text
stringlengths
29
317k
id
stringlengths
22
166
metadata
dict
__index_level_0__
int64
0
231
- sections: - local: index title: 🤗 المحولات - local: quicktour title: جولة سريعة - local: installation title: التثبيت title: البدء - sections: - local: pipeline_tutorial title: تشغيل الاستنتاج باستخدام خطوط الأنابيب - local: autoclass_tutorial title: كتابة تعليمات برمجية متكيفه باستخدام AutoClass - local: preprocessing title: معالجة البيانات مسبقًا - local: training title: ضبط نموذج مسبق التدريب - local: run_scripts title: التدريب باستخدام نص برمجي - local: accelerate title: إعداد تدريب موزع باستخدام 🤗 Accelerate - local: peft title: تحميل النماذج المخصصة وتدريبها باستخدام 🤗 PEFT - local: model_sharing title: مشاركة نموذجك - local: agents title: الوكلاء - local: llm_tutorial title: التوليد باستخدام LLMs - local: conversations title: الدردشة مع المحولات title: البرامج التعليمية - sections: - isExpanded: false sections: - local: tasks/sequence_classification title: تصنيف النصوص - local: tasks/token_classification title: تصنيف الرموز - local: tasks/question_answering title: الإجابة على الأسئلة - local: tasks/language_modeling title: نمذجة اللغة السببية - local: tasks/masked_language_modeling title: نمذجة اللغة المقنعة - local: tasks/translation title: الترجمة - local: tasks/summarization title: التلخيص - local: tasks/multiple_choice title: الاختيار المتعدد title: معالجة اللغات الطبيعية # - isExpanded: false # sections: # - local: tasks/audio_classification # title: تصنيف الصوت # - local: tasks/asr # title: التعرف التلقائي على الكلام # title: الصوت # - isExpanded: false # sections: # - local: tasks/image_classification # title: تصنيف الصور # - local: tasks/semantic_segmentation # title: تجزئة الصور # - local: tasks/video_classification # title: تصنيف الفيديو # - local: tasks/object_detection # title: اكتشاف الأشياء # - local: tasks/zero_shot_object_detection # title: اكتشاف الأشياء بدون تدريب # - local: tasks/zero_shot_image_classification # title: تصنيف الصور بدون تدريب # - local: tasks/monocular_depth_estimation # title: تقدير العمق # - local: tasks/image_to_image # title: صورة إلى صورة # - local: tasks/image_feature_extraction # title: استخراج ميزات الصورة # - local: tasks/mask_generation # title: توليد القناع # - local: tasks/knowledge_distillation_for_image_classification # title: التقليل المعرفي للرؤية الحاسوبية # title: الرؤية الحاسوبية # - isExpanded: false # sections: # - local: tasks/image_captioning # title: وصف الصور Image captioning # - local: tasks/document_question_answering # title: الإجابة على أسئلة المستندات # - local: tasks/visual_question_answering # title: الإجابة على الأسئلة المرئية # - local: tasks/text-to-speech # title: تحويل النص إلى كلام # title: المتعددة الوسائط # - isExpanded: false # sections: # - local: generation_strategies # title: تخصيص استراتيجية التوليد # - local: kv_cache # title: أفضل الممارسات للتوليد باستخدام ذاكرة التخزين المؤقت # title: التوليد # - isExpanded: false # sections: # - local: tasks/idefics # title: مهام الصور مع IDEFICS # - local: tasks/prompting # title: دليل إرشادي لمحفزات النماذج اللغوية الكبيرة # title: الإرشاد title: أدلة المهام - sections: - local: fast_tokenizers title: استخدم مجزئيات النصوص السريعة من 🤗 Tokenizers - local: multilingual title: الاستدلال باستخدام نماذج متعددة اللغات - local: create_a_model title: استخدام واجهات برمجة التطبيقات الخاصة بالنموذج - local: custom_models title: مشاركة نموذج مخصص - local: chat_templating title: قوالب لنماذج الدردشة - local: trainer title: المدرب - local: sagemaker title: تشغيل التدريب على Amazon SageMaker - local: serialization title: التصدير إلى ONNX - local: tflite title: التصدير إلى TFLite - local: torchscript title: التصدير إلى TorchScript - local: notebooks title: دفاتر الملاحظات مع الأمثلة - local: community title: موارد المجتمع - local: troubleshooting title: استكشاف الأخطاء وإصلاحها - local: gguf title: التوافق مع ملفات GGUF - local: tiktoken title: التوافق مع ملفات TikToken - local: modular_transformers title: الوحدات النمطية في `transformers` - local: how_to_hack_models title: اختراق النموذج (الكتابة فوق فئة لاستخدامك) title: أدلة المطورين # - sections: # - local: quantization/overview # title: نظرة عامة # - local: quantization/bitsandbytes # title: bitsandbytes # - local: quantization/gptq # title: GPTQ # - local: quantization/awq # title: AWQ # - local: quantization/aqlm # title: AQLM # - local: quantization/vptq # title: VPTQ # - local: quantization/quanto # title: Quanto # - local: quantization/eetq # title: EETQ # - local: quantization/hqq # title: HQQ # - local: quantization/optimum # title: Optimum # - local: quantization/contribute # title: المساهمة بطريقة جديدة للتكميم # title: أساليب التكميم # - sections: # - local: performance # title: الأداء-نظرة عامة # - local: llm_optims # title: تحسين الاستدلال LLM # - sections: # - local: perf_train_gpu_one # title: استخدام عدة وحدات معالجة رسوميات (GPUs) بشكل متوازٍ # - local: perf_train_gpu_many # title: وحدات معالجة الرسومات (GPU) متعددة والتوازي # - local: fsdp # title: Fully Sharded Data Parallel # - local: deepspeed # title: DeepSpeed # - local: perf_train_cpu # title: التدريب الفعال على وحدة المعالجة المركزية (CPU) # - local: perf_train_cpu_many # title: التدريب الموزع لوحدة المعالجة المركزية (CPU) # - local: perf_train_tpu_tf # title: التدريب على (TPU) باستخدام TensorFlow # - local: perf_train_special # title: تدريب PyTorch على Apple silicon # - local: perf_hardware # title: الأجهزة المخصصة للتدريب # - local: hpo_train # title: البحث عن المعاملات المثلى باستخدام واجهة برمجة تطبيقات المدرب # title: تقنيات التدريب الفعال # - sections: # - local: perf_infer_cpu # title: الإستدلال على وحدة المعالجة المركزية (CPU) # - local: perf_infer_gpu_one # title: الإستدلال على وحدة معالجة الرسومات (GPU) # title: تحسين الاستدلال # - local: big_models # title: إنشاء نموذج كبير # - local: debugging # title: تصحيح الأخطاء البرمجية # - local: tf_xla # title: تكامل XLA لنماذج TensorFlow # - local: perf_torch_compile # title: تحسين الاستدلال باستخدام `torch.compile()` # title: الأداء وقابلية التوسع # - sections: # - local: contributing # title: كيفية المساهمة في 🤗 المحولات؟ # - local: add_new_model # title: كيفية إضافة نموذج إلى 🤗 المحولات؟ # - local: add_new_pipeline # title: كيفية إضافة خط أنابيب إلى 🤗 المحولات؟ # - local: testing # title: الاختبار # - local: pr_checks # title: التحقق من طلب السحب # title: المساهمة - sections: - local: philosophy title: الفلسفة - local: glossary title: (قاموس المصطلحات (قائمة الكلمات - local: task_summary title: ما الذي يمكن أن تفعله 🤗 المحولات - local: tasks_explained title: كيف تحل المحولات المهام - local: model_summary title: عائلة نماذج المحول - local: tokenizer_summary title: ملخص برنامج مقسم النصوص (tokenizers) - local: attention title: الانتباه Attention - local: pad_truncation title: الحشو والتقليم - local: bertology title: BERTology - local: perplexity title: حيرة النماذج ذات الطول الثابت - local: pipeline_webserver title: خطوط الأنابيب للاستدلال على خادم الويب - local: model_memory_anatomy title: تشريح تدريب النموذج - local: llm_tutorial_optimization title: الاستفادة القصوى من LLMs title: أطر مفاهيمية # - sections: # - sections: # - local: main_classes/agent # title: الوكلاء والأدوات # - local: model_doc/auto # title: فئات يتم إنشاؤها ديناميكيًا # - local: main_classes/backbones # title: العمود الفقري # - local: main_classes/callback # title: عمليات الاسترجاع # - local: main_classes/configuration # title: التكوين # - local: main_classes/data_collator # title: مجمع البيانات # - local: main_classes/keras_callbacks # title: استدعاءات Keras # - local: main_classes/logging # title: التسجيل # - local: main_classes/model # title: النماذج # - local: main_classes/text_generation # title: توليد النصوص # - local: main_classes/onnx # title: ONNX # - local: main_classes/optimizer_schedules # title: التحسين # - local: main_classes/output # title: مخرجات النموذج # - local: main_classes/pipelines # title: خطوط الأنابيب # - local: main_classes/processors # title: المعالجات # - local: main_classes/quantization # title: التكميم # - local: main_classes/tokenizer # title: برنامج مقسم النصوص # - local: main_classes/trainer # title: المدرب # - local: main_classes/deepspeed # title: DeepSpeed # - local: main_classes/feature_extractor # title: مستخرج الميزات # - local: main_classes/image_processor # title: معالج الصور # title: الفئات الرئيسية # - sections: # - isExpanded: false # sections: # - local: model_doc/albert # title: ALBERT # - local: model_doc/bart # title: BART # - local: model_doc/barthez # title: BARThez # - local: model_doc/bartpho # title: BARTpho # - local: model_doc/bert # title: BERT # - local: model_doc/bert-generation # title: BertGeneration # - local: model_doc/bert-japanese # title: BertJapanese # - local: model_doc/bertweet # title: Bertweet # - local: model_doc/big_bird # title: BigBird # - local: model_doc/bigbird_pegasus # title: BigBirdPegasus # - local: model_doc/biogpt # title: BioGpt # - local: model_doc/blenderbot # title: Blenderbot # - local: model_doc/blenderbot-small # title: Blenderbot Small # - local: model_doc/bloom # title: BLOOM # - local: model_doc/bort # title: BORT # - local: model_doc/byt5 # title: ByT5 # - local: model_doc/camembert # title: CamemBERT # - local: model_doc/canine # title: CANINE # - local: model_doc/codegen # title: CodeGen # - local: model_doc/code_llama # title: CodeLlama # - local: model_doc/cohere # title: Cohere # - local: model_doc/convbert # title: ConvBERT # - local: model_doc/cpm # title: CPM # - local: model_doc/cpmant # title: CPMANT # - local: model_doc/ctrl # title: CTRL # - local: model_doc/dbrx # title: DBRX # - local: model_doc/deberta # title: DeBERTa # - local: model_doc/deberta-v2 # title: DeBERTa-v2 # - local: model_doc/dialogpt # title: DialoGPT # - local: model_doc/distilbert # title: DistilBERT # - local: model_doc/dpr # title: DPR # - local: model_doc/electra # title: ELECTRA # - local: model_doc/encoder-decoder # title: Encoder Decoder Models # - local: model_doc/ernie # title: ERNIE # - local: model_doc/ernie_m # title: ErnieM # - local: model_doc/esm # title: ESM # - local: model_doc/falcon # title: Falcon # - local: model_doc/fastspeech2_conformer # title: FastSpeech2Conformer # - local: model_doc/flan-t5 # title: FLAN-T5 # - local: model_doc/flan-ul2 # title: FLAN-UL2 # - local: model_doc/flaubert # title: FlauBERT # - local: model_doc/fnet # title: FNet # - local: model_doc/fsmt # title: FSMT # - local: model_doc/funnel # title: Funnel Transformer # - local: model_doc/fuyu # title: Fuyu # - local: model_doc/gemma # title: Gemma # - local: model_doc/openai-gpt # title: GPT # - local: model_doc/gpt_neo # title: GPT Neo # - local: model_doc/gpt_neox # title: GPT NeoX # - local: model_doc/gpt_neox_japanese # title: GPT NeoX Japanese # - local: model_doc/gptj # title: GPT-J # - local: model_doc/gpt2 # title: GPT2 # - local: model_doc/gpt_bigcode # title: GPTBigCode # - local: model_doc/gptsan-japanese # title: GPTSAN Japanese # - local: model_doc/gpt-sw3 # title: GPTSw3 # - local: model_doc/herbert # title: HerBERT # - local: model_doc/ibert # title: I-BERT # - local: model_doc/jamba # title: Jamba # - local: model_doc/jetmoe # title: JetMoe # - local: model_doc/jukebox # title: Jukebox # - local: model_doc/led # title: LED # - local: model_doc/llama # title: LLaMA # - local: model_doc/llama2 # title: Llama2 # - local: model_doc/llama3 # title: Llama3 # - local: model_doc/longformer # title: Longformer # - local: model_doc/longt5 # title: LongT5 # - local: model_doc/luke # title: LUKE # - local: model_doc/m2m_100 # title: M2M100 # - local: model_doc/madlad-400 # title: MADLAD-400 # - local: model_doc/mamba # title: Mamba # - local: model_doc/marian # title: MarianMT # - local: model_doc/markuplm # title: MarkupLM # - local: model_doc/mbart # title: MBart and MBart-50 # - local: model_doc/mega # title: MEGA # - local: model_doc/megatron-bert # title: MegatronBERT # - local: model_doc/megatron_gpt2 # title: MegatronGPT2 # - local: model_doc/mistral # title: Mistral # - local: model_doc/mixtral # title: Mixtral # - local: model_doc/mluke # title: mLUKE # - local: model_doc/mobilebert # title: MobileBERT # - local: model_doc/mpnet # title: MPNet # - local: model_doc/mpt # title: MPT # - local: model_doc/mra # title: MRA # - local: model_doc/mt5 # title: MT5 # - local: model_doc/mvp # title: MVP # - local: model_doc/nezha # title: NEZHA # - local: model_doc/nllb # title: NLLB # - local: model_doc/nllb-moe # title: NLLB-MoE # - local: model_doc/nystromformer # title: Nyströmformer # - local: model_doc/olmo # title: OLMo # - local: model_doc/open-llama # title: Open-Llama # - local: model_doc/opt # title: OPT # - local: model_doc/pegasus # title: Pegasus # - local: model_doc/pegasus_x # title: PEGASUS-X # - local: model_doc/persimmon # title: Persimmon # - local: model_doc/phi # title: Phi # - local: model_doc/phi3 # title: Phi-3 # - local: model_doc/phobert # title: PhoBERT # - local: model_doc/plbart # title: PLBart # - local: model_doc/prophetnet # title: ProphetNet # - local: model_doc/qdqbert # title: QDQBert # - local: model_doc/qwen2 # title: Qwen2 # - local: model_doc/qwen2_moe # title: Qwen2MoE # - local: model_doc/rag # title: RAG # - local: model_doc/realm # title: REALM # - local: model_doc/recurrent_gemma # title: RecurrentGemma # - local: model_doc/reformer # title: Reformer # - local: model_doc/rembert # title: RemBERT # - local: model_doc/retribert # title: RetriBERT # - local: model_doc/roberta # title: RoBERTa # - local: model_doc/roberta-prelayernorm # title: RoBERTa-PreLayerNorm # - local: model_doc/roc_bert # title: RoCBert # - local: model_doc/roformer # title: RoFormer # - local: model_doc/rwkv # title: RWKV # - local: model_doc/splinter # title: Splinter # - local: model_doc/squeezebert # title: SqueezeBERT # - local: model_doc/stablelm # title: StableLm # - local: model_doc/starcoder2 # title: Starcoder2 # - local: model_doc/switch_transformers # title: SwitchTransformers # - local: model_doc/t5 # title: T5 # - local: model_doc/t5v1.1 # title: T5v1.1 # - local: model_doc/tapex # title: TAPEX # - local: model_doc/transfo-xl # title: Transformer XL # - local: model_doc/ul2 # title: UL2 # - local: model_doc/umt5 # title: UMT5 # - local: model_doc/xmod # title: X-MOD # - local: model_doc/xglm # title: XGLM # - local: model_doc/xlm # title: XLM # - local: model_doc/xlm-prophetnet # title: XLM-ProphetNet # - local: model_doc/xlm-roberta # title: XLM-RoBERTa # - local: model_doc/xlm-roberta-xl # title: XLM-RoBERTa-XL # - local: model_doc/xlm-v # title: XLM-V # - local: model_doc/xlnet # title: XLNet # - local: model_doc/yoso # title: YOSO # title: Text models # - isExpanded: false # sections: # - local: model_doc/beit # title: BEiT # - local: model_doc/bit # title: BiT # - local: model_doc/conditional_detr # title: Conditional DETR # - local: model_doc/convnext # title: ConvNeXT # - local: model_doc/convnextv2 # title: ConvNeXTV2 # - local: model_doc/cvt # title: CVT # - local: model_doc/deformable_detr # title: Deformable DETR # - local: model_doc/deit # title: DeiT # - local: model_doc/depth_anything # title: Depth Anything # - local: model_doc/deta # title: DETA # - local: model_doc/detr # title: DETR # - local: model_doc/dinat # title: DiNAT # - local: model_doc/dinov2 # title: DINOV2 # - local: model_doc/dit # title: DiT # - local: model_doc/dpt # title: DPT # - local: model_doc/efficientformer # title: EfficientFormer # - local: model_doc/efficientnet # title: EfficientNet # - local: model_doc/focalnet # title: FocalNet # - local: model_doc/glpn # title: GLPN # - local: model_doc/imagegpt # title: ImageGPT # - local: model_doc/levit # title: LeViT # - local: model_doc/mask2former # title: Mask2Former # - local: model_doc/maskformer # title: MaskFormer # - local: model_doc/mobilenet_v1 # title: MobileNetV1 # - local: model_doc/mobilenet_v2 # title: MobileNetV2 # - local: model_doc/mobilevit # title: MobileViT # - local: model_doc/mobilevitv2 # title: MobileViTV2 # - local: model_doc/nat # title: NAT # - local: model_doc/poolformer # title: PoolFormer # - local: model_doc/pvt # title: Pyramid Vision Transformer (PVT) # - local: model_doc/pvt_v2 # title: Pyramid Vision Transformer v2 (PVTv2) # - local: model_doc/regnet # title: RegNet # - local: model_doc/resnet # title: ResNet # - local: model_doc/segformer # title: SegFormer # - local: model_doc/seggpt # title: SegGpt # - local: model_doc/superpoint # title: SuperPoint # - local: model_doc/swiftformer # title: SwiftFormer # - local: model_doc/swin # title: Swin Transformer # - local: model_doc/swinv2 # title: Swin Transformer V2 # - local: model_doc/swin2sr # title: Swin2SR # - local: model_doc/table-transformer # title: Table Transformer # - local: model_doc/upernet # title: UperNet # - local: model_doc/van # title: VAN # - local: model_doc/vit # title: Vision Transformer (ViT) # - local: model_doc/vit_hybrid # title: ViT Hybrid # - local: model_doc/vitdet # title: ViTDet # - local: model_doc/vit_mae # title: ViTMAE # - local: model_doc/vitmatte # title: ViTMatte # - local: model_doc/vit_msn # title: ViTMSN # - local: model_doc/yolos # title: YOLOS # title: Vision models # - isExpanded: false # sections: # - local: model_doc/audio-spectrogram-transformer # title: Audio Spectrogram Transformer # - local: model_doc/bark # title: Bark # - local: model_doc/clap # title: CLAP # - local: model_doc/encodec # title: EnCodec # - local: model_doc/hubert # title: Hubert # - local: model_doc/mctct # title: MCTCT # - local: model_doc/mms # title: MMS # - local: model_doc/musicgen # title: MusicGen # - local: model_doc/musicgen_melody # title: MusicGen Melody # - local: model_doc/pop2piano # title: Pop2Piano # - local: model_doc/seamless_m4t # title: Seamless-M4T # - local: model_doc/seamless_m4t_v2 # title: SeamlessM4T-v2 # - local: model_doc/sew # title: SEW # - local: model_doc/sew-d # title: SEW-D # - local: model_doc/speech_to_text # title: Speech2Text # - local: model_doc/speech_to_text_2 # title: Speech2Text2 # - local: model_doc/speecht5 # title: SpeechT5 # - local: model_doc/unispeech # title: UniSpeech # - local: model_doc/unispeech-sat # title: UniSpeech-SAT # - local: model_doc/univnet # title: UnivNet # - local: model_doc/vits # title: VITS # - local: model_doc/wav2vec2 # title: Wav2Vec2 # - local: model_doc/wav2vec2-bert # title: Wav2Vec2-BERT # - local: model_doc/wav2vec2-conformer # title: Wav2Vec2-Conformer # - local: model_doc/wav2vec2_phoneme # title: Wav2Vec2Phoneme # - local: model_doc/wavlm # title: WavLM # - local: model_doc/whisper # title: Whisper # - local: model_doc/xls_r # title: XLS-R # - local: model_doc/xlsr_wav2vec2 # title: XLSR-Wav2Vec2 # title: Audio models # - isExpanded: false # sections: # - local: model_doc/timesformer # title: TimeSformer # - local: model_doc/videomae # title: VideoMAE # - local: model_doc/vivit # title: ViViT # title: Video models # - isExpanded: false # sections: # - local: model_doc/align # title: ALIGN # - local: model_doc/altclip # title: AltCLIP # - local: model_doc/blip # title: BLIP # - local: model_doc/blip-2 # title: BLIP-2 # - local: model_doc/bridgetower # title: BridgeTower # - local: model_doc/bros # title: BROS # - local: model_doc/chinese_clip # title: Chinese-CLIP # - local: model_doc/clip # title: CLIP # - local: model_doc/clipseg # title: CLIPSeg # - local: model_doc/clvp # title: CLVP # - local: model_doc/data2vec # title: Data2Vec # - local: model_doc/deplot # title: DePlot # - local: model_doc/donut # title: Donut # - local: model_doc/flava # title: FLAVA # - local: model_doc/git # title: GIT # - local: model_doc/grounding-dino # title: Grounding DINO # - local: model_doc/groupvit # title: GroupViT # - local: model_doc/idefics # title: IDEFICS # - local: model_doc/idefics2 # title: Idefics2 # - local: model_doc/instructblip # title: InstructBLIP # - local: model_doc/kosmos-2 # title: KOSMOS-2 # - local: model_doc/layoutlm # title: LayoutLM # - local: model_doc/layoutlmv2 # title: LayoutLMV2 # - local: model_doc/layoutlmv3 # title: LayoutLMV3 # - local: model_doc/layoutxlm # title: LayoutXLM # - local: model_doc/lilt # title: LiLT # - local: model_doc/llava # title: Llava # - local: model_doc/llava_next # title: LLaVA-NeXT # - local: model_doc/lxmert # title: LXMERT # - local: model_doc/matcha # title: MatCha # - local: model_doc/mgp-str # title: MGP-STR # - local: model_doc/nougat # title: Nougat # - local: model_doc/oneformer # title: OneFormer # - local: model_doc/owlvit # title: OWL-ViT # - local: model_doc/owlv2 # title: OWLv2 # - local: model_doc/paligemma # title: PaliGemma # - local: model_doc/perceiver # title: Perceiver # - local: model_doc/pix2struct # title: Pix2Struct # - local: model_doc/sam # title: Segment Anything # - local: model_doc/siglip # title: SigLIP # - local: model_doc/speech-encoder-decoder # title: Speech Encoder Decoder Models # - local: model_doc/tapas # title: TAPAS # - local: model_doc/trocr # title: TrOCR # - local: model_doc/tvlt # title: TVLT # - local: model_doc/tvp # title: TVP # - local: model_doc/udop # title: UDOP # - local: model_doc/video_llava # title: VideoLlava # - local: model_doc/vilt # title: ViLT # - local: model_doc/vipllava # title: VipLlava # - local: model_doc/vision-encoder-decoder # title: Vision Encoder Decoder Models # - local: model_doc/vision-text-dual-encoder # title: Vision Text Dual Encoder # - local: model_doc/visual_bert # title: VisualBERT # - local: model_doc/xclip # title: X-CLIP # title: Multimodal models # - isExpanded: false # sections: # - local: model_doc/decision_transformer # title: محول القرار # - local: model_doc/trajectory_transformer # title: محول المسار # title: نماذج التعلم التعزيزية # - isExpanded: false # sections: # - local: model_doc/autoformer # title: Autoformer # - local: model_doc/informer # title: Informer # - local: model_doc/patchtsmixer # title: PatchTSMixer # - local: model_doc/patchtst # title: PatchTST # - local: model_doc/time_series_transformer # title: محول السلاسل الزمنية # title: نماذج السلاسل الزمنية # - isExpanded: false # sections: # - local: model_doc/graphormer # title: Graphormer # title: نماذج الرسم البياني # title: النماذج # - sections: # - local: internal/modeling_utils # title: الطبقات المخصصة والمرافق # - local: internal/pipelines_utils # title: مرافق خطوط الأنابيب # - local: internal/tokenization_utils # title: مرافق مقسم النصوص # - local: internal/trainer_utils # title: مرافق المدرب # - local: internal/generation_utils # title: مرافق التوليد # - local: internal/image_processing_utils # title: مرافق معالجة الصور # - local: internal/audio_utils # title: مرافق معالجة الصوت # - local: internal/file_utils # title: مرافق عامة # - local: internal/time_series_utils # title: مرافق السلاسل الزمنية # title: مساعدون داخليون # title: API
transformers/docs/source/ar/_toctree.yml/0
{ "file_path": "transformers/docs/source/ar/_toctree.yml", "repo_id": "transformers", "token_count": 15728 }
3
# التثبيت (Installation) قم بتثبيت مكتبة 🤗 Transformers المناسبة لمكتبة التعلم العميق التي تستخدمها، وقم بإعداد ذاكرة التخزين المؤقت الخاصة بك، وقم بإعداد 🤗 Transformers للعمل دون اتصال بالإنترنت (اختياري). تم اختبار 🤗 Transformers على Python 3.6 والإصدارات الأحدث، وPyTorch 1.1.0 والإصدارات الأحدث، وTensorFlow 2.0 والإصدارات الأحدث، وFlax. اتبع تعليمات التثبيت أدناه لمكتبة التعلم العميق التي تستخدمها: * تعليمات تثبيت [PyTorch](https://pytorch.org/get-started/locally/). * تعليمات تثبيت [TensorFlow 2.0](https://www.tensorflow.org/install/pip). * تعليمات تثبيت [Flax](https://flax.readthedocs.io/en/latest/). ## التثبيت باستخدام pip يجب عليك تثبيت 🤗 Transformers داخل [بيئة افتراضية](https://docs.python.org/3/library/venv.html). إذا لم تكن غير ملم ببيئات Python الافتراضية، فراجع هذا [الدليل](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). البيئة الافتراضية تسهل إدارة المشاريع المختلف، وتجنب مشكلات التوافق بين المكتبات المطلوبة (اعتماديات المشروع). ابدأ بإنشاء بيئة افتراضية في دليل مشروعك: ```bash python -m venv .env ``` قم بتفعيل البيئة الافتراضية. على Linux وMacOs: ```bash source .env/bin/activate ``` قم بتفعيل البيئة الافتراضية على Windows: ```bash .env/Scripts/activate ``` الآن أنت مستعد لتثبيت 🤗 Transformers باستخدام الأمر التالي: ```bash pip install transformers ``` للحصول على الدعم الخاص بـ CPU فقط، يمكنك تثبيت 🤗 Transformers ومكتبة التعلم العميق في خطوة واحدة. على سبيل المثال، قم بتثبيت 🤗 Transformers وPyTorch باستخدام: ```bash pip install 'transformers[torch]' ``` 🤗 Transformers وTensorFlow 2.0: ```bash pip install 'transformers[tf-cpu]' ``` <Tip warning={true}> لمستخدمي M1 / ARM ستحتاج إلى تثبيت ما يلي قبل تثبيت TensorFLow 2.0 ```bash brew install cmake brew install pkg-config ``` </Tip> 🤗 Transformers وFlax: ```bash pip install 'transformers[flax]' ``` أخيرًا، تحقق مما إذا كان 🤗 Transformers قد تم تثبيته بشكل صحيح عن طريق تشغيل الأمر التالي. سيقوم بتنزيل نموذج مدرب مسبقًا: ```bash python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('we love you'))" ``` ثم قم بطباعة التسمية والنتيجة: ```bash [{'label': 'POSITIVE', 'score': 0.9998704791069031}] ``` ## التثبيت من المصدر قم بتثبيت 🤗 Transformers من المصدر باستخدام الأمر التالي: ```bash pip install git+https://github.com/huggingface/transformers ``` يقوم هذا الأمر بتثبيت أحدث إصدار تجريبي `main` بدلاً من الإصدار المستقر `stable`. يعد إصدار `main` مفيدًا للمواكبة مع أحدث التطورات. على سبيل المثال، إذا تم إصلاح خطأ منذ الإصدار الرسمي الأخير ولكن لم يتم طرح إصدار جديد بعد. ومع ذلك، فإن هذا يعني أن إصدار التجريبي `main` قد لا يكون مستقرًا دائمًا. نسعى جاهدين للحفاظ على تشغيل إصدار `main`، ويتم حل معظم المشكلات عادةً في غضون بضع ساعات أو يوم. إذا واجهتك مشكلة، يرجى فتح [تقرير عن خلل](https://github.com/huggingface/transformers/issues) حتى نتمكن من إصلاحها في أقرب وقت ممكن! تحقق مما إذا كان 🤗 Transformers قد تم تثبيته بشكل صحيح عن طريق تشغيل الأمر التالي: ```bash python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))" ``` تحقق مما إذا كان 🤗 Transformers قد تم تثبيته بشكل صحيح عن طريق تشغيل الأمر التالي: ```bash python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))" ``` ## التثبيت القابل للتعديل ستحتاج إلى تثبيت قابل للتعديل إذا كنت ترغب في: * استخدام إصدار `main` من كود المصدر. * المساهمة في 🤗 Transformers وتحتاج إلى اختبار التغييرات في الكود. قم باستنساخ المستودع وقم بتثبيت 🤗 Transformers باستخدام الأوامر التالية: ```bash git clone https://github.com/huggingface/transformers.git cd transformers pip install -e . ``` ستقوم هذه الأوامر بربط المجلد الذي قمت باستنساخ المستودع فيه بمسارات مكتبة Python. بمعنى آخر، سيبحث Python داخل المجلد الذي قمت باستنساخه بالإضافة إلى المسارات المعتادة للمكتبات. على سبيل المثال، إذا تم تثبيت حزم Python الخاصة بك عادةً في `~/anaconda3/envs/main/lib/python3.7/site-packages/`, فسيقوم Python أيضًا بالبحث في المجلد الذي قمت باستنساخه: `~/transformers/`. <Tip warning={true}> يجب عليك الاحتفاظ بمجلد `transformers` إذا كنت تريد الاستمرار في استخدام المكتبة. </Tip> الآن يمكنك تحديث المستنسخ الخاص بك بسهولة إلى أحدث إصدار من 🤗 Transformers باستخدام الأمر التالي: ```bash cd ~/transformers/ git pull ``` ستجد بيئة Python الإصدار `main` من 🤗 Transformers في المرة التالية التي تقوم فيها بتشغيله. ## التثبيت باستخدام conda قم بالتثبيت من قناة conda `conda-forge`: ```bash conda install conda-forge::transformers ``` ## إعداد ذاكرة التخزين المؤقت تُحمّل النماذج المُسبقة التدريب وتُخزّن مؤقتًا في: `~/.cache/huggingface/hub`. هذا هو المجلد الافتراضي الذي يُحدده متغير البيئة `TRANSFORMERS_CACHE`. على Windows، يكون دليل ذاكرة التخزين المؤقت الافتراضي هو `C:\Users\username\.cache\huggingface\hub`. يمكنك تغيير متغيرات البيئة shell الموضحة أدناه - حسب الأولوية - لتحديد دليل ذاكرة تخزين مؤقت مختلف: 1. متغير البيئة (افتراضي): `HF_HUB_CACHE` أو `TRANSFORMERS_CACHE`. 2. متغير البيئة: `HF_HOME`. 3. متغير البيئة: `XDG_CACHE_HOME` + `/huggingface`. <Tip> سيستخدم 🤗 Transformers متغيرات البيئة `PYTORCH_TRANSFORMERS_CACHE` أو `PYTORCH_PRETRAINED_BERT_CACHE` إذا كنت قادمًا من إصدار سابق من هذه المكتبة وقمت بتعيين متغيرات البيئة هذه، ما لم تحدد متغير البيئة `TRANSFORMERS_CACHE`. </Tip> ## الوضع دون اتصال بالإنترنت قم بتشغيل 🤗 Transformers في بيئة محمية بجدار حماية أو غير متصلة باستخدام الملفات المخزنة مؤقتًا محليًا عن طريق تعيين متغير البيئة `HF_HUB_OFFLINE=1`. <Tip> أضف [🤗 Datasets](https://huggingface.co/docs/datasets/) إلى سير عمل التدريب غير المتصل باستخدام متغير البيئة `HF_DATASETS_OFFLINE=1`. </Tip> ```bash HF_DATASETS_OFFLINE=1 HF_HUB_OFFLINE=1 \ python examples/pytorch/translation/run_translation.py --model_name_or_path google-t5/t5-small --dataset_name wmt16 --dataset_config ro-en ... ``` يجب أن يعمل هذا البرنامج النصي دون توقف أو انتظار انتهاء المهلة الزمنية لأنه لن يحاول تنزيل النموذج من Hub. يمكنك أيضًا تجاوز تحميل نموذج من Hub من كل استدعاء [`~PreTrainedModel.from_pretrained`] باستخدام معلمة [`local_files_only`]. عندما يتم تعيينها على `True`، يتم تحميل الملفات المحلية فقط: ```py from transformers import T5Model model = T5Model.from_pretrained("./path/to/local/directory", local_files_only=True) ``` ### جلب النماذج والمُجزّئات لاستخدامها دون اتصال بالإنترنت خيار آخر لاستخدام 🤗 Transformers دون اتصال هو تنزيل الملفات مسبقًا، ثم الإشارة إلى مسارها المحلي عند الحاجة إلى استخدامها دون اتصال. هناك ثلاث طرق للقيام بذلك: * قم بتنزيل ملف عبر واجهة المستخدم على [Model Hub](https://huggingface.co/models) بالنقر فوق أيقونة ↓. ![download-icon](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/download-icon.png) * استخدم سير عمل [`PreTrainedModel.from_pretrained`] و [`PreTrainedModel.save_pretrained`]: 1. قم بتنزيل ملفاتك مسبقًا باستخدام [`PreTrainedModel.from_pretrained`]: * استخدم سير عمل [`PreTrainedModel.from_pretrained`] و [`PreTrainedModel.save_pretrained`]: 1. قم بتنزيل ملفاتك مسبقًا باستخدام [`PreTrainedModel.from_pretrained`]: ```py >>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM >>> tokenizer = AutoTokenizer.from_pretrained("bigscience/T0_3B") >>> model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0_3B") ``` 2. احفظ ملفاتك إلى دليل محدد باستخدام [`PreTrainedModel.save_pretrained`]: ```py >>> tokenizer.save_pretrained("./your/path/bigscience_t0") >>> model.save_pretrained("./your/path/bigscience_t0") ``` 3. الآن عندما تكون غير متصل بالإنترنت، أعد تحميل ملفاتك باستخدام [`PreTrainedModel.from_pretrained`] من الدليل المحدد: ```py >>> tokenizer = AutoTokenizer.from_pretrained("./your/path/bigscience_t0") >>> model = AutoModel.from_pretrained("./your/path/bigscience_t0") ``` * قم بتنزيل الملفات برمجيًا باستخدام مكتبة [huggingface_hub](https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub): 1. قم بتثبيت مكتبة `huggingface_hub` في بيئتك الافتراضية: ```bash python -m pip install huggingface_hub ``` 2. استخدم وظيفة [`hf_hub_download`](https://huggingface.co/docs/hub/adding-a-library#download-files-from-the-hub) لتنزيل ملف إلى مسار محدد. على سبيل المثال، يقوم الأمر التالي بتنزيل ملف `config.json` من نموذج [T0](https://huggingface.co/bigscience/T0_3B) إلى المسار المطلوب: ```py >>> from huggingface_hub import hf_hub_download >>> hf_hub_download(repo_id="bigscience/T0_3B", filename="config.json", cache_dir="./your/path/bigscience_t0") ``` بمجرد تنزيل ملفك وتخزينه مؤقتًا محليًا، حدد مساره المحلي الخاص به لتحميله واستخدامه: ```py >>> from transformers import AutoConfig >>> config = AutoConfig.from_pretrained("./your/path/bigscience_t0/config.json") ``` <Tip> راجع قسم [كيفية تنزيل الملفات من Hub](https://huggingface.co/docs/hub/how-to-downstream) لمزيد من التفاصيل حول تنزيل الملفات المخزنة على Hub. </Tip>
transformers/docs/source/ar/installation.md/0
{ "file_path": "transformers/docs/source/ar/installation.md", "repo_id": "transformers", "token_count": 6156 }
4
