2530
53 5 2343
54 6 2503
55 7 2679
56 8 2544
57 9 2617
58 : 287
59 ; 223
60 < 168
61 = 254
62 > 162
63 ? 194
64 @ 83
65 A 1923
66 B 1505
67 C 1644
68 D 1553
69 E 2171
70 F 1468
71 G 1443
72 H 1543
73 I 1888
74 J 1470
75 K 1504
76 L 1692
77 M 1484
78 N 1683
79 O 2097
80 P 1605
81 Q 1409
82 R 1811
83 S 1786
84 T 1729
85 U 1458
86 V 1405
87 W 1521
88 X 1366
89 Y 1456
90 Z 1451
91 [
     | 111             |

| 93 | ] | 104 | | 94 | ^ | 88 | | 95 | _ | 80 | | 96 | ` | 42 | | 97 | a | 2219 | | 98 | b | 624 | | 99 | c | 880 | | 100 | d | 1074 | | 101 | e | 2962 | | 102 | f | 608 | | 103 | g | 760 | | 104 | h | 990 | | 105 | i | 2035 | | 106 | j | 427 | | 107 | k | 557 | | 108 | l | 1415 | | 109 | m | 879 | | 110 | n | 1906 | | 111 | o | 2048 | | 112 | p | 786 | | 113 | q | 427 | | 114 | r | 1708 | | 115 | s | 1557 | | 116 | t | 1781 | | 117 | u | 1319 | | 118 | v | 555 | | 119 | w | 680 | | 120 | x | 463 | | 121 | y | 680 | | 122 | z | 505 | | 123 | { | 73 | | 124 | | | 91 | | 125 | } | 77 | | 126 | ~ | 59 | | 999 | null | 4949 |