Datasets:
license: mit
AlphaNum Dataset
Abstract
The AlphaNum dataset is a collection of 108,740 grayscale images of handwritten characters and numerals as well as special character, each sized 24x24 pixels. This dataset is designed to bolster Optical Character Recognition (OCR) research and development.
For consistency, images extracted from the MNIST dataset have been color-inverted to match the grayscale aesthetics of the AlphaNum dataset.
Data Sources
In an effort to maintain uniformity, the dataset files have been resized to 24x24 pixels and recolored from white-on-black to black-on-white.
Dataset Structure
Instance Description
Each dataset instance contains an image of a handwritten character or numeral, paired with its corresponding ASCII label.
Data Organization
The dataset, contained in a .rar file, is organized within a "dataset" folder. Each ASCII symbol is housed in a dedicated folder, the name of which corresponds to the ASCII value of the symbol. Dataset size: 79.742.558 Bytes = 637.940.464 Bits
Dataset Utility
The AlphaNum dataset caters to a variety of use cases including text recognition, document processing, and machine learning tasks. It is particularly instrumental in the development, fine-tuning, and enhancement of OCR models.
Null Category Image Generation
The 'null' category comprises images generated by injecting noise to mimic randomly distributed light pixels. The creation of these images is accomplished through the following Python script:
import os
import numpy as np
from PIL import Image, ImageOps, ImageEnhance
def generate_noisy_images(num_images, image_size=(28, 28), output_dir='NoisyImages', image_format='JPEG'):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for i in range(num_images):
variation_scale = abs(np.random.normal(30, 15))
# Generate random noise with reduced strength
noise = np.random.rand(image_size[0], image_size[1]) * 0.05
noise = (noise * 255).astype(np.uint8)
# Create a PIL image from the noise
image = Image.fromarray(noise, mode='L') # 'L' for grayscale
# Invert the image
inverted_image = ImageOps.invert(image)
# Enhance the contrast with increased amplitude
enhancer = ImageEnhance.Contrast(inverted_image)
contrast_enhanced_image = enhancer.enhance(variation_scale) # Increased amplitude (e.g., 3.0)
# Save the image
contrast_enhanced_image.save(os.path.join(output_dir, f'{i}.jpg'), format=image_format)
generate_noisy_images(5000)
ASCII Table and Corresponding File Counts
ASCII Value | Character | Number of Files |
---|---|---|
33 | ! | 207 |
34 | " | 267 |
35 | # | 152 |
36 | $ | 192 |
37 | % | 190 |
38 | & | 104 |
39 | ' | 276 |
40 | ( | 346 |
41 | ) | 359 |
42 | * | 128 |
43 | + | 146 |
44 | , | 320 |
45 | - | 447 |
46 | . | 486 |
47 | / | 259 |
48 | 0 | 2664 |
49 | 1 | 2791 |
50 | 2 | 2564 |
51 | 3 | 2671 |
52 | 4 | 2530 |
53 | 5 | 2343 |
54 | 6 | 2503 |
55 | 7 | 2679 |
56 | 8 | 2544 |
57 | 9 | 2617 |
58 | : | 287 |
59 | ; | 223 |
60 | < | 168 |
61 | = | 254 |
62 | > | 162 |
63 | ? | 194 |
64 | @ | 83 |
65 | A | 1923 |
66 | B | 1505 |
67 | C | 1644 |
68 | D | 1553 |
69 | E | 2171 |
70 | F | 1468 |
71 | G | 1443 |
72 | H | 1543 |
73 | I | 1888 |
74 | J | 1470 |
75 | K | 1504 |
76 | L | 1692 |
77 | M | 1484 |
78 | N | 1683 |
79 | O | 2097 |
80 | P | 1605 |
81 | Q | 1409 |
82 | R | 1811 |
83 | S | 1786 |
84 | T | 1729 |
85 | U | 1458 |
86 | V | 1405 |
87 | W | 1521 |
88 | X | 1366 |
89 | Y | 1456 |
90 | Z | 1451 |
91 | [ | 111 |
93 | ] | 104 |
94 | ^ | 88 |
95 | _ | 80 |
96 | ` | 42 |
97 | a | 2219 |
98 | b | 624 |
99 | c | 880 |
100 | d | 1074 |
101 | e | 2962 |
102 | f | 608 |
103 | g | 760 |
104 | h | 990 |
105 | i | 2035 |
106 | j | 427 |
107 | k | 557 |
108 | l | 1415 |
109 | m | 879 |
110 | n | 1906 |
111 | o | 2048 |
112 | p | 786 |
113 | q | 427 |
114 | r | 1708 |
115 | s | 1557 |
116 | t | 1781 |
117 | u | 1319 |
118 | v | 555 |
119 | w | 680 |
120 | x | 463 |
121 | y | 680 |
122 | z | 505 |
123 | { | 73 |
124 | | | 91 |
125 | } | 77 |
126 | ~ | 59 |
999 | null | 4949 |