# جولة سريعة [[open-in-colab]] ابدأ رحلتك مع مكتبة 🤗 Transformers! سواء كنت مطورًا أو مستخدمًا عاديًا، ستساعدك هذه الجولة السريعة على البدء وستُظهر لك كيفية استخدام [`pipeline`] للاستنتاج، وتحميل نموذج مُدرب مسبقًا ومعالج مُسبق مع [AutoClass](./model_doc/auto)، وتدريب نموذج بسرعة باستخدام PyTorch أو TensorFlow. إذا كنت مبتدئًا، نوصي بالاطلاع على دروسنا أو [الدورة](https://huggingface.co/course/chapter1/1) للحصول على شرح أكثر تعمقًا للمفاهيم المقدمة هنا. قبل البدء، تأكد من تثبيت جميع المكتبات الضرورية: ```bash !pip install transformers datasets evaluate accelerate ``` ستحتاج أيضًا إلى تثبيت إطار عمل التعلم الآلي المفضل لديك: <frameworkcontent> <pt> ```bash pip install torch ``` </pt> <tf> ```bash pip install tensorflow ``` </tf> </frameworkcontent> ## خط الأنابيب <Youtube id="tiZFewofSLM"/> يمثل [`pipeline`] أسهل وأسرع طريقة لاستخدام نموذج مُدرب مسبقًا للاستنتاج. يمكنك استخدام [`pipeline`] جاهزًا للعديد من المهام عبر طرق مختلفة، والتي يظهر بعضها في الجدول أدناه: <Tip> للاطلاع على القائمة الكاملة للمهام المتاحة، راجع [مرجع واجهة برمجة التطبيقات الخاصة بخط الأنابيب](./main_classes/pipelines). </Tip> <div dir="rtl"> | **المهمة** | **الوصف** | **الطريقة** | **معرف خط الأنابيب** | |------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------| | تصنيف النص | تعيين تسمية إلى تسلسل نص معين | NLP | pipeline(task=“sentiment-analysis”) | | توليد النص | توليد نص بناءً على موجه معين | NLP | pipeline(task=“text-generation”) | | تلخيص | توليد ملخص لتسلسل نص أو مستند | NLP | pipeline(task=“summarization”) | | تصنيف الصور | تعيين تسمية لصورة معينة | رؤية حاسوبية | pipeline(task=“image-classification”) | | تجزئة الصورة | تعيين تسمية لكل بكسل فردي في الصورة (يدعم التجزئة الدلالية، والمجملة، وتجزئة مثيلات) | رؤية حاسوبية | pipeline(task=“image-segmentation”) | | اكتشاف الأشياء | التنبؤ بحدود الأشياء وفئاتها في صورة معينة | رؤية حاسوبية | pipeline(task=“object-detection”) | | تصنيف الصوت | تعيين تسمية لبيانات صوتية معينة | صوتي | pipeline(task=“audio-classification”) | | التعرف على الكلام التلقائي | نسخ الكلام إلى نص | صوتي | pipeline(task=“automatic-speech-recognition”) | | الإجابة على الأسئلة البصرية | الإجابة على سؤال حول الصورة، مع إعطاء صورة وسؤال | متعدد الوسائط | pipeline(task=“vqa”) | | الإجابة على أسئلة المستندات | الإجابة على سؤال حول المستند، مع إعطاء مستند وسؤال | متعدد الوسائط | pipeline(task="document-question-answering") | | كتابة تعليق على الصورة | إنشاء تعليق على صورة معينة | متعدد الوسائط | pipeline(task="image-to-text") | </div> ابدأ بإنشاء مثيل من [`pipeline`] وتحديد المهمة التي تريد استخدامه لها. في هذا الدليل، ستستخدم خط الأنابيب للتحليل النصي كنموذج: ```py >>> from transformers import pipeline >>> classifier = pipeline("sentiment-analysis") ``` يقوم [`pipeline`] بتنزيل وتخزين نسخة احتياطية من نموذج افتراضي [مُدرب مسبقًا](https://huggingface.co/distilbert/distilbert-base-uncased-finetuned-sst-2-english) ومعالج للتحليل النصي. الآن يمكنك استخدام `classifier` على النص المستهدف: ```py >>> classifier("We are very happy to show you the 🤗 Transformers library.") [{'label': 'POSITIVE', 'score': 0.9998}] ``` إذا كان لديك أكثر من إدخال واحد، قم بتمرير إدخالاتك كقائمة إلى [`pipeline`] لإرجاع قائمة من القواميس: ```py >>> results = classifier(["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."]) >>> for result in results: ... print(f"label: {result['label']}, with score: {round(result['score'], 4)}") label: POSITIVE, with score: 0.9998 label: NEGATIVE, with score: 0.5309 ``` يمكن لخط الأنابيب أيضًا أن يتنقل خلال مجموعة بيانات كاملة لأي مهمة تريدها. كمثال على ذلك، دعنا نختار التعرف على الكلام التلقائي كمهمة لنا: ```py >>> import torch >>> from transformers import pipeline >>> speech_recognizer = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h") ``` قم بتحميل مجموعة بيانات صوتية (راجع دليل البدء السريع لـ 🤗 Datasets [Quick Start](https://huggingface.co/docs/datasets/quickstart#audio) للحصول على مزيد من التفاصيل) التي تريد التنقل خلالها. على سبيل المثال، قم بتحميل مجموعة بيانات [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14): ```py >>> from datasets import load_dataset, Audio >>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") # doctest: +IGNORE_RESULT ``` يجب التأكد من أن نفس الجودة الصوتية (معدل أخذ العينات) لمجموعة البيانات يتطابق مع معدل أخذ العينات الذي تم تدريب [`facebook/wav2vec2-base-960h`](https://huggingface.co/facebook/wav2vec2-base-960h) عليه: ```py >>> dataset = dataset.cast_column("audio", Audio(sampling_rate=speech_recognizer.feature_extractor.sampling_rate)) ``` يتم تحميل الملفات الصوتية وإعادة تشكيلها تلقائيًا عند استدعاء العمود "audio". استخرج المصفوفات الموجية الخام من أول 4 عينات ومررها كقائمة إلى خط الأنابيب: ```py >>> result = speech_recognizer(dataset[:4]["audio"]) >>> print([d["text"] for d in result]) ['I WOULD LIKE TO SET UP A JOINT ACCOUNT WITH MY PARTNER HOW DO I PROCEED WITH DOING THAT', "FONDERING HOW I'D SET UP A JOIN TO HELL T WITH MY WIFE AND WHERE THE AP MIGHT BE", "I I'D LIKE TOY SET UP A JOINT ACCOUNT WITH MY PARTNER I'M NOT SEEING THE OPTION TO DO IT ON THE APSO I CALLED IN TO GET SOME HELP CAN I JUST DO IT OVER THE PHONE WITH YOU AND GIVE YOU THE INFORMATION OR SHOULD I DO IT IN THE AP AN I'M MISSING SOMETHING UQUETTE HAD PREFERRED TO JUST DO IT OVER THE PHONE OF POSSIBLE THINGS", 'HOW DO I FURN A JOINA COUT'] ``` بالنسبة لمجموعات البيانات الكبيرة التي تحتوي على مدخلات ضخمة (كما هو الحال في البيانات الصوتية أو المرئية)، يفضل تمرير مولد (generator) بدلاً من قائمة لتحميل جميع المدخلات في الذاكرة دفعة واحدة. راجع [مرجع واجهة برمجة التطبيقات الخاصة بخط الأنابيب](./main_classes/pipelines) للحصول على مزيد من المعلومات. ### ااستخدم نموذجًا ومجزئًا آخرين في خط الأنابيب يمكن لخط الأنابيب [`pipeline`] استيعاب أي نموذج من [Hub](https://huggingface.co/models)، مما يسهل التكيف مع حالات الاستخدام الأخرى. على سبيل المثال، إذا كنت تريد نموذجًا قادرًا على التعامل مع النص الفرنسي، فاستخدم العلامات على Hub لفلتره نموذج مناسب. تعيد النتيجة الأولى المرشحة نموذج BERT متعدد اللغات [BERT model](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) الذي تم ضبطه مسبقًا للتحليل المشاعر والذي يمكنك استخدامه للنص الفرنسي: ```py >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" ``` <frameworkcontent> <pt> استخدم [`AutoModelForSequenceClassification`] و [`AutoTokenizer`] لتحميل النموذج المُدرب مسبقًا ومعالجته المرتبط به (مزيد من المعلومات حول `AutoClass` في القسم التالي): ```py >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification >>> model = AutoModelForSequenceClassification.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) ``` </pt> <tf> استخدم [`TFAutoModelForSequenceClassification`] و [`AutoTokenizer`] لتحميل النموذج المُدرب مسبقًا ومعالجته المرتبط به (مزيد من المعلومات حول `TFAutoClass` في القسم التالي): ```py >>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification >>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name) >>> tokenizer = AutoTokenizer.from_pretrained(model_name) ``` </tf> </frameworkcontent> حدد النموذج والمعالج في [`pipeline`]. الآن يمكنك تطبيق `classifier` على النص الفرنسي: ```py >>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) >>> classifier("Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers.") [{'label': '5 stars', 'score': 0.7273}] ``` إذا لم تجد نموذجًا جاهزًا يناسب مهمتك، فستحتاج إلى ضبط نموذج مُدرب مسبقًا على بياناتك. اطلع على [دليل الضبط الدقيق](./training) للتعرف على كيفية القيام بذلك. وبعد ضبط نموذجك المُدرب مسبقًا، يرجى مراعاة [المشاركة](./model_sharing) النموذج مع المجتمع على Hub لمساعدة الجميع في مجال التعلم الآلي! 🤗 ## AutoClass <Youtube id="AhChOFRegn4"/> في الخلفية، تعمل فئتا [`AutoModelForSequenceClassification`] و [`AutoTokenizer`] معًا لتشغيل دالة pipeline() الذي استخدمتها أعلاه. تعتبر [AutoClass](./model_doc/auto) اختصارًا يقوم تلقائيًا باسترداد بنية نموذج مُدرب مسبقًا من اسمه أو مساره. كل ما عليك فعله هو تحديد فئة `AutoClass` المناسبة لمهمتك وفئة المعالجة المرتبطة بها. لنعد إلى المثال من القسم السابق ولنرى كيف يمكنك استخدام `AutoClass` لتكرار نتائج خط الأنابيب. ### المجزئ التلقائي (AutoTokenizer) يتولى المجزئ مسؤولية تحويل النص إلى مصفوفة من الأرقام (رموز) يمكن للنموذج فهمها ومعالجتها. هناك قواعد متعددة تحكم عملية التجزئة، بما في ذلك كيفية تقسيم كلمة وما هو المستوى الذي يجب أن تقسيم الكلمات عنده (تعرف على المزيد حول المعالجة في [ملخص المجزئ](./tokenizer_summary)). أهم شيء يجب تذكره هو أنك تحتاج إلى إنشاء مثيل للمجزئ بنفس اسم النموذج لضمان استخدامك لقواعد التجزئة نفسها التي تم تدريب النموذج عليها. قم بتحميل المجزئ باستخدام [`AutoTokenizer`]: ```py >>> from transformers import AutoTokenizer >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> tokenizer = AutoTokenizer.from_pretrained(model_name) ``` مرر نصك إلى المجزئ: ```py >>> encoding = tokenizer("We are very happy to show you the 🤗 Transformers library.") >>> print(encoding) {'input_ids': [101, 11312, 10320, 12495, 19308, 10114, 11391, 10855, 10103, 100, 58263, 13299, 119, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} ``` يعيد المجزئ قاموسًا يحتوي على: * [input_ids](./glossary#input-ids): التمثيلات الرقمية لرموزك. * [attention_mask](./glossary#attention-mask): تشير إلى الرموز التي يجب الانتباه بها. يمكن المجزئ أيضًا قبول قائمة من المدخلات، ويقوم بـ "حشو" و"تقصير" النص لإرجاع كدفعة بطول موحد: <frameworkcontent> <pt> ```py >>> pt_batch = tokenizer( ... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."], ... padding=True, ... truncation=True, ... max_length=512, ... return_tensors="pt", ... ) ``` </pt> <tf> ```py >>> tf_batch = tokenizer( ... ["We are very happy to show you the 🤗 Transformers library.", "We hope you don't hate it."], ... padding=True, ... truncation=True, ... max_length=512, ... return_tensors="tf", ... ) ``` </tf> </frameworkcontent> <Tip> اطلع على [الدليل التمهيدي للمعالجة المسبقة](./preprocessing) للحصول على مزيد من التفاصيل حول المعالجة، وكيفية استخدام [`AutoImageProcessor`] و [`AutoFeatureExtractor`] و [`AutoProcessor`] لمعالجة الصور والصوت والإدخالات متعددة الوسائط. </Tip> ### AutoModel <frameworkcontent> <pt> تقدم مكتبة 🤗 Transformers طريقة بسيطة وموحدة لتحميل نماذج مدربة مسبقًا. وهذا يعني أنه يمكنك تحميل [`AutoModel`] كما لو كنت تقوم بتحميل [`AutoTokenizer`]. الفرق الوحيد هو اختيار فئة [`AutoModel`] المناسبة للمهمة. بالنسبة لتصنيف النص (أو التسلسل)، يجب عليك تحميل [`AutoModelForSequenceClassification`]: ```py >>> from transformers import AutoModelForSequenceClassification >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> pt_model = AutoModelForSequenceClassification.from_pretrained(model_name) ``` <Tip> راجع [ملخص المهمة](./task_summary) للاطلاع على المهام التي تدعمها فئة [`AutoModel`]. </Tip> الآن قم بتمرير دفعة المدخلات المُعالجة مسبقًا مباشرة إلى النموذج. عليك فقط فك تعبئة القاموس عن طريق إضافة `**`: # تدريب النموذج الآن، مرر دفعة المدخلات المعالجة مسبقًا مباشرة إلى النموذج. ما عليك سوى فك تعبئة القاموس عن طريق إضافة `**`: ```py >>> pt_outputs = pt_model(**pt_batch) ``` يُخرج النموذج التنشيطات النهائية في سمة `logits`. طبق دالة softmax على `logits` للحصول على الاحتمالات: ```py >>> from torch import nn >>> pt_predictions = nn.functional.softmax(pt_outputs.logits, dim=-1) >>> print(pt_predictions) tensor([[0.0021, 0.0018, 0.0115, 0.2121, 0.7725], [0.2084, 0.1826, 0.1969, 0.1755, 0.2365]], grad_fn=<SoftmaxBackward0>) ``` </pt> <tf> يوفر 🤗 Transformers طريقة بسيطة وموحدة لتحميل مثيلات مُدربة مسبقًا. وهذا يعني أنه يمكنك تحميل [`TFAutoModel`] مثل تحميل [`AutoTokenizer`]. والفرق الوحيد هو تحديد [`TFAutoModel`] الصحيح للمهمة. للتصنيف النصي (أو التسلسلي)، يجب تحميل [`TFAutoModelForSequenceClassification`]: ```py >>> from transformers import TFAutoModelForSequenceClassification >>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment" >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(model_name) ``` <Tip> راجع [ملخص المهام](./task_summary) للمهام المدعومة بواسطة فئة [`AutoModel`]. </Tip> الآن، مرر دفعة المدخلات المعالجة مسبقًا مباشرة إلى النموذج. يمكنك تمرير المصفوفات كما هي: ```py >>> tf_outputs = tf_model(tf_batch) ``` يقوم النموذج بإخراج التنشيطات النهائية في سمة `logits`. طبق دالة softmax على `logits` لاسترداد الاحتمالات: ```py >>> import tensorflow as tf >>> tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1) >>> tf_predictions # doctest: +IGNORE_RESULT ``` </tf> </frameworkcontent> <Tip> تخرج جميع نماذج 🤗 Transformers (PyTorch أو TensorFlow) المصفوفات *قبل* دالة التنشيط النهائية (مثل softmax) لأن دالة التنشيط النهائية غالبًا ما تكون مدمجة مع دالة الخسارة. نواتج النموذج عبارة عن فئات بيانات خاصة، لذلك يتم استكمال سماتها تلقائيًا في IDE. وتتصرف مخرجات النموذج مثل زوج مرتب أو قاموس (يمكنك الفهرسة باستخدام عدد صحيح ، شريحة، أو سلسلة)، وفي هذه الحالة، يتم تجاهل السمات التي تساوي None. </Tip> ### حفظ النموذج <frameworkcontent> <pt> بمجرد ضبط نموذجك، يمكنك حفظه مع برنامج الترميز الخاص به باستخدام [`PreTrainedModel.save_pretrained`]: ```py >>> pt_save_directory = "./pt_save_pretrained" >>> tokenizer.save_pretrained(pt_save_directory) # doctest: +IGNORE_RESULT >>> pt_model.save_pretrained(pt_save_directory) ``` عندما تكون مستعدًا لاستخدام النموذج مرة أخرى، أعد تحميله باستخدام [`PreTrainedModel.from_pretrained`]: ```py >>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained") ``` </pt> <tf> بمجرد ضبط نموذجك، يمكنك حفظه مع برنامج الترميز الخاص به باستخدام [`TFPreTrainedModel.save_pretrained`]: ```py >>> tf_save_directory = "./tf_save_pretrained" >>> tokenizer.save_pretrained(tf_save_directory) # doctest: +IGNORE_RESULT >>> tf_model.save_pretrained(tf_save_directory) ``` عندما تكون مستعدًا لاستخدام النموذج مرة أخرى، أعد تحميله باستخدام [`TFPreTrainedModel.from_pretrained`]: ```py >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained") ``` </tf> </frameworkcontent> من الميزات الرائعة في 🤗 Transformers القدرة على حفظ نموذج وإعادة تحميله كنموذج PyTorch أو TensorFlow. يمكن أن يحول معامل `from_pt` أو `from_tf` النموذج من إطار عمل إلى آخر: <frameworkcontent> <pt> ```py >>> from transformers import AutoModel >>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory) >>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True) ``` </pt> <tf> ```py >>> from transformers import TFAutoModel >>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory) >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True) ``` </tf> </frameworkcontent> ## إنشاء نماذج مخصصة يمكنك تعديل فئة تكوين النموذج لتغيير كيفية بناء النموذج. يحدد التكوين سمات النموذج، مثل عدد الطبقات المخفية أو رؤوس الاهتمام. تبدأ من الصفر عند تهيئة نموذج من فئة تكوين مخصصة. يتم تهيئة سمات النموذج بشكل عشوائي، ويجب تدريب النموذج قبل استخدامه للحصول على نتائج ذات معنى. ابدأ باستيراد [`AutoConfig`]. ثم قم بتحميل النموذج المُدرب مسبقًا الذي تريد تعديله. ضمن [`AutoConfig.from_pretrained`]. يمكنك تحديد السمة التي تريد تغييرها، مثل عدد رؤوس الاهتمام: ```py >>> from transformers import AutoConfig >>> my_config = AutoConfig.from_pretrained("distilbert/distilbert-base-uncased", n_heads=12) ``` <frameworkcontent> <pt> قم بإنشاء نموذج من تكوينك المخصص باستخدام [`AutoModel.from_config`]: ```py >>> from transformers import AutoModel >>> my_model = AutoModel.from_config(my_config) ``` </pt> <tf> قم بإنشاء نموذج من تكوينك المخصص باستخدام [`TFAutoModel.from_config`]: ```py >>> from transformers import TFAutoModel >>> my_model = TFAutoModel.from_config(my_config) ``` </tf> </frameworkcontent> الق نظرة على دليل [إنشاء بنية مخصصة](./create_a_model) لمزيد من المعلومات حول بناء التكوينات المخصصة. ## المدرب - حلقة تدريب محسنة لـ PyTorch جميع النماذج عبارة عن [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) قياسية، لذا يمكنك استخدامها في أي حلقة تدريب نموذجية. في حين يمكنك كتابة حلقة التدريب الخاصة بك، يوفر 🤗 Transformers فئة [`Trainer`] لـ PyTorch، والتي تحتوي على حلقة التدريب الأساسية وتضيف وظائف إضافية لميزات مثل التدريب الموزع، والدقة المختلطة، والمزيد. وفقًا لمهمتك، ستقوم عادةً بتمرير المعلمات التالية إلى [`Trainer`]: 1. ستبدأ بـ [`PreTrainedModel`] أو [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module): ```py >>> from transformers import AutoModelForSequenceClassification >>> model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` 2. تحتوي [`TrainingArguments`] على فرط معلمات النموذج التي يمكنك تغييرها مثل معدل التعلم، وحجم الدفعة، وعدد العصور التي يجب التدريب عليها. يتم استخدام القيم الافتراضية إذا لم تحدد أي حجج تدريب: ```py >>> from transformers import TrainingArguments >>> training_args = TrainingArguments( ... output_dir="path/to/save/folder/", ... learning_rate=2e-5, ... per_device_train_batch_size=8, ... per_device_eval_batch_size=8, ... num_train_epochs=2, ... ) ``` 3. قم بتحميل فئة معالجة مسبقة مثل برنامج الترميز، أو معالج الصور، أو مستخرج الميزات، أو المعالج: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased") ``` 4. قم بتحميل مجموعة بيانات: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("rotten_tomatoes") # doctest: +IGNORE_RESULT ``` 5. قم بإنشاء دالة لترميز مجموعة البيانات: ```py >>> def tokenize_dataset(dataset): ... return tokenizer(dataset["text"]) ``` ثم قم بتطبيقه على مجموعة البيانات بأكملها باستخدام [`~datasets.Dataset.map`]: ```py >>> dataset = dataset.map(tokenize_dataset, batched=True) ``` 6. [`DataCollatorWithPadding`] لإنشاء دفعة من الأمثلة من مجموعة البيانات الخاصة بك: ```py >>> from transformers import DataCollatorWithPadding >>> data_collator = DataCollatorWithPadding(tokenizer=tokenizer) ``` الآن قم بتجميع جميع هذه الفئات في [`Trainer`]: ```py >>> from transformers import Trainer >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=dataset["train"], ... eval_dataset=dataset["test"], ... tokenizer=tokenizer, ... data_collator=data_collator, ... ) # doctest: +SKIP ``` عندما تكون مستعدًا، استدعِ [`~Trainer.train`] لبدء التدريب: ```py >>> trainer.train() # doctest: +SKIP ``` <Tip> بالنسبة للمهام - مثل الترجمة أو التلخيص - التي تستخدم نموذج تسلسل إلى تسلسل، استخدم فئات [`Seq2SeqTrainer`] و [`Seq2SeqTrainingArguments`] بدلاً من ذلك. </Tip> يمكنك تخصيص سلوك حلقة التدريب عن طريق إنشاء فئة فرعية من الطرق داخل [`Trainer`]. يسمح لك ذلك بتخصيص ميزات مثل دالة الخسارة، والمحسن، والمجدول. راجع مرجع [`Trainer`] للتعرف على الطرق التي يمكن إنشاء فئات فرعية منها. والطريقة الأخرى لتخصيص حلقة التدريب هي باستخدام [المستدعيات](./main_classes/callback). يمكنك استخدام المستدعيات للتكامل مع المكتبات الأخرى ومراقبة حلقة التدريب للإبلاغ عن التقدم أو إيقاف التدريب مبكرًا. لا تعدل المستدعيات أي شيء في حلقة التدريب نفسها. لتخصيص شيء مثل دالة الخسارة، تحتاج إلى إنشاء فئة فرعية من [`Trainer`] بدلاً من ذلك. ## التدريب باستخدام TensorFlow جميع النماذج عبارة عن [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) قياسية، لذا يمكن تدريبها في TensorFlow باستخدام واجهة برمجة تطبيقات Keras. يوفر 🤗 Transformers طريقة [`~TFPreTrainedModel.prepare_tf_dataset`] لتحميل مجموعة البيانات الخاصة بك بسهولة كـ `tf.data.Dataset` حتى تتمكن من البدء في التدريب على الفور باستخدام دالتي `compile` و`fit` في Keras. 1. ستبدأ بـ [`TFPreTrainedModel`] أو [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model): ```py >>> from transformers import TFAutoModelForSequenceClassification >>> model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") ``` 2. قم بتحميل فئة معالجة مسبقة مثل برنامج الترميز، أو معالج الصور، أو مستخرج الميزات، أو المعالج: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased") ``` 3. قم بإنشاء دالة لترميز مجموعة البيانات: ```py >>> def tokenize_dataset(dataset): ... return tokenizer(dataset["text"]) # doctest: +SKIP ``` 4. قم بتطبيق برنامج الترميز على مجموعة البيانات بأكملها باستخدام [`~datasets.Dataset.map`] ثم مرر مجموعة البيانات وبرنامج الترميز إلى [`~TFPreTrainedModel.prepare_tf_dataset`]. يمكنك أيضًا تغيير حجم الدفعة وخلط مجموعة البيانات هنا إذا أردت: ```py >>> dataset = dataset.map(tokenize_dataset) # doctest: +SKIP >>> tf_dataset = model.prepare_tf_dataset( ... dataset["train"], batch_size=16, shuffle=True, tokenizer=tokenizer ... ) # doctest: +SKIP ``` 5. عندما تكون مستعدًا، يمكنك استدعاء `compile` و`fit` لبدء التدريب. لاحظ أن جميع نماذج Transformers لديها دالة خسارة ذات صلة بالمهمة بشكل افتراضي، لذا فأنت لست بحاجة إلى تحديد واحدة ما لم ترغب في ذلك: ```py >>> from tensorflow.keras.optimizers import Adam >>> model.compile(optimizer='adam') # لا توجد وسيطة دالة الخسارة! >>> model.fit(tf_dataset) # doctest: +SKIP ``` ## ماذا بعد؟ الآن بعد أن أكملت الجولة السريعة في 🤗 Transformers، راجع أدلتنا لمعرفة كيفية القيام بأشياء أكثر تحديدًا مثل كتابة نموذج مخصص، وضبط نموذج مسبق التدريب لمهمة معينة، وكيفية تدريب نموذج باستخدام نص برمجي. إذا كنت مهتمًا بمعرفة المزيد عن المفاهيم الأساسية لـ 🤗 Transformers، فاحصل على فنجان من القهوة واطلع على أدلة المفاهيم الخاصة بنا!
transformers/docs/source/ar/quicktour.md/0
{ "file_path": "transformers/docs/source/ar/quicktour.md", "repo_id": "transformers", "token_count": 15439 }
5
# ملخص عن المجزئات اللغوية [[open-in-colab]] في هذه الصفحة، سنتناول بالتفصيل عملية التجزئة. <Youtube id="VFp38yj8h3A"/> كما رأينا في [برنامج تعليمي حول المعالجة المسبقة](preprocessing)، فإن تجزئة النص يقسمه إلى كلمات أو الرموز الفرعية (كلمات جزئية)، والتي يتم بعد ذلك تحويلها إلى معرفات من خلال قائمة بحث. يعد تحويل الكلمات أو الرموز الفرعية إلى معرفات مباشرًا، لذا في هذا الملخص، سنركز على تقسيم النص إلى كلمات أو رموز فرعية (أي تجزئة النص). وبشكل أكثر تحديدًا، سنلقي نظرة على الأنواع الثلاثة الرئيسية من المُجزئات اللغوية المستخدمة في 🤗 المحولات: [ترميز الأزواج البايتية (BPE)](#byte-pair-encoding)، [WordPiece](#wordpiece)، و [SentencePiece](#sentencepiece)، ونعرض أمثلة على نوع المُجزئة الذي يستخدمه كل نموذج. لاحظ أنه في كل صفحة نموذج، يمكنك الاطلاع على وثائق المُجزئة المرتبط لمعرفة نوع المُجزئ الذي استخدمه النموذج المُدرب مسبقًا. على سبيل المثال، إذا نظرنا إلى [`BertTokenizer`]، يمكننا أن نرى أن النموذج يستخدم [WordPiece](#wordpiece). ## مقدمة إن تقسيم النص إلى أجزاء أصغر هو مهمة أصعب مما تبدو، وهناك طرق متعددة للقيام بذلك. على سبيل المثال، دعنا نلقي نظرة على الجملة `"Don't you love 🤗 Transformers? We sure do."` <Youtube id="nhJxYji1aho"/> يمكن تقسيم هذه الجملة ببساطة عن طريق المسافات، مما سينتج عنه ما يلي:``` ``` ["Don't", "you", "love", "🤗", "Transformers?", "We", "sure", "do."] ``` هذه خطوة أولى منطقية، ولكن إذا نظرنا إلى الرموز `"Transformers?"` و `"do."`، فإننا نلاحظ أن علامات الترقيم مُرفقة بالكلمات `"Transformer"` و `"do"`، وهو أمر ليس مثالي. يجب أن نأخذ علامات الترقيم في الاعتبار حتى لا يضطر النموذج إلى تعلم تمثيل مختلف للكلمة وكل رمز ترقيم مُحتمل قد يليها، الأمر الذي من شأنه أن يزيد بشكل هائل عدد التمثيلات التي يجب على النموذج تعلمها. مع مراعاة علامات الترقيم، سيُصبح تقسيم نصنا على النحو التالي: ``` ["Don", "'", "t", "you", "love", "🤗", "Transformers", "?", "We", "sure", "do", "."] ``` أفضل. ومع ذلك، من غير الملائم كيفية تقسيم الكلمة `"Don't"`. `"Don't"` تعني `"do not"`، لذا سيكون من الأفضل تحليلها على أنها كلمتين مُدمجتين `["Do"، "n't"]`. هنا تبدأ الأمور في التعقيد، وهو جزء من سبب امتلاك كل نموذج لنوّعه الخاص من مُجزّئ النصوص (tokenizer). اعتمادًا على القواعد التي نطبقها لتقسيم النص، يسيتم إنشاء مخرجات مُجزّأة مُختلفة لنفس النص. ولن يؤدي النموذج المُدرب مسبقًا إلى الأداء بشكل صحيح إلا إذا قُدّم له مُدخل تم تقسيمه بنفس القواعد التي تم استخدامها لتقسيم بيانات التدريب الخاصة به. يُعد كل من [spaCy](https://spacy.io/) و [Moses](http://www.statmt.org/moses/?n=Development.GetStarted) هما مجزّئي النصوص التي تعتمد على القواعد الشائعة. عند تطبيقها على مثالنا، فإن *spaCy* و *Moses* ستخرج نّصًا مثل: ``` ["Do", "n't", "you", "love", "🤗", "Transformers", "?", "We", "sure", "do", "."] ``` كما يمكنك أن ترى، يتم هنا استخدام التقسيم المكاني والترقيم، وكذلك تقسيم الكلمات القائم على القواعد. يعد التقسيم المكاني والترقيم والتحليل القائم على القواعد كلاهما مثالين على تقسيم الكلمات، والذي يُعرّف بشكل غير مُحدد على أنه تقسيم الجُمل إلى كلمات. في حين أنها الطريقة الأكثر بديهية لتقسيم النصوص إلى أجزاء أصغر، يمكن أنها تؤدى إلى مشكلات لمجموعات النصوص الضخمة. في هذه الحالة، عادةً ما يؤدي التقسيم المكاني والترقيم إلى إنشاء مفردات كبيرة جدًا (مجموعة من جميع الكلمات والرموز الفريدة المستخدمة). على سبيل المثال، يستخدم [Transformer XL](model_doc/transfo-xl) التقسيم المكاني والترقيم، مما يؤدي إلى حجم مُفردات يبلغ 267735! يفرض حجم المُفردات الكبير هذا على النموذج أن يكون لديه مصفوفة تضمين (embedding matrix) ضخمة كطبقة إدخال وإخراج، مما يؤدي إلى زيادة كل من التعقيد الزمني والذاكرة. بشكل عام، نادرًا ما يكون لدى نماذج المحولات حجم مفردات أكبر من 50000، خاصة إذا تم تدريبها مسبقًا على لغة واحدة فقط. لذا إذا كان التقسيم المكاني و الترقيم البسيط غير مرضٍ، فلماذا لا نقسّم الحروف ببساطة؟ <Youtube id="ssLq_EK2jLE"/> في حين أن تقسيم الأحرف بسيط للغاية ومن شأنه أن يقلل بشكل كبير من التعقيد الزمني والذاكرة، إلا أنه يجعل من الصعب على النموذج تعلم تمثيلات المدخلات ذات معنى. على سبيل المثال، يعد تعلم تمثيل مستقل عن السياق للحرف "t" أكثر صعوبة من تعلم تمثيل مستقل عن السياق لكلمة "اليوم". لذلك، غالبًا ما يكون تحليل الأحرف مصحوبًا بفقدان الأداء. لذا للحصول على أفضل ما في العالمين، تستخدم نماذج المحولات نظامًا هجينًا بين تقسيم على مستوى الكلمة وتقسيم علي مستوى الأحرف يسمى **تقسيم الوحدات الفرعية للّغة** (subword tokenization). ## تقسيم الوحدات الفرعية للّغة (Subword Tokenization) <Youtube id="zHvTiHr506c"/> تعتمد خوارزميات تقسيم الوحدات الفرعية subword على المبدأ القائل بأن الكلمات الشائعة الاستخدام لا ينبغي تقسيمها إلى وحدات فرعية أصغر، ولكن يجب تفكيك الكلمات النادرة إلى رموز فرعية ذات معنى. على سبيل المثال، قد يتم اعتبار "annoyingly" كلمة نادرة ويمكن تحليلها إلى "annoying" و "ly". كل من "annoying" و "ly" كـ subwords مستقلة ستظهر بشكل متكرر أكثر في حين أن معنى "annoyingly" يتم الاحتفاظ به من خلال المعنى المركب لـ "annoying" و "ly". هذا مفيد بشكل خاص في اللغات التلصيقية مثل التركية، حيث يمكنك تشكيل كلمات مُركبة طويلة (تقريبًا) بشكل تعسفي عن طريق ضم الرموز الفرعية معًا. يسمح تقسيم subword للنموذج بأن يكون له حجم مفردات معقول مع القدرة على تعلم تمثيلات مستقلة عن السياق ذات معنى. بالإضافة إلى ذلك، يمكّن تقسيم subword النموذج من معالجة الكلمات التي لم يسبق له رؤيتها من قبل، عن طريق تحليلها إلى رموز فرعية معروفة. على سبيل المثال، يقوم المحلل [`~transformers.BertTokenizer`] بتحليل"I have a new GPU!" كما يلي: ```py >>> from transformers import BertTokenizer >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") >>> tokenizer.tokenize("I have a new GPU!") ["i", "have", "a", "new", "gp", "##u", "!"] ``` نظرًا لأننا نستخدم نموذجًا غير حساس لحالة الأحرف (uncased model)، فقد تم تحويل الجملة إلى أحرف صغيرة أولاً. يمكننا أن نرى أن الكلمات `["i"، "have"، "a"، "new"]` موجودة في مفردات مُجزّئ النصوص، ولكن الكلمة "gpu" غير موجودة. وبالتالي، يقوم مُجزّئ النصوص بتقسيم "gpu" إلى رموز فرعية معروفة: `["gp" و "##u"]`. يعني "##" أنه يجب ربط بقية الرمز بالرمز السابق، دون مسافة (للترميز أو عكس عملية تقسيم الرموز). كمثال آخر، يقوم المحلل [`~transformers.XLNetTokenizer`] بتقسيم نّص مثالنا السابق كما يلي: ```py >>> from transformers import XLNetTokenizer >>> tokenizer = XLNetTokenizer.from_pretrained("xlnet/xlnet-base-cased") >>> tokenizer.tokenize("Don't you love 🤗 Transformers? We sure do.") ["▁Don", "'", "t", "▁you", "▁love", "▁"، "🤗"، "▁"، "Transform"، "ers"، "؟"، "▁We"، "▁sure"، "▁do"، "."] ``` سنعود إلى معنى تلك `"▁"` عندما نلقي نظرة على [SentencePiece](#sentencepiece). كما يمكنك أن ترى، تم تقسيم الكلمة النادرة "Transformers" إلى الرموز الفرعية الأكثر تكرارًا `"Transform"` و `"ers"`. دعنا الآن نلقي نظرة على كيفية عمل خوارزميات تقسيم subword المختلفة. لاحظ أن جميع خوارزميات التقسيم هذه تعتمد على بعض أشكال التدريب الذي يتم عادةً على مجموعة البيانات التي سيتم تدريبها النموذج عليها. <a id='byte-pair-encoding'></a> ### ترميز الأزواج البايتية (BPE) تم تقديم رميز أزواج البايت (BPE) في ورقة بحثية بعنوان [الترجمة الآلية العصبية للكلمات النادرة باستخدام وحدات subword (Sennrich et al.، 2015)](https://arxiv.org/abs/1508.07909). يعتمد BPE على مُجزّئ أولي يقسم بيانات التدريب إلى كلمات. يمكن أن يكون التحليل المسبق بسيطًا مثل التقسيم المكاني، على سبيل المثال [GPT-2](model_doc/gpt2)، [RoBERTa](model_doc/roberta). تشمل التقسيم الأكثر تقدمًا معتمد على التحليل القائم على القواعد، على سبيل المثال [XLM](model_doc/xlm)، [FlauBERT](model_doc/flaubert) الذي يستخدم Moses لمعظم اللغات، أو [GPT](model_doc/openai-gpt) الذي يستخدم spaCy و ftfy، لحساب تكرار كل كلمة في مجموعة بيانات التدريب. بعد التحليل المسبق، يتم إنشاء مجموعة من الكلمات الفريدة وقد تم تحديد تكرار كل كلمة في تم تحديد بيانات التدريب. بعد ذلك، يقوم BPE بإنشاء مفردات أساسية تتكون من جميع الرموز التي تحدث في مجموعة الكلمات الفريدة ويتعلم قواعد الدمج لتشكيل رمز جديد من رمزين من المفردات الأساسية. إنه يفعل ذلك حتى تصل المفردات إلى حجم المفردات المطلوب. لاحظ أن حجم المفردات هو فرط معلمة لتحديد قبل تدريب مُجزّئ النصوص. كمثال، دعنا نفترض أنه بعد التقسيم الأولي، تم تحديد مجموعة الكلمات التالية بما في ذلك تكرارها: ``` ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5) ``` وبالتالي، فإن المفردات الأساسية هي `["b"، "g"، "h"، "n"، "p"، "s"، "u"]`. من خلال تقسيم جميع الكلمات إلى رموز من المفردات الأساسية، نحصل على: ``` ("h" "u" "g"، 10)، ("p" "u" "g"، 5)، ("p" "u" "n"، 12)، ("b" "u" "n"، 4)، ("h" "u" "g" "s"، 5) ``` بعد ذلك، يقوم BPE بعدد مرات حدوث كل زوج من الرموز المحتملة ويختار زوج الرموز الذي يحدث بشكل متكرر. في في المثال أعلاه، يحدث "h" متبوعًا بـ "u" _10 + 5 = 15_ مرة (10 مرات في 10 مرات حدوث "hug"، 5 مرات في 5 مرات حدوث "hugs"). ومع ذلك، فإن أكثر أزواج الرموز شيوعًا هو "u" متبوعًا بواسطة "g"، والتي تحدث _10 + 5 + 5 = 20_ مرة في المجموع. وبالتالي، فإن أول قاعدة دمج يتعلمها المحلل هي تجميع جميع رموز "u" التي تتبعها "g" معًا. بعد ذلك، يتم إضافة "ug" إلى المفردات. تصبح مجموعة الكلمات ``` ("h" "ug"، 10)، ("p" "ug"، 5)، ("p" "u" "n"، 12)، ("b" "u" "n"، 4)، ("h" "ug" "s"، 5) ``` بعد ذلك، يحدد BPE ثاني أكثر أزواج الرموز شيوعًا. إنه "u" متبوعًا بـ "n"، والذي يحدث 16 مرة. "u"، يتم دمج "n" في "un" ويضاف إلى المفردات. ثالث أكثر أزواج الرموز شيوعًا هو "h" متبوعًا بواسطة "ug"، والتي تحدث 15 مرة. مرة أخرى يتم دمج الزوج ويتم إضافة "hug" إلى المفردات. في هذه المرحلة، تكون المفردات هي `["b"، "g"، "h"، "n"، "p"، "s"، "u"، "ug"، "un"، "hug"]` ومجموعة الكلمات الفريدة لدينا تمثيله كما يلي: ``` ("hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("hug" "s", 5) ``` بافتراض أن تدريب ترميز الأزواج البايت سيتوقف عند هذه النقطة، فسيتم تطبيق قواعد الدمج التي تم تعلمها بعد ذلك على الكلمات الجديدة (طالما أن هذه الكلمات الجديدة لا تشمل رموزًا لم تكن في المفردات الأساسية). على سبيل المثال، سيتم تقسيم كلمة "bug" إلى `["b"، "ug"]` ولكن سيتم تقسيم "mug" على أنها `["<unk>"، "ug"]` نظرًا لأن الرمز "m" غير موجود في المفردات الأساسية. بشكل عام، لا يتم استبدال الأحرف الفردية مثل "m" بالرمز "<unk>" لأن بيانات التدريب تتضمن عادةً ظهورًا واحدًا على الأقل لكل حرف، ولكن من المحتمل أن يحدث ذلك لرموز خاصة جدًا مثل الرموز التعبيرية. كما ذكرنا سابقًا، فإن حجم المفردات، أي حجم المفردات الأساسية + عدد عمليات الدمج، هو معامل يجب اختياره. على سبيل المثال، لدى [GPT](model_doc/openai-gpt) حجم مفردات يبلغ 40478 منذ أن كان لديهم 478 حرفًا أساسيًا واختاروا التوقف عن التدريب بعد 40,000 عملية دمج. #### ترميز الأزواج البايتية على مستوى البايت قد تكون المفردات الأساسية التي تتضمن جميع الأحرف الأساسية كبيرة جدًا إذا *على سبيل المثال* تم اعتبار جميع أحرف اليونيكود كأحرف أساسية. لذا، ليكون لديك مفردات أساسية أفضل، يستخدم [GPT-2](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) البايتات كمفردات أساسية، وهي حيلة ذكية لإجبار المفردات الأساسية على أن تكون بحجم 256 مع ضمان أن يتم تضمين كل حرف أساسي في المفردات. مع بعض القواعد الإضافية للتعامل مع علامات الترقيم، يمكن لمُجزّئ النصوص GPT2 تجزئة أي نص دون الحاجة إلى رمز <unk>. لدى [GPT-2](model_doc/gpt) حجم مفردات يبلغ 50257، والذي يتوافق مع رموز 256 base byte، ورمز خاص لنهاية النص والرموز التي تم تعلمها باستخدام 50000 عملية دمج. <a id='wordpiece'></a> ### WordPiece تعتبر WordPiece خوارزمية تجزئة الكلمات الفرعية subword المستخدمة لـ [BERT](model_doc/bert)، [DistilBERT](model_doc/distilbert)، و [Electra](model_doc/electra). تم توضيح الخوارزمية في [البحث الصوتي الياباني والكوري (Schuster et al.، 2012)](https://static.googleusercontent.com/media/research.google.com/ja//pubs/archive/37842.pdf) وهو مشابه جدًا BPE. أولاً، يقوم WordPiece بتكوين المفردات لتضمين كل حرف موجود في بيانات التدريب وتعلم تدريجياً عددًا معينًا من قواعد الدمج. على عكس BPE، لا يختار WordPiece أكثر زوج الرموز المتكررة، ولكن تلك التي تزيد من احتمال بيانات التدريب بمجرد إضافتها إلى المفردات. لذا، ماذا يعني هذا بالضبط؟ بالإشارة إلى المثال السابق، فإن زيادة احتمال بيانات التدريب تعادل إيجاد زوج الرموز، الذي يكون احتمال تقسيمه على احتمالات رمزه الأول تليها رمزه الثاني هو الأكبر بين جميع أزواج الرموز. *مثال* `"u"`، تليها `"g"` كانت قد اندمجت فقط إذا كان احتمال `"ug"` مقسومًا على `"u"`، `"g"` كان سيكون أكبر من أي زوج آخر من الرموز. بديهيًا، WordPiece مختلف قليلاً عن BPE في أنه يقيم ما يفقده عن طريق دمج رمزين للتأكد من أنه يستحق ذلك. <a id='unigram'></a> ### Unigram Unigram هو خوارزمية توكنيز subword التي تم تقديمها في [تنظيم subword: تحسين نماذج الترجمة الشبكة العصبية نماذج مع مرشحين subword متعددة (Kudo، 2018)](https://arxiv.org/pdf/1804.10959.pdf). على عكس BPE أو WordPiece، يقوم Unigram بتكوين مفرداته الأساسية إلى عدد كبير من الرموز ويقللها تدريجياً للحصول على مفردات أصغر. يمكن أن تتوافق المفردات الأساسية على سبيل المثال مع جميع الكلمات المسبقة التوكنز والسلاسل الفرعية الأكثر شيوعًا. لا يتم استخدام Unigram مباشرة لأي من النماذج في المحولات، ولكنه يستخدم بالاقتران مع [SentencePiece](#sentencepiece). في كل خطوة تدريب، يحدد خوارزمية Unigram خسارة (غالبًا ما يتم تعريفها على أنها اللوغاريتم) عبر بيانات التدريب بالنظر إلى المفردات الحالية ونموذج اللغة unigram. بعد ذلك، بالنسبة لكل رمز في المفردات، يحسب الخوارزمية مقدار زيادة الخسارة الإجمالية إذا تم إزالة الرمز من المفردات. ثم يقوم Unigram بإزالة p (مع p عادة ما تكون 10% أو 20%) في المائة من الرموز التي تكون زيادة الخسارة فيها هي الأدنى، *أي* تلك الرموز التي تؤثر أقل على الخسارة الإجمالية عبر بيانات التدريب. تتكرر هذه العملية حتى تصل المفردات إلى الحجم المطلوب. يحتفظ خوارزمية Unigram دائمًا بالشخصيات الأساسية بحيث يمكن توكنز أي كلمة. نظرًا لأن Unigram لا يعتمد على قواعد الدمج (على عكس BPE وWordPiece)، فإن للخوارزمية عدة طرق توكنز نص جديد بعد التدريب. على سبيل المثال، إذا كان محول Unigram المدرب يعرض المفردات: ``` ["b"، "g"، "h"، "n"، "p"، "s"، "u"، "ug"، "un"، "hug"]، ``` يمكن توكنز `"hugs"` على أنه `["hug"، "s"]`، أو `["h"، "ug"، "s"]` أو `["h"، "u"، "g"، "s"]`. إذن ماذا لاختيار؟ يحفظ Unigram احتمال كل رمز في فيلق التدريب بالإضافة إلى حفظ المفردات بحيث يمكن حساب احتمال كل توكنز ممكن بعد التدريب. ببساطة، يختار الخوارزمية الأكثر توكنز المحتملة في الممارسة، ولكنه يوفر أيضًا إمكانية أخذ عينات من توكنز ممكن وفقًا لاحتمالاتها. تتم تعريف هذه الاحتمالات بواسطة الخسارة التي يتم تدريب المحول عليها. بافتراض أن بيانات التدريب تتكون من الكلمات \\(x_{1}، \dots، x_{N}\\) وأن مجموعة جميع التوكنزات الممكنة لكلمة \\(x_{i}\\) هي يتم تعريفها على أنها \\(S(x_{i})\\)، ثم يتم تعريف الخسارة الإجمالية على النحو التالي $$\mathcal{L} = -\sum_{i=1}^{N} \log \left ( \sum_{x \in S(x_{i})} p(x) \right )$$ <a id='sentencepiece'></a> ### SentencePiece تحتوي جميع خوارزميات توكنز الموصوفة حتى الآن على نفس المشكلة: من المفترض أن النص المدخل يستخدم المسافات لفصل الكلمات. ومع ذلك، لا تستخدم جميع اللغات المسافات لفصل الكلمات. أحد الحلول الممكنة هو استخداممعالج مسبق للغة محدد، *مثال* [XLM](model_doc/xlm) يلذي يستخدم معالجات مسبقة محددة للصينية واليابانية والتايلاندية. لحل هذه المشكلة بشكل أعم، [SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing (Kudo et al.، 2018)](https://arxiv.org/pdf/1808.06226.pdf) يتعامل مع المدخلات كتدفق بيانات خام، وبالتالي يشمل المسافة في مجموعة الأحرف التي سيتم استخدامها. ثم يستخدم خوارزمية BPE أو unigram لبناء المفردات المناسبة. يستخدم [`XLNetTokenizer`] SentencePiece على سبيل المثال، وهو أيضًا سبب تضمين تم تضمين حرف `"▁"` في المفردات. عملية فك التشفير باستخدام SentencePiece سهلة للغاية نظرًا لأنه يمكن دائمًا دمج الرموز معًا واستبدال `"▁"` بمسافة. تستخدم جميع نماذج المحولات في المكتبة التي تستخدم SentencePiece بالاقتران مع unigram. أمثلة على النماذج باستخدام SentencePiece هي [ALBERT](model_doc/albert)، [XLNet](model_doc/xlnet)، [Marian](model_doc/marian)، و [T5](model_doc/t5).
transformers/docs/source/ar/tokenizer_summary.md/0
{ "file_path": "transformers/docs/source/ar/tokenizer_summary.md", "repo_id": "transformers", "token_count": 13440 }
6
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Adapter mit 🤗 PEFT laden [[open-in-colab]] Die [Parameter-Efficient Fine Tuning (PEFT)](https://huggingface.co/blog/peft) Methoden frieren die vorab trainierten Modellparameter während der Feinabstimmung ein und fügen eine kleine Anzahl trainierbarer Parameter (die Adapter) hinzu. Die Adapter werden trainiert, um aufgabenspezifische Informationen zu lernen. Es hat sich gezeigt, dass dieser Ansatz sehr speichereffizient ist und weniger Rechenleistung beansprucht, während die Ergebnisse mit denen eines vollständig feinabgestimmten Modells vergleichbar sind. Adapter, die mit PEFT trainiert wurden, sind in der Regel um eine Größenordnung kleiner als das vollständige Modell, so dass sie bequem gemeinsam genutzt, gespeichert und geladen werden können. <div class="flex flex-col justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/PEFT-hub-screenshot.png"/> <figcaption class="text-center">Die Adaptergewichte für ein OPTForCausalLM-Modell, die auf dem Hub gespeichert sind, sind nur ~6MB groß, verglichen mit der vollen Größe der Modellgewichte, die ~700MB betragen können.</figcaption> </div> Wenn Sie mehr über die 🤗 PEFT-Bibliothek erfahren möchten, sehen Sie sich die [Dokumentation](https://huggingface.co/docs/peft/index) an. ## Setup Starten Sie mit der Installation von 🤗 PEFT: ```bash pip install peft ``` Wenn Sie die brandneuen Funktionen ausprobieren möchten, sollten Sie die Bibliothek aus dem Quellcode installieren: ```bash pip install git+https://github.com/huggingface/peft.git ``` ## Unterstützte PEFT-Modelle Transformers unterstützt nativ einige PEFT-Methoden, d.h. Sie können lokal oder auf dem Hub gespeicherte Adaptergewichte laden und sie mit wenigen Zeilen Code einfach ausführen oder trainieren. Die folgenden Methoden werden unterstützt: - [Low Rank Adapters](https://huggingface.co/docs/peft/conceptual_guides/lora) - [IA3](https://huggingface.co/docs/peft/conceptual_guides/ia3) - [AdaLoRA](https://arxiv.org/abs/2303.10512) Wenn Sie andere PEFT-Methoden, wie z.B. Prompt Learning oder Prompt Tuning, verwenden möchten, oder über die 🤗 PEFT-Bibliothek im Allgemeinen, lesen Sie bitte die [Dokumentation](https://huggingface.co/docs/peft/index). ## Laden Sie einen PEFT-Adapter Um ein PEFT-Adaptermodell von 🤗 Transformers zu laden und zu verwenden, stellen Sie sicher, dass das Hub-Repository oder das lokale Verzeichnis eine `adapter_config.json`-Datei und die Adaptergewichte enthält, wie im obigen Beispielbild gezeigt. Dann können Sie das PEFT-Adaptermodell mit der Klasse `AutoModelFor` laden. Um zum Beispiel ein PEFT-Adaptermodell für die kausale Sprachmodellierung zu laden: 1. Geben Sie die PEFT-Modell-ID an. 2. übergeben Sie es an die Klasse [`AutoModelForCausalLM`]. ```py from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "ybelkada/opt-350m-lora" model = AutoModelForCausalLM.from_pretrained(peft_model_id) ``` <Tip> Sie können einen PEFT-Adapter entweder mit einer `AutoModelFor`-Klasse oder der Basismodellklasse wie `OPTForCausalLM` oder `LlamaForCausalLM` laden. </Tip> Sie können einen PEFT-Adapter auch laden, indem Sie die Methode `load_adapter` aufrufen: ```py from transformers import AutoModelForCausalLM, AutoTokenizer model_id = "facebook/opt-350m" peft_model_id = "ybelkada/opt-350m-lora" model = AutoModelForCausalLM.from_pretrained(model_id) model.load_adapter(peft_model_id) ``` ## Laden in 8bit oder 4bit Die `bitsandbytes`-Integration unterstützt Datentypen mit 8bit und 4bit Genauigkeit, was für das Laden großer Modelle nützlich ist, weil es Speicher spart (lesen Sie den `bitsandbytes`-Integrations [guide](./quantization#bitsandbytes-integration), um mehr zu erfahren). Fügen Sie die Parameter `load_in_8bit` oder `load_in_4bit` zu [`~PreTrainedModel.from_pretrained`] hinzu und setzen Sie `device_map="auto"`, um das Modell effektiv auf Ihre Hardware zu verteilen: ```py from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig peft_model_id = "ybelkada/opt-350m-lora" model = AutoModelForCausalLM.from_pretrained(peft_model_id, quantization_config=BitsAndBytesConfig(load_in_8bit=True)) ``` ## Einen neuen Adapter hinzufügen Sie können [`~peft.PeftModel.add_adapter`] verwenden, um einen neuen Adapter zu einem Modell mit einem bestehenden Adapter hinzuzufügen, solange der neue Adapter vom gleichen Typ ist wie der aktuelle Adapter. Wenn Sie zum Beispiel einen bestehenden LoRA-Adapter an ein Modell angehängt haben: ```py from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer from peft import PeftConfig model_id = "facebook/opt-350m" model = AutoModelForCausalLM.from_pretrained(model_id) lora_config = LoraConfig( target_modules=["q_proj", "k_proj"], init_lora_weights=False ) model.add_adapter(lora_config, adapter_name="adapter_1") ``` Um einen neuen Adapter hinzuzufügen: ```py # attach new adapter with same config model.add_adapter(lora_config, adapter_name="adapter_2") ``` Jetzt können Sie mit [`~peft.PeftModel.set_adapter`] festlegen, welcher Adapter verwendet werden soll: ```py # use adapter_1 model.set_adapter("adapter_1") output = model.generate(**inputs) print(tokenizer.decode(output_disabled[0], skip_special_tokens=True)) # use adapter_2 model.set_adapter("adapter_2") output_enabled = model.generate(**inputs) print(tokenizer.decode(output_enabled[0], skip_special_tokens=True)) ``` ## Aktivieren und Deaktivieren von Adaptern Sobald Sie einen Adapter zu einem Modell hinzugefügt haben, können Sie das Adaptermodul aktivieren oder deaktivieren. So aktivieren Sie das Adaptermodul: ```py from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer from peft import PeftConfig model_id = "facebook/opt-350m" adapter_model_id = "ybelkada/opt-350m-lora" tokenizer = AutoTokenizer.from_pretrained(model_id) text = "Hello" inputs = tokenizer(text, return_tensors="pt") model = AutoModelForCausalLM.from_pretrained(model_id) peft_config = PeftConfig.from_pretrained(adapter_model_id) # to initiate with random weights peft_config.init_lora_weights = False model.add_adapter(peft_config) model.enable_adapters() output = model.generate(**inputs) ``` So deaktivieren Sie das Adaptermodul: ```py model.disable_adapters() output = model.generate(**inputs) ``` ## PEFT-Adapter trainieren PEFT-Adapter werden von der Klasse [`Trainer`] unterstützt, so dass Sie einen Adapter für Ihren speziellen Anwendungsfall trainieren können. Dazu müssen Sie nur ein paar weitere Codezeilen hinzufügen. Zum Beispiel, um einen LoRA-Adapter zu trainieren: <Tip> Wenn Sie mit der Feinabstimmung eines Modells mit [`Trainer`] noch nicht vertraut sind, werfen Sie einen Blick auf das Tutorial [Feinabstimmung eines vortrainierten Modells](Training). </Tip> 1. Definieren Sie Ihre Adapterkonfiguration mit dem Aufgabentyp und den Hyperparametern (siehe [`~peft.LoraConfig`] für weitere Details darüber, was die Hyperparameter tun). ```py from peft import LoraConfig peft_config = LoraConfig( lora_alpha=16, lora_dropout=0.1, r=64, bias="none", task_type="CAUSAL_LM", ) ``` 2. Fügen Sie dem Modell einen Adapter hinzu. ```py model.add_adapter(peft_config) ``` 3. Jetzt können Sie das Modell an [`Trainer`] übergeben! ```py trainer = Trainer(model=model, ...) trainer.train() ``` So speichern Sie Ihren trainierten Adapter und laden ihn wieder: ```py model.save_pretrained(save_dir) model = AutoModelForCausalLM.from_pretrained(save_dir) ``` <!-- TODO: (@younesbelkada @stevhliu) - Link to PEFT docs for further details - Trainer - 8-bit / 4-bit examples ? -->
transformers/docs/source/de/peft.md/0
{ "file_path": "transformers/docs/source/de/peft.md", "repo_id": "transformers", "token_count": 3185 }
7
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Agents, supercharged - Multi-agents, External tools, and more [[open-in-colab]] ### What is an agent? > [!TIP] > If you're new to `transformers.agents`, make sure to first read the main [agents documentation](./agents). In this page we're going to highlight several advanced uses of `transformers.agents`. ## Multi-agents Multi-agent has been introduced in Microsoft's framework [Autogen](https://huggingface.co/papers/2308.08155). It simply means having several agents working together to solve your task instead of only one. It empirically yields better performance on most benchmarks. The reason for this better performance is conceptually simple: for many tasks, rather than using a do-it-all system, you would prefer to specialize units on sub-tasks. Here, having agents with separate tool sets and memories allows to achieve efficient specialization. You can easily build hierarchical multi-agent systems with `transformers.agents`. To do so, encapsulate the agent in a [`ManagedAgent`] object. This object needs arguments `agent`, `name`, and a `description`, which will then be embedded in the manager agent's system prompt to let it know how to call this managed agent, as we also do for tools. Here's an example of making an agent that managed a specific web search agent using our [`DuckDuckGoSearchTool`]: ```py from transformers.agents import ReactCodeAgent, HfApiEngine, DuckDuckGoSearchTool, ManagedAgent llm_engine = HfApiEngine() web_agent = ReactCodeAgent(tools=[DuckDuckGoSearchTool()], llm_engine=llm_engine) managed_web_agent = ManagedAgent( agent=web_agent, name="web_search", description="Runs web searches for you. Give it your query as an argument." ) manager_agent = ReactCodeAgent( tools=[], llm_engine=llm_engine, managed_agents=[managed_web_agent] ) manager_agent.run("Who is the CEO of Hugging Face?") ``` > [!TIP] > For an in-depth example of an efficient multi-agent implementation, see [how we pushed our multi-agent system to the top of the GAIA leaderboard](https://huggingface.co/blog/beating-gaia). ## Advanced tool usage ### Directly define a tool by subclassing Tool, and share it to the Hub Let's take again the tool example from main documentation, for which we had implemented a `tool` decorator. If you need to add variation, like custom attributes for your tool, you can build your tool following the fine-grained method: building a class that inherits from the [`Tool`] superclass. The custom tool needs: - An attribute `name`, which corresponds to the name of the tool itself. The name usually describes what the tool does. Since the code returns the model with the most downloads for a task, let's name it `model_download_counter`. - An attribute `description` is used to populate the agent's system prompt. - An `inputs` attribute, which is a dictionary with keys `"type"` and `"description"`. It contains information that helps the Python interpreter make educated choices about the input. - An `output_type` attribute, which specifies the output type. - A `forward` method which contains the inference code to be executed. The types for both `inputs` and `output_type` should be amongst [Pydantic formats](https://docs.pydantic.dev/latest/concepts/json_schema/#generating-json-schema). ```python from transformers import Tool from huggingface_hub import list_models class HFModelDownloadsTool(Tool): name = "model_download_counter" description = """ This is a tool that returns the most downloaded model of a given task on the Hugging Face Hub. It returns the name of the checkpoint.""" inputs = { "task": { "type": "string", "description": "the task category (such as text-classification, depth-estimation, etc)", } } output_type = "string" def forward(self, task: str): model = next(iter(list_models(filter=task, sort="downloads", direction=-1))) return model.id ``` Now that the custom `HfModelDownloadsTool` class is ready, you can save it to a file named `model_downloads.py` and import it for use. ```python from model_downloads import HFModelDownloadsTool tool = HFModelDownloadsTool() ``` You can also share your custom tool to the Hub by calling [`~Tool.push_to_hub`] on the tool. Make sure you've created a repository for it on the Hub and are using a token with read access. ```python tool.push_to_hub("{your_username}/hf-model-downloads") ``` Load the tool with the [`~Tool.load_tool`] function and pass it to the `tools` parameter in your agent. ```python from transformers import load_tool, CodeAgent model_download_tool = load_tool("m-ric/hf-model-downloads") ``` ### Import a Space as a tool 🚀 You can directly import a Space from the Hub as a tool using the [`Tool.from_space`] method! You only need to provide the id of the Space on the Hub, its name, and a description that will help you agent understand what the tool does. Under the hood, this will use [`gradio-client`](https://pypi.org/project/gradio-client/) library to call the Space. For instance, let's import the [FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev) Space from the Hub and use it to generate an image. ``` from transformers import Tool image_generation_tool = Tool.from_space( "black-forest-labs/FLUX.1-dev", name="image_generator", description="Generate an image from a prompt") image_generation_tool("A sunny beach") ``` And voilà, here's your image! 🏖️ <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/sunny_beach.webp"> Then you can use this tool just like any other tool. For example, let's improve the prompt `a rabbit wearing a space suit` and generate an image of it. ```python from transformers import ReactCodeAgent agent = ReactCodeAgent(tools=[image_generation_tool]) agent.run( "Improve this prompt, then generate an image of it.", prompt='A rabbit wearing a space suit' ) ``` ```text === Agent thoughts: improved_prompt could be "A bright blue space suit wearing rabbit, on the surface of the moon, under a bright orange sunset, with the Earth visible in the background" Now that I have improved the prompt, I can use the image generator tool to generate an image based on this prompt. === Agent is executing the code below: image = image_generator(prompt="A bright blue space suit wearing rabbit, on the surface of the moon, under a bright orange sunset, with the Earth visible in the background") final_answer(image) ``` <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit_spacesuit_flux.webp"> How cool is this? 🤩 ### Use gradio-tools [gradio-tools](https://github.com/freddyaboulton/gradio-tools) is a powerful library that allows using Hugging Face Spaces as tools. It supports many existing Spaces as well as custom Spaces. Transformers supports `gradio_tools` with the [`Tool.from_gradio`] method. For example, let's use the [`StableDiffusionPromptGeneratorTool`](https://github.com/freddyaboulton/gradio-tools/blob/main/gradio_tools/tools/prompt_generator.py) from `gradio-tools` toolkit for improving prompts to generate better images. Import and instantiate the tool, then pass it to the `Tool.from_gradio` method: ```python from gradio_tools import StableDiffusionPromptGeneratorTool from transformers import Tool, load_tool, CodeAgent gradio_prompt_generator_tool = StableDiffusionPromptGeneratorTool() prompt_generator_tool = Tool.from_gradio(gradio_prompt_generator_tool) ``` > [!WARNING] > gradio-tools require *textual* inputs and outputs even when working with different modalities like image and audio objects. Image and audio inputs and outputs are currently incompatible. ### Use LangChain tools We love Langchain and think it has a very compelling suite of tools. To import a tool from LangChain, use the `from_langchain()` method. Here is how you can use it to recreate the intro's search result using a LangChain web search tool. This tool will need `pip install google-search-results` to work properly. ```python from langchain.agents import load_tools from transformers import Tool, ReactCodeAgent search_tool = Tool.from_langchain(load_tools(["serpapi"])[0]) agent = ReactCodeAgent(tools=[search_tool]) agent.run("How many more blocks (also denoted as layers) are in BERT base encoder compared to the encoder from the architecture proposed in Attention is All You Need?") ``` ## Display your agent run in a cool Gradio interface You can leverage `gradio.Chatbot` to display your agent's thoughts using `stream_to_gradio`, here is an example: ```py import gradio as gr from transformers import ( load_tool, ReactCodeAgent, HfApiEngine, stream_to_gradio, ) # Import tool from Hub image_generation_tool = load_tool("m-ric/text-to-image") llm_engine = HfApiEngine("meta-llama/Meta-Llama-3-70B-Instruct") # Initialize the agent with the image generation tool agent = ReactCodeAgent(tools=[image_generation_tool], llm_engine=llm_engine) def interact_with_agent(task): messages = [] messages.append(gr.ChatMessage(role="user", content=task)) yield messages for msg in stream_to_gradio(agent, task): messages.append(msg) yield messages + [ gr.ChatMessage(role="assistant", content="⏳ Task not finished yet!") ] yield messages with gr.Blocks() as demo: text_input = gr.Textbox(lines=1, label="Chat Message", value="Make me a picture of the Statue of Liberty.") submit = gr.Button("Run illustrator agent!") chatbot = gr.Chatbot( label="Agent", type="messages", avatar_images=( None, "https://em-content.zobj.net/source/twitter/53/robot-face_1f916.png", ), ) submit.click(interact_with_agent, [text_input], [chatbot]) if __name__ == "__main__": demo.launch() ```
transformers/docs/source/en/agents_advanced.md/0
{ "file_path": "transformers/docs/source/en/agents_advanced.md", "repo_id": "transformers", "token_count": 3195 }
8
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # GGUF and interaction with Transformers The GGUF file format is used to store models for inference with [GGML](https://github.com/ggerganov/ggml) and other libraries that depend on it, like the very popular [llama.cpp](https://github.com/ggerganov/llama.cpp) or [whisper.cpp](https://github.com/ggerganov/whisper.cpp). It is a file format [supported by the Hugging Face Hub](https://huggingface.co/docs/hub/en/gguf) with features allowing for quick inspection of tensors and metadata within the file. This file format is designed as a "single-file-format" where a single file usually contains both the configuration attributes, the tokenizer vocabulary and other attributes, as well as all tensors to be loaded in the model. These files come in different formats according to the quantization type of the file. We briefly go over some of them [here](https://huggingface.co/docs/hub/en/gguf#quantization-types). ## Support within Transformers We have added the ability to load `gguf` files within `transformers` in order to offer further training/fine-tuning capabilities to gguf models, before converting back those models to `gguf` to use within the `ggml` ecosystem. When loading a model, we first dequantize it to fp32, before loading the weights to be used in PyTorch. > [!NOTE] > The support is still very exploratory and we welcome contributions in order to solidify it across quantization types > and model architectures. For now, here are the supported model architectures and quantization types: ### Supported quantization types The initial supported quantization types are decided according to the popular quantized files that have been shared on the Hub. - F32 - F16 - BF16 - Q4_0 - Q4_1 - Q5_0 - Q5_1 - Q8_0 - Q2_K - Q3_K - Q4_K - Q5_K - Q6_K - IQ1_S - IQ1_M - IQ2_XXS - IQ2_XS - IQ2_S - IQ3_XXS - IQ3_S - IQ4_XS - IQ4_NL > [!NOTE] > To support gguf dequantization, `gguf>=0.10.0` installation is required. ### Supported model architectures For now the supported model architectures are the architectures that have been very popular on the Hub, namely: - LLaMa - Mistral - Qwen2 - Qwen2Moe - Phi3 - Bloom - Falcon - StableLM - GPT2 - Starcoder2 - T5 - Mamba - Nemotron - Gemma2 ## Example usage In order to load `gguf` files in `transformers`, you should specify the `gguf_file` argument to the `from_pretrained` methods of both tokenizers and models. Here is how one would load a tokenizer and a model, which can be loaded from the exact same file: ```py from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF" filename = "tinyllama-1.1b-chat-v1.0.Q6_K.gguf" tokenizer = AutoTokenizer.from_pretrained(model_id, gguf_file=filename) model = AutoModelForCausalLM.from_pretrained(model_id, gguf_file=filename) ``` Now you have access to the full, unquantized version of the model in the PyTorch ecosystem, where you can combine it with a plethora of other tools. In order to convert back to a `gguf` file, we recommend using the [`convert-hf-to-gguf.py` file](https://github.com/ggerganov/llama.cpp/blob/master/convert_hf_to_gguf.py) from llama.cpp. Here's how you would complete the script above to save the model and export it back to `gguf`: ```py tokenizer.save_pretrained('directory') model.save_pretrained('directory') !python ${path_to_llama_cpp}/convert-hf-to-gguf.py ${directory} ```
transformers/docs/source/en/gguf.md/0
{ "file_path": "transformers/docs/source/en/gguf.md", "repo_id": "transformers", "token_count": 1285 }
9
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # LLM inference optimization Large language models (LLMs) have pushed text generation applications, such as chat and code completion models, to the next level by producing text that displays a high level of understanding and fluency. But what makes LLMs so powerful - namely their size - also presents challenges for inference. Basic inference is slow because LLMs have to be called repeatedly to generate the next token. The input sequence increases as generation progresses, which takes longer and longer for the LLM to process. LLMs also have billions of parameters, making it a challenge to store and handle all those weights in memory. This guide will show you how to use the optimization techniques available in Transformers to accelerate LLM inference. > [!TIP] > Hugging Face also provides [Text Generation Inference (TGI)](https://hf.co/docs/text-generation-inference), a library dedicated to deploying and serving highly optimized LLMs for inference. It includes deployment-oriented optimization features not included in Transformers, such as continuous batching for increasing throughput and tensor parallelism for multi-GPU inference. ## Static kv-cache and `torch.compile` During decoding, a LLM computes the key-value (kv) values for each input token and since it is autoregressive, it computes the same kv values each time because the generated output becomes part of the input now. This is not very efficient because you're recomputing the same kv values each time. To optimize this, you can use a kv-cache to store the past keys and values instead of recomputing them each time. However, since the kv-cache grows with each generation step and is dynamic, it prevents you from taking advantage of [`torch.compile`](./perf_torch_compile), a powerful optimization tool that fuses PyTorch code into fast and optimized kernels. We have an entire guide dedicated to kv-caches [here](./kv_cache). The *static kv-cache* solves this issue by pre-allocating the kv-cache size to a maximum value which allows you to combine it with `torch.compile` for up to a 4x speed up. Your speed up may vary depending on the model size (larger models have a smaller speed up) and hardware. > [!WARNING] > Currently, only [Llama](./model_doc/llama2) and a few other models support static kv-cache and `torch.compile`. Check [this issue](https://github.com/huggingface/transformers/issues/28981) for a live model compatibility list. There are three flavors of static kv-cache usage, depending on the complexity of your task: 1. Basic usage: simply set a flag in `generation_config` (recommended); 2. Advanced usage: handle a cache object for multi-turn generation or a custom generation loop; 3. Advanced usage: compile the entire `generate` function into a single graph, if having a single graph is relevant for you. Select the correct tab below for further instructions on each of these flavors. > [!TIP] > Regardless of the strategy used with `torch.compile`, you can avoid shape-related recompilations if you left-pad your LLM inputs to a limited set of values. The [`pad_to_multiple_of` tokenizer flag](https://huggingface.co/docs/transformers/main_classes/tokenizer#transformers.PreTrainedTokenizer.__call__.pad_to_multiple_of) is your friend! <hfoptions id="static-kv"> <hfoption id="basic usage: generation_config"> For this example, let's use the [Gemma](https://hf.co/google/gemma-2b) model. All we need to do is to: 1. Access the model's `generation_config` attribute and set the `cache_implementation` to "static"; 2. Call `torch.compile` on the model to compile the forward pass with the static kv-cache. And that's it! ```py from transformers import AutoTokenizer, AutoModelForCausalLM import torch import os os.environ["TOKENIZERS_PARALLELISM"] = "false" # To prevent long warnings :) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", torch_dtype="auto", device_map="auto") model.generation_config.cache_implementation = "static" model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True) input_text = "The theory of special relativity states " input_ids = tokenizer(input_text, return_tensors="pt").to(model.device.type) outputs = model.generate(**input_ids) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ['The theory of special relativity states 1. The speed of light is constant in all inertial reference'] ``` Under the hood, `generate` will attempt to reuse the same cache object, removing the need for re-compilation at each call. Avoiding re-compilation is critical to get the most out of `torch.compile`, and you should be aware of the following: 1. If the batch size changes or the maximum output length increases between calls, the cache will have to be reinitialized, triggering a new compilation; 2. The first couple of calls of the compiled function are slower, as the function is being compiled. > [!WARNING] > For a more advanced usage of the static cache, such as multi-turn conversations, we recommend instantiating and manipulating the cache object outside [`~GenerationMixin.generate`]. See the advanced usage tab. </hfoption> <hfoption id="advanced usage: control Static Cache"> A [`StaticCache`] object can be passed to the model's [`~GenerationMixin.generate`] under the `past_key_values` argument. The object will retain the cache contents, so you can pass it to a new [`~GenerationMixin.generate`] call to continue generation, like you would do with a dynamic cache. ```py from transformers import AutoTokenizer, AutoModelForCausalLM, StaticCache import torch import os os.environ["TOKENIZERS_PARALLELISM"] = "false" # To prevent long warnings :) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", torch_dtype="auto", device_map="auto") model.forward = torch.compile(model.forward, mode="reduce-overhead", fullgraph=True) input_text = "The theory of special relativity states " input_ids = tokenizer(input_text, return_tensors="pt").to(model.device.type) prompt_length = input_ids.input_ids.shape[1] model.generation_config.max_new_tokens = 16 past_key_values = StaticCache( config=model.config, batch_size=1, # If you plan to reuse the cache, make sure the cache length is large enough for all cases max_cache_len=prompt_length+(model.generation_config.max_new_tokens*2), device=model.device, dtype=model.dtype ) outputs = model.generate(**input_ids, past_key_values=past_key_values) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ['The theory of special relativity states 1. The speed of light is constant in all inertial reference frames. 2'] # pass in the generated text and the same cache object to continue generation from where it left off. Optionally, in a # multi-turn conversation, append the new user input to the generated text. new_input_ids = outputs outputs = model.generate(new_input_ids, past_key_values=past_key_values) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ['The theory of special relativity states 1. The speed of light is constant in all inertial reference frames. 2. The speed of light is constant in all inertial reference frames. 3.'] ``` > [!TIP] > If you want to reuse the same [`StaticCache`] object on a new prompt, be sure to reset its contents with the `.reset()` method between calls If you want to go further down a level, the [`StaticCache`] object can also be passed to the model's forward pass under the same `past_key_values` argument. Using this strategy, you can write your own function to decode the next token given the current token and position and cache position of previously generated tokens. ```py from transformers import LlamaTokenizer, LlamaForCausalLM, StaticCache, logging from transformers.testing_utils import CaptureLogger import torch from accelerate.test_utils.testing import get_backend prompts = [ "Simply put, the theory of relativity states that ", "My favorite all time favorite condiment is ketchup.", ] NUM_TOKENS_TO_GENERATE = 40 torch_device, _, _ = get_backend() # automatically detects the underlying device type (CUDA, CPU, XPU, MPS, etc.) tokenizer = LlamaTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf", pad_token="</s>", padding_side="right") model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-2-7b-hf", device_map="sequential") inputs = tokenizer(prompts, return_tensors="pt", padding=True).to(model.device) def decode_one_tokens(model, cur_token, input_pos, cache_position, past_key_values): logits = model( cur_token, position_ids=input_pos, cache_position=cache_position, past_key_values=past_key_values, return_dict=False, use_cache=True )[0] new_token = torch.argmax(logits[:, -1], dim=-1)[:, None] return new_token ``` There are a few important things you must do to enable static kv-cache and `torch.compile` with the `StaticCache` method: 1. Initialize the [`StaticCache`] instance before using the model for inference. There you can configure parameters like the maximum batch size and sequence length. 2. Call `torch.compile` on the model to compile the forward pass with the static kv-cache. 3. Use `SDPBackend.MATH` in the [torch.nn.attention.sdpa_kernel](https://pytorch.org/docs/stable/generated/torch.nn.attention.sdpa_kernel.html) context manager to enable the native PyTorch C++ implementation of scaled dot product attention to speed up inference even more. ```py from torch.nn.attention import SDPBackend, sdpa_kernel batch_size, seq_length = inputs["input_ids"].shape with torch.no_grad(): past_key_values = StaticCache( config=model.config, batch_size=2, max_cache_len=4096, device=torch_device, dtype=model.dtype ) cache_position = torch.arange(seq_length, device=torch_device) generated_ids = torch.zeros( batch_size, seq_length + NUM_TOKENS_TO_GENERATE + 1, dtype=torch.int, device=torch_device ) generated_ids[:, cache_position] = inputs["input_ids"].to(torch_device).to(torch.int) logits = model( **inputs, cache_position=cache_position, past_key_values=past_key_values,return_dict=False, use_cache=True )[0] next_token = torch.argmax(logits[:, -1], dim=-1)[:, None] generated_ids[:, seq_length] = next_token[:, 0] decode_one_tokens = torch.compile(decode_one_tokens, mode="reduce-overhead", fullgraph=True) cache_position = torch.tensor([seq_length + 1], device=torch_device) for _ in range(1, NUM_TOKENS_TO_GENERATE): with sdpa_kernel(SDPBackend.MATH): next_token = decode_one_tokens(model, next_token.clone(), None, cache_position, past_key_values) generated_ids[:, cache_position] = next_token.int() cache_position += 1 text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True) text ['Simply put, the theory of relativity states that 1) the speed of light is constant, 2) the speed of light is the same for all observers, and 3) the laws of physics are the same for all observers.', 'My favorite all time favorite condiment is ketchup. I love it on everything. I love it on my eggs, my fries, my chicken, my burgers, my hot dogs, my sandwiches, my salads, my p'] ``` </hfoption> <hfoption id="advanced usage: end-to-end generate compilation"> Compiling the entire `generate` function, in terms of code, is even simpler than in the basic usage: call `torch.compile` on `generate` to compile the entire function. No need to specify the use of the static cache: although it is compatible, dynamic cache (default) was faster in our benchmarks. ```py from transformers import AutoTokenizer, AutoModelForCausalLM import torch import os os.environ["TOKENIZERS_PARALLELISM"] = "false" # To prevent long warnings :) tokenizer = AutoTokenizer.from_pretrained("google/gemma-2b") model = AutoModelForCausalLM.from_pretrained("google/gemma-2b", torch_dtype="auto", device_map="auto") model.generate = torch.compile(model.generate, mode="reduce-overhead", fullgraph=True) input_text = "The theory of special relativity states " input_ids = tokenizer(input_text, return_tensors="pt").to(model.device.type) outputs = model.generate(**input_ids) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ['The theory of special relativity states 1. The speed of light is constant in all inertial reference'] ``` As a result, we compile not only the model forward pass, but also all input preparation, logit processor operations, and so on. The result should be a slightly `generate` call, compared to the basic usage example, and the compiled graph may be better suited to more exotic hardware devices or use cases. However, there are severe drawbacks in using this approach: 1. Compilation is much slower; 2. All parameterization of `generate` must be done through `generation_config`; 3. Many warnings and exceptions are suppressed -- we suggest testing with its uncompiled form first; 4. Although we are working on it, it is heavily feature restricted (for instance, at the time of writing, generation does not stop if an EOS token is selected). </hfoption> </hfoptions> ## Speculative decoding > [!TIP] > For a more in-depth explanation, take a look at the [Assisted Generation: a new direction toward low-latency text generation](https://hf.co/blog/assisted-generation) blog post! Another issue with autoregression is that for each input token you need to load the model weights each time during the forward pass. This is slow and cumbersome for LLMs which have billions of parameters. Speculative decoding alleviates this slowdown by using a second smaller and faster assistant model to generate candidate tokens that are verified by the larger LLM in a single forward pass. If the verified tokens are correct, the LLM essentially gets them for "free" without having to generate them itself. There is no degradation in accuracy because the verification forward pass ensures the same outputs are generated as if the LLM had generated them on its own. To get the largest speed up, the assistant model should be a lot smaller than the LLM so that it can generate tokens quickly. The assistant and LLM model must also share the same tokenizer to avoid re-encoding and decoding tokens. > [!WARNING] > Speculative decoding is only supported for the greedy search and sampling decoding strategies, and it also doesn't support batched inputs. Enable speculative decoding by loading an assistant model and passing it to the [`~GenerationMixin.generate`] method. <hfoptions id="spec-decoding"> <hfoption id="greedy search"> ```py from transformers import AutoModelForCausalLM, AutoTokenizer import torch from accelerate.test_utils.testing import get_backend device, _, _ = get_backend() # automatically detects the underlying device type (CUDA, CPU, XPU, MPS, etc.) tokenizer = AutoTokenizer.from_pretrained("facebook/opt-1.3b") inputs = tokenizer("Einstein's theory of relativity states", return_tensors="pt").to(device) model = AutoModelForCausalLM.from_pretrained("facebook/opt-1.3b", torch_dtype="auto").to(device) assistant_model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m").to(device) outputs = model.generate(**inputs, assistant_model=assistant_model) tokenizer.batch_decode(outputs, skip_special_tokens=True) ["Einstein's theory of relativity states that the speed of light is constant. "] ``` </hfoption> <hfoption id="sampling"> For speculative sampling decoding, add the `do_sample` and `temperature` parameters to the [`~GenerationMixin.generate`] method in addition to the assistant model. ```py from transformers import AutoModelForCausalLM, AutoTokenizer import torch from accelerate.test_utils.testing import get_backend device, _, _ = get_backend() # automatically detects the underlying device type (CUDA, CPU, XPU, MPS, etc.) tokenizer = AutoTokenizer.from_pretrained("facebook/opt-1.3b") inputs = tokenizer("Einstein's theory of relativity states", return_tensors="pt").to(device) model = AutoModelForCausalLM.from_pretrained("facebook/opt-1.3b", torch_dtype="auto").to(device) assistant_model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m").to(device) outputs = model.generate(**inputs, assistant_model=assistant_model, do_sample=True, temperature=0.7) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ["Einstein's theory of relativity states that motion in the universe is not a straight line.\n"] ``` </hfoption> </hfoptions> ### Prompt lookup decoding Prompt lookup decoding is a variant of speculative decoding that is also compatible with greedy search and sampling. Prompt lookup works especially well for input-grounded tasks - such as summarization - where there is often overlapping words between the prompt and output. These overlapping n-grams are used as the LLM candidate tokens. To enable prompt lookup decoding, specify the number of tokens that should be overlapping in the `prompt_lookup_num_tokens` parameter. Then you can pass this parameter to the [`~GenerationMixin.generate`] method. <hfoptions id="pld"> <hfoption id="greedy decoding"> ```py from transformers import AutoModelForCausalLM, AutoTokenizer import torch from accelerate.test_utils.testing import get_backend device, _, _ = get_backend() # automatically detects the underlying device type (CUDA, CPU, XPU, MPS, etc.) tokenizer = AutoTokenizer.from_pretrained("facebook/opt-1.3b") inputs = tokenizer("The second law of thermodynamics states", return_tensors="pt").to(device) model = AutoModelForCausalLM.from_pretrained("facebook/opt-1.3b", torch_dtype="auto").to(device) assistant_model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m").to(device) outputs = model.generate(**inputs, prompt_lookup_num_tokens=3) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ['The second law of thermodynamics states that entropy increases with temperature. '] ``` </hfoption> <hfoption id="sampling"> For prompt lookup decoding with sampling, add the `do_sample` and `temperature` parameters to the [`~GenerationMixin.generate`] method. ```py from transformers import AutoModelForCausalLM, AutoTokenizer import torch from accelerate.test_utils.testing import get_backend device, _, _ = get_backend() # automatically detects the underlying device type (CUDA, CPU, XPU, MPS, etc.) tokenizer = AutoTokenizer.from_pretrained("facebook/opt-1.3b") inputs = tokenizer("The second law of thermodynamics states", return_tensors="pt").to(device) model = AutoModelForCausalLM.from_pretrained("facebook/opt-1.3b", torch_dtype="auto").to(device) outputs = model.generate(**inputs, prompt_lookup_num_tokens=3, do_sample=True, temperature=0.7) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ["The second law of thermodynamics states that energy cannot be created nor destroyed. It's not a"] ``` </hfoption> </hfoptions> ## Attention optimizations A known issue with transformer models is that the self-attention mechanism grows quadratically in compute and memory with the number of input tokens. This limitation is only magnified in LLMs which handles much longer sequences. To address this, try FlashAttention2 or PyTorch's scaled dot product attention (SDPA), which are more memory efficient attention implementations and can accelerate inference. ### FlashAttention-2 FlashAttention and [FlashAttention-2](./perf_infer_gpu_one#flashattention-2) break up the attention computation into smaller chunks and reduces the number of intermediate read/write operations to GPU memory to speed up inference. FlashAttention-2 improves on the original FlashAttention algorithm by also parallelizing over sequence length dimension and better partitioning work on the hardware to reduce synchronization and communication overhead. To use FlashAttention-2, set `attn_implementation="flash_attention_2"` in the [`~PreTrainedModel.from_pretrained`] method. ```py from transformers import AutoModelForCausalLM, BitsAndBytesConfig quant_config = BitsAndBytesConfig(load_in_8bit=True) model = AutoModelForCausalLM.from_pretrained( "google/gemma-2b", quantization_config=quant_config, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", ) ``` ### Fine-Tuning with torch.compile and Padding-Free Data Collation In addition to optimizing inference, you can also enhance the training efficiency of large language models by leveraging torch.compile during fine-tuning and using a padding-free data collator. This approach can significantly speed up training and reduce computational overhead. Here's how you can fine-tune a Llama model using SFTTrainer from the TRL library, with torch_compile enabled and a padding-free data collator: ``` #################### IMPORTS ################### import math import datasets import dataclasses from transformers import ( AutoModelForCausalLM, AutoTokenizer, TrainingArguments ) from trl import SFTConfig, SFTTrainer, DataCollatorForCompletionOnlyLM #################### MODEL LOADING WITH FLASH ATTENTION ################### model_name = "meta-llama/Llama-3.2-1B" model = AutoModelForCausalLM.from_pretrained( model_name, attn_implementation="flash_attention_2" # Enables FlashAttention-2 ) tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True) #################### DATA PREPROCESSING (PADDING-FREE) ################### response_template = "\n### Label:" response_template_ids = tokenizer.encode( response_template, add_special_tokens=False )[2:] # Exclude special tokens data_collator = DataCollatorForCompletionOnlyLM( response_template_ids=response_template_ids, tokenizer=tokenizer, ignore_index=-100, padding_free=True # Enables padding-free collation ) def format_dataset(example): return { "output": example["output"] + tokenizer.eos_token } data_files = {"train": "path/to/dataset"} # Replace with your dataset path json_dataset = datasets.load_dataset("json", data_files=data_files) formatted_train_dataset = json_dataset["train"].map(format_dataset) ################# TRAINING CONFIGURATION ############################ train_args = TrainingArguments( num_train_epochs=5, per_device_train_batch_size=4, per_device_eval_batch_size=4, gradient_accumulation_steps=4, learning_rate=1e-5, weight_decay=0.0, warmup_ratio=0.03, lr_scheduler_type="cosine", logging_steps=1, include_tokens_per_second=True, save_strategy="epoch", output_dir="output", torch_compile=True, # Enables torch.compile torch_compile_backend="inductor", torch_compile_mode="default" ) # Convert TrainingArguments to SFTConfig transformer_train_arg_fields = [x.name for x in dataclasses.fields(SFTConfig)] transformer_kwargs = { k: v for k, v in train_args.to_dict().items() if k in transformer_train_arg_fields } training_args = SFTConfig(**transformer_kwargs) ####################### FINE-TUNING ##################### trainer = SFTTrainer( model=model, tokenizer=tokenizer, train_dataset=formatted_train_dataset, data_collator=data_collator, dataset_text_field="output", args=training_args, ) trainer.train() ``` ### PyTorch scaled dot product attention Scaled dot product attention (SDPA) is automatically enabled in PyTorch 2.0 and it supports FlashAttention, xFormers, and PyTorch's C++ implementation. SDPA chooses the most performant attention algorithm if you're using a CUDA backend. For other backends, SDPA defaults to the PyTorch C++ implementation. > [!TIP] > SDPA supports FlashAttention-2 as long as you have the latest PyTorch version installed. Use the [torch.nn.attention.sdpa_kernel](https://pytorch.org/docs/stable/generated/torch.nn.attention.sdpa_kernel.html) context manager to explicitly enable or disable any of the four attention algorithms. For example, use `SDPBackend.FLASH_ATTENTION` to enable FlashAttention. ```py import torch from torch.nn.attention import SDPBackend, sdpa_kernel from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained( "google/gemma-2b", torch_dtype=torch.bfloat16, ) with sdpa_kernel(SDPBackend.FLASH_ATTENTION): outputs = model.generate(**inputs) ``` ## Quantization Quantization reduces the size of the LLM weights by storing them in a lower precision. This translates to lower memory usage and makes loading LLMs for inference more accessible if you're constrained by your GPUs memory. If you aren't limited by your GPU, you don't necessarily need to quantize your model because it can incur a small latency cost (except for AWQ and fused AWQ modules) due to the extra step required to quantize and dequantize the weights. > [!TIP] > There are many quantization libraries (see the [Quantization](./quantization) guide for more details) available, such as Quanto, AQLM, VPTQ, AWQ, and AutoGPTQ. Feel free to try them out and see which one works best for your use case. We also recommend reading the [Overview of natively supported quantization schemes in 🤗 Transformers](https://hf.co/blog/overview-quantization-transformers) blog post which compares AutoGPTQ and bitsandbytes. Use the Model Memory Calculator below to estimate and compare how much memory is required to load a model. For example, try estimating how much memory it costs to load [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1). <iframe src="https://hf-accelerate-model-memory-usage.hf.space" frameborder="0" width="850" height="450" ></iframe> To load Mistral-7B-v0.1 in half-precision, set the `torch_dtype` parameter in the [`~transformers.AutoModelForCausalLM.from_pretrained`] method to `torch.bfloat16`. This requires 13.74GB of memory. ```py from transformers import AutoTokenizer, AutoModelForCausalLM import torch model = AutoModelForCausalLM.from_pretrained( "mistralai/Mistral-7B-v0.1", torch_dtype=torch.bfloat16, device_map="auto", ) ``` To load a quantized model (8-bit or 4-bit) for inference, try [bitsandbytes](https://hf.co/docs/bitsandbytes) and set the `load_in_4bit` or `load_in_8bit` parameters to `True`. Loading the model in 8-bits only requires 6.87 GB of memory. ```py from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig import torch quant_config = BitsAndBytesConfig(load_in_8bit=True) model = AutoModelForCausalLM.from_pretrained( "mistralai/Mistral-7B-v0.1", quantization_config=quant_config, device_map="auto" ) ```
transformers/docs/source/en/llm_optims.md/0
{ "file_path": "transformers/docs/source/en/llm_optims.md", "repo_id": "transformers", "token_count": 8129 }
10
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Optimization The `.optimization` module provides: - an optimizer with weight decay fixed that can be used to fine-tuned models, and - several schedules in the form of schedule objects that inherit from `_LRSchedule`: - a gradient accumulation class to accumulate the gradients of multiple batches ## AdamW (PyTorch) [[autodoc]] AdamW ## AdaFactor (PyTorch) [[autodoc]] Adafactor ## AdamWeightDecay (TensorFlow) [[autodoc]] AdamWeightDecay [[autodoc]] create_optimizer ## Schedules ### Learning Rate Schedules (PyTorch) [[autodoc]] SchedulerType [[autodoc]] get_scheduler [[autodoc]] get_constant_schedule [[autodoc]] get_constant_schedule_with_warmup <img alt="" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/warmup_constant_schedule.png"/> [[autodoc]] get_cosine_schedule_with_warmup <img alt="" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/warmup_cosine_schedule.png"/> [[autodoc]] get_cosine_with_hard_restarts_schedule_with_warmup <img alt="" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/warmup_cosine_hard_restarts_schedule.png"/> [[autodoc]] get_linear_schedule_with_warmup <img alt="" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/warmup_linear_schedule.png"/> [[autodoc]] get_polynomial_decay_schedule_with_warmup [[autodoc]] get_inverse_sqrt_schedule [[autodoc]] get_wsd_schedule ### Warmup (TensorFlow) [[autodoc]] WarmUp ## Gradient Strategies ### GradientAccumulator (TensorFlow) [[autodoc]] GradientAccumulator
transformers/docs/source/en/main_classes/optimizer_schedules.md/0
{ "file_path": "transformers/docs/source/en/main_classes/optimizer_schedules.md", "repo_id": "transformers", "token_count": 761 }
11
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Bark ## Overview Bark is a transformer-based text-to-speech model proposed by Suno AI in [suno-ai/bark](https://github.com/suno-ai/bark). Bark is made of 4 main models: - [`BarkSemanticModel`] (also referred to as the 'text' model): a causal auto-regressive transformer model that takes as input tokenized text, and predicts semantic text tokens that capture the meaning of the text. - [`BarkCoarseModel`] (also referred to as the 'coarse acoustics' model): a causal autoregressive transformer, that takes as input the results of the [`BarkSemanticModel`] model. It aims at predicting the first two audio codebooks necessary for EnCodec. - [`BarkFineModel`] (the 'fine acoustics' model), this time a non-causal autoencoder transformer, which iteratively predicts the last codebooks based on the sum of the previous codebooks embeddings. - having predicted all the codebook channels from the [`EncodecModel`], Bark uses it to decode the output audio array. It should be noted that each of the first three modules can support conditional speaker embeddings to condition the output sound according to specific predefined voice. This model was contributed by [Yoach Lacombe (ylacombe)](https://huggingface.co/ylacombe) and [Sanchit Gandhi (sanchit-gandhi)](https://github.com/sanchit-gandhi). The original code can be found [here](https://github.com/suno-ai/bark). ### Optimizing Bark Bark can be optimized with just a few extra lines of code, which **significantly reduces its memory footprint** and **accelerates inference**. #### Using half-precision You can speed up inference and reduce memory footprint by 50% simply by loading the model in half-precision. ```python from transformers import BarkModel import torch device = "cuda" if torch.cuda.is_available() else "cpu" model = BarkModel.from_pretrained("suno/bark-small", torch_dtype=torch.float16).to(device) ``` #### Using CPU offload As mentioned above, Bark is made up of 4 sub-models, which are called up sequentially during audio generation. In other words, while one sub-model is in use, the other sub-models are idle. If you're using a CUDA device, a simple solution to benefit from an 80% reduction in memory footprint is to offload the submodels from GPU to CPU when they're idle. This operation is called *CPU offloading*. You can use it with one line of code as follows: ```python model.enable_cpu_offload() ``` Note that 🤗 Accelerate must be installed before using this feature. [Here's how to install it.](https://huggingface.co/docs/accelerate/basic_tutorials/install) #### Using Better Transformer Better Transformer is an 🤗 Optimum feature that performs kernel fusion under the hood. You can gain 20% to 30% in speed with zero performance degradation. It only requires one line of code to export the model to 🤗 Better Transformer: ```python model = model.to_bettertransformer() ``` Note that 🤗 Optimum must be installed before using this feature. [Here's how to install it.](https://huggingface.co/docs/optimum/installation) #### Using Flash Attention 2 Flash Attention 2 is an even faster, optimized version of the previous optimization. ##### Installation First, check whether your hardware is compatible with Flash Attention 2. The latest list of compatible hardware can be found in the [official documentation](https://github.com/Dao-AILab/flash-attention#installation-and-features). If your hardware is not compatible with Flash Attention 2, you can still benefit from attention kernel optimisations through Better Transformer support covered [above](https://huggingface.co/docs/transformers/main/en/model_doc/bark#using-better-transformer). Next, [install](https://github.com/Dao-AILab/flash-attention#installation-and-features) the latest version of Flash Attention 2: ```bash pip install -U flash-attn --no-build-isolation ``` ##### Usage To load a model using Flash Attention 2, we can pass the `attn_implementation="flash_attention_2"` flag to [`.from_pretrained`](https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.PreTrainedModel.from_pretrained). We'll also load the model in half-precision (e.g. `torch.float16`), since it results in almost no degradation to audio quality but significantly lower memory usage and faster inference: ```python model = BarkModel.from_pretrained("suno/bark-small", torch_dtype=torch.float16, attn_implementation="flash_attention_2").to(device) ``` ##### Performance comparison The following diagram shows the latency for the native attention implementation (no optimisation) against Better Transformer and Flash Attention 2. In all cases, we generate 400 semantic tokens on a 40GB A100 GPU with PyTorch 2.1. Flash Attention 2 is also consistently faster than Better Transformer, and its performance improves even more as batch sizes increase: <div style="text-align: center"> <img src="https://huggingface.co/datasets/ylacombe/benchmark-comparison/resolve/main/Bark%20Optimization%20Benchmark.png"> </div> To put this into perspective, on an NVIDIA A100 and when generating 400 semantic tokens with a batch size of 16, you can get 17 times the [throughput](https://huggingface.co/blog/optimizing-bark#throughput) and still be 2 seconds faster than generating sentences one by one with the native model implementation. In other words, all the samples will be generated 17 times faster. At batch size 8, on an NVIDIA A100, Flash Attention 2 is also 10% faster than Better Transformer, and at batch size 16, 25%. #### Combining optimization techniques You can combine optimization techniques, and use CPU offload, half-precision and Flash Attention 2 (or 🤗 Better Transformer) all at once. ```python from transformers import BarkModel import torch device = "cuda" if torch.cuda.is_available() else "cpu" # load in fp16 and use Flash Attention 2 model = BarkModel.from_pretrained("suno/bark-small", torch_dtype=torch.float16, attn_implementation="flash_attention_2").to(device) # enable CPU offload model.enable_cpu_offload() ``` Find out more on inference optimization techniques [here](https://huggingface.co/docs/transformers/perf_infer_gpu_one). ### Usage tips Suno offers a library of voice presets in a number of languages [here](https://suno-ai.notion.site/8b8e8749ed514b0cbf3f699013548683?v=bc67cff786b04b50b3ceb756fd05f68c). These presets are also uploaded in the hub [here](https://huggingface.co/suno/bark-small/tree/main/speaker_embeddings) or [here](https://huggingface.co/suno/bark/tree/main/speaker_embeddings). ```python >>> from transformers import AutoProcessor, BarkModel >>> processor = AutoProcessor.from_pretrained("suno/bark") >>> model = BarkModel.from_pretrained("suno/bark") >>> voice_preset = "v2/en_speaker_6" >>> inputs = processor("Hello, my dog is cute", voice_preset=voice_preset) >>> audio_array = model.generate(**inputs) >>> audio_array = audio_array.cpu().numpy().squeeze() ``` Bark can generate highly realistic, **multilingual** speech as well as other audio - including music, background noise and simple sound effects. ```python >>> # Multilingual speech - simplified Chinese >>> inputs = processor("惊人的!我会说中文") >>> # Multilingual speech - French - let's use a voice_preset as well >>> inputs = processor("Incroyable! Je peux générer du son.", voice_preset="fr_speaker_5") >>> # Bark can also generate music. You can help it out by adding music notes around your lyrics. >>> inputs = processor("♪ Hello, my dog is cute ♪") >>> audio_array = model.generate(**inputs) >>> audio_array = audio_array.cpu().numpy().squeeze() ``` The model can also produce **nonverbal communications** like laughing, sighing and crying. ```python >>> # Adding non-speech cues to the input text >>> inputs = processor("Hello uh ... [clears throat], my dog is cute [laughter]") >>> audio_array = model.generate(**inputs) >>> audio_array = audio_array.cpu().numpy().squeeze() ``` To save the audio, simply take the sample rate from the model config and some scipy utility: ```python >>> from scipy.io.wavfile import write as write_wav >>> # save audio to disk, but first take the sample rate from the model config >>> sample_rate = model.generation_config.sample_rate >>> write_wav("bark_generation.wav", sample_rate, audio_array) ``` ## BarkConfig [[autodoc]] BarkConfig - all ## BarkProcessor [[autodoc]] BarkProcessor - all - __call__ ## BarkModel [[autodoc]] BarkModel - generate - enable_cpu_offload ## BarkSemanticModel [[autodoc]] BarkSemanticModel - forward ## BarkCoarseModel [[autodoc]] BarkCoarseModel - forward ## BarkFineModel [[autodoc]] BarkFineModel - forward ## BarkCausalModel [[autodoc]] BarkCausalModel - forward ## BarkCoarseConfig [[autodoc]] BarkCoarseConfig - all ## BarkFineConfig [[autodoc]] BarkFineConfig - all ## BarkSemanticConfig [[autodoc]] BarkSemanticConfig - all
transformers/docs/source/en/model_doc/bark.md/0
{ "file_path": "transformers/docs/source/en/model_doc/bark.md", "repo_id": "transformers", "token_count": 2760 }
12
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BLIP ## Overview The BLIP model was proposed in [BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation](https://arxiv.org/abs/2201.12086) by Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi. BLIP is a model that is able to perform various multi-modal tasks including: - Visual Question Answering - Image-Text retrieval (Image-text matching) - Image Captioning The abstract from the paper is the following: *Vision-Language Pre-training (VLP) has advanced the performance for many vision-language tasks. However, most existing pre-trained models only excel in either understanding-based tasks or generation-based tasks. Furthermore, performance improvement has been largely achieved by scaling up the dataset with noisy image-text pairs collected from the web, which is a suboptimal source of supervision. In this paper, we propose BLIP, a new VLP framework which transfers flexibly to both vision-language understanding and generation tasks. BLIP effectively utilizes the noisy web data by bootstrapping the captions, where a captioner generates synthetic captions and a filter removes the noisy ones. We achieve state-of-the-art results on a wide range of vision-language tasks, such as image-text retrieval (+2.7% in average recall@1), image captioning (+2.8% in CIDEr), and VQA (+1.6% in VQA score). BLIP also demonstrates strong generalization ability when directly transferred to videolanguage tasks in a zero-shot manner. Code, models, and datasets are released.* ![BLIP.gif](https://cdn-uploads.huggingface.co/production/uploads/1670928184033-62441d1d9fdefb55a0b7d12c.gif) This model was contributed by [ybelkada](https://huggingface.co/ybelkada). The original code can be found [here](https://github.com/salesforce/BLIP). ## Resources - [Jupyter notebook](https://github.com/huggingface/notebooks/blob/main/examples/image_captioning_blip.ipynb) on how to fine-tune BLIP for image captioning on a custom dataset ## BlipConfig [[autodoc]] BlipConfig - from_text_vision_configs ## BlipTextConfig [[autodoc]] BlipTextConfig ## BlipVisionConfig [[autodoc]] BlipVisionConfig ## BlipProcessor [[autodoc]] BlipProcessor ## BlipImageProcessor [[autodoc]] BlipImageProcessor - preprocess <frameworkcontent> <pt> ## BlipModel `BlipModel` is going to be deprecated in future versions, please use `BlipForConditionalGeneration`, `BlipForImageTextRetrieval` or `BlipForQuestionAnswering` depending on your usecase. [[autodoc]] BlipModel - forward - get_text_features - get_image_features ## BlipTextModel [[autodoc]] BlipTextModel - forward ## BlipVisionModel [[autodoc]] BlipVisionModel - forward ## BlipForConditionalGeneration [[autodoc]] BlipForConditionalGeneration - forward ## BlipForImageTextRetrieval [[autodoc]] BlipForImageTextRetrieval - forward ## BlipForQuestionAnswering [[autodoc]] BlipForQuestionAnswering - forward </pt> <tf> ## TFBlipModel [[autodoc]] TFBlipModel - call - get_text_features - get_image_features ## TFBlipTextModel [[autodoc]] TFBlipTextModel - call ## TFBlipVisionModel [[autodoc]] TFBlipVisionModel - call ## TFBlipForConditionalGeneration [[autodoc]] TFBlipForConditionalGeneration - call ## TFBlipForImageTextRetrieval [[autodoc]] TFBlipForImageTextRetrieval - call ## TFBlipForQuestionAnswering [[autodoc]] TFBlipForQuestionAnswering - call </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/blip.md/0
{ "file_path": "transformers/docs/source/en/model_doc/blip.md", "repo_id": "transformers", "token_count": 1295 }
13
# Cohere ## Overview The Cohere Command-R model was proposed in the blogpost [Command-R: Retrieval Augmented Generation at Production Scale](https://txt.cohere.com/command-r/) by the Cohere Team. The abstract from the paper is the following: *Command-R is a scalable generative model targeting RAG and Tool Use to enable production-scale AI for enterprise. Today, we are introducing Command-R, a new LLM aimed at large-scale production workloads. Command-R targets the emerging “scalable” category of models that balance high efficiency with strong accuracy, enabling companies to move beyond proof of concept, and into production.* *Command-R is a generative model optimized for long context tasks such as retrieval augmented generation (RAG) and using external APIs and tools. It is designed to work in concert with our industry-leading Embed and Rerank models to provide best-in-class integration for RAG applications and excel at enterprise use cases. As a model built for companies to implement at scale, Command-R boasts: - Strong accuracy on RAG and Tool Use - Low latency, and high throughput - Longer 128k context and lower pricing - Strong capabilities across 10 key languages - Model weights available on HuggingFace for research and evaluation Checkout model checkpoints [here](https://huggingface.co/CohereForAI/c4ai-command-r-v01). This model was contributed by [Saurabh Dash](https://huggingface.co/saurabhdash) and [Ahmet Üstün](https://huggingface.co/ahmetustun). The code of the implementation in Hugging Face is based on GPT-NeoX [here](https://github.com/EleutherAI/gpt-neox). ## Usage tips <Tip warning={true}> The checkpoints uploaded on the Hub use `torch_dtype = 'float16'`, which will be used by the `AutoModel` API to cast the checkpoints from `torch.float32` to `torch.float16`. The `dtype` of the online weights is mostly irrelevant unless you are using `torch_dtype="auto"` when initializing a model using `model = AutoModelForCausalLM.from_pretrained("path", torch_dtype = "auto")`. The reason is that the model will first be downloaded ( using the `dtype` of the checkpoints online), then it will be casted to the default `dtype` of `torch` (becomes `torch.float32`), and finally, if there is a `torch_dtype` provided in the config, it will be used. Training the model in `float16` is not recommended and is known to produce `nan`; as such, the model should be trained in `bfloat16`. </Tip> The model and tokenizer can be loaded via: ```python # pip install transformers from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "CohereForAI/c4ai-command-r-v01" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # Format message with the command-r chat template messages = [{"role": "user", "content": "Hello, how are you?"}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> gen_tokens = model.generate( input_ids, max_new_tokens=100, do_sample=True, temperature=0.3, ) gen_text = tokenizer.decode(gen_tokens[0]) print(gen_text) ``` - When using Flash Attention 2 via `attn_implementation="flash_attention_2"`, don't pass `torch_dtype` to the `from_pretrained` class method and use Automatic Mixed-Precision training. When using `Trainer`, it is simply specifying either `fp16` or `bf16` to `True`. Otherwise, make sure you are using `torch.autocast`. This is required because the Flash Attention only support `fp16` and `bf16` data type. ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with Command-R. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. <PipelineTag pipeline="text-generation"/> Loading FP16 model ```python # pip install transformers from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "CohereForAI/c4ai-command-r-v01" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # Format message with the command-r chat template messages = [{"role": "user", "content": "Hello, how are you?"}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> gen_tokens = model.generate( input_ids, max_new_tokens=100, do_sample=True, temperature=0.3, ) gen_text = tokenizer.decode(gen_tokens[0]) print(gen_text) ``` Loading bitsnbytes 4bit quantized model ```python # pip install transformers bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig bnb_config = BitsAndBytesConfig(load_in_4bit=True) model_id = "CohereForAI/c4ai-command-r-v01" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config) gen_tokens = model.generate( input_ids, max_new_tokens=100, do_sample=True, temperature=0.3, ) gen_text = tokenizer.decode(gen_tokens[0]) print(gen_text) ``` ## CohereConfig [[autodoc]] CohereConfig ## CohereTokenizerFast [[autodoc]] CohereTokenizerFast - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - update_post_processor - save_vocabulary ## CohereModel [[autodoc]] CohereModel - forward ## CohereForCausalLM [[autodoc]] CohereForCausalLM - forward
transformers/docs/source/en/model_doc/cohere.md/0
{ "file_path": "transformers/docs/source/en/model_doc/cohere.md", "repo_id": "transformers", "token_count": 1897 }
14
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Decision Transformer ## Overview The Decision Transformer model was proposed in [Decision Transformer: Reinforcement Learning via Sequence Modeling](https://arxiv.org/abs/2106.01345) by Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas, Igor Mordatch. The abstract from the paper is the following: *We introduce a framework that abstracts Reinforcement Learning (RL) as a sequence modeling problem. This allows us to draw upon the simplicity and scalability of the Transformer architecture, and associated advances in language modeling such as GPT-x and BERT. In particular, we present Decision Transformer, an architecture that casts the problem of RL as conditional sequence modeling. Unlike prior approaches to RL that fit value functions or compute policy gradients, Decision Transformer simply outputs the optimal actions by leveraging a causally masked Transformer. By conditioning an autoregressive model on the desired return (reward), past states, and actions, our Decision Transformer model can generate future actions that achieve the desired return. Despite its simplicity, Decision Transformer matches or exceeds the performance of state-of-the-art model-free offline RL baselines on Atari, OpenAI Gym, and Key-to-Door tasks.* This version of the model is for tasks where the state is a vector. This model was contributed by [edbeeching](https://huggingface.co/edbeeching). The original code can be found [here](https://github.com/kzl/decision-transformer). ## DecisionTransformerConfig [[autodoc]] DecisionTransformerConfig ## DecisionTransformerGPT2Model [[autodoc]] DecisionTransformerGPT2Model - forward ## DecisionTransformerModel [[autodoc]] DecisionTransformerModel - forward
transformers/docs/source/en/model_doc/decision_transformer.md/0
{ "file_path": "transformers/docs/source/en/model_doc/decision_transformer.md", "repo_id": "transformers", "token_count": 639 }
15
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # DPR <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=dpr"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-dpr-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/dpr-question_encoder-bert-base-multilingual"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview Dense Passage Retrieval (DPR) is a set of tools and models for state-of-the-art open-domain Q&A research. It was introduced in [Dense Passage Retrieval for Open-Domain Question Answering](https://arxiv.org/abs/2004.04906) by Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, Wen-tau Yih. The abstract from the paper is the following: *Open-domain question answering relies on efficient passage retrieval to select candidate contexts, where traditional sparse vector space models, such as TF-IDF or BM25, are the de facto method. In this work, we show that retrieval can be practically implemented using dense representations alone, where embeddings are learned from a small number of questions and passages by a simple dual-encoder framework. When evaluated on a wide range of open-domain QA datasets, our dense retriever outperforms a strong Lucene-BM25 system largely by 9%-19% absolute in terms of top-20 passage retrieval accuracy, and helps our end-to-end QA system establish new state-of-the-art on multiple open-domain QA benchmarks.* This model was contributed by [lhoestq](https://huggingface.co/lhoestq). The original code can be found [here](https://github.com/facebookresearch/DPR). ## Usage tips - DPR consists in three models: * Question encoder: encode questions as vectors * Context encoder: encode contexts as vectors * Reader: extract the answer of the questions inside retrieved contexts, along with a relevance score (high if the inferred span actually answers the question). ## DPRConfig [[autodoc]] DPRConfig ## DPRContextEncoderTokenizer [[autodoc]] DPRContextEncoderTokenizer ## DPRContextEncoderTokenizerFast [[autodoc]] DPRContextEncoderTokenizerFast ## DPRQuestionEncoderTokenizer [[autodoc]] DPRQuestionEncoderTokenizer ## DPRQuestionEncoderTokenizerFast [[autodoc]] DPRQuestionEncoderTokenizerFast ## DPRReaderTokenizer [[autodoc]] DPRReaderTokenizer ## DPRReaderTokenizerFast [[autodoc]] DPRReaderTokenizerFast ## DPR specific outputs [[autodoc]] models.dpr.modeling_dpr.DPRContextEncoderOutput [[autodoc]] models.dpr.modeling_dpr.DPRQuestionEncoderOutput [[autodoc]] models.dpr.modeling_dpr.DPRReaderOutput <frameworkcontent> <pt> ## DPRContextEncoder [[autodoc]] DPRContextEncoder - forward ## DPRQuestionEncoder [[autodoc]] DPRQuestionEncoder - forward ## DPRReader [[autodoc]] DPRReader - forward </pt> <tf> ## TFDPRContextEncoder [[autodoc]] TFDPRContextEncoder - call ## TFDPRQuestionEncoder [[autodoc]] TFDPRQuestionEncoder - call ## TFDPRReader [[autodoc]] TFDPRReader - call </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/dpr.md/0
{ "file_path": "transformers/docs/source/en/model_doc/dpr.md", "repo_id": "transformers", "token_count": 1170 }
16
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # FLAN-UL2 ## Overview Flan-UL2 is an encoder decoder model based on the T5 architecture. It uses the same configuration as the [UL2](ul2) model released earlier last year. It was fine tuned using the "Flan" prompt tuning and dataset collection. Similar to `Flan-T5`, one can directly use FLAN-UL2 weights without finetuning the model: According to the original blog here are the notable improvements: - The original UL2 model was only trained with receptive field of 512, which made it non-ideal for N-shot prompting where N is large. - The Flan-UL2 checkpoint uses a receptive field of 2048 which makes it more usable for few-shot in-context learning. - The original UL2 model also had mode switch tokens that was rather mandatory to get good performance. However, they were a little cumbersome as this requires often some changes during inference or finetuning. In this update/change, we continue training UL2 20B for an additional 100k steps (with small batch) to forget “mode tokens” before applying Flan instruction tuning. This Flan-UL2 checkpoint does not require mode tokens anymore. Google has released the following variants: The original checkpoints can be found [here](https://github.com/google-research/t5x/blob/main/docs/models.md#flan-ul2-checkpoints). ## Running on low resource devices The model is pretty heavy (~40GB in half precision) so if you just want to run the model, make sure you load your model in 8bit, and use `device_map="auto"` to make sure you don't have any OOM issue! ```python >>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer >>> model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-ul2", load_in_8bit=True, device_map="auto") >>> tokenizer = AutoTokenizer.from_pretrained("google/flan-ul2") >>> inputs = tokenizer("A step by step recipe to make bolognese pasta:", return_tensors="pt") >>> outputs = model.generate(**inputs) >>> print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ['In a large skillet, brown the ground beef and onion over medium heat. Add the garlic'] ``` <Tip> Refer to [T5's documentation page](t5) for API reference, tips, code examples and notebooks. </Tip>
transformers/docs/source/en/model_doc/flan-ul2.md/0
{ "file_path": "transformers/docs/source/en/model_doc/flan-ul2.md", "repo_id": "transformers", "token_count": 785 }
17
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # GPT Neo ## Overview The GPTNeo model was released in the [EleutherAI/gpt-neo](https://github.com/EleutherAI/gpt-neo) repository by Sid Black, Stella Biderman, Leo Gao, Phil Wang and Connor Leahy. It is a GPT2 like causal language model trained on the [Pile](https://pile.eleuther.ai/) dataset. The architecture is similar to GPT2 except that GPT Neo uses local attention in every other layer with a window size of 256 tokens. This model was contributed by [valhalla](https://huggingface.co/valhalla). ## Usage example The `generate()` method can be used to generate text using GPT Neo model. ```python >>> from transformers import GPTNeoForCausalLM, GPT2Tokenizer >>> model = GPTNeoForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B") >>> tokenizer = GPT2Tokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B") >>> prompt = ( ... "In a shocking finding, scientists discovered a herd of unicorns living in a remote, " ... "previously unexplored valley, in the Andes Mountains. Even more surprising to the " ... "researchers was the fact that the unicorns spoke perfect English." ... ) >>> input_ids = tokenizer(prompt, return_tensors="pt").input_ids >>> gen_tokens = model.generate( ... input_ids, ... do_sample=True, ... temperature=0.9, ... max_length=100, ... ) >>> gen_text = tokenizer.batch_decode(gen_tokens)[0] ``` ## Combining GPT-Neo and Flash Attention 2 First, make sure to install the latest version of Flash Attention 2 to include the sliding window attention feature, and make sure your hardware is compatible with Flash-Attention 2. More details are available [here](https://huggingface.co/docs/transformers/perf_infer_gpu_one#flashattention-2) concerning the installation. Make sure as well to load your model in half-precision (e.g. `torch.float16`). To load and run a model using Flash Attention 2, refer to the snippet below: ```python >>> import torch >>> from transformers import AutoModelForCausalLM, AutoTokenizer >>> device = "cuda" # the device to load the model onto >>> model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-2.7B", torch_dtype=torch.float16, attn_implementation="flash_attention_2") >>> tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-2.7B") >>> prompt = "def hello_world():" >>> model_inputs = tokenizer([prompt], return_tensors="pt").to(device) >>> model.to(device) >>> generated_ids = model.generate(**model_inputs, max_new_tokens=100, do_sample=True) >>> tokenizer.batch_decode(generated_ids)[0] "def hello_world():\n >>> run_script("hello.py")\n >>> exit(0)\n<|endoftext|>" ``` ### Expected speedups Below is an expected speedup diagram that compares pure inference time between the native implementation in transformers using `EleutherAI/gpt-neo-2.7B` checkpoint and the Flash Attention 2 version of the model. Note that for GPT-Neo it is not possible to train / run on very long context as the max [position embeddings](https://huggingface.co/EleutherAI/gpt-neo-2.7B/blob/main/config.json#L58 ) is limited to 2048 - but this is applicable to all gpt-neo models and not specific to FA-2 <div style="text-align: center"> <img src="https://user-images.githubusercontent.com/49240599/272241893-b1c66b75-3a48-4265-bc47-688448568b3d.png"> </div> ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Causal language modeling task guide](../tasks/language_modeling) ## GPTNeoConfig [[autodoc]] GPTNeoConfig <frameworkcontent> <pt> ## GPTNeoModel [[autodoc]] GPTNeoModel - forward ## GPTNeoForCausalLM [[autodoc]] GPTNeoForCausalLM - forward ## GPTNeoForQuestionAnswering [[autodoc]] GPTNeoForQuestionAnswering - forward ## GPTNeoForSequenceClassification [[autodoc]] GPTNeoForSequenceClassification - forward ## GPTNeoForTokenClassification [[autodoc]] GPTNeoForTokenClassification - forward </pt> <jax> ## FlaxGPTNeoModel [[autodoc]] FlaxGPTNeoModel - __call__ ## FlaxGPTNeoForCausalLM [[autodoc]] FlaxGPTNeoForCausalLM - __call__ </jax> </frameworkcontent>
transformers/docs/source/en/model_doc/gpt_neo.md/0
{ "file_path": "transformers/docs/source/en/model_doc/gpt_neo.md", "repo_id": "transformers", "token_count": 1582 }
18
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # IDEFICS ## Overview The IDEFICS model was proposed in [OBELICS: An Open Web-Scale Filtered Dataset of Interleaved Image-Text Documents ](https://huggingface.co/papers/2306.16527 ) by Hugo Laurençon, Lucile Saulnier, Léo Tronchon, Stas Bekman, Amanpreet Singh, Anton Lozhkov, Thomas Wang, Siddharth Karamcheti, Alexander M. Rush, Douwe Kiela, Matthieu Cord, Victor Sanh The abstract from the paper is the following: *Large multimodal models trained on natural documents, which interleave images and text, outperform models trained on image-text pairs on various multimodal benchmarks that require reasoning over one or multiple images to generate a text. However, the datasets used to train these models have not been released, and the collection process has not been fully specified. We introduce the OBELICS dataset, an open web-scale filtered dataset of interleaved image-text documents comprising 141 million web pages extracted from Common Crawl, 353 million associated images, and 115 billion text tokens. We describe the dataset creation process, present comprehensive filtering rules, and provide an analysis of the dataset's content. To show the viability of OBELISC, we train an 80 billion parameters vision and language model on the dataset and obtain competitive performance on various multimodal benchmarks. We release the code to reproduce the dataset along with the dataset itself.* This model was contributed by [HuggingFaceM4](https://huggingface.co/HuggingFaceM4). The original code can be found [here](<INSERT LINK TO GITHUB REPO HERE>). (TODO: don't have a public link yet). <Tip warning={true}> IDEFICS modeling code in Transformers is for finetuning and inferencing the pre-trained IDEFICS models. To train a new IDEFICS model from scratch use the m4 codebase (a link will be provided once it's made public) </Tip> ## IdeficsConfig [[autodoc]] IdeficsConfig ## IdeficsModel [[autodoc]] IdeficsModel - forward ## IdeficsForVisionText2Text [[autodoc]] IdeficsForVisionText2Text - forward ## TFIdeficsModel [[autodoc]] TFIdeficsModel - call ## TFIdeficsForVisionText2Text [[autodoc]] TFIdeficsForVisionText2Text - call ## IdeficsImageProcessor [[autodoc]] IdeficsImageProcessor - preprocess ## IdeficsProcessor [[autodoc]] IdeficsProcessor - __call__
transformers/docs/source/en/model_doc/idefics.md/0
{ "file_path": "transformers/docs/source/en/model_doc/idefics.md", "repo_id": "transformers", "token_count": 836 }
19
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # LED ## Overview The LED model was proposed in [Longformer: The Long-Document Transformer](https://arxiv.org/abs/2004.05150) by Iz Beltagy, Matthew E. Peters, Arman Cohan. The abstract from the paper is the following: *Transformer-based models are unable to process long sequences due to their self-attention operation, which scales quadratically with the sequence length. To address this limitation, we introduce the Longformer with an attention mechanism that scales linearly with sequence length, making it easy to process documents of thousands of tokens or longer. Longformer's attention mechanism is a drop-in replacement for the standard self-attention and combines a local windowed attention with a task motivated global attention. Following prior work on long-sequence transformers, we evaluate Longformer on character-level language modeling and achieve state-of-the-art results on text8 and enwik8. In contrast to most prior work, we also pretrain Longformer and finetune it on a variety of downstream tasks. Our pretrained Longformer consistently outperforms RoBERTa on long document tasks and sets new state-of-the-art results on WikiHop and TriviaQA. We finally introduce the Longformer-Encoder-Decoder (LED), a Longformer variant for supporting long document generative sequence-to-sequence tasks, and demonstrate its effectiveness on the arXiv summarization dataset.* ## Usage tips - [`LEDForConditionalGeneration`] is an extension of [`BartForConditionalGeneration`] exchanging the traditional *self-attention* layer with *Longformer*'s *chunked self-attention* layer. [`LEDTokenizer`] is an alias of [`BartTokenizer`]. - LED works very well on long-range *sequence-to-sequence* tasks where the `input_ids` largely exceed a length of 1024 tokens. - LED pads the `input_ids` to be a multiple of `config.attention_window` if required. Therefore a small speed-up is gained, when [`LEDTokenizer`] is used with the `pad_to_multiple_of` argument. - LED makes use of *global attention* by means of the `global_attention_mask` (see [`LongformerModel`]). For summarization, it is advised to put *global attention* only on the first `<s>` token. For question answering, it is advised to put *global attention* on all tokens of the question. - To fine-tune LED on all 16384, *gradient checkpointing* can be enabled in case training leads to out-of-memory (OOM) errors. This can be done by executing `model.gradient_checkpointing_enable()`. Moreover, the `use_cache=False` flag can be used to disable the caching mechanism to save memory. - LED is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). ## Resources - [A notebook showing how to evaluate LED](https://colab.research.google.com/drive/12INTTR6n64TzS4RrXZxMSXfrOd9Xzamo?usp=sharing). - [A notebook showing how to fine-tune LED](https://colab.research.google.com/drive/12LjJazBl7Gam0XBPy_y0CTOJZeZ34c2v?usp=sharing). - [Text classification task guide](../tasks/sequence_classification) - [Question answering task guide](../tasks/question_answering) - [Translation task guide](../tasks/translation) - [Summarization task guide](../tasks/summarization) ## LEDConfig [[autodoc]] LEDConfig ## LEDTokenizer [[autodoc]] LEDTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## LEDTokenizerFast [[autodoc]] LEDTokenizerFast ## LED specific outputs [[autodoc]] models.led.modeling_led.LEDEncoderBaseModelOutput [[autodoc]] models.led.modeling_led.LEDSeq2SeqModelOutput [[autodoc]] models.led.modeling_led.LEDSeq2SeqLMOutput [[autodoc]] models.led.modeling_led.LEDSeq2SeqSequenceClassifierOutput [[autodoc]] models.led.modeling_led.LEDSeq2SeqQuestionAnsweringModelOutput [[autodoc]] models.led.modeling_tf_led.TFLEDEncoderBaseModelOutput [[autodoc]] models.led.modeling_tf_led.TFLEDSeq2SeqModelOutput [[autodoc]] models.led.modeling_tf_led.TFLEDSeq2SeqLMOutput <frameworkcontent> <pt> ## LEDModel [[autodoc]] LEDModel - forward ## LEDForConditionalGeneration [[autodoc]] LEDForConditionalGeneration - forward ## LEDForSequenceClassification [[autodoc]] LEDForSequenceClassification - forward ## LEDForQuestionAnswering [[autodoc]] LEDForQuestionAnswering - forward </pt> <tf> ## TFLEDModel [[autodoc]] TFLEDModel - call ## TFLEDForConditionalGeneration [[autodoc]] TFLEDForConditionalGeneration - call </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/led.md/0
{ "file_path": "transformers/docs/source/en/model_doc/led.md", "repo_id": "transformers", "token_count": 1602 }
20
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Mllama ## Overview The Llama 3.2-Vision collection of multimodal large language models (LLMs) is a collection of pretrained and instruction-tuned image reasoning generative models in 11B and 90B sizes (text \+ images in / text out). The Llama 3.2-Vision instruction-tuned models are optimized for visual recognition, image reasoning, captioning, and answering general questions about an image. **Model Architecture:** Llama 3.2-Vision is built on top of Llama 3.1 text-only model, which is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. To support image recognition tasks, the Llama 3.2-Vision model uses a separately trained vision adapter that integrates with the pre-trained Llama 3.1 language model. The adapter consists of a series of cross-attention layers that feed image encoder representations into the core LLM. ## Usage Tips - For image+text and text inputs use `MllamaForConditionalGeneration`. - For text-only inputs use `MllamaForCausalLM` for generation to avoid loading vision tower. - Each sample can contain multiple images, and the number of images can vary between samples. The processor will pad the inputs to the maximum number of images across samples and to a maximum number of tiles within each image. - The text passed to the processor should have the `"<|image|>"` tokens where the images should be inserted. - The processor has its own `apply_chat_template` method to convert chat messages to text that can then be passed as text to the processor. <Tip warning={true}> Mllama has an extra token used as a placeholder for image positions in the text. It means that input ids and an input embedding layer will have an extra token. But since the weights for input and output embeddings are not tied, the `lm_head` layer has one less token and will fail if you want to calculate loss on image tokens or apply some logit processors. In case you are training, make sure to mask out special `"<|image|>"` tokens in the `labels` as the model should not be trained on predicting them. Otherwise if you see CUDA-side index erros when generating, use the below code to expand the `lm_head` by one more token. ```python old_embeddings = model.get_output_embeddings() num_tokens = model.vocab_size + 1 resized_embeddings = model._get_resized_lm_head(old_embeddings, new_num_tokens=num_tokens, mean_resizing=True) resized_embeddings.requires_grad_(old_embeddings.weight.requires_grad) model.set_output_embeddings(resized_embeddings) ``` </Tip> ## Usage Example #### Instruct model ```python import requests import torch from PIL import Image from transformers import MllamaForConditionalGeneration, AutoProcessor model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct" model = MllamaForConditionalGeneration.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) processor = AutoProcessor.from_pretrained(model_id) messages = [ [ { "role": "user", "content": [ {"type": "image"}, {"type": "text", "text": "What does the image show?"} ] } ], ] text = processor.apply_chat_template(messages, add_generation_prompt=True) url = "https://llava-vl.github.io/static/images/view.jpg" image = Image.open(requests.get(url, stream=True).raw) inputs = processor(text=text, images=image, return_tensors="pt").to(model.device) output = model.generate(**inputs, max_new_tokens=25) print(processor.decode(output[0])) ``` #### Base model ```python import requests import torch from PIL import Image from transformers import MllamaForConditionalGeneration, AutoProcessor model_id = "meta-llama/Llama-3.2-11B-Vision" model = MllamaForConditionalGeneration.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16) processor = AutoProcessor.from_pretrained(model_id) prompt = "<|image|>If I had to write a haiku for this one" url = "https://llava-vl.github.io/static/images/view.jpg" raw_image = Image.open(requests.get(url, stream=True).raw) inputs = processor(text=prompt, images=raw_image, return_tensors="pt").to(model.device) output = model.generate(**inputs, do_sample=False, max_new_tokens=25) print(processor.decode(output[0], skip_special_tokens=True)) ``` ## MllamaConfig [[autodoc]] MllamaConfig ## MllamaProcessor [[autodoc]] MllamaProcessor ## MllamaImageProcessor [[autodoc]] MllamaImageProcessor ## MllamaForConditionalGeneration [[autodoc]] MllamaForConditionalGeneration - forward ## MllamaForCausalLM [[autodoc]] MllamaForCausalLM - forward ## MllamaTextModel [[autodoc]] MllamaTextModel - forward ## MllamaForCausalLM [[autodoc]] MllamaForCausalLM - forward ## MllamaVisionModel [[autodoc]] MllamaVisionModel - forward
transformers/docs/source/en/model_doc/mllama.md/0
{ "file_path": "transformers/docs/source/en/model_doc/mllama.md", "repo_id": "transformers", "token_count": 1747 }
21
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. :warning: Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # MusicGen Melody ## Overview The MusicGen Melody model was proposed in [Simple and Controllable Music Generation](https://arxiv.org/abs/2306.05284) by Jade Copet, Felix Kreuk, Itai Gat, Tal Remez, David Kant, Gabriel Synnaeve, Yossi Adi and Alexandre Défossez. MusicGen Melody is a single stage auto-regressive Transformer model capable of generating high-quality music samples conditioned on text descriptions or audio prompts. The text descriptions are passed through a frozen text encoder model to obtain a sequence of hidden-state representations. MusicGen is then trained to predict discrete audio tokens, or *audio codes*, conditioned on these hidden-states. These audio tokens are then decoded using an audio compression model, such as EnCodec, to recover the audio waveform. Through an efficient token interleaving pattern, MusicGen does not require a self-supervised semantic representation of the text/audio prompts, thus eliminating the need to cascade multiple models to predict a set of codebooks (e.g. hierarchically or upsampling). Instead, it is able to generate all the codebooks in a single forward pass. The abstract from the paper is the following: *We tackle the task of conditional music generation. We introduce MusicGen, a single Language Model (LM) that operates over several streams of compressed discrete music representation, i.e., tokens. Unlike prior work, MusicGen is comprised of a single-stage transformer LM together with efficient token interleaving patterns, which eliminates the need for cascading several models, e.g., hierarchically or upsampling. Following this approach, we demonstrate how MusicGen can generate high-quality samples, while being conditioned on textual description or melodic features, allowing better controls over the generated output. We conduct extensive empirical evaluation, considering both automatic and human studies, showing the proposed approach is superior to the evaluated baselines on a standard text-to-music benchmark. Through ablation studies, we shed light over the importance of each of the components comprising MusicGen.* This model was contributed by [ylacombe](https://huggingface.co/ylacombe). The original code can be found [here](https://github.com/facebookresearch/audiocraft). The pre-trained checkpoints can be found on the [Hugging Face Hub](https://huggingface.co/models?sort=downloads&search=facebook%2Fmusicgen). ## Difference with [MusicGen](https://huggingface.co/docs/transformers/main/en/model_doc/musicgen) There are two key differences with MusicGen: 1. The audio prompt is used here as a conditional signal for the generated audio sample, whereas it's used for audio continuation in [MusicGen](https://huggingface.co/docs/transformers/main/en/model_doc/musicgen). 2. Conditional text and audio signals are concatenated to the decoder's hidden states instead of being used as a cross-attention signal, as in MusicGen. ## Generation MusicGen Melody is compatible with two generation modes: greedy and sampling. In practice, sampling leads to significantly better results than greedy, thus we encourage sampling mode to be used where possible. Sampling is enabled by default, and can be explicitly specified by setting `do_sample=True` in the call to [`MusicgenMelodyForConditionalGeneration.generate`], or by overriding the model's generation config (see below). Transformers supports both mono (1-channel) and stereo (2-channel) variants of MusicGen Melody. The mono channel versions generate a single set of codebooks. The stereo versions generate 2 sets of codebooks, 1 for each channel (left/right), and each set of codebooks is decoded independently through the audio compression model. The audio streams for each channel are combined to give the final stereo output. #### Audio Conditional Generation The model can generate an audio sample conditioned on a text and an audio prompt through use of the [`MusicgenMelodyProcessor`] to pre-process the inputs. In the following examples, we load an audio file using the 🤗 Datasets library, which can be pip installed through the command below: ``` pip install --upgrade pip pip install datasets[audio] ``` The audio file we are about to use is loaded as follows: ```python >>> from datasets import load_dataset >>> dataset = load_dataset("sanchit-gandhi/gtzan", split="train", streaming=True) >>> sample = next(iter(dataset))["audio"] ``` The audio prompt should ideally be free of the low-frequency signals usually produced by instruments such as drums and bass. The [Demucs](https://github.com/adefossez/demucs/tree/main) model can be used to separate vocals and other signals from the drums and bass components. If you wish to use Demucs, you first need to follow the installation steps [here](https://github.com/adefossez/demucs/tree/main?tab=readme-ov-file#for-musicians) before using the following snippet: ```python from demucs import pretrained from demucs.apply import apply_model from demucs.audio import convert_audio import torch wav = torch.tensor(sample["array"]).to(torch.float32) demucs = pretrained.get_model('htdemucs') wav = convert_audio(wav[None], sample["sampling_rate"], demucs.samplerate, demucs.audio_channels) wav = apply_model(demucs, wav[None]) ``` You can then use the following snippet to generate music: ```python >>> from transformers import AutoProcessor, MusicgenMelodyForConditionalGeneration >>> processor = AutoProcessor.from_pretrained("facebook/musicgen-melody") >>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("facebook/musicgen-melody") >>> inputs = processor( ... audio=wav, ... sampling_rate=demucs.samplerate, ... text=["80s blues track with groovy saxophone"], ... padding=True, ... return_tensors="pt", ... ) >>> audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256) ``` You can also pass the audio signal directly without using Demucs, although the quality of the generation will probably be degraded: ```python >>> from transformers import AutoProcessor, MusicgenMelodyForConditionalGeneration >>> processor = AutoProcessor.from_pretrained("facebook/musicgen-melody") >>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("facebook/musicgen-melody") >>> inputs = processor( ... audio=sample["array"], ... sampling_rate=sample["sampling_rate"], ... text=["80s blues track with groovy saxophone"], ... padding=True, ... return_tensors="pt", ... ) >>> audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256) ``` The audio outputs are a three-dimensional Torch tensor of shape `(batch_size, num_channels, sequence_length)`. To listen to the generated audio samples, you can either play them in an ipynb notebook: ```python from IPython.display import Audio sampling_rate = model.config.audio_encoder.sampling_rate Audio(audio_values[0].numpy(), rate=sampling_rate) ``` Or save them as a `.wav` file using a third-party library, e.g. `soundfile`: ```python >>> import soundfile as sf >>> sampling_rate = model.config.audio_encoder.sampling_rate >>> sf.write("musicgen_out.wav", audio_values[0].T.numpy(), sampling_rate) ``` ### Text-only Conditional Generation The same [`MusicgenMelodyProcessor`] can be used to pre-process a text-only prompt. ```python >>> from transformers import AutoProcessor, MusicgenMelodyForConditionalGeneration >>> processor = AutoProcessor.from_pretrained("facebook/musicgen-melody") >>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("facebook/musicgen-melody") >>> inputs = processor( ... text=["80s pop track with bassy drums and synth", "90s rock song with loud guitars and heavy drums"], ... padding=True, ... return_tensors="pt", ... ) >>> audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256) ``` The `guidance_scale` is used in classifier free guidance (CFG), setting the weighting between the conditional logits (which are predicted from the text prompts) and the unconditional logits (which are predicted from an unconditional or 'null' prompt). Higher guidance scale encourages the model to generate samples that are more closely linked to the input prompt, usually at the expense of poorer audio quality. CFG is enabled by setting `guidance_scale > 1`. For best results, use `guidance_scale=3` (default). You can also generate in batch: ```python >>> from transformers import AutoProcessor, MusicgenMelodyForConditionalGeneration >>> from datasets import load_dataset >>> processor = AutoProcessor.from_pretrained("facebook/musicgen-melody") >>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("facebook/musicgen-melody") >>> # take the first quarter of the audio sample >>> sample_1 = sample["array"][: len(sample["array"]) // 4] >>> # take the first half of the audio sample >>> sample_2 = sample["array"][: len(sample["array"]) // 2] >>> inputs = processor( ... audio=[sample_1, sample_2], ... sampling_rate=sample["sampling_rate"], ... text=["80s blues track with groovy saxophone", "90s rock song with loud guitars and heavy drums"], ... padding=True, ... return_tensors="pt", ... ) >>> audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=256) ``` ### Unconditional Generation The inputs for unconditional (or 'null') generation can be obtained through the method [`MusicgenMelodyProcessor.get_unconditional_inputs`]: ```python >>> from transformers import MusicgenMelodyForConditionalGeneration, MusicgenMelodyProcessor >>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("facebook/musicgen-melody") >>> unconditional_inputs = MusicgenMelodyProcessor.from_pretrained("facebook/musicgen-melody").get_unconditional_inputs(num_samples=1) >>> audio_values = model.generate(**unconditional_inputs, do_sample=True, max_new_tokens=256) ``` ### Generation Configuration The default parameters that control the generation process, such as sampling, guidance scale and number of generated tokens, can be found in the model's generation config, and updated as desired: ```python >>> from transformers import MusicgenMelodyForConditionalGeneration >>> model = MusicgenMelodyForConditionalGeneration.from_pretrained("facebook/musicgen-melody") >>> # inspect the default generation config >>> model.generation_config >>> # increase the guidance scale to 4.0 >>> model.generation_config.guidance_scale = 4.0 >>> # decrease the max length to 256 tokens >>> model.generation_config.max_length = 256 ``` Note that any arguments passed to the generate method will **supersede** those in the generation config, so setting `do_sample=False` in the call to generate will supersede the setting of `model.generation_config.do_sample` in the generation config. ## Model Structure The MusicGen model can be de-composed into three distinct stages: 1. Text encoder: maps the text inputs to a sequence of hidden-state representations. The pre-trained MusicGen models use a frozen text encoder from either T5 or Flan-T5. 2. MusicGen Melody decoder: a language model (LM) that auto-regressively generates audio tokens (or codes) conditional on the encoder hidden-state representations 3. Audio decoder: used to recover the audio waveform from the audio tokens predicted by the decoder. Thus, the MusicGen model can either be used as a standalone decoder model, corresponding to the class [`MusicgenMelodyForCausalLM`], or as a composite model that includes the text encoder and audio encoder, corresponding to the class [`MusicgenMelodyForConditionalGeneration`]. If only the decoder needs to be loaded from the pre-trained checkpoint, it can be loaded by first specifying the correct config, or be accessed through the `.decoder` attribute of the composite model: ```python >>> from transformers import AutoConfig, MusicgenMelodyForCausalLM, MusicgenMelodyForConditionalGeneration >>> # Option 1: get decoder config and pass to `.from_pretrained` >>> decoder_config = AutoConfig.from_pretrained("facebook/musicgen-melody").decoder >>> decoder = MusicgenMelodyForCausalLM.from_pretrained("facebook/musicgen-melody", **decoder_config.to_dict()) >>> # Option 2: load the entire composite model, but only return the decoder >>> decoder = MusicgenMelodyForConditionalGeneration.from_pretrained("facebook/musicgen-melody").decoder ``` Since the text encoder and audio encoder models are frozen during training, the MusicGen decoder [`MusicgenMelodyForCausalLM`] can be trained standalone on a dataset of encoder hidden-states and audio codes. For inference, the trained decoder can be combined with the frozen text encoder and audio encoder to recover the composite [`MusicgenMelodyForConditionalGeneration`] model. ## Checkpoint Conversion - After downloading the original checkpoints from [here](https://github.com/facebookresearch/audiocraft/blob/main/docs/MUSICGEN.md#importing--exporting-models), you can convert them using the **conversion script** available at `src/transformers/models/musicgen_melody/convert_musicgen_melody_transformers.py` with the following command: ```bash python src/transformers/models/musicgen_melody/convert_musicgen_melody_transformers.py \ --checkpoint="facebook/musicgen-melody" --pytorch_dump_folder /output/path ``` Tips: * MusicGen is trained on the 32kHz checkpoint of Encodec. You should ensure you use a compatible version of the Encodec model. * Sampling mode tends to deliver better results than greedy - you can toggle sampling with the variable `do_sample` in the call to [`MusicgenMelodyForConditionalGeneration.generate`] ## MusicgenMelodyDecoderConfig [[autodoc]] MusicgenMelodyDecoderConfig ## MusicgenMelodyProcessor [[autodoc]] MusicgenMelodyProcessor - get_unconditional_inputs ## MusicgenMelodyFeatureExtractor [[autodoc]] MusicgenMelodyFeatureExtractor ## MusicgenMelodyConfig [[autodoc]] MusicgenMelodyConfig ## MusicgenMelodyModel [[autodoc]] MusicgenMelodyModel - forward ## MusicgenMelodyForCausalLM [[autodoc]] MusicgenMelodyForCausalLM - forward ## MusicgenMelodyForConditionalGeneration [[autodoc]] MusicgenMelodyForConditionalGeneration - forward
transformers/docs/source/en/model_doc/musicgen_melody.md/0
{ "file_path": "transformers/docs/source/en/model_doc/musicgen_melody.md", "repo_id": "transformers", "token_count": 4077 }
22
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # OpenAI GPT <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=openai-gpt"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-openai--gpt-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/openai-gpt"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview OpenAI GPT model was proposed in [Improving Language Understanding by Generative Pre-Training](https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever. It's a causal (unidirectional) transformer pre-trained using language modeling on a large corpus with long range dependencies, the Toronto Book Corpus. The abstract from the paper is the following: *Natural language understanding comprises a wide range of diverse tasks such as textual entailment, question answering, semantic similarity assessment, and document classification. Although large unlabeled text corpora are abundant, labeled data for learning these specific tasks is scarce, making it challenging for discriminatively trained models to perform adequately. We demonstrate that large gains on these tasks can be realized by generative pretraining of a language model on a diverse corpus of unlabeled text, followed by discriminative fine-tuning on each specific task. In contrast to previous approaches, we make use of task-aware input transformations during fine-tuning to achieve effective transfer while requiring minimal changes to the model architecture. We demonstrate the effectiveness of our approach on a wide range of benchmarks for natural language understanding. Our general task-agnostic model outperforms discriminatively trained models that use architectures specifically crafted for each task, significantly improving upon the state of the art in 9 out of the 12 tasks studied.* [Write With Transformer](https://transformer.huggingface.co/doc/gpt) is a webapp created and hosted by Hugging Face showcasing the generative capabilities of several models. GPT is one of them. This model was contributed by [thomwolf](https://huggingface.co/thomwolf). The original code can be found [here](https://github.com/openai/finetune-transformer-lm). ## Usage tips - GPT is a model with absolute position embeddings so it's usually advised to pad the inputs on the right rather than the left. - GPT was trained with a causal language modeling (CLM) objective and is therefore powerful at predicting the next token in a sequence. Leveraging this feature allows GPT-2 to generate syntactically coherent text as it can be observed in the *run_generation.py* example script. Note: If you want to reproduce the original tokenization process of the *OpenAI GPT* paper, you will need to install `ftfy` and `SpaCy`: ```bash pip install spacy ftfy==4.4.3 python -m spacy download en ``` If you don't install `ftfy` and `SpaCy`, the [`OpenAIGPTTokenizer`] will default to tokenize using BERT's `BasicTokenizer` followed by Byte-Pair Encoding (which should be fine for most usage, don't worry). ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with OpenAI GPT. If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. <PipelineTag pipeline="text-classification"/> - A blog post on [outperforming OpenAI GPT-3 with SetFit for text-classification](https://www.philschmid.de/getting-started-setfit). - See also: [Text classification task guide](../tasks/sequence_classification) <PipelineTag pipeline="text-generation"/> - A blog on how to [Finetune a non-English GPT-2 Model with Hugging Face](https://www.philschmid.de/fine-tune-a-non-english-gpt-2-model-with-huggingface). - A blog on [How to generate text: using different decoding methods for language generation with Transformers](https://huggingface.co/blog/how-to-generate) with GPT-2. - A blog on [Training CodeParrot 🦜 from Scratch](https://huggingface.co/blog/codeparrot), a large GPT-2 model. - A blog on [Faster Text Generation with TensorFlow and XLA](https://huggingface.co/blog/tf-xla-generate) with GPT-2. - A blog on [How to train a Language Model with Megatron-LM](https://huggingface.co/blog/megatron-training) with a GPT-2 model. - A notebook on how to [finetune GPT2 to generate lyrics in the style of your favorite artist](https://colab.research.google.com/github/AlekseyKorshuk/huggingartists/blob/master/huggingartists-demo.ipynb). 🌎 - A notebook on how to [finetune GPT2 to generate tweets in the style of your favorite Twitter user](https://colab.research.google.com/github/borisdayma/huggingtweets/blob/master/huggingtweets-demo.ipynb). 🌎 - [Causal language modeling](https://huggingface.co/course/en/chapter7/6?fw=pt#training-a-causal-language-model-from-scratch) chapter of the 🤗 Hugging Face Course. - [`OpenAIGPTLMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#gpt-2gpt-and-causal-language-modeling), [text generation example script](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-generation/run_generation.py) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb). - [`TFOpenAIGPTLMHeadModel`] is supported by this [causal language modeling example script](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_clmpy) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb). - See also: [Causal language modeling task guide](../tasks/language_modeling) <PipelineTag pipeline="token-classification"/> - A course material on [Byte-Pair Encoding tokenization](https://huggingface.co/course/en/chapter6/5). ## OpenAIGPTConfig [[autodoc]] OpenAIGPTConfig ## OpenAIGPTTokenizer [[autodoc]] OpenAIGPTTokenizer - save_vocabulary ## OpenAIGPTTokenizerFast [[autodoc]] OpenAIGPTTokenizerFast ## OpenAI specific outputs [[autodoc]] models.openai.modeling_openai.OpenAIGPTDoubleHeadsModelOutput [[autodoc]] models.openai.modeling_tf_openai.TFOpenAIGPTDoubleHeadsModelOutput <frameworkcontent> <pt> ## OpenAIGPTModel [[autodoc]] OpenAIGPTModel - forward ## OpenAIGPTLMHeadModel [[autodoc]] OpenAIGPTLMHeadModel - forward ## OpenAIGPTDoubleHeadsModel [[autodoc]] OpenAIGPTDoubleHeadsModel - forward ## OpenAIGPTForSequenceClassification [[autodoc]] OpenAIGPTForSequenceClassification - forward </pt> <tf> ## TFOpenAIGPTModel [[autodoc]] TFOpenAIGPTModel - call ## TFOpenAIGPTLMHeadModel [[autodoc]] TFOpenAIGPTLMHeadModel - call ## TFOpenAIGPTDoubleHeadsModel [[autodoc]] TFOpenAIGPTDoubleHeadsModel - call ## TFOpenAIGPTForSequenceClassification [[autodoc]] TFOpenAIGPTForSequenceClassification - call </tf> </frameworkcontent>
transformers/docs/source/en/model_doc/openai-gpt.md/0
{ "file_path": "transformers/docs/source/en/model_doc/openai-gpt.md", "repo_id": "transformers", "token_count": 2422 }
23
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Pixtral ## Overview The Pixtral model was released by the Mistral AI team in a [blog post](https://mistral.ai/news/pixtral-12b/). Pixtral is a multimodal version of [Mistral](mistral), incorporating a 400 million parameter vision encoder trained from scratch. The intro from the blog says the following: *Pixtral is trained to understand both natural images and documents, achieving 52.5% on the MMMU reasoning benchmark, surpassing a number of larger models. The model shows strong abilities in tasks such as chart and figure understanding, document question answering, multimodal reasoning and instruction following. Pixtral is able to ingest images at their natural resolution and aspect ratio, giving the user flexibility on the number of tokens used to process an image. Pixtral is also able to process any number of images in its long context window of 128K tokens. Unlike previous open-source models, Pixtral does not compromise on text benchmark performance to excel in multimodal tasks.* <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/pixtral_architecture.webp" alt="drawing" width="600"/> <small> Pixtral architecture. Taken from the <a href="https://mistral.ai/news/pixtral-12b/">blog post.</a> </small> Tips: - Pixtral is a multimodal model, taking images and text as input, and producing text as output. - This model follows the [Llava](llava) architecture. The model uses [`PixtralVisionModel`] for its vision encoder, and [`MistralForCausalLM`] for its language decoder. - The main contribution is the 2d ROPE (rotary position embeddings) on the images, and support for arbitrary image sizes (the images are not padded together nor are they resized). - Similar to [Llava](llava), the model internally replaces the `[IMG]` token placeholders by image embeddings from the vision encoder. The format for one or multiple prompts is the following: ``` "<s>[INST][IMG]\nWhat are the things I should be cautious about when I visit this place?[/INST]" ``` Then, the processor will replace each `[IMG]` token with a number of `[IMG]` tokens that depend on the height and the width of each image. Each *row* of the image is separated by an `[IMG_BREAK]` token, and each image is separated by an `[IMG_END]` token. It's advised to use the `apply_chat_template` method of the processor, which takes care of all of this. See the [usage section](#usage) for more info. This model was contributed by [amyeroberts](https://huggingface.co/amyeroberts) and [ArthurZ](https://huggingface.co/ArthurZ). The original code can be found [here](https://github.com/vllm-project/vllm/pull/8377). ## Usage At inference time, it's advised to use the processor's `apply_chat_template` method, which correctly formats the prompt for the model: ```python from transformers import AutoProcessor, LlavaForConditionalGeneration from PIL import Image model_id = "mistral-community/pixtral-12b" processor = AutoProcessor.from_pretrained(model_id) model = LlavaForConditionalGeneration.from_pretrained(model_id).to("cuda") url_dog = "https://picsum.photos/id/237/200/300" url_mountain = "https://picsum.photos/seed/picsum/200/300" chat = [ { "role": "user", "content": [ {"type": "text", "content": "Can this animal"}, {"type": "image"}, {"type": "text", "content": "live here?"}, {"type": "image"} ] } ] prompt = processor.apply_chat_template(chat) inputs = processor(text=prompt, images=[url_dog, url_mountain], return_tensors="pt").to(model.device) generate_ids = model.generate(**inputs, max_new_tokens=500) output = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] ``` ## PixtralVisionConfig [[autodoc]] PixtralVisionConfig ## PixtralVisionModel [[autodoc]] PixtralVisionModel - forward ## PixtralImageProcessor [[autodoc]] PixtralImageProcessor - preprocess ## PixtralImageProcessorFast [[autodoc]] PixtralImageProcessorFast - preprocess ## PixtralProcessor [[autodoc]] PixtralProcessor
transformers/docs/source/en/model_doc/pixtral.md/0
{ "file_path": "transformers/docs/source/en/model_doc/pixtral.md", "repo_id": "transformers", "token_count": 1444 }
24
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Reformer <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=reformer"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-reformer-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/reformer-crime-and-punishment"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> ## Overview The Reformer model was proposed in the paper [Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451.pdf) by Nikita Kitaev, Łukasz Kaiser, Anselm Levskaya. The abstract from the paper is the following: *Large Transformer models routinely achieve state-of-the-art results on a number of tasks but training these models can be prohibitively costly, especially on long sequences. We introduce two techniques to improve the efficiency of Transformers. For one, we replace dot-product attention by one that uses locality-sensitive hashing, changing its complexity from O(L^2) to O(Llog(L)), where L is the length of the sequence. Furthermore, we use reversible residual layers instead of the standard residuals, which allows storing activations only once in the training process instead of N times, where N is the number of layers. The resulting model, the Reformer, performs on par with Transformer models while being much more memory-efficient and much faster on long sequences.* This model was contributed by [patrickvonplaten](https://huggingface.co/patrickvonplaten). The Authors' code can be found [here](https://github.com/google/trax/tree/master/trax/models/reformer). ## Usage tips - Reformer does **not** work with *torch.nn.DataParallel* due to a bug in PyTorch, see [issue #36035](https://github.com/pytorch/pytorch/issues/36035). - Use Axial position encoding (see below for more details). It’s a mechanism to avoid having a huge positional encoding matrix (when the sequence length is very big) by factorizing it into smaller matrices. - Replace traditional attention by LSH (local-sensitive hashing) attention (see below for more details). It’s a technique to avoid computing the full product query-key in the attention layers. - Avoid storing the intermediate results of each layer by using reversible transformer layers to obtain them during the backward pass (subtracting the residuals from the input of the next layer gives them back) or recomputing them for results inside a given layer (less efficient than storing them but saves memory). - Compute the feedforward operations by chunks and not on the whole batch. ### Axial Positional Encodings Axial Positional Encodings were first implemented in Google's [trax library](https://github.com/google/trax/blob/4d99ad4965bab1deba227539758d59f0df0fef48/trax/layers/research/position_encodings.py#L29) and developed by the authors of this model's paper. In models that are treating very long input sequences, the conventional position id encodings store an embeddings vector of size \\(d\\) being the `config.hidden_size` for every position \\(i, \ldots, n_s\\), with \\(n_s\\) being `config.max_embedding_size`. This means that having a sequence length of \\(n_s = 2^{19} \approx 0.5M\\) and a `config.hidden_size` of \\(d = 2^{10} \approx 1000\\) would result in a position encoding matrix: $$X_{i,j}, \text{ with } i \in \left[1,\ldots, d\right] \text{ and } j \in \left[1,\ldots, n_s\right]$$ which alone has over 500M parameters to store. Axial positional encodings factorize \\(X_{i,j}\\) into two matrices: $$X^{1}_{i,j}, \text{ with } i \in \left[1,\ldots, d^1\right] \text{ and } j \in \left[1,\ldots, n_s^1\right]$$ and $$X^{2}_{i,j}, \text{ with } i \in \left[1,\ldots, d^2\right] \text{ and } j \in \left[1,\ldots, n_s^2\right]$$ with: $$d = d^1 + d^2 \text{ and } n_s = n_s^1 \times n_s^2 .$$ Therefore the following holds: $$X_{i,j} = \begin{cases} X^{1}_{i, k}, & \text{if }\ i < d^1 \text{ with } k = j \mod n_s^1 \\ X^{2}_{i - d^1, l}, & \text{if } i \ge d^1 \text{ with } l = \lfloor\frac{j}{n_s^1}\rfloor \end{cases}$$ Intuitively, this means that a position embedding vector \\(x_j \in \mathbb{R}^{d}\\) is now the composition of two factorized embedding vectors: \\(x^1_{k, l} + x^2_{l, k}\\), where as the `config.max_embedding_size` dimension \\(j\\) is factorized into \\(k \text{ and } l\\). This design ensures that each position embedding vector \\(x_j\\) is unique. Using the above example again, axial position encoding with \\(d^1 = 2^9, d^2 = 2^9, n_s^1 = 2^9, n_s^2 = 2^{10}\\) can drastically reduced the number of parameters from 500 000 000 to \\(2^{18} + 2^{19} \approx 780 000\\) parameters, this means 85% less memory usage. In practice, the parameter `config.axial_pos_embds_dim` is set to a tuple \\((d^1, d^2)\\) which sum has to be equal to `config.hidden_size` and `config.axial_pos_shape` is set to a tuple \\((n_s^1, n_s^2)\\) which product has to be equal to `config.max_embedding_size`, which during training has to be equal to the *sequence length* of the `input_ids`. ### LSH Self Attention In Locality sensitive hashing (LSH) self attention the key and query projection weights are tied. Therefore, the key query embedding vectors are also tied. LSH self attention uses the locality sensitive hashing mechanism proposed in [Practical and Optimal LSH for Angular Distance](https://arxiv.org/abs/1509.02897) to assign each of the tied key query embedding vectors to one of `config.num_buckets` possible buckets. The premise is that the more "similar" key query embedding vectors (in terms of *cosine similarity*) are to each other, the more likely they are assigned to the same bucket. The accuracy of the LSH mechanism can be improved by increasing `config.num_hashes` or directly the argument `num_hashes` of the forward function so that the output of the LSH self attention better approximates the output of the "normal" full self attention. The buckets are then sorted and chunked into query key embedding vector chunks each of length `config.lsh_chunk_length`. For each chunk, the query embedding vectors attend to its key vectors (which are tied to themselves) and to the key embedding vectors of `config.lsh_num_chunks_before` previous neighboring chunks and `config.lsh_num_chunks_after` following neighboring chunks. For more information, see the [original Paper](https://arxiv.org/abs/2001.04451) or this great [blog post](https://www.pragmatic.ml/reformer-deep-dive/). Note that `config.num_buckets` can also be factorized into a list \\((n_{\text{buckets}}^1, n_{\text{buckets}}^2)\\). This way instead of assigning the query key embedding vectors to one of \\((1,\ldots, n_{\text{buckets}})\\) they are assigned to one of \\((1-1,\ldots, n_{\text{buckets}}^1-1, \ldots, 1-n_{\text{buckets}}^2, \ldots, n_{\text{buckets}}^1-n_{\text{buckets}}^2)\\). This is crucial for very long sequences to save memory. When training a model from scratch, it is recommended to leave `config.num_buckets=None`, so that depending on the sequence length a good value for `num_buckets` is calculated on the fly. This value will then automatically be saved in the config and should be reused for inference. Using LSH self attention, the memory and time complexity of the query-key matmul operation can be reduced from \\(\mathcal{O}(n_s \times n_s)\\) to \\(\mathcal{O}(n_s \times \log(n_s))\\), which usually represents the memory and time bottleneck in a transformer model, with \\(n_s\\) being the sequence length. ### Local Self Attention Local self attention is essentially a "normal" self attention layer with key, query and value projections, but is chunked so that in each chunk of length `config.local_chunk_length` the query embedding vectors only attends to the key embedding vectors in its chunk and to the key embedding vectors of `config.local_num_chunks_before` previous neighboring chunks and `config.local_num_chunks_after` following neighboring chunks. Using Local self attention, the memory and time complexity of the query-key matmul operation can be reduced from \\(\mathcal{O}(n_s \times n_s)\\) to \\(\mathcal{O}(n_s \times \log(n_s))\\), which usually represents the memory and time bottleneck in a transformer model, with \\(n_s\\) being the sequence length. ### Training During training, we must ensure that the sequence length is set to a value that can be divided by the least common multiple of `config.lsh_chunk_length` and `config.local_chunk_length` and that the parameters of the Axial Positional Encodings are correctly set as described above. Reformer is very memory efficient so that the model can easily be trained on sequences as long as 64000 tokens. For training, the [`ReformerModelWithLMHead`] should be used as follows: ```python input_ids = tokenizer.encode("This is a sentence from the training data", return_tensors="pt") loss = model(input_ids, labels=input_ids)[0] ``` ## Resources - [Text classification task guide](../tasks/sequence_classification) - [Question answering task guide](../tasks/question_answering) - [Causal language modeling task guide](../tasks/language_modeling) - [Masked language modeling task guide](../tasks/masked_language_modeling) ## ReformerConfig [[autodoc]] ReformerConfig ## ReformerTokenizer [[autodoc]] ReformerTokenizer - save_vocabulary ## ReformerTokenizerFast [[autodoc]] ReformerTokenizerFast ## ReformerModel [[autodoc]] ReformerModel - forward ## ReformerModelWithLMHead [[autodoc]] ReformerModelWithLMHead - forward ## ReformerForMaskedLM [[autodoc]] ReformerForMaskedLM - forward ## ReformerForSequenceClassification [[autodoc]] ReformerForSequenceClassification - forward ## ReformerForQuestionAnswering [[autodoc]] ReformerForQuestionAnswering - forward
transformers/docs/source/en/model_doc/reformer.md/0
{ "file_path": "transformers/docs/source/en/model_doc/reformer.md", "repo_id": "transformers", "token_count": 3186 }
25
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # SEW-D ## Overview SEW-D (Squeezed and Efficient Wav2Vec with Disentangled attention) was proposed in [Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition](https://arxiv.org/abs/2109.06870) by Felix Wu, Kwangyoun Kim, Jing Pan, Kyu Han, Kilian Q. Weinberger, Yoav Artzi. The abstract from the paper is the following: *This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.* This model was contributed by [anton-l](https://huggingface.co/anton-l). ## Usage tips - SEW-D is a speech model that accepts a float array corresponding to the raw waveform of the speech signal. - SEWDForCTC is fine-tuned using connectionist temporal classification (CTC) so the model output has to be decoded using [`Wav2Vec2CTCTokenizer`]. ## Resources - [Audio classification task guide](../tasks/audio_classification) - [Automatic speech recognition task guide](../tasks/asr) ## SEWDConfig [[autodoc]] SEWDConfig ## SEWDModel [[autodoc]] SEWDModel - forward ## SEWDForCTC [[autodoc]] SEWDForCTC - forward ## SEWDForSequenceClassification [[autodoc]] SEWDForSequenceClassification - forward
transformers/docs/source/en/model_doc/sew-d.md/0
{ "file_path": "transformers/docs/source/en/model_doc/sew-d.md", "repo_id": "transformers", "token_count": 732 }
26
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Hybrid Vision Transformer (ViT Hybrid) <Tip warning={true}> This model is in maintenance mode only, we don't accept any new PRs changing its code. If you run into any issues running this model, please reinstall the last version that supported this model: v4.40.2. You can do so by running the following command: `pip install -U transformers==4.40.2`. </Tip> ## Overview The hybrid Vision Transformer (ViT) model was proposed in [An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale](https://arxiv.org/abs/2010.11929) by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby. It's the first paper that successfully trains a Transformer encoder on ImageNet, attaining very good results compared to familiar convolutional architectures. ViT hybrid is a slight variant of the [plain Vision Transformer](vit), by leveraging a convolutional backbone (specifically, [BiT](bit)) whose features are used as initial "tokens" for the Transformer. The abstract from the paper is the following: *While the Transformer architecture has become the de-facto standard for natural language processing tasks, its applications to computer vision remain limited. In vision, attention is either applied in conjunction with convolutional networks, or used to replace certain components of convolutional networks while keeping their overall structure in place. We show that this reliance on CNNs is not necessary and a pure transformer applied directly to sequences of image patches can perform very well on image classification tasks. When pre-trained on large amounts of data and transferred to multiple mid-sized or small image recognition benchmarks (ImageNet, CIFAR-100, VTAB, etc.), Vision Transformer (ViT) attains excellent results compared to state-of-the-art convolutional networks while requiring substantially fewer computational resources to train.* This model was contributed by [nielsr](https://huggingface.co/nielsr). The original code (written in JAX) can be found [here](https://github.com/google-research/vision_transformer). ## Using Scaled Dot Product Attention (SDPA) PyTorch includes a native scaled dot-product attention (SDPA) operator as part of `torch.nn.functional`. This function encompasses several implementations that can be applied depending on the inputs and the hardware in use. See the [official documentation](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html) or the [GPU Inference](https://huggingface.co/docs/transformers/main/en/perf_infer_gpu_one#pytorch-scaled-dot-product-attention) page for more information. SDPA is used by default for `torch>=2.1.1` when an implementation is available, but you may also set `attn_implementation="sdpa"` in `from_pretrained()` to explicitly request SDPA to be used. ``` from transformers import ViTHybridForImageClassification model = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384", attn_implementation="sdpa", torch_dtype=torch.float16) ... ``` For the best speedups, we recommend loading the model in half-precision (e.g. `torch.float16` or `torch.bfloat16`). On a local benchmark (A100-40GB, PyTorch 2.3.0, OS Ubuntu 22.04) with `float32` and `google/vit-hybrid-base-bit-384` model, we saw the following speedups during inference. | Batch size | Average inference time (ms), eager mode | Average inference time (ms), sdpa model | Speed up, Sdpa / Eager (x) | |--------------|-------------------------------------------|-------------------------------------------|------------------------------| | 1 | 29 | 18 | 1.61 | | 2 | 26 | 18 | 1.44 | | 4 | 25 | 18 | 1.39 | | 8 | 34 | 24 | 1.42 | ## Resources A list of official Hugging Face and community (indicated by 🌎) resources to help you get started with ViT Hybrid. <PipelineTag pipeline="image-classification"/> - [`ViTHybridForImageClassification`] is supported by this [example script](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) and [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb). - See also: [Image classification task guide](../tasks/image_classification) If you're interested in submitting a resource to be included here, please feel free to open a Pull Request and we'll review it! The resource should ideally demonstrate something new instead of duplicating an existing resource. ## ViTHybridConfig [[autodoc]] ViTHybridConfig ## ViTHybridImageProcessor [[autodoc]] ViTHybridImageProcessor - preprocess ## ViTHybridModel [[autodoc]] ViTHybridModel - forward ## ViTHybridForImageClassification [[autodoc]] ViTHybridForImageClassification - forward
transformers/docs/source/en/model_doc/vit_hybrid.md/0
{ "file_path": "transformers/docs/source/en/model_doc/vit_hybrid.md", "repo_id": "transformers", "token_count": 2002 }
27
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # XLM-ProphetNet <Tip warning={true}> This model is in maintenance mode only, we don't accept any new PRs changing its code. If you run into any issues running this model, please reinstall the last version that supported this model: v4.40.2. You can do so by running the following command: `pip install -U transformers==4.40.2`. </Tip> <div class="flex flex-wrap space-x-1"> <a href="https://huggingface.co/models?filter=xprophetnet"> <img alt="Models" src="https://img.shields.io/badge/All_model_pages-xprophetnet-blueviolet"> </a> <a href="https://huggingface.co/spaces/docs-demos/xprophetnet-large-wiki100-cased-xglue-ntg"> <img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue"> </a> </div> **DISCLAIMER:** If you see something strange, file a [Github Issue](https://github.com/huggingface/transformers/issues/new?assignees=&labels=&template=bug-report.md&title) and assign @patrickvonplaten ## Overview The XLM-ProphetNet model was proposed in [ProphetNet: Predicting Future N-gram for Sequence-to-Sequence Pre-training,](https://arxiv.org/abs/2001.04063) by Yu Yan, Weizhen Qi, Yeyun Gong, Dayiheng Liu, Nan Duan, Jiusheng Chen, Ruofei Zhang, Ming Zhou on 13 Jan, 2020. XLM-ProphetNet is an encoder-decoder model and can predict n-future tokens for "ngram" language modeling instead of just the next token. Its architecture is identical to ProhpetNet, but the model was trained on the multi-lingual "wiki100" Wikipedia dump. XLM-ProphetNet's model architecture and pretraining objective is same as ProphetNet, but XLM-ProphetNet was pre-trained on the cross-lingual dataset XGLUE. The abstract from the paper is the following: *In this paper, we present a new sequence-to-sequence pretraining model called ProphetNet, which introduces a novel self-supervised objective named future n-gram prediction and the proposed n-stream self-attention mechanism. Instead of the optimization of one-step ahead prediction in traditional sequence-to-sequence model, the ProphetNet is optimized by n-step ahead prediction which predicts the next n tokens simultaneously based on previous context tokens at each time step. The future n-gram prediction explicitly encourages the model to plan for the future tokens and prevent overfitting on strong local correlations. We pre-train ProphetNet using a base scale dataset (16GB) and a large scale dataset (160GB) respectively. Then we conduct experiments on CNN/DailyMail, Gigaword, and SQuAD 1.1 benchmarks for abstractive summarization and question generation tasks. Experimental results show that ProphetNet achieves new state-of-the-art results on all these datasets compared to the models using the same scale pretraining corpus.* The Authors' code can be found [here](https://github.com/microsoft/ProphetNet). ## Resources - [Causal language modeling task guide](../tasks/language_modeling) - [Translation task guide](../tasks/translation) - [Summarization task guide](../tasks/summarization) ## XLMProphetNetConfig [[autodoc]] XLMProphetNetConfig ## XLMProphetNetTokenizer [[autodoc]] XLMProphetNetTokenizer ## XLMProphetNetModel [[autodoc]] XLMProphetNetModel ## XLMProphetNetEncoder [[autodoc]] XLMProphetNetEncoder ## XLMProphetNetDecoder [[autodoc]] XLMProphetNetDecoder ## XLMProphetNetForConditionalGeneration [[autodoc]] XLMProphetNetForConditionalGeneration ## XLMProphetNetForCausalLM [[autodoc]] XLMProphetNetForCausalLM
transformers/docs/source/en/model_doc/xlm-prophetnet.md/0
{ "file_path": "transformers/docs/source/en/model_doc/xlm-prophetnet.md", "repo_id": "transformers", "token_count": 1218 }
28
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Training on TPU with TensorFlow <Tip> If you don't need long explanations and just want TPU code samples to get started with, check out [our TPU example notebook!](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) </Tip> ### What is a TPU? A TPU is a **Tensor Processing Unit.** They are hardware designed by Google, which are used to greatly speed up the tensor computations within neural networks, much like GPUs. They can be used for both network training and inference. They are generally accessed through Google’s cloud services, but small TPUs can also be accessed directly for free through Google Colab and Kaggle Kernels. Because [all TensorFlow models in 🤗 Transformers are Keras models](https://huggingface.co/blog/tensorflow-philosophy), most of the methods in this document are generally applicable to TPU training for any Keras model! However, there are a few points that are specific to the HuggingFace ecosystem (hug-o-system?) of Transformers and Datasets, and we’ll make sure to flag them up when we get to them. ### What kinds of TPU are available? New users are often very confused by the range of TPUs, and the different ways to access them. The first key distinction to understand is the difference between **TPU Nodes** and **TPU VMs.** When you use a **TPU Node**, you are effectively indirectly accessing a remote TPU. You will need a separate VM, which will initialize your network and data pipeline and then forward them to the remote node. When you use a TPU on Google Colab, you are accessing it in the **TPU Node** style. Using TPU Nodes can have some quite unexpected behaviour for people who aren’t used to them! In particular, because the TPU is located on a physically different system to the machine you’re running your Python code on, your data cannot be local to your machine - any data pipeline that loads from your machine’s internal storage will totally fail! Instead, data must be stored in Google Cloud Storage where your data pipeline can still access it, even when the pipeline is running on the remote TPU node. <Tip> If you can fit all your data in memory as `np.ndarray` or `tf.Tensor`, then you can `fit()` on that data even when using Colab or a TPU Node, without needing to upload it to Google Cloud Storage. </Tip> <Tip> **🤗Specific Hugging Face Tip🤗:** The methods `Dataset.to_tf_dataset()` and its higher-level wrapper `model.prepare_tf_dataset()` , which you will see throughout our TF code examples, will both fail on a TPU Node. The reason for this is that even though they create a `tf.data.Dataset` it is not a “pure” `tf.data` pipeline and uses `tf.numpy_function` or `Dataset.from_generator()` to stream data from the underlying HuggingFace `Dataset`. This HuggingFace `Dataset` is backed by data that is on a local disc and which the remote TPU Node will not be able to read. </Tip> The second way to access a TPU is via a **TPU VM.** When using a TPU VM, you connect directly to the machine that the TPU is attached to, much like training on a GPU VM. TPU VMs are generally easier to work with, particularly when it comes to your data pipeline. All of the above warnings do not apply to TPU VMs! This is an opinionated document, so here’s our opinion: **Avoid using TPU Node if possible.** It is more confusing and more difficult to debug than TPU VMs. It is also likely to be unsupported in future - Google’s latest TPU, TPUv4, can only be accessed as a TPU VM, which suggests that TPU Nodes are increasingly going to become a “legacy” access method. However, we understand that the only free TPU access is on Colab and Kaggle Kernels, which uses TPU Node - so we’ll try to explain how to handle it if you have to! Check the [TPU example notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) for code samples that explain this in more detail. ### What sizes of TPU are available? A single TPU (a v2-8/v3-8/v4-8) runs 8 replicas. TPUs exist in **pods** that can run hundreds or thousands of replicas simultaneously. When you use more than a single TPU but less than a whole pod (for example, a v3-32), your TPU fleet is referred to as a **pod slice.** When you access a free TPU via Colab, you generally get a single v2-8 TPU. ### I keep hearing about this XLA thing. What’s XLA, and how does it relate to TPUs? XLA is an optimizing compiler, used by both TensorFlow and JAX. In JAX it is the only compiler, whereas in TensorFlow it is optional (but mandatory on TPU!). The easiest way to enable it when training a Keras model is to pass the argument `jit_compile=True` to `model.compile()`. If you don’t get any errors and performance is good, that’s a great sign that you’re ready to move to TPU! Debugging on TPU is generally a bit harder than on CPU/GPU, so we recommend getting your code running on CPU/GPU with XLA first before trying it on TPU. You don’t have to train for long, of course - just for a few steps to make sure that your model and data pipeline are working like you expect them to. <Tip> XLA compiled code is usually faster - so even if you’re not planning to run on TPU, adding `jit_compile=True` can improve your performance. Be sure to note the caveats below about XLA compatibility, though! </Tip> <Tip warning={true}> **Tip born of painful experience:** Although using `jit_compile=True` is a good way to get a speed boost and test if your CPU/GPU code is XLA-compatible, it can actually cause a lot of problems if you leave it in when actually training on TPU. XLA compilation will happen implicitly on TPU, so remember to remove that line before actually running your code on a TPU! </Tip> ### How do I make my model XLA compatible? In many cases, your code is probably XLA-compatible already! However, there are a few things that work in normal TensorFlow that don’t work in XLA. We’ve distilled them into three core rules below: <Tip> **🤗Specific HuggingFace Tip🤗:** We’ve put a lot of effort into rewriting our TensorFlow models and loss functions to be XLA-compatible. Our models and loss functions generally obey rule #1 and #2 by default, so you can skip over them if you’re using `transformers` models. Don’t forget about these rules when writing your own models and loss functions, though! </Tip> #### XLA Rule #1: Your code cannot have “data-dependent conditionals” What that means is that any `if` statement cannot depend on values inside a `tf.Tensor`. For example, this code block cannot be compiled with XLA! ```python if tf.reduce_sum(tensor) > 10: tensor = tensor / 2.0 ``` This might seem very restrictive at first, but most neural net code doesn’t need to do this. You can often get around this restriction by using `tf.cond` (see the documentation [here](https://www.tensorflow.org/api_docs/python/tf/cond)) or by removing the conditional and finding a clever math trick with indicator variables instead, like so: ```python sum_over_10 = tf.cast(tf.reduce_sum(tensor) > 10, tf.float32) tensor = tensor / (1.0 + sum_over_10) ``` This code has exactly the same effect as the code above, but by avoiding a conditional, we ensure it will compile with XLA without problems! #### XLA Rule #2: Your code cannot have “data-dependent shapes” What this means is that the shape of all of the `tf.Tensor` objects in your code cannot depend on their values. For example, the function `tf.unique` cannot be compiled with XLA, because it returns a `tensor` containing one instance of each unique value in the input. The shape of this output will obviously be different depending on how repetitive the input `Tensor` was, and so XLA refuses to handle it! In general, most neural network code obeys rule #2 by default. However, there are a few common cases where it becomes a problem. One very common one is when you use **label masking**, setting your labels to a negative value to indicate that those positions should be ignored when computing the loss. If you look at NumPy or PyTorch loss functions that support label masking, you will often see code like this that uses [boolean indexing](https://numpy.org/doc/stable/user/basics.indexing.html#boolean-array-indexing): ```python label_mask = labels >= 0 masked_outputs = outputs[label_mask] masked_labels = labels[label_mask] loss = compute_loss(masked_outputs, masked_labels) mean_loss = torch.mean(loss) ``` This code is totally fine in NumPy or PyTorch, but it breaks in XLA! Why? Because the shape of `masked_outputs` and `masked_labels` depends on how many positions are masked - that makes it a **data-dependent shape.** However, just like for rule #1, we can often rewrite this code to yield exactly the same output without any data-dependent shapes. ```python label_mask = tf.cast(labels >= 0, tf.float32) loss = compute_loss(outputs, labels) loss = loss * label_mask # Set negative label positions to 0 mean_loss = tf.reduce_sum(loss) / tf.reduce_sum(label_mask) ``` Here, we avoid data-dependent shapes by computing the loss for every position, but zeroing out the masked positions in both the numerator and denominator when we calculate the mean, which yields exactly the same result as the first block while maintaining XLA compatibility. Note that we use the same trick as in rule #1 - converting a `tf.bool` to `tf.float32` and using it as an indicator variable. This is a really useful trick, so remember it if you need to convert your own code to XLA! #### XLA Rule #3: XLA will need to recompile your model for every different input shape it sees This is the big one. What this means is that if your input shapes are very variable, XLA will have to recompile your model over and over, which will create huge performance problems. This commonly arises in NLP models, where input texts have variable lengths after tokenization. In other modalities, static shapes are more common and this rule is much less of a problem. How can you get around rule #3? The key is **padding** - if you pad all your inputs to the same length, and then use an `attention_mask`, you can get the same results as you’d get from variable shapes, but without any XLA issues. However, excessive padding can cause severe slowdown too - if you pad all your samples to the maximum length in the whole dataset, you might end up with batches consisting endless padding tokens, which will waste a lot of compute and memory! There isn’t a perfect solution to this problem. However, you can try some tricks. One very useful trick is to **pad batches of samples up to a multiple of a number like 32 or 64 tokens.** This often only increases the number of tokens by a small amount, but it hugely reduces the number of unique input shapes, because every input shape now has to be a multiple of 32 or 64. Fewer unique input shapes means fewer XLA compilations! <Tip> **🤗Specific HuggingFace Tip🤗:** Our tokenizers and data collators have methods that can help you here. You can use `padding="max_length"` or `padding="longest"` when calling tokenizers to get them to output padded data. Our tokenizers and data collators also have a `pad_to_multiple_of` argument that you can use to reduce the number of unique input shapes you see! </Tip> ### How do I actually train my model on TPU? Once your training is XLA-compatible and (if you’re using TPU Node / Colab) your dataset has been prepared appropriately, running on TPU is surprisingly easy! All you really need to change in your code is to add a few lines to initialize your TPU, and to ensure that your model and dataset are created inside a `TPUStrategy` scope. Take a look at [our TPU example notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb) to see this in action! ### Summary There was a lot in here, so let’s summarize with a quick checklist you can follow when you want to get your model ready for TPU training: - Make sure your code follows the three rules of XLA - Compile your model with `jit_compile=True` on CPU/GPU and confirm that you can train it with XLA - Either load your dataset into memory or use a TPU-compatible dataset loading approach (see [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb)) - Migrate your code either to Colab (with accelerator set to “TPU”) or a TPU VM on Google Cloud - Add TPU initializer code (see [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb)) - Create your `TPUStrategy` and make sure dataset loading and model creation are inside the `strategy.scope()` (see [notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/tpu_training-tf.ipynb)) - Don’t forget to take `jit_compile=True` out again when you move to TPU! - 🙏🙏🙏🥺🥺🥺 - Call `model.fit()` - You did it!
transformers/docs/source/en/perf_train_tpu_tf.md/0
{ "file_path": "transformers/docs/source/en/perf_train_tpu_tf.md", "repo_id": "transformers", "token_count": 3708 }
29
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # GPTQ <Tip> Try GPTQ quantization with PEFT in this [notebook](https://colab.research.google.com/drive/1_TIrmuKOFhuRRiTWN94iLKUFu6ZX4ceb?usp=sharing) and learn more about it's details in this [blog post](https://huggingface.co/blog/gptq-integration)! </Tip> Both [GPTQModel](https://github.com/ModelCloud/GPTQModel) and [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) libraries implement the GPTQ algorithm, a post-training quantization technique where each row of the weight matrix is quantized independently to find a version of the weights that minimizes error. These weights are quantized to int4, stored as int32 (int4 x 8) and dequantized (restored) to fp16 on the fly during inference. This can save memory by almost 4x because the int4 weights are often dequantized in a fused kernel. You can also expect a substantial speedup in inference due to lower bandwidth requirements for lower bitwidth. [GPTQModel](https://github.com/ModelCloud/GPTQModel) started as a maintained fork of AutoGPTQ but has since differentiated itself with the following major differences. * Model support: GPTQModel continues to support all of the latest LLM models. * Multimodal support: GPTQModel supports accurate quantization of Qwen 2-VL and Ovis 1.6-VL image-to-text models. * Platform support: Linux, macOS (Apple Silicon), and Windows 11. * Hardware support: NVIDIA CUDA, AMD ROCm, Apple Silicon M1/MPS /CPU, Intel/AMD CPU, and Intel Datacenter Max/Arc GPUs. * Asymmetric support: Asymmetric quantization can potentially introduce lower quantization errors compared to symmetric quantization. However, it is not backward compatible with AutoGPTQ, and not all kernels, such as Marlin, support asymmetric quantization. * IPEX kernel for Intel/AMD accelerated CPU and Intel GPU (Datacenter Max/Arc GPUs) support. * Updated Marlin kernel from Neural Magic optimized for A100 (Ampere). * Updated kernels with auto-padding for legacy model support and models with non-uniform in/out-features. * Faster quantization, lower memory usage, and more accurate default quantization via GPTQModel quantization APIs. * User and developer friendly APIs. [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) will likely be deprecated in the future due the lack of continued support for new models and features. Before you begin, make sure the following libraries are installed and updated to the latest release: ```bash pip install --upgrade accelerate optimum transformers ``` Then install either GPTQModel or AutoGPTQ. ```bash pip install gptqmodel --no-build-isolation ``` or ```bash pip install auto-gptq --no-build-isolation ``` To quantize a model (currently only supported for text models), you need to create a [`GPTQConfig`] class and set the number of bits to quantize to, a dataset to calibrate the weights for quantization, and a tokenizer to prepare the dataset. ```py from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig model_id = "facebook/opt-125m" tokenizer = AutoTokenizer.from_pretrained(model_id) gptq_config = GPTQConfig(bits=4, dataset="c4", tokenizer=tokenizer) ``` You could also pass your own dataset as a list of strings, but it is highly recommended to use the same dataset from the GPTQ paper. ```py dataset = ["auto-gptq is an easy-to-use model quantization library with user-friendly apis, based on GPTQ algorithm."] gptq_config = GPTQConfig(bits=4, dataset=dataset, tokenizer=tokenizer) ``` Load a model to quantize and pass the `gptq_config` to the [`~AutoModelForCausalLM.from_pretrained`] method. Set `device_map="auto"` to automatically offload the model to a CPU to help fit the model in memory, and allow the model modules to be moved between the CPU and GPU for quantization. ```py quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", quantization_config=gptq_config) ``` If you're running out of memory because a dataset is too large, disk offloading is not supported. If this is the case, try passing the `max_memory` parameter to allocate the amount of memory to use on your device (GPU and CPU): ```py quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", max_memory={0: "30GiB", 1: "46GiB", "cpu": "30GiB"}, quantization_config=gptq_config) ``` <Tip warning={true}> Depending on your hardware, it can take some time to quantize a model from scratch. It can take ~5 minutes to quantize the [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) model on a free-tier Google Colab GPU, but it'll take ~4 hours to quantize a 175B parameter model on a NVIDIA A100. Before you quantize a model, it is a good idea to check the Hub if a GPTQ-quantized version of the model already exists. </Tip> Once your model is quantized, you can push the model and tokenizer to the Hub where it can be easily shared and accessed. Use the [`~PreTrainedModel.push_to_hub`] method to save the [`GPTQConfig`]: ```py quantized_model.push_to_hub("opt-125m-gptq") tokenizer.push_to_hub("opt-125m-gptq") ``` You could also save your quantized model locally with the [`~PreTrainedModel.save_pretrained`] method. If the model was quantized with the `device_map` parameter, make sure to move the entire model to a GPU or CPU before saving it. For example, to save the model on a CPU: ```py quantized_model.save_pretrained("opt-125m-gptq") tokenizer.save_pretrained("opt-125m-gptq") # if quantized with device_map set quantized_model.to("cpu") quantized_model.save_pretrained("opt-125m-gptq") ``` Reload a quantized model with the [`~PreTrainedModel.from_pretrained`] method, and set `device_map="auto"` to automatically distribute the model on all available GPUs to load the model faster without using more memory than needed. ```py from transformers import AutoModelForCausalLM model = AutoModelForCausalLM.from_pretrained("{your_username}/opt-125m-gptq", device_map="auto") ``` ## Marlin [Marlin](https://github.com/IST-DASLab/marlin) is a 4-bit only CUDA GPTQ kernel, highly optimized for the NVIDIA A100 GPU (Ampere) architecture. Loading, dequantization, and execution of post-dequantized weights are highly parallelized, offering a substantial inference improvement versus the original CUDA GPTQ kernel. Marlin is only available for quantized inference and does not support model quantization. Marlin inference can be activated with the `backend` parameter in [`GPTQConfig`]. ```py from transformers import AutoModelForCausalLM, GPTQConfig model = AutoModelForCausalLM.from_pretrained("{your_username}/opt-125m-gptq", device_map="auto", quantization_config=GPTQConfig(bits=4, backend="marlin")) ``` ## ExLlama [ExLlama](https://github.com/turboderp/exllama) is a CUDA implementation of the [Llama](model_doc/llama) model that is designed for faster inference with 4-bit GPTQ weights (check out these [benchmarks](https://github.com/huggingface/optimum/tree/main/tests/benchmark#gptq-benchmark)). The ExLlama kernel is activated by default when you create a [`GPTQConfig`] object. To boost inference speed even further, use the [ExLlamaV2](https://github.com/turboderp/exllamav2) kernels by configuring the `exllama_config` parameter: ```py import torch from transformers import AutoModelForCausalLM, GPTQConfig gptq_config = GPTQConfig(bits=4, exllama_config={"version":2}) model = AutoModelForCausalLM.from_pretrained("{your_username}/opt-125m-gptq", device_map="auto", quantization_config=gptq_config) ``` <Tip warning={true}> Only 4-bit models are supported, and we recommend deactivating the ExLlama kernels if you're finetuning a quantized model with PEFT. </Tip> The ExLlama kernels are only supported when the entire model is on the GPU. If you're doing inference on a CPU with AutoGPTQ or GPTQModel, then you'll need to disable the ExLlama kernel. This overwrites the attributes related to the ExLlama kernels in the quantization config of the config.json file. ```py import torch from transformers import AutoModelForCausalLM, GPTQConfig gptq_config = GPTQConfig(bits=4, use_exllama=False) model = AutoModelForCausalLM.from_pretrained("{your_username}/opt-125m-gptq", device_map="cpu", quantization_config=gptq_config) ```
transformers/docs/source/en/quantization/gptq.md/0
{ "file_path": "transformers/docs/source/en/quantization/gptq.md", "repo_id": "transformers", "token_count": 2644 }
30
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Image tasks with IDEFICS [[open-in-colab]] While individual tasks can be tackled by fine-tuning specialized models, an alternative approach that has recently emerged and gained popularity is to use large models for a diverse set of tasks without fine-tuning. For instance, large language models can handle such NLP tasks as summarization, translation, classification, and more. This approach is no longer limited to a single modality, such as text, and in this guide, we will illustrate how you can solve image-text tasks with a large multimodal model called IDEFICS. [IDEFICS](../model_doc/idefics) is an open-access vision and language model based on [Flamingo](https://huggingface.co/papers/2204.14198), a state-of-the-art visual language model initially developed by DeepMind. The model accepts arbitrary sequences of image and text inputs and generates coherent text as output. It can answer questions about images, describe visual content, create stories grounded in multiple images, and so on. IDEFICS comes in two variants - [80 billion parameters](https://huggingface.co/HuggingFaceM4/idefics-80b) and [9 billion parameters](https://huggingface.co/HuggingFaceM4/idefics-9b), both of which are available on the 🤗 Hub. For each variant, you can also find fine-tuned instructed versions of the model adapted for conversational use cases. This model is exceptionally versatile and can be used for a wide range of image and multimodal tasks. However, being a large model means it requires significant computational resources and infrastructure. It is up to you to decide whether this approach suits your use case better than fine-tuning specialized models for each individual task. In this guide, you'll learn how to: - [Load IDEFICS](#loading-the-model) and [load the quantized version of the model](#quantized-model) - Use IDEFICS for: - [Image captioning](#image-captioning) - [Prompted image captioning](#prompted-image-captioning) - [Few-shot prompting](#few-shot-prompting) - [Visual question answering](#visual-question-answering) - [Image classification](#image-classification) - [Image-guided text generation](#image-guided-text-generation) - [Run inference in batch mode](#running-inference-in-batch-mode) - [Run IDEFICS instruct for conversational use](#idefics-instruct-for-conversational-use) Before you begin, make sure you have all the necessary libraries installed. ```bash pip install -q bitsandbytes sentencepiece accelerate transformers ``` <Tip> To run the following examples with a non-quantized version of the model checkpoint you will need at least 20GB of GPU memory. </Tip> ## Loading the model Let's start by loading the model's 9 billion parameters checkpoint: ```py >>> checkpoint = "HuggingFaceM4/idefics-9b" ``` Just like for other Transformers models, you need to load a processor and the model itself from the checkpoint. The IDEFICS processor wraps a [`LlamaTokenizer`] and IDEFICS image processor into a single processor to take care of preparing text and image inputs for the model. ```py >>> import torch >>> from transformers import IdeficsForVisionText2Text, AutoProcessor >>> processor = AutoProcessor.from_pretrained(checkpoint) >>> model = IdeficsForVisionText2Text.from_pretrained(checkpoint, torch_dtype=torch.bfloat16, device_map="auto") ``` Setting `device_map` to `"auto"` will automatically determine how to load and store the model weights in the most optimized manner given existing devices. ### Quantized model If high-memory GPU availability is an issue, you can load the quantized version of the model. To load the model and the processor in 4bit precision, pass a `BitsAndBytesConfig` to the `from_pretrained` method and the model will be compressed on the fly while loading. ```py >>> import torch >>> from transformers import IdeficsForVisionText2Text, AutoProcessor, BitsAndBytesConfig >>> quantization_config = BitsAndBytesConfig( ... load_in_4bit=True, ... bnb_4bit_compute_dtype=torch.float16, ... ) >>> processor = AutoProcessor.from_pretrained(checkpoint) >>> model = IdeficsForVisionText2Text.from_pretrained( ... checkpoint, ... quantization_config=quantization_config, ... device_map="auto" ... ) ``` Now that you have the model loaded in one of the suggested ways, let's move on to exploring tasks that you can use IDEFICS for. ## Image captioning Image captioning is the task of predicting a caption for a given image. A common application is to aid visually impaired people navigate through different situations, for instance, explore image content online. To illustrate the task, get an image to be captioned, e.g.: <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-im-captioning.jpg" alt="Image of a puppy in a flower bed"/> </div> Photo by [Hendo Wang](https://unsplash.com/@hendoo). IDEFICS accepts text and image prompts. However, to caption an image, you do not have to provide a text prompt to the model, only the preprocessed input image. Without a text prompt, the model will start generating text from the BOS (beginning-of-sequence) token thus creating a caption. As image input to the model, you can use either an image object (`PIL.Image`) or a url from which the image can be retrieved. ```py >>> prompt = [ ... "https://images.unsplash.com/photo-1583160247711-2191776b4b91?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3542&q=80", ... ] >>> inputs = processor(prompt, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, max_new_tokens=10, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_text[0]) A puppy in a flower bed ``` <Tip> It is a good idea to include the `bad_words_ids` in the call to `generate` to avoid errors arising when increasing the `max_new_tokens`: the model will want to generate a new `<image>` or `<fake_token_around_image>` token when there is no image being generated by the model. You can set it on-the-fly as in this guide, or store in the `GenerationConfig` as described in the [Text generation strategies](../generation_strategies) guide. </Tip> ## Prompted image captioning You can extend image captioning by providing a text prompt, which the model will continue given the image. Let's take another image to illustrate: <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-prompted-im-captioning.jpg" alt="Image of the Eiffel Tower at night"/> </div> Photo by [Denys Nevozhai](https://unsplash.com/@dnevozhai). Textual and image prompts can be passed to the model's processor as a single list to create appropriate inputs. ```py >>> prompt = [ ... "https://images.unsplash.com/photo-1543349689-9a4d426bee8e?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3501&q=80", ... "This is an image of ", ... ] >>> inputs = processor(prompt, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, max_new_tokens=10, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_text[0]) This is an image of the Eiffel Tower in Paris, France. ``` ## Few-shot prompting While IDEFICS demonstrates great zero-shot results, your task may require a certain format of the caption, or come with other restrictions or requirements that increase task's complexity. Few-shot prompting can be used to enable in-context learning. By providing examples in the prompt, you can steer the model to generate results that mimic the format of given examples. Let's use the previous image of the Eiffel Tower as an example for the model and build a prompt that demonstrates to the model that in addition to learning what the object in an image is, we would also like to get some interesting information about it. Then, let's see, if we can get the same response format for an image of the Statue of Liberty: <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-few-shot.jpg" alt="Image of the Statue of Liberty"/> </div> Photo by [Juan Mayobre](https://unsplash.com/@jmayobres). ```py >>> prompt = ["User:", ... "https://images.unsplash.com/photo-1543349689-9a4d426bee8e?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3501&q=80", ... "Describe this image.\nAssistant: An image of the Eiffel Tower at night. Fun fact: the Eiffel Tower is the same height as an 81-storey building.\n", ... "User:", ... "https://images.unsplash.com/photo-1524099163253-32b7f0256868?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3387&q=80", ... "Describe this image.\nAssistant:" ... ] >>> inputs = processor(prompt, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, max_new_tokens=30, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_text[0]) User: Describe this image. Assistant: An image of the Eiffel Tower at night. Fun fact: the Eiffel Tower is the same height as an 81-storey building. User: Describe this image. Assistant: An image of the Statue of Liberty. Fun fact: the Statue of Liberty is 151 feet tall. ``` Notice that just from a single example (i.e., 1-shot) the model has learned how to perform the task. For more complex tasks, feel free to experiment with a larger number of examples (e.g., 3-shot, 5-shot, etc.). ## Visual question answering Visual Question Answering (VQA) is the task of answering open-ended questions based on an image. Similar to image captioning it can be used in accessibility applications, but also in education (reasoning about visual materials), customer service (questions about products based on images), and image retrieval. Let's get a new image for this task: <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg" alt="Image of a couple having a picnic"/> </div> Photo by [Jarritos Mexican Soda](https://unsplash.com/@jarritos). You can steer the model from image captioning to visual question answering by prompting it with appropriate instructions: ```py >>> prompt = [ ... "Instruction: Provide an answer to the question. Use the image to answer.\n", ... "https://images.unsplash.com/photo-1623944889288-cd147dbb517c?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3540&q=80", ... "Question: Where are these people and what's the weather like? Answer:" ... ] >>> inputs = processor(prompt, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, max_new_tokens=20, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_text[0]) Instruction: Provide an answer to the question. Use the image to answer. Question: Where are these people and what's the weather like? Answer: They're in a park in New York City, and it's a beautiful day. ``` ## Image classification IDEFICS is capable of classifying images into different categories without being explicitly trained on data containing labeled examples from those specific categories. Given a list of categories and using its image and text understanding capabilities, the model can infer which category the image likely belongs to. Say, we have this image of a vegetable stand: <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-classification.jpg" alt="Image of a vegetable stand"/> </div> Photo by [Peter Wendt](https://unsplash.com/@peterwendt). We can instruct the model to classify the image into one of the categories that we have: ```py >>> categories = ['animals','vegetables', 'city landscape', 'cars', 'office'] >>> prompt = [f"Instruction: Classify the following image into a single category from the following list: {categories}.\n", ... "https://images.unsplash.com/photo-1471193945509-9ad0617afabf?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3540&q=80", ... "Category: " ... ] >>> inputs = processor(prompt, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, max_new_tokens=6, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_text[0]) Instruction: Classify the following image into a single category from the following list: ['animals', 'vegetables', 'city landscape', 'cars', 'office']. Category: Vegetables ``` In the example above we instruct the model to classify the image into a single category, however, you can also prompt the model to do rank classification. ## Image-guided text generation For more creative applications, you can use image-guided text generation to generate text based on an image. This can be useful to create descriptions of products, ads, descriptions of a scene, etc. Let's prompt IDEFICS to write a story based on a simple image of a red door: <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-story-generation.jpg" alt="Image of a red door with a pumpkin on the steps"/> </div> Photo by [Craig Tidball](https://unsplash.com/@devonshiremedia). ```py >>> prompt = ["Instruction: Use the image to write a story. \n", ... "https://images.unsplash.com/photo-1517086822157-2b0358e7684a?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=2203&q=80", ... "Story: \n"] >>> inputs = processor(prompt, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, num_beams=2, max_new_tokens=200, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_text[0]) Instruction: Use the image to write a story. Story: Once upon a time, there was a little girl who lived in a house with a red door. She loved her red door. It was the prettiest door in the whole world. One day, the little girl was playing in her yard when she noticed a man standing on her doorstep. He was wearing a long black coat and a top hat. The little girl ran inside and told her mother about the man. Her mother said, “Don’t worry, honey. He’s just a friendly ghost.” The little girl wasn’t sure if she believed her mother, but she went outside anyway. When she got to the door, the man was gone. The next day, the little girl was playing in her yard again when she noticed the man standing on her doorstep. He was wearing a long black coat and a top hat. The little girl ran ``` Looks like IDEFICS noticed the pumpkin on the doorstep and went with a spooky Halloween story about a ghost. <Tip> For longer outputs like this, you will greatly benefit from tweaking the text generation strategy. This can help you significantly improve the quality of the generated output. Check out [Text generation strategies](../generation_strategies) to learn more. </Tip> ## Running inference in batch mode All of the earlier sections illustrated IDEFICS for a single example. In a very similar fashion, you can run inference for a batch of examples by passing a list of prompts: ```py >>> prompts = [ ... [ "https://images.unsplash.com/photo-1543349689-9a4d426bee8e?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3501&q=80", ... "This is an image of ", ... ], ... [ "https://images.unsplash.com/photo-1623944889288-cd147dbb517c?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3540&q=80", ... "This is an image of ", ... ], ... [ "https://images.unsplash.com/photo-1471193945509-9ad0617afabf?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3540&q=80", ... "This is an image of ", ... ], ... ] >>> inputs = processor(prompts, return_tensors="pt").to("cuda") >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, max_new_tokens=10, bad_words_ids=bad_words_ids) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> for i,t in enumerate(generated_text): ... print(f"{i}:\n{t}\n") 0: This is an image of the Eiffel Tower in Paris, France. 1: This is an image of a couple on a picnic blanket. 2: This is an image of a vegetable stand. ``` ## IDEFICS instruct for conversational use For conversational use cases, you can find fine-tuned instructed versions of the model on the 🤗 Hub: `HuggingFaceM4/idefics-80b-instruct` and `HuggingFaceM4/idefics-9b-instruct`. These checkpoints are the result of fine-tuning the respective base models on a mixture of supervised and instruction fine-tuning datasets, which boosts the downstream performance while making the models more usable in conversational settings. The use and prompting for the conversational use is very similar to using the base models: ```py >>> import torch >>> from transformers import IdeficsForVisionText2Text, AutoProcessor >>> from accelerate.test_utils.testing import get_backend >>> device, _, _ = get_backend() # automatically detects the underlying device type (CUDA, CPU, XPU, MPS, etc.) >>> checkpoint = "HuggingFaceM4/idefics-9b-instruct" >>> model = IdeficsForVisionText2Text.from_pretrained(checkpoint, torch_dtype=torch.bfloat16).to(device) >>> processor = AutoProcessor.from_pretrained(checkpoint) >>> prompts = [ ... [ ... "User: What is in this image?", ... "https://upload.wikimedia.org/wikipedia/commons/8/86/Id%C3%A9fix.JPG", ... "<end_of_utterance>", ... "\nAssistant: This picture depicts Idefix, the dog of Obelix in Asterix and Obelix. Idefix is running on the ground.<end_of_utterance>", ... "\nUser:", ... "https://static.wikia.nocookie.net/asterix/images/2/25/R22b.gif/revision/latest?cb=20110815073052", ... "And who is that?<end_of_utterance>", ... "\nAssistant:", ... ], ... ] >>> # --batched mode >>> inputs = processor(prompts, add_end_of_utterance_token=False, return_tensors="pt").to(device) >>> # --single sample mode >>> # inputs = processor(prompts[0], return_tensors="pt").to(device) >>> # Generation args >>> exit_condition = processor.tokenizer("<end_of_utterance>", add_special_tokens=False).input_ids >>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids >>> generated_ids = model.generate(**inputs, eos_token_id=exit_condition, bad_words_ids=bad_words_ids, max_length=100) >>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> for i, t in enumerate(generated_text): ... print(f"{i}:\n{t}\n") ```
transformers/docs/source/en/tasks/idefics.md/0
{ "file_path": "transformers/docs/source/en/tasks/idefics.md", "repo_id": "transformers", "token_count": 6916 }
31
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Image Segmentation [[open-in-colab]] <Youtube id="dKE8SIt9C-w"/> Image segmentation models separate areas corresponding to different areas of interest in an image. These models work by assigning a label to each pixel. There are several types of segmentation: semantic segmentation, instance segmentation, and panoptic segmentation. In this guide, we will: 1. [Take a look at different types of segmentation](#types-of-segmentation). 2. [Have an end-to-end fine-tuning example for semantic segmentation](#fine-tuning-a-model-for-segmentation). Before you begin, make sure you have all the necessary libraries installed: ```py # uncomment to install the necessary libraries !pip install -q datasets transformers evaluate accelerate ``` We encourage you to log in to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to log in: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Types of Segmentation Semantic segmentation assigns a label or class to every single pixel in an image. Let's take a look at a semantic segmentation model output. It will assign the same class to every instance of an object it comes across in an image, for example, all cats will be labeled as "cat" instead of "cat-1", "cat-2". We can use transformers' image segmentation pipeline to quickly infer a semantic segmentation model. Let's take a look at the example image. ```python from transformers import pipeline from PIL import Image import requests url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/segmentation_input.jpg" image = Image.open(requests.get(url, stream=True).raw) image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/segmentation_input.jpg" alt="Segmentation Input"/> </div> We will use [nvidia/segformer-b1-finetuned-cityscapes-1024-1024](https://huggingface.co/nvidia/segformer-b1-finetuned-cityscapes-1024-1024). ```python semantic_segmentation = pipeline("image-segmentation", "nvidia/segformer-b1-finetuned-cityscapes-1024-1024") results = semantic_segmentation(image) results ``` The segmentation pipeline output includes a mask for every predicted class. ```bash [{'score': None, 'label': 'road', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': None, 'label': 'sidewalk', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': None, 'label': 'building', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': None, 'label': 'wall', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': None, 'label': 'pole', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': None, 'label': 'traffic sign', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': None, 'label': 'vegetation', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': None, 'label': 'terrain', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': None, 'label': 'sky', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': None, 'label': 'car', 'mask': <PIL.Image.Image image mode=L size=612x415>}] ``` Taking a look at the mask for the car class, we can see every car is classified with the same mask. ```python results[-1]["mask"] ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/semantic_segmentation_output.png" alt="Semantic Segmentation Output"/> </div> In instance segmentation, the goal is not to classify every pixel, but to predict a mask for **every instance of an object** in a given image. It works very similar to object detection, where there is a bounding box for every instance, there's a segmentation mask instead. We will use [facebook/mask2former-swin-large-cityscapes-instance](https://huggingface.co/facebook/mask2former-swin-large-cityscapes-instance) for this. ```python instance_segmentation = pipeline("image-segmentation", "facebook/mask2former-swin-large-cityscapes-instance") results = instance_segmentation(image) results ``` As you can see below, there are multiple cars classified, and there's no classification for pixels other than pixels that belong to car and person instances. ```bash [{'score': 0.999944, 'label': 'car', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': 0.999945, 'label': 'car', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': 0.999652, 'label': 'car', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': 0.903529, 'label': 'person', 'mask': <PIL.Image.Image image mode=L size=612x415>}] ``` Checking out one of the car masks below. ```python results[2]["mask"] ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/instance_segmentation_output.png" alt="Semantic Segmentation Output"/> </div> Panoptic segmentation combines semantic segmentation and instance segmentation, where every pixel is classified into a class and an instance of that class, and there are multiple masks for each instance of a class. We can use [facebook/mask2former-swin-large-cityscapes-panoptic](https://huggingface.co/facebook/mask2former-swin-large-cityscapes-panoptic) for this. ```python panoptic_segmentation = pipeline("image-segmentation", "facebook/mask2former-swin-large-cityscapes-panoptic") results = panoptic_segmentation(image) results ``` As you can see below, we have more classes. We will later illustrate to see that every pixel is classified into one of the classes. ```bash [{'score': 0.999981, 'label': 'car', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': 0.999958, 'label': 'car', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': 0.99997, 'label': 'vegetation', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': 0.999575, 'label': 'pole', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': 0.999958, 'label': 'building', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': 0.999634, 'label': 'road', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': 0.996092, 'label': 'sidewalk', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': 0.999221, 'label': 'car', 'mask': <PIL.Image.Image image mode=L size=612x415>}, {'score': 0.99987, 'label': 'sky', 'mask': <PIL.Image.Image image mode=L size=612x415>}] ``` Let's have a side by side comparison for all types of segmentation. <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/segmentation-comparison.png" alt="Segmentation Maps Compared"/> </div> Seeing all types of segmentation, let's have a deep dive on fine-tuning a model for semantic segmentation. Common real-world applications of semantic segmentation include training self-driving cars to identify pedestrians and important traffic information, identifying cells and abnormalities in medical imagery, and monitoring environmental changes from satellite imagery. ## Fine-tuning a Model for Segmentation We will now: 1. Finetune [SegFormer](https://huggingface.co/docs/transformers/main/en/model_doc/segformer#segformer) on the [SceneParse150](https://huggingface.co/datasets/scene_parse_150) dataset. 2. Use your fine-tuned model for inference. <Tip> To see all architectures and checkpoints compatible with this task, we recommend checking the [task-page](https://huggingface.co/tasks/image-segmentation) </Tip> ### Load SceneParse150 dataset Start by loading a smaller subset of the SceneParse150 dataset from the 🤗 Datasets library. This'll give you a chance to experiment and make sure everything works before spending more time training on the full dataset. ```py >>> from datasets import load_dataset >>> ds = load_dataset("scene_parse_150", split="train[:50]") ``` Split the dataset's `train` split into a train and test set with the [`~datasets.Dataset.train_test_split`] method: ```py >>> ds = ds.train_test_split(test_size=0.2) >>> train_ds = ds["train"] >>> test_ds = ds["test"] ``` Then take a look at an example: ```py >>> train_ds[0] {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=512x683 at 0x7F9B0C201F90>, 'annotation': <PIL.PngImagePlugin.PngImageFile image mode=L size=512x683 at 0x7F9B0C201DD0>, 'scene_category': 368} # view the image >>> train_ds[0]["image"] ``` - `image`: a PIL image of the scene. - `annotation`: a PIL image of the segmentation map, which is also the model's target. - `scene_category`: a category id that describes the image scene like "kitchen" or "office". In this guide, you'll only need `image` and `annotation`, both of which are PIL images. You'll also want to create a dictionary that maps a label id to a label class which will be useful when you set up the model later. Download the mappings from the Hub and create the `id2label` and `label2id` dictionaries: ```py >>> import json >>> from pathlib import Path >>> from huggingface_hub import hf_hub_download >>> repo_id = "huggingface/label-files" >>> filename = "ade20k-id2label.json" >>> id2label = json.loads(Path(hf_hub_download(repo_id, filename, repo_type="dataset")).read_text()) >>> id2label = {int(k): v for k, v in id2label.items()} >>> label2id = {v: k for k, v in id2label.items()} >>> num_labels = len(id2label) ``` #### Custom dataset You could also create and use your own dataset if you prefer to train with the [run_semantic_segmentation.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/semantic-segmentation/run_semantic_segmentation.py) script instead of a notebook instance. The script requires: 1. a [`~datasets.DatasetDict`] with two [`~datasets.Image`] columns, "image" and "label" ```py from datasets import Dataset, DatasetDict, Image image_paths_train = ["path/to/image_1.jpg/jpg", "path/to/image_2.jpg/jpg", ..., "path/to/image_n.jpg/jpg"] label_paths_train = ["path/to/annotation_1.png", "path/to/annotation_2.png", ..., "path/to/annotation_n.png"] image_paths_validation = [...] label_paths_validation = [...] def create_dataset(image_paths, label_paths): dataset = Dataset.from_dict({"image": sorted(image_paths), "label": sorted(label_paths)}) dataset = dataset.cast_column("image", Image()) dataset = dataset.cast_column("label", Image()) return dataset # step 1: create Dataset objects train_dataset = create_dataset(image_paths_train, label_paths_train) validation_dataset = create_dataset(image_paths_validation, label_paths_validation) # step 2: create DatasetDict dataset = DatasetDict({ "train": train_dataset, "validation": validation_dataset, } ) # step 3: push to Hub (assumes you have ran the huggingface-cli login command in a terminal/notebook) dataset.push_to_hub("your-name/dataset-repo") # optionally, you can push to a private repo on the Hub # dataset.push_to_hub("name of repo on the hub", private=True) ``` 2. an id2label dictionary mapping the class integers to their class names ```py import json # simple example id2label = {0: 'cat', 1: 'dog'} with open('id2label.json', 'w') as fp: json.dump(id2label, fp) ``` As an example, take a look at this [example dataset](https://huggingface.co/datasets/nielsr/ade20k-demo) which was created with the steps shown above. ### Preprocess The next step is to load a SegFormer image processor to prepare the images and annotations for the model. Some datasets, like this one, use the zero-index as the background class. However, the background class isn't actually included in the 150 classes, so you'll need to set `do_reduce_labels=True` to subtract one from all the labels. The zero-index is replaced by `255` so it's ignored by SegFormer's loss function: ```py >>> from transformers import AutoImageProcessor >>> checkpoint = "nvidia/mit-b0" >>> image_processor = AutoImageProcessor.from_pretrained(checkpoint, do_reduce_labels=True) ``` <frameworkcontent> <pt> It is common to apply some data augmentations to an image dataset to make a model more robust against overfitting. In this guide, you'll use the [`ColorJitter`](https://pytorch.org/vision/stable/generated/torchvision.transforms.ColorJitter.html) function from [torchvision](https://pytorch.org/vision/stable/index.html) to randomly change the color properties of an image, but you can also use any image library you like. ```py >>> from torchvision.transforms import ColorJitter >>> jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1) ``` Now create two preprocessing functions to prepare the images and annotations for the model. These functions convert the images into `pixel_values` and annotations to `labels`. For the training set, `jitter` is applied before providing the images to the image processor. For the test set, the image processor crops and normalizes the `images`, and only crops the `labels` because no data augmentation is applied during testing. ```py >>> def train_transforms(example_batch): ... images = [jitter(x) for x in example_batch["image"]] ... labels = [x for x in example_batch["annotation"]] ... inputs = image_processor(images, labels) ... return inputs >>> def val_transforms(example_batch): ... images = [x for x in example_batch["image"]] ... labels = [x for x in example_batch["annotation"]] ... inputs = image_processor(images, labels) ... return inputs ``` To apply the `jitter` over the entire dataset, use the 🤗 Datasets [`~datasets.Dataset.set_transform`] function. The transform is applied on the fly which is faster and consumes less disk space: ```py >>> train_ds.set_transform(train_transforms) >>> test_ds.set_transform(val_transforms) ``` </pt> </frameworkcontent> <frameworkcontent> <tf> It is common to apply some data augmentations to an image dataset to make a model more robust against overfitting. In this guide, you'll use [`tf.image`](https://www.tensorflow.org/api_docs/python/tf/image) to randomly change the color properties of an image, but you can also use any image library you like. Define two separate transformation functions: - training data transformations that include image augmentation - validation data transformations that only transpose the images, since computer vision models in 🤗 Transformers expect channels-first layout ```py >>> import tensorflow as tf >>> def aug_transforms(image): ... image = tf.keras.utils.img_to_array(image) ... image = tf.image.random_brightness(image, 0.25) ... image = tf.image.random_contrast(image, 0.5, 2.0) ... image = tf.image.random_saturation(image, 0.75, 1.25) ... image = tf.image.random_hue(image, 0.1) ... image = tf.transpose(image, (2, 0, 1)) ... return image >>> def transforms(image): ... image = tf.keras.utils.img_to_array(image) ... image = tf.transpose(image, (2, 0, 1)) ... return image ``` Next, create two preprocessing functions to prepare batches of images and annotations for the model. These functions apply the image transformations and use the earlier loaded `image_processor` to convert the images into `pixel_values` and annotations to `labels`. `ImageProcessor` also takes care of resizing and normalizing the images. ```py >>> def train_transforms(example_batch): ... images = [aug_transforms(x.convert("RGB")) for x in example_batch["image"]] ... labels = [x for x in example_batch["annotation"]] ... inputs = image_processor(images, labels) ... return inputs >>> def val_transforms(example_batch): ... images = [transforms(x.convert("RGB")) for x in example_batch["image"]] ... labels = [x for x in example_batch["annotation"]] ... inputs = image_processor(images, labels) ... return inputs ``` To apply the preprocessing transformations over the entire dataset, use the 🤗 Datasets [`~datasets.Dataset.set_transform`] function. The transform is applied on the fly which is faster and consumes less disk space: ```py >>> train_ds.set_transform(train_transforms) >>> test_ds.set_transform(val_transforms) ``` </tf> </frameworkcontent> ### Evaluate Including a metric during training is often helpful for evaluating your model's performance. You can quickly load an evaluation method with the 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [mean Intersection over Union](https://huggingface.co/spaces/evaluate-metric/accuracy) (IoU) metric (see the 🤗 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric): ```py >>> import evaluate >>> metric = evaluate.load("mean_iou") ``` Then create a function to [`~evaluate.EvaluationModule.compute`] the metrics. Your predictions need to be converted to logits first, and then reshaped to match the size of the labels before you can call [`~evaluate.EvaluationModule.compute`]: <frameworkcontent> <pt> ```py >>> import numpy as np >>> import torch >>> from torch import nn >>> def compute_metrics(eval_pred): ... with torch.no_grad(): ... logits, labels = eval_pred ... logits_tensor = torch.from_numpy(logits) ... logits_tensor = nn.functional.interpolate( ... logits_tensor, ... size=labels.shape[-2:], ... mode="bilinear", ... align_corners=False, ... ).argmax(dim=1) ... pred_labels = logits_tensor.detach().cpu().numpy() ... metrics = metric.compute( ... predictions=pred_labels, ... references=labels, ... num_labels=num_labels, ... ignore_index=255, ... reduce_labels=False, ... ) ... for key, value in metrics.items(): ... if isinstance(value, np.ndarray): ... metrics[key] = value.tolist() ... return metrics ``` </pt> </frameworkcontent> <frameworkcontent> <tf> ```py >>> def compute_metrics(eval_pred): ... logits, labels = eval_pred ... logits = tf.transpose(logits, perm=[0, 2, 3, 1]) ... logits_resized = tf.image.resize( ... logits, ... size=tf.shape(labels)[1:], ... method="bilinear", ... ) ... pred_labels = tf.argmax(logits_resized, axis=-1) ... metrics = metric.compute( ... predictions=pred_labels, ... references=labels, ... num_labels=num_labels, ... ignore_index=-1, ... reduce_labels=image_processor.do_reduce_labels, ... ) ... per_category_accuracy = metrics.pop("per_category_accuracy").tolist() ... per_category_iou = metrics.pop("per_category_iou").tolist() ... metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)}) ... metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)}) ... return {"val_" + k: v for k, v in metrics.items()} ``` </tf> </frameworkcontent> Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training. ### Train <frameworkcontent> <pt> <Tip> If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#finetune-with-trainer)! </Tip> You're ready to start training your model now! Load SegFormer with [`AutoModelForSemanticSegmentation`], and pass the model the mapping between label ids and label classes: ```py >>> from transformers import AutoModelForSemanticSegmentation, TrainingArguments, Trainer >>> model = AutoModelForSemanticSegmentation.from_pretrained(checkpoint, id2label=id2label, label2id=label2id) ``` At this point, only three steps remain: 1. Define your training hyperparameters in [`TrainingArguments`]. It is important you don't remove unused columns because this'll drop the `image` column. Without the `image` column, you can't create `pixel_values`. Set `remove_unused_columns=False` to prevent this behavior! The only other required parameter is `output_dir` which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the IoU metric and save the training checkpoint. 2. Pass the training arguments to [`Trainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function. 3. Call [`~Trainer.train`] to finetune your model. ```py >>> training_args = TrainingArguments( ... output_dir="segformer-b0-scene-parse-150", ... learning_rate=6e-5, ... num_train_epochs=50, ... per_device_train_batch_size=2, ... per_device_eval_batch_size=2, ... save_total_limit=3, ... eval_strategy="steps", ... save_strategy="steps", ... save_steps=20, ... eval_steps=20, ... logging_steps=1, ... eval_accumulation_steps=5, ... remove_unused_columns=False, ... push_to_hub=True, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=train_ds, ... eval_dataset=test_ds, ... compute_metrics=compute_metrics, ... ) >>> trainer.train() ``` Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model: ```py >>> trainer.push_to_hub() ``` </pt> </frameworkcontent> <frameworkcontent> <tf> <Tip> If you are unfamiliar with fine-tuning a model with Keras, check out the [basic tutorial](./training#train-a-tensorflow-model-with-keras) first! </Tip> To fine-tune a model in TensorFlow, follow these steps: 1. Define the training hyperparameters, and set up an optimizer and a learning rate schedule. 2. Instantiate a pretrained model. 3. Convert a 🤗 Dataset to a `tf.data.Dataset`. 4. Compile your model. 5. Add callbacks to calculate metrics and upload your model to 🤗 Hub 6. Use the `fit()` method to run the training. Start by defining the hyperparameters, optimizer and learning rate schedule: ```py >>> from transformers import create_optimizer >>> batch_size = 2 >>> num_epochs = 50 >>> num_train_steps = len(train_ds) * num_epochs >>> learning_rate = 6e-5 >>> weight_decay_rate = 0.01 >>> optimizer, lr_schedule = create_optimizer( ... init_lr=learning_rate, ... num_train_steps=num_train_steps, ... weight_decay_rate=weight_decay_rate, ... num_warmup_steps=0, ... ) ``` Then, load SegFormer with [`TFAutoModelForSemanticSegmentation`] along with the label mappings, and compile it with the optimizer. Note that Transformers models all have a default task-relevant loss function, so you don't need to specify one unless you want to: ```py >>> from transformers import TFAutoModelForSemanticSegmentation >>> model = TFAutoModelForSemanticSegmentation.from_pretrained( ... checkpoint, ... id2label=id2label, ... label2id=label2id, ... ) >>> model.compile(optimizer=optimizer) # No loss argument! ``` Convert your datasets to the `tf.data.Dataset` format using the [`~datasets.Dataset.to_tf_dataset`] and the [`DefaultDataCollator`]: ```py >>> from transformers import DefaultDataCollator >>> data_collator = DefaultDataCollator(return_tensors="tf") >>> tf_train_dataset = train_ds.to_tf_dataset( ... columns=["pixel_values", "label"], ... shuffle=True, ... batch_size=batch_size, ... collate_fn=data_collator, ... ) >>> tf_eval_dataset = test_ds.to_tf_dataset( ... columns=["pixel_values", "label"], ... shuffle=True, ... batch_size=batch_size, ... collate_fn=data_collator, ... ) ``` To compute the accuracy from the predictions and push your model to the 🤗 Hub, use [Keras callbacks](../main_classes/keras_callbacks). Pass your `compute_metrics` function to [`KerasMetricCallback`], and use the [`PushToHubCallback`] to upload the model: ```py >>> from transformers.keras_callbacks import KerasMetricCallback, PushToHubCallback >>> metric_callback = KerasMetricCallback( ... metric_fn=compute_metrics, eval_dataset=tf_eval_dataset, batch_size=batch_size, label_cols=["labels"] ... ) >>> push_to_hub_callback = PushToHubCallback(output_dir="scene_segmentation", tokenizer=image_processor) >>> callbacks = [metric_callback, push_to_hub_callback] ``` Finally, you are ready to train your model! Call `fit()` with your training and validation datasets, the number of epochs, and your callbacks to fine-tune the model: ```py >>> model.fit( ... tf_train_dataset, ... validation_data=tf_eval_dataset, ... callbacks=callbacks, ... epochs=num_epochs, ... ) ``` Congratulations! You have fine-tuned your model and shared it on the 🤗 Hub. You can now use it for inference! </tf> </frameworkcontent> ### Inference Great, now that you've finetuned a model, you can use it for inference! Reload the dataset and load an image for inference. ```py >>> from datasets import load_dataset >>> ds = load_dataset("scene_parse_150", split="train[:50]") >>> ds = ds.train_test_split(test_size=0.2) >>> test_ds = ds["test"] >>> image = ds["test"][0]["image"] >>> image ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-image.png" alt="Image of bedroom"/> </div> <frameworkcontent> <pt> We will now see how to infer without a pipeline. Process the image with an image processor and place the `pixel_values` on a GPU: ```py >>> from accelerate.test_utils.testing import get_backend # automatically detects the underlying device type (CUDA, CPU, XPU, MPS, etc.) >>> device, _, _ = get_backend() >>> encoding = image_processor(image, return_tensors="pt") >>> pixel_values = encoding.pixel_values.to(device) ``` Pass your input to the model and return the `logits`: ```py >>> outputs = model(pixel_values=pixel_values) >>> logits = outputs.logits.cpu() ``` Next, rescale the logits to the original image size: ```py >>> upsampled_logits = nn.functional.interpolate( ... logits, ... size=image.size[::-1], ... mode="bilinear", ... align_corners=False, ... ) >>> pred_seg = upsampled_logits.argmax(dim=1)[0] ``` </pt> </frameworkcontent> <frameworkcontent> <tf> Load an image processor to preprocess the image and return the input as TensorFlow tensors: ```py >>> from transformers import AutoImageProcessor >>> image_processor = AutoImageProcessor.from_pretrained("MariaK/scene_segmentation") >>> inputs = image_processor(image, return_tensors="tf") ``` Pass your input to the model and return the `logits`: ```py >>> from transformers import TFAutoModelForSemanticSegmentation >>> model = TFAutoModelForSemanticSegmentation.from_pretrained("MariaK/scene_segmentation") >>> logits = model(**inputs).logits ``` Next, rescale the logits to the original image size and apply argmax on the class dimension: ```py >>> logits = tf.transpose(logits, [0, 2, 3, 1]) >>> upsampled_logits = tf.image.resize( ... logits, ... # We reverse the shape of `image` because `image.size` returns width and height. ... image.size[::-1], ... ) >>> pred_seg = tf.math.argmax(upsampled_logits, axis=-1)[0] ``` </tf> </frameworkcontent> To visualize the results, load the [dataset color palette](https://github.com/tensorflow/models/blob/3f1ca33afe3c1631b733ea7e40c294273b9e406d/research/deeplab/utils/get_dataset_colormap.py#L51) as `ade_palette()` that maps each class to their RGB values. ```py def ade_palette(): return np.asarray([ [0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50], [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255], [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153], [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255], [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20], [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0], [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0], [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255], [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0], [92, 0, 255], ]) ``` Then you can combine and plot your image and the predicted segmentation map: ```py >>> import matplotlib.pyplot as plt >>> import numpy as np >>> color_seg = np.zeros((pred_seg.shape[0], pred_seg.shape[1], 3), dtype=np.uint8) >>> palette = np.array(ade_palette()) >>> for label, color in enumerate(palette): ... color_seg[pred_seg == label, :] = color >>> color_seg = color_seg[..., ::-1] # convert to BGR >>> img = np.array(image) * 0.5 + color_seg * 0.5 # plot the image with the segmentation map >>> img = img.astype(np.uint8) >>> plt.figure(figsize=(15, 10)) >>> plt.imshow(img) >>> plt.show() ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/semantic-seg-preds.png" alt="Image of bedroom overlaid with segmentation map"/> </div>
transformers/docs/source/en/tasks/semantic_segmentation.md/0
{ "file_path": "transformers/docs/source/en/tasks/semantic_segmentation.md", "repo_id": "transformers", "token_count": 12052 }
32
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Summary of the tokenizers [[open-in-colab]] On this page, we will have a closer look at tokenization. <Youtube id="VFp38yj8h3A"/> As we saw in [the preprocessing tutorial](preprocessing), tokenizing a text is splitting it into words or subwords, which then are converted to ids through a look-up table. Converting words or subwords to ids is straightforward, so in this summary, we will focus on splitting a text into words or subwords (i.e. tokenizing a text). More specifically, we will look at the three main types of tokenizers used in 🤗 Transformers: [Byte-Pair Encoding (BPE)](#byte-pair-encoding), [WordPiece](#wordpiece), and [SentencePiece](#sentencepiece), and show examples of which tokenizer type is used by which model. Note that on each model page, you can look at the documentation of the associated tokenizer to know which tokenizer type was used by the pretrained model. For instance, if we look at [`BertTokenizer`], we can see that the model uses [WordPiece](#wordpiece). ## Introduction Splitting a text into smaller chunks is a task that is harder than it looks, and there are multiple ways of doing so. For instance, let's look at the sentence `"Don't you love 🤗 Transformers? We sure do."` <Youtube id="nhJxYji1aho"/> A simple way of tokenizing this text is to split it by spaces, which would give: ``` ["Don't", "you", "love", "🤗", "Transformers?", "We", "sure", "do."] ``` This is a sensible first step, but if we look at the tokens `"Transformers?"` and `"do."`, we notice that the punctuation is attached to the words `"Transformer"` and `"do"`, which is suboptimal. We should take the punctuation into account so that a model does not have to learn a different representation of a word and every possible punctuation symbol that could follow it, which would explode the number of representations the model has to learn. Taking punctuation into account, tokenizing our exemplary text would give: ``` ["Don", "'", "t", "you", "love", "🤗", "Transformers", "?", "We", "sure", "do", "."] ``` Better. However, it is disadvantageous, how the tokenization dealt with the word `"Don't"`. `"Don't"` stands for `"do not"`, so it would be better tokenized as `["Do", "n't"]`. This is where things start getting complicated, and part of the reason each model has its own tokenizer type. Depending on the rules we apply for tokenizing a text, a different tokenized output is generated for the same text. A pretrained model only performs properly if you feed it an input that was tokenized with the same rules that were used to tokenize its training data. [spaCy](https://spacy.io/) and [Moses](http://www.statmt.org/moses/?n=Development.GetStarted) are two popular rule-based tokenizers. Applying them on our example, *spaCy* and *Moses* would output something like: ``` ["Do", "n't", "you", "love", "🤗", "Transformers", "?", "We", "sure", "do", "."] ``` As can be seen space and punctuation tokenization, as well as rule-based tokenization, is used here. Space and punctuation tokenization and rule-based tokenization are both examples of word tokenization, which is loosely defined as splitting sentences into words. While it's the most intuitive way to split texts into smaller chunks, this tokenization method can lead to problems for massive text corpora. In this case, space and punctuation tokenization usually generates a very big vocabulary (the set of all unique words and tokens used). *E.g.*, [Transformer XL](model_doc/transfo-xl) uses space and punctuation tokenization, resulting in a vocabulary size of 267,735! Such a big vocabulary size forces the model to have an enormous embedding matrix as the input and output layer, which causes both an increased memory and time complexity. In general, transformers models rarely have a vocabulary size greater than 50,000, especially if they are pretrained only on a single language. So if simple space and punctuation tokenization is unsatisfactory, why not simply tokenize on characters? <Youtube id="ssLq_EK2jLE"/> While character tokenization is very simple and would greatly reduce memory and time complexity it makes it much harder for the model to learn meaningful input representations. *E.g.* learning a meaningful context-independent representation for the letter `"t"` is much harder than learning a context-independent representation for the word `"today"`. Therefore, character tokenization is often accompanied by a loss of performance. So to get the best of both worlds, transformers models use a hybrid between word-level and character-level tokenization called **subword** tokenization. ## Subword tokenization <Youtube id="zHvTiHr506c"/> Subword tokenization algorithms rely on the principle that frequently used words should not be split into smaller subwords, but rare words should be decomposed into meaningful subwords. For instance `"annoyingly"` might be considered a rare word and could be decomposed into `"annoying"` and `"ly"`. Both `"annoying"` and `"ly"` as stand-alone subwords would appear more frequently while at the same time the meaning of `"annoyingly"` is kept by the composite meaning of `"annoying"` and `"ly"`. This is especially useful in agglutinative languages such as Turkish, where you can form (almost) arbitrarily long complex words by stringing together subwords. Subword tokenization allows the model to have a reasonable vocabulary size while being able to learn meaningful context-independent representations. In addition, subword tokenization enables the model to process words it has never seen before, by decomposing them into known subwords. For instance, the [`~transformers.BertTokenizer`] tokenizes `"I have a new GPU!"` as follows: ```py >>> from transformers import BertTokenizer >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") >>> tokenizer.tokenize("I have a new GPU!") ["i", "have", "a", "new", "gp", "##u", "!"] ``` Because we are considering the uncased model, the sentence was lowercased first. We can see that the words `["i", "have", "a", "new"]` are present in the tokenizer's vocabulary, but the word `"gpu"` is not. Consequently, the tokenizer splits `"gpu"` into known subwords: `["gp" and "##u"]`. `"##"` means that the rest of the token should be attached to the previous one, without space (for decoding or reversal of the tokenization). As another example, [`~transformers.XLNetTokenizer`] tokenizes our previously exemplary text as follows: ```py >>> from transformers import XLNetTokenizer >>> tokenizer = XLNetTokenizer.from_pretrained("xlnet/xlnet-base-cased") >>> tokenizer.tokenize("Don't you love 🤗 Transformers? We sure do.") ["▁Don", "'", "t", "▁you", "▁love", "▁", "🤗", "▁", "Transform", "ers", "?", "▁We", "▁sure", "▁do", "."] ``` We'll get back to the meaning of those `"▁"` when we look at [SentencePiece](#sentencepiece). As one can see, the rare word `"Transformers"` has been split into the more frequent subwords `"Transform"` and `"ers"`. Let's now look at how the different subword tokenization algorithms work. Note that all of those tokenization algorithms rely on some form of training which is usually done on the corpus the corresponding model will be trained on. <a id='byte-pair-encoding'></a> ### Byte-Pair Encoding (BPE) Byte-Pair Encoding (BPE) was introduced in [Neural Machine Translation of Rare Words with Subword Units (Sennrich et al., 2015)](https://arxiv.org/abs/1508.07909). BPE relies on a pre-tokenizer that splits the training data into words. Pretokenization can be as simple as space tokenization, e.g. [GPT-2](model_doc/gpt2), [RoBERTa](model_doc/roberta). More advanced pre-tokenization include rule-based tokenization, e.g. [XLM](model_doc/xlm), [FlauBERT](model_doc/flaubert) which uses Moses for most languages, or [GPT](model_doc/openai-gpt) which uses spaCy and ftfy, to count the frequency of each word in the training corpus. After pre-tokenization, a set of unique words has been created and the frequency with which each word occurred in the training data has been determined. Next, BPE creates a base vocabulary consisting of all symbols that occur in the set of unique words and learns merge rules to form a new symbol from two symbols of the base vocabulary. It does so until the vocabulary has attained the desired vocabulary size. Note that the desired vocabulary size is a hyperparameter to define before training the tokenizer. As an example, let's assume that after pre-tokenization, the following set of words including their frequency has been determined: ``` ("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5) ``` Consequently, the base vocabulary is `["b", "g", "h", "n", "p", "s", "u"]`. Splitting all words into symbols of the base vocabulary, we obtain: ``` ("h" "u" "g", 10), ("p" "u" "g", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "u" "g" "s", 5) ``` BPE then counts the frequency of each possible symbol pair and picks the symbol pair that occurs most frequently. In the example above `"h"` followed by `"u"` is present _10 + 5 = 15_ times (10 times in the 10 occurrences of `"hug"`, 5 times in the 5 occurrences of `"hugs"`). However, the most frequent symbol pair is `"u"` followed by `"g"`, occurring _10 + 5 + 5 = 20_ times in total. Thus, the first merge rule the tokenizer learns is to group all `"u"` symbols followed by a `"g"` symbol together. Next, `"ug"` is added to the vocabulary. The set of words then becomes ``` ("h" "ug", 10), ("p" "ug", 5), ("p" "u" "n", 12), ("b" "u" "n", 4), ("h" "ug" "s", 5) ``` BPE then identifies the next most common symbol pair. It's `"u"` followed by `"n"`, which occurs 16 times. `"u"`, `"n"` is merged to `"un"` and added to the vocabulary. The next most frequent symbol pair is `"h"` followed by `"ug"`, occurring 15 times. Again the pair is merged and `"hug"` can be added to the vocabulary. At this stage, the vocabulary is `["b", "g", "h", "n", "p", "s", "u", "ug", "un", "hug"]` and our set of unique words is represented as ``` ("hug", 10), ("p" "ug", 5), ("p" "un", 12), ("b" "un", 4), ("hug" "s", 5) ``` Assuming, that the Byte-Pair Encoding training would stop at this point, the learned merge rules would then be applied to new words (as long as those new words do not include symbols that were not in the base vocabulary). For instance, the word `"bug"` would be tokenized to `["b", "ug"]` but `"mug"` would be tokenized as `["<unk>", "ug"]` since the symbol `"m"` is not in the base vocabulary. In general, single letters such as `"m"` are not replaced by the `"<unk>"` symbol because the training data usually includes at least one occurrence of each letter, but it is likely to happen for very special characters like emojis. As mentioned earlier, the vocabulary size, *i.e.* the base vocabulary size + the number of merges, is a hyperparameter to choose. For instance [GPT](model_doc/openai-gpt) has a vocabulary size of 40,478 since they have 478 base characters and chose to stop training after 40,000 merges. #### Byte-level BPE A base vocabulary that includes all possible base characters can be quite large if *e.g.* all unicode characters are considered as base characters. To have a better base vocabulary, [GPT-2](https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) uses bytes as the base vocabulary, which is a clever trick to force the base vocabulary to be of size 256 while ensuring that every base character is included in the vocabulary. With some additional rules to deal with punctuation, the GPT2's tokenizer can tokenize every text without the need for the <unk> symbol. [GPT-2](model_doc/gpt) has a vocabulary size of 50,257, which corresponds to the 256 bytes base tokens, a special end-of-text token and the symbols learned with 50,000 merges. <a id='wordpiece'></a> ### WordPiece WordPiece is the subword tokenization algorithm used for [BERT](model_doc/bert), [DistilBERT](model_doc/distilbert), and [Electra](model_doc/electra). The algorithm was outlined in [Japanese and Korean Voice Search (Schuster et al., 2012)](https://static.googleusercontent.com/media/research.google.com/ja//pubs/archive/37842.pdf) and is very similar to BPE. WordPiece first initializes the vocabulary to include every character present in the training data and progressively learns a given number of merge rules. In contrast to BPE, WordPiece does not choose the most frequent symbol pair, but the one that maximizes the likelihood of the training data once added to the vocabulary. So what does this mean exactly? Referring to the previous example, maximizing the likelihood of the training data is equivalent to finding the symbol pair, whose probability divided by the probabilities of its first symbol followed by its second symbol is the greatest among all symbol pairs. *E.g.* `"u"`, followed by `"g"` would have only been merged if the probability of `"ug"` divided by `"u"`, `"g"` would have been greater than for any other symbol pair. Intuitively, WordPiece is slightly different to BPE in that it evaluates what it _loses_ by merging two symbols to ensure it's _worth it_. <a id='unigram'></a> ### Unigram Unigram is a subword tokenization algorithm introduced in [Subword Regularization: Improving Neural Network Translation Models with Multiple Subword Candidates (Kudo, 2018)](https://arxiv.org/pdf/1804.10959.pdf). In contrast to BPE or WordPiece, Unigram initializes its base vocabulary to a large number of symbols and progressively trims down each symbol to obtain a smaller vocabulary. The base vocabulary could for instance correspond to all pre-tokenized words and the most common substrings. Unigram is not used directly for any of the models in the transformers, but it's used in conjunction with [SentencePiece](#sentencepiece). At each training step, the Unigram algorithm defines a loss (often defined as the log-likelihood) over the training data given the current vocabulary and a unigram language model. Then, for each symbol in the vocabulary, the algorithm computes how much the overall loss would increase if the symbol was to be removed from the vocabulary. Unigram then removes p (with p usually being 10% or 20%) percent of the symbols whose loss increase is the lowest, *i.e.* those symbols that least affect the overall loss over the training data. This process is repeated until the vocabulary has reached the desired size. The Unigram algorithm always keeps the base characters so that any word can be tokenized. Because Unigram is not based on merge rules (in contrast to BPE and WordPiece), the algorithm has several ways of tokenizing new text after training. As an example, if a trained Unigram tokenizer exhibits the vocabulary: ``` ["b", "g", "h", "n", "p", "s", "u", "ug", "un", "hug"], ``` `"hugs"` could be tokenized both as `["hug", "s"]`, `["h", "ug", "s"]` or `["h", "u", "g", "s"]`. So which one to choose? Unigram saves the probability of each token in the training corpus on top of saving the vocabulary so that the probability of each possible tokenization can be computed after training. The algorithm simply picks the most likely tokenization in practice, but also offers the possibility to sample a possible tokenization according to their probabilities. Those probabilities are defined by the loss the tokenizer is trained on. Assuming that the training data consists of the words \\(x_{1}, \dots, x_{N}\\) and that the set of all possible tokenizations for a word \\(x_{i}\\) is defined as \\(S(x_{i})\\), then the overall loss is defined as $$\mathcal{L} = -\sum_{i=1}^{N} \log \left ( \sum_{x \in S(x_{i})} p(x) \right )$$ <a id='sentencepiece'></a> ### SentencePiece All tokenization algorithms described so far have the same problem: It is assumed that the input text uses spaces to separate words. However, not all languages use spaces to separate words. One possible solution is to use language specific pre-tokenizers, *e.g.* [XLM](model_doc/xlm) uses a specific Chinese, Japanese, and Thai pre-tokenizer. To solve this problem more generally, [SentencePiece: A simple and language independent subword tokenizer and detokenizer for Neural Text Processing (Kudo et al., 2018)](https://arxiv.org/pdf/1808.06226.pdf) treats the input as a raw input stream, thus including the space in the set of characters to use. It then uses the BPE or unigram algorithm to construct the appropriate vocabulary. The [`XLNetTokenizer`] uses SentencePiece for example, which is also why in the example earlier the `"▁"` character was included in the vocabulary. Decoding with SentencePiece is very easy since all tokens can just be concatenated and `"▁"` is replaced by a space. All transformers models in the library that use SentencePiece use it in combination with unigram. Examples of models using SentencePiece are [ALBERT](model_doc/albert), [XLNet](model_doc/xlnet), [Marian](model_doc/marian), and [T5](model_doc/t5).
transformers/docs/source/en/tokenizer_summary.md/0
{ "file_path": "transformers/docs/source/en/tokenizer_summary.md", "repo_id": "transformers", "token_count": 4940 }
33
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Compartir modelos personalizados La biblioteca 🤗 Transformers está diseñada para ser fácilmente ampliable. Cada modelo está completamente codificado sin abstracción en una subcarpeta determinada del repositorio, por lo que puedes copiar fácilmente un archivo del modelo y ajustarlo según tus necesidades. Si estás escribiendo un modelo completamente nuevo, podría ser más fácil comenzar desde cero. En este tutorial, te mostraremos cómo escribir un modelo personalizado y su configuración para que pueda usarse dentro de Transformers, y cómo puedes compartirlo con la comunidad (con el código en el que se basa) para que cualquiera pueda usarlo, incluso si no está presente en la biblioteca 🤗 Transformers. Ilustraremos todo esto con un modelo ResNet, envolviendo la clase ResNet de la [biblioteca timm](https://github.com/rwightman/pytorch-image-models) en un [`PreTrainedModel`]. ## Escribir una configuración personalizada Antes de adentrarnos en el modelo, primero escribamos su configuración. La configuración de un modelo es un objeto que contendrá toda la información necesaria para construir el modelo. Como veremos en la siguiente sección, el modelo solo puede tomar un `config` para ser inicializado, por lo que realmente necesitamos que ese objeto esté lo más completo posible. En nuestro ejemplo, tomaremos un par de argumentos de la clase ResNet que tal vez queramos modificar. Las diferentes configuraciones nos darán los diferentes tipos de ResNet que son posibles. Luego simplemente almacenamos esos argumentos después de verificar la validez de algunos de ellos. ```python from transformers import PretrainedConfig from typing import List class ResnetConfig(PretrainedConfig): model_type = "resnet" def __init__( self, block_type="bottleneck", layers: List[int] = [3, 4, 6, 3], num_classes: int = 1000, input_channels: int = 3, cardinality: int = 1, base_width: int = 64, stem_width: int = 64, stem_type: str = "", avg_down: bool = False, **kwargs, ): if block_type not in ["basic", "bottleneck"]: raise ValueError(f"`block_type` must be 'basic' or bottleneck', got {block_type}.") if stem_type not in ["", "deep", "deep-tiered"]: raise ValueError(f"`stem_type` must be '', 'deep' or 'deep-tiered', got {stem_type}.") self.block_type = block_type self.layers = layers self.num_classes = num_classes self.input_channels = input_channels self.cardinality = cardinality self.base_width = base_width self.stem_width = stem_width self.stem_type = stem_type self.avg_down = avg_down super().__init__(**kwargs) ``` Las tres cosas importantes que debes recordar al escribir tu propia configuración son las siguientes: - tienes que heredar de `PretrainedConfig`, - el `__init__` de tu `PretrainedConfig` debe aceptar cualquier `kwargs`, - esos `kwargs` deben pasarse a la superclase `__init__`. La herencia es para asegurarte de obtener toda la funcionalidad de la biblioteca 🤗 Transformers, mientras que las otras dos restricciones provienen del hecho de que una `PretrainedConfig` tiene más campos que los que estás configurando. Al recargar una `config` con el método `from_pretrained`, esos campos deben ser aceptados por tu `config` y luego enviados a la superclase. Definir un `model_type` para tu configuración (en este caso `model_type="resnet"`) no es obligatorio, a menos que quieras registrar tu modelo con las clases automáticas (ver la última sección). Una vez hecho esto, puedes crear y guardar fácilmente tu configuración como lo harías con cualquier otra configuración de un modelo de la biblioteca. Así es como podemos crear una configuración resnet50d y guardarla: ```py resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True) resnet50d_config.save_pretrained("custom-resnet") ``` Esto guardará un archivo llamado `config.json` dentro de la carpeta `custom-resnet`. Luego puedes volver a cargar tu configuración con el método `from_pretrained`: ```py resnet50d_config = ResnetConfig.from_pretrained("custom-resnet") ``` También puedes usar cualquier otro método de la clase [`PretrainedConfig`], como [`~PretrainedConfig.push_to_hub`], para cargar directamente tu configuración en el Hub. ## Escribir un modelo personalizado Ahora que tenemos nuestra configuración de ResNet, podemos seguir escribiendo el modelo. En realidad escribiremos dos: una que extrae las características ocultas de un grupo de imágenes (como [`BertModel`]) y una que es adecuada para clasificación de imagenes (como [`BertForSequenceClassification`]). Como mencionamos antes, solo escribiremos un envoltura (_wrapper_) libre del modelo para simplificar este ejemplo. Lo único que debemos hacer antes de escribir esta clase es un mapeo entre los tipos de bloques y las clases de bloques reales. Luego se define el modelo desde la configuración pasando todo a la clase `ResNet`: ```py from transformers import PreTrainedModel from timm.models.resnet import BasicBlock, Bottleneck, ResNet from .configuration_resnet import ResnetConfig BLOCK_MAPPING = {"basic": BasicBlock, "bottleneck": Bottleneck} class ResnetModel(PreTrainedModel): config_class = ResnetConfig def __init__(self, config): super().__init__(config) block_layer = BLOCK_MAPPING[config.block_type] self.model = ResNet( block_layer, config.layers, num_classes=config.num_classes, in_chans=config.input_channels, cardinality=config.cardinality, base_width=config.base_width, stem_width=config.stem_width, stem_type=config.stem_type, avg_down=config.avg_down, ) def forward(self, tensor): return self.model.forward_features(tensor) ``` Para el modelo que clasificará las imágenes, solo cambiamos el método de avance (es decir, el método `forward`): ```py import torch class ResnetModelForImageClassification(PreTrainedModel): config_class = ResnetConfig def __init__(self, config): super().__init__(config) block_layer = BLOCK_MAPPING[config.block_type] self.model = ResNet( block_layer, config.layers, num_classes=config.num_classes, in_chans=config.input_channels, cardinality=config.cardinality, base_width=config.base_width, stem_width=config.stem_width, stem_type=config.stem_type, avg_down=config.avg_down, ) def forward(self, tensor, labels=None): logits = self.model(tensor) if labels is not None: loss = torch.nn.functional.cross_entropy(logits, labels) return {"loss": loss, "logits": logits} return {"logits": logits} ``` En ambos casos, observa cómo heredamos de `PreTrainedModel` y llamamos a la inicialización de la superclase con `config` (un poco como cuando escribes `torch.nn.Module`). La línea que establece `config_class` no es obligatoria, a menos que quieras registrar tu modelo con las clases automáticas (consulta la última sección). <Tip> Si tu modelo es muy similar a un modelo dentro de la biblioteca, puedes reutilizar la misma configuración de ese modelo. </Tip> Puedes hacer que tu modelo devuelva lo que quieras, pero devolver un diccionario como lo hicimos para `ResnetModelForImageClassification`, con el `loss` incluido cuando se pasan las etiquetas, hará que tu modelo se pueda usar directamente dentro de la clase [`Trainer`]. Usar otro formato de salida está bien, siempre y cuando estés planeando usar tu propio bucle de entrenamiento u otra biblioteca para el entrenamiento. Ahora que tenemos nuestra clase, vamos a crear un modelo: ```py resnet50d = ResnetModelForImageClassification(resnet50d_config) ``` Nuevamente, puedes usar cualquiera de los métodos de [`PreTrainedModel`], como [`~PreTrainedModel.save_pretrained`] o [`~PreTrainedModel.push_to_hub`]. Usaremos el segundo en la siguiente sección y veremos cómo pasar los pesos del modelo con el código de nuestro modelo. Pero primero, carguemos algunos pesos previamente entrenados dentro de nuestro modelo. En tu caso de uso, probablemente estarás entrenando tu modelo personalizado con tus propios datos. Para ir rápido en este tutorial, usaremos la versión preentrenada de resnet50d. Dado que nuestro modelo es solo un envoltorio alrededor del resnet50d original, será fácil transferir esos pesos: ```py import timm pretrained_model = timm.create_model("resnet50d", pretrained=True) resnet50d.model.load_state_dict(pretrained_model.state_dict()) ``` Ahora veamos cómo asegurarnos de que cuando hacemos [`~PreTrainedModel.save_pretrained`] o [`~PreTrainedModel.push_to_hub`], se guarda el código del modelo. ## Enviar el código al _Hub_ <Tip warning={true}> Esta _API_ es experimental y puede tener algunos cambios leves en las próximas versiones. </Tip> Primero, asegúrate de que tu modelo esté completamente definido en un archivo `.py`. Puedes basarte en importaciones relativas a otros archivos, siempre que todos los archivos estén en el mismo directorio (aún no admitimos submódulos para esta característica). Para nuestro ejemplo, definiremos un archivo `modeling_resnet.py` y un archivo `configuration_resnet.py` en una carpeta del directorio de trabajo actual llamado `resnet_model`. El archivo de configuración contiene el código de `ResnetConfig` y el archivo del modelo contiene el código de `ResnetModel` y `ResnetModelForImageClassification`. ``` . └── resnet_model ├── __init__.py ├── configuration_resnet.py └── modeling_resnet.py ``` El `__init__.py` puede estar vacío, solo está ahí para que Python detecte que `resnet_model` se puede usar como un módulo. <Tip warning={true}> Si copias archivos del modelo desde la biblioteca, deberás reemplazar todas las importaciones relativas en la parte superior del archivo para importarlos desde el paquete `transformers`. </Tip> Ten en cuenta que puedes reutilizar (o subclasificar) una configuración o modelo existente. Para compartir tu modelo con la comunidad, sigue estos pasos: primero importa el modelo y la configuración de ResNet desde los archivos recién creados: ```py from resnet_model.configuration_resnet import ResnetConfig from resnet_model.modeling_resnet import ResnetModel, ResnetModelForImageClassification ``` Luego, debes decirle a la biblioteca que deseas copiar el código de esos objetos cuando usas el método `save_pretrained` y registrarlos correctamente con una determinada clase automática (especialmente para modelos), simplemente ejecuta: ```py ResnetConfig.register_for_auto_class() ResnetModel.register_for_auto_class("AutoModel") ResnetModelForImageClassification.register_for_auto_class("AutoModelForImageClassification") ``` Ten en cuenta que no es necesario especificar una clase automática para la configuración (solo hay una clase automática para ellos, [`AutoConfig`]), pero es diferente para los modelos. Tu modelo personalizado podría ser adecuado para muchas tareas diferentes, por lo que debes especificar cuál de las clases automáticas es la correcta para tu modelo. A continuación, vamos a crear la configuración y los modelos como lo hicimos antes: ```py resnet50d_config = ResnetConfig(block_type="bottleneck", stem_width=32, stem_type="deep", avg_down=True) resnet50d = ResnetModelForImageClassification(resnet50d_config) pretrained_model = timm.create_model("resnet50d", pretrained=True) resnet50d.model.load_state_dict(pretrained_model.state_dict()) ``` Ahora, para enviar el modelo al Hub, asegúrate de haber iniciado sesión. Ejecuta en tu terminal: ```bash huggingface-cli login ``` o desde un _notebook_: ```py from huggingface_hub import notebook_login notebook_login() ``` Luego puedes ingresar a tu propio espacio (o una organización de la que seas miembro) de esta manera: ```py resnet50d.push_to_hub("custom-resnet50d") ``` Además de los pesos del modelo y la configuración en formato json, esto también copió los archivos `.py` del modelo y la configuración en la carpeta `custom-resnet50d` y subió el resultado al Hub. Puedes verificar el resultado en este [repositorio de modelos](https://huggingface.co/sgugger/custom-resnet50d). Consulta el tutorial sobre cómo [compartir modelos](model_sharing) para obtener más información sobre el método para subir modelos al Hub. ## Usar un modelo con código personalizado Puedes usar cualquier configuración, modelo o _tokenizador_ con archivos de código personalizado en tu repositorio con las clases automáticas y el método `from_pretrained`. Todos los archivos y códigos cargados en el Hub se analizan en busca de malware (consulta la documentación de [seguridad del Hub](https://huggingface.co/docs/hub/security#malware-scanning) para obtener más información), pero aún debes revisar el código del modelo y el autor para evitar la ejecución de código malicioso en tu computadora. Configura `trust_remote_code=True` para usar un modelo con código personalizado: ```py from transformers import AutoModelForImageClassification model = AutoModelForImageClassification.from_pretrained("sgugger/custom-resnet50d", trust_remote_code=True) ``` También se recomienda encarecidamente pasar un _hash_ de confirmación como una "revisión" para asegurarte de que el autor de los modelos no actualizó el código con algunas líneas nuevas maliciosas (a menos que confíes plenamente en los autores de los modelos). ```py commit_hash = "ed94a7c6247d8aedce4647f00f20de6875b5b292" model = AutoModelForImageClassification.from_pretrained( "sgugger/custom-resnet50d", trust_remote_code=True, revision=commit_hash ) ``` Ten en cuenta que al navegar por el historial de confirmaciones del repositorio del modelo en Hub, hay un botón para copiar fácilmente el hash de confirmación de cualquier _commit_. ## Registrar un model con código personalizado a las clases automáticas Si estás escribiendo una biblioteca que amplía 🤗 Transformers, es posible que quieras ampliar las clases automáticas para incluir tu propio modelo. Esto es diferente de enviar el código al Hub en el sentido de que los usuarios necesitarán importar tu biblioteca para obtener los modelos personalizados (al contrario de descargar automáticamente el código del modelo desde Hub). Siempre que tu configuración tenga un atributo `model_type` que sea diferente de los tipos de modelos existentes, y que tus clases modelo tengan los atributos `config_class` correctos, puedes agregarlos a las clases automáticas de la siguiente manera: ```py from transformers import AutoConfig, AutoModel, AutoModelForImageClassification AutoConfig.register("resnet", ResnetConfig) AutoModel.register(ResnetConfig, ResnetModel) AutoModelForImageClassification.register(ResnetConfig, ResnetModelForImageClassification) ``` Ten en cuenta que el primer argumento utilizado al registrar tu configuración personalizada en [`AutoConfig`] debe coincidir con el `model_type` de tu configuración personalizada, y el primer argumento utilizado al registrar tus modelos personalizados en cualquier clase del modelo automático debe coincidir con el `config_class ` de esos modelos.
transformers/docs/source/es/custom_models.md/0
{ "file_path": "transformers/docs/source/es/custom_models.md", "repo_id": "transformers", "token_count": 5985 }
34
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Preprocesamiento [[open-in-colab]] Antes de que puedas utilizar los datos en un modelo, debes procesarlos en un formato aceptable para el modelo. Un modelo no entiende el texto en bruto, las imágenes o el audio. Estas entradas necesitan ser convertidas en números y ensambladas en tensores. En este tutorial, podrás: * Preprocesar los datos textuales con un tokenizador. * Preprocesar datos de imagen o audio con un extractor de características. * Preprocesar datos para una tarea multimodal con un procesador. ## NLP <Youtube id="Yffk5aydLzg"/> La principal herramienta para procesar datos textuales es un [tokenizador](main_classes/tokenizer). Un tokenizador comienza dividiendo el texto en *tokens* según un conjunto de reglas. Los tokens se convierten en números, que se utilizan para construir tensores como entrada a un modelo. El tokenizador también añade cualquier entrada adicional que requiera el modelo. <Tip> Si tienes previsto utilizar un modelo pre-entrenado, es importante que utilices el tokenizador pre-entrenado asociado. Esto te asegura que el texto se divide de la misma manera que el corpus de pre-entrenamiento y utiliza el mismo índice de tokens correspondiente (usualmente referido como el *vocab*) durante el pre-entrenamiento. </Tip> Comienza rápidamente cargando un tokenizador pre-entrenado con la clase [`AutoTokenizer`]. Esto descarga el *vocab* utilizado cuando un modelo es pre-entrenado. ### Tokenizar Carga un tokenizador pre-entrenado con [`AutoTokenizer.from_pretrained`]: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased") ``` A continuación, pasa tu frase al tokenizador: ```py >>> encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to anger.") >>> print(encoded_input) {'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 11259, 1998, 4248, 2000, 4963, 1012, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} ``` El tokenizador devuelve un diccionario con tres ítems importantes: * [input_ids](glossary#input-ids) son los índices correspondientes a cada token de la frase. * [attention_mask](glossary#attention-mask) indica si un token debe ser atendido o no. * [token_type_ids](glossary#token-type-ids) identifica a qué secuencia pertenece un token cuando hay más de una secuencia. Tu puedes decodificar el `input_ids` para devolver la entrada original: ```py >>> tokenizer.decode(encoded_input["input_ids"]) '[CLS] Do not meddle in the affairs of wizards, for they are subtle and quick to anger. [SEP]' ``` Como puedes ver, el tokenizador ha añadido dos tokens especiales - `CLS` y `SEP` (clasificador y separador) - a la frase. No todos los modelos necesitan tokens especiales, pero si lo llegas a necesitar, el tokenizador los añadirá automáticamente. Si hay varias frases que quieres preprocesar, pasa las frases como una lista al tokenizador: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_inputs = tokenizer(batch_sentences) >>> print(encoded_inputs) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1]]} ``` ### Pad Esto nos lleva a un tema importante. Cuando se procesa un batch de frases, no siempre tienen la misma longitud. Esto es un problema porque los tensores que se introducen en el modelo deben tener una forma uniforme. El pad es una estrategia para asegurar que los tensores sean rectangulares añadiendo un "padding token" especial a las oraciones con menos tokens. Establece el parámetro `padding` en `True` aplicando el pad a las secuencias más cortas del batch para que coincidan con la secuencia más larga: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True) >>> print(encoded_input) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]} ``` Observa que el tokenizador ha aplicado el pad a la primera y la tercera frase con un "0" porque son más cortas. ### Truncamiento En el otro extremo del espectro, a veces una secuencia puede ser demasiado larga para un modelo. En este caso, tendrás que truncar la secuencia a una longitud más corta. Establece el parámetro `truncation` a `True` para truncar una secuencia a la longitud máxima aceptada por el modelo: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True) >>> print(encoded_input) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]} ``` ### Construye tensores Finalmente, si quieres que el tokenizador devuelva los tensores reales que se introducen en el modelo. Establece el parámetro `return_tensors` como `pt` para PyTorch, o `tf` para TensorFlow: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch, padding=True, truncation=True, return_tensors="pt") >>> print(encoded_input) {'input_ids': tensor([[ 101, 153, 7719, 21490, 1122, 1114, 9582, 1623, 102], [ 101, 5226, 1122, 9649, 1199, 2610, 1236, 102, 0]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 0]])} ===PT-TF-SPLIT=== >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch, padding=True, truncation=True, return_tensors="tf") >>> print(encoded_input) {'input_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[ 101, 153, 7719, 21490, 1122, 1114, 9582, 1623, 102], [ 101, 5226, 1122, 9649, 1199, 2610, 1236, 102, 0]], dtype=int32)>, 'token_type_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>, 'attention_mask': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 0]], dtype=int32)>} ``` ## Audio Las entradas de audio se preprocesan de forma diferente a las entradas textuales, pero el objetivo final es el mismo: crear secuencias numéricas que el modelo pueda entender. Un [extractor de características](main_classes/feature_extractor) (o feature extractor en inglés) está diseñado para extraer características de datos provenientes de imágenes o audio sin procesar y convertirlos en tensores. Antes de empezar, instala 🤗 Datasets para cargar un dataset de audio para experimentar: ```bash pip install datasets ``` Carga la tarea de detección de palabras clave del benchmark [SUPERB](https://huggingface.co/datasets/superb) (consulta el [tutorial 🤗 Dataset](https://huggingface.co/docs/datasets/load_hub) para que obtengas más detalles sobre cómo cargar un dataset): ```py >>> from datasets import load_dataset, Audio >>> dataset = load_dataset("superb", "ks") ``` Accede al primer elemento de la columna `audio` para echar un vistazo a la entrada. Al llamar a la columna `audio` se cargará y volverá a muestrear automáticamente el archivo de audio: ```py >>> dataset["train"][0]["audio"] {'array': array([ 0. , 0. , 0. , ..., -0.00592041, -0.00405884, -0.00253296], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/05734a36d88019a09725c20cc024e1c4e7982e37d7d55c0c1ca1742ea1cdd47f/_background_noise_/doing_the_dishes.wav', 'sampling_rate': 16000} ``` Esto devuelve tres elementos: * `array` es la señal de voz cargada - y potencialmente remuestreada - como un array 1D. * `path` apunta a la ubicación del archivo de audio. * `sampling_rate` se refiere a cuántos puntos de datos de la señal de voz se miden por segundo. ### Resample Para este tutorial, se utilizará el modelo [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base). Como puedes ver en la model card, el modelo Wav2Vec2 está pre-entrenado en audio de voz muestreado a 16kHz. Es importante que la tasa de muestreo de tus datos de audio coincida con la tasa de muestreo del dataset utilizado para pre-entrenar el modelo. Si la tasa de muestreo de tus datos no es la misma, deberás volver a muestrear tus datos de audio. Por ejemplo, carga el dataset [LJ Speech](https://huggingface.co/datasets/lj_speech) que tiene una tasa de muestreo de 22050kHz. Para utilizar el modelo Wav2Vec2 con este dataset, reduce la tasa de muestreo a 16kHz: ```py >>> lj_speech = load_dataset("lj_speech", split="train") >>> lj_speech[0]["audio"] {'array': array([-7.3242188e-04, -7.6293945e-04, -6.4086914e-04, ..., 7.3242188e-04, 2.1362305e-04, 6.1035156e-05], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/917ece08c95cf0c4115e45294e3cd0dee724a1165b7fc11798369308a465bd26/LJSpeech-1.1/wavs/LJ001-0001.wav', 'sampling_rate': 22050} ``` 1. Usa el método 🤗 Datasets' [`cast_column`](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.cast_column) para reducir la tasa de muestreo a 16kHz: ```py >>> lj_speech = lj_speech.cast_column("audio", Audio(sampling_rate=16_000)) ``` 2. Carga el archivo de audio: ```py >>> lj_speech[0]["audio"] {'array': array([-0.00064146, -0.00074657, -0.00068768, ..., 0.00068341, 0.00014045, 0. ], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/917ece08c95cf0c4115e45294e3cd0dee724a1165b7fc11798369308a465bd26/LJSpeech-1.1/wavs/LJ001-0001.wav', 'sampling_rate': 16000} ``` Como puedes ver, el `sampling_rate` se ha reducido a 16kHz. Ahora que sabes cómo funciona el resampling, volvamos a nuestro ejemplo anterior con el dataset SUPERB. ### Extractor de características El siguiente paso es cargar un extractor de características para normalizar y aplicar el pad a la entrada. Cuando se aplica padding a los datos textuales, se añade un "0" para las secuencias más cortas. La misma idea se aplica a los datos de audio y el extractor de características de audio añadirá un "0" - interpretado como silencio - al "array". Carga el extractor de características con [`AutoFeatureExtractor.from_pretrained`]: ```py >>> from transformers import AutoFeatureExtractor >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base") ``` Pasa el `array` de audio al extractor de características. También te recomendamos añadir el argumento `sampling_rate` en el extractor de características para poder depurar mejor los errores silenciosos que puedan producirse. ```py >>> audio_input = [dataset["train"][0]["audio"]["array"]] >>> feature_extractor(audio_input, sampling_rate=16000) {'input_values': [array([ 0.00045439, 0.00045439, 0.00045439, ..., -0.1578519 , -0.10807519, -0.06727459], dtype=float32)]} ``` ### Pad y truncamiento Al igual que el tokenizador, puedes aplicar padding o truncamiento para manejar secuencias variables en un batch. Fíjate en la longitud de la secuencia de estas dos muestras de audio: ```py >>> dataset["train"][0]["audio"]["array"].shape (1522930,) >>> dataset["train"][1]["audio"]["array"].shape (988891,) ``` Como puedes ver, el `sampling_rate` se ha reducido a 16kHz. ```py >>> def preprocess_function(examples): ... audio_arrays = [x["array"] for x in examples["audio"]] ... inputs = feature_extractor( ... audio_arrays, ... sampling_rate=16000, ... padding=True, ... max_length=1000000, ... truncation=True, ... ) ... return inputs ``` Aplica la función a los primeros ejemplos del dataset: ```py >>> processed_dataset = preprocess_function(dataset["train"][:5]) ``` Ahora echa un vistazo a las longitudes de las muestras procesadas: ```py >>> processed_dataset["input_values"][0].shape (1000000,) >>> processed_dataset["input_values"][1].shape (1000000,) ``` Las longitudes de las dos primeras muestras coinciden ahora con la longitud máxima especificada. ## Visión También se utiliza un extractor de características para procesar imágenes para tareas de visión por computadora. Una vez más, el objetivo es convertir la imagen en bruto en un batch de tensores como entrada. Vamos a cargar el dataset [food101](https://huggingface.co/datasets/food101) para este tutorial. Usa el parámetro 🤗 Datasets `split` para cargar solo una pequeña muestra de la división de entrenamiento ya que el dataset es bastante grande: ```py >>> from datasets import load_dataset >>> dataset = load_dataset("food101", split="train[:100]") ``` A continuación, observa la imagen con la función 🤗 Datasets [`Image`](https://huggingface.co/docs/datasets/package_reference/main_classes?highlight=image#datasets.Image): ```py >>> dataset[0]["image"] ``` ![vision-preprocess-tutorial.png](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vision-preprocess-tutorial.png) ### Extractor de características Carga el extractor de características con [`AutoFeatureExtractor.from_pretrained`]: ```py >>> from transformers import AutoFeatureExtractor >>> feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224") ``` ### Aumento de Datos Para las tareas de visión por computadora es común añadir algún tipo de aumento de datos (o data augmentation) a las imágenes como parte del preprocesamiento. Puedes añadir el método de aumento de datos con cualquier librería que quieras, pero en este tutorial utilizarás el módulo [`transforms`](https://pytorch.org/vision/stable/transforms.html) de torchvision. 1. Normaliza la imagen y utiliza [`Compose`](https://pytorch.org/vision/master/generated/torchvision.transforms.Compose.html) para encadenar algunas transformaciones - [`RandomResizedCrop`](https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html) y [`ColorJitter`](https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html) - juntas: ```py >>> from torchvision.transforms import Compose, Normalize, RandomResizedCrop, ColorJitter, ToTensor >>> normalize = Normalize(mean=feature_extractor.image_mean, std=feature_extractor.image_std) >>> _transforms = Compose( ... [RandomResizedCrop(feature_extractor.size), ColorJitter(brightness=0.5, hue=0.5), ToTensor(), normalize] ... ) ``` 2. El modelo acepta [`pixel_values`](model_doc/visionencoderdecoder#transformers.VisionEncoderDecoderModel.forward.pixel_values) como entrada. Este valor es generado por el extractor de características. Crea una función que genere `pixel_values` a partir de las transformaciones: ```py >>> def transforms(examples): ... examples["pixel_values"] = [_transforms(image.convert("RGB")) for image in examples["image"]] ... return examples ``` 3. A continuación, utiliza 🤗 Datasets [`set_transform`](https://huggingface.co/docs/datasets/process#format-transform) para aplicar las transformaciones sobre la marcha: ```py >>> dataset.set_transform(transforms) ``` 4. Ahora, cuando accedes a la imagen, observarás que el extractor de características ha añadido a la entrada del modelo `pixel_values`: ```py >>> dataset[0]["image"] {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=384x512 at 0x7F1A7B0630D0>, 'label': 6, 'pixel_values': tensor([[[ 0.0353, 0.0745, 0.1216, ..., -0.9922, -0.9922, -0.9922], [-0.0196, 0.0667, 0.1294, ..., -0.9765, -0.9843, -0.9922], [ 0.0196, 0.0824, 0.1137, ..., -0.9765, -0.9686, -0.8667], ..., [ 0.0275, 0.0745, 0.0510, ..., -0.1137, -0.1216, -0.0824], [ 0.0667, 0.0824, 0.0667, ..., -0.0588, -0.0745, -0.0980], [ 0.0353, 0.0353, 0.0431, ..., -0.0039, -0.0039, -0.0588]], [[ 0.2078, 0.2471, 0.2863, ..., -0.9451, -0.9373, -0.9451], [ 0.1608, 0.2471, 0.3098, ..., -0.9373, -0.9451, -0.9373], [ 0.2078, 0.2706, 0.3020, ..., -0.9608, -0.9373, -0.8275], ..., [-0.0353, 0.0118, -0.0039, ..., -0.2392, -0.2471, -0.2078], [ 0.0196, 0.0353, 0.0196, ..., -0.1843, -0.2000, -0.2235], [-0.0118, -0.0039, -0.0039, ..., -0.0980, -0.0980, -0.1529]], [[ 0.3961, 0.4431, 0.4980, ..., -0.9216, -0.9137, -0.9216], [ 0.3569, 0.4510, 0.5216, ..., -0.9059, -0.9137, -0.9137], [ 0.4118, 0.4745, 0.5216, ..., -0.9137, -0.8902, -0.7804], ..., [-0.2314, -0.1922, -0.2078, ..., -0.4196, -0.4275, -0.3882], [-0.1843, -0.1686, -0.2000, ..., -0.3647, -0.3804, -0.4039], [-0.1922, -0.1922, -0.1922, ..., -0.2941, -0.2863, -0.3412]]])} ``` Este es el aspecto de la imagen después de preprocesarla. Como era de esperar por las transformaciones aplicadas, la imagen ha sido recortada aleatoriamente y sus propiedades de color son diferentes. ```py >>> import numpy as np >>> import matplotlib.pyplot as plt >>> img = dataset[0]["pixel_values"] >>> plt.imshow(img.permute(1, 2, 0)) ``` ![preprocessed_image](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/preprocessed_image.png) ## Multimodal Para las tareas multimodales utilizarás una combinación de todo lo que has aprendido hasta ahora y aplicarás tus habilidades a una tarea de reconocimiento automático de voz (ASR). Esto significa que necesitarás un: * Extractor de características para preprocesar los datos de audio. * Un tokenizador para procesar el texto. Volvamos al dataset [LJ Speech](https://huggingface.co/datasets/lj_speech): ```py >>> from datasets import load_dataset >>> lj_speech = load_dataset("lj_speech", split="train") ``` Suponiendo que te interesan principalmente las columnas `audio` y `texto`, elimina las demás columnas: ```py >>> lj_speech = lj_speech.map(remove_columns=["file", "id", "normalized_text"]) ``` Ahora echa un vistazo a las columnas `audio` y `texto`: ```py >>> lj_speech[0]["audio"] {'array': array([-7.3242188e-04, -7.6293945e-04, -6.4086914e-04, ..., 7.3242188e-04, 2.1362305e-04, 6.1035156e-05], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/917ece08c95cf0c4115e45294e3cd0dee724a1165b7fc11798369308a465bd26/LJSpeech-1.1/wavs/LJ001-0001.wav', 'sampling_rate': 22050} >>> lj_speech[0]["text"] 'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition' ``` Recuerda la sección anterior sobre el procesamiento de datos de audio, siempre debes [volver a muestrear](preprocessing#audio) la tasa de muestreo de tus datos de audio para que coincida con la tasa de muestreo del dataset utilizado para preentrenar un modelo: ```py >>> lj_speech = lj_speech.cast_column("audio", Audio(sampling_rate=16_000)) ``` ### Processor Un processor combina un extractor de características y un tokenizador. Cargue un procesador con [`AutoProcessor.from_pretrained`]: ```py >>> from transformers import AutoProcessor >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") ``` 1. Crea una función para procesar los datos de audio en `input_values`, y tokeniza el texto en `labels`. Estas son las entradas del modelo: ```py >>> def prepare_dataset(example): ... audio = example["audio"] ... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000)) ... return example ``` 2. Aplica la función `prepare_dataset` a una muestra: ```py >>> prepare_dataset(lj_speech[0]) ``` Observa que el método processor ha añadido `input_values` y `labels`. La tasa de muestreo también se ha reducido correctamente a 16kHz. Genial, ahora deberías ser capaz de preprocesar datos para cualquier modalidad e incluso combinar diferentes modalidades. En el siguiente tutorial, aprenderás aplicar fine tuning a un modelo en tus datos recién preprocesados. ## Todo lo que siempre quisiste saber sobre el padding y el truncamiento Hemos visto los comandos que funcionarán para la mayoría de los casos (hacer pad a tu batch teniendo en cuenta la longitud de la frase máxima y truncar a la longitud máxima que el modelo puede aceptar). Sin embargo, la API admite más estrategias si las necesitas. Los tres argumentos que necesitas conocer para ello son `padding`, `truncation` y `max_length`. - `padding` controla el aplicarme padding al texto. Puede ser un booleano o una cadena que debe ser: - `True` o `'longest'` para aplicar el pad hasta la secuencia más larga del batch (no apliques el padding si sólo le proporcionas una sola secuencia). - `'max_length'` para aplicar el pad hasta la longitud especificada por el argumento `max_length` o la longitud máxima aceptada por el modelo si no le proporcionas `longitud_máxima` (`longitud_máxima=None`). Si sólo le proporcionas una única secuencia se le aplicará el padding. `False` o `'do_not_pad'` para no aplicar pad a las secuencias. Como hemos visto antes, este es el comportamiento por defecto. - `truncation` controla el truncamiento. Puede ser un booleano o una string que debe ser: - `True` o `'longest_first'` truncan hasta la longitud máxima especificada por el argumento `max_length` o la longitud máxima aceptada por el modelo si no le proporcionas `max_length` (`max_length=None`). Esto truncará token por token, eliminando un token de la secuencia más larga del par hasta alcanzar la longitud adecuada. - `'only_second'` trunca hasta la longitud máxima especificada por el argumento `max_length` o la longitud máxima aceptada por el modelo si no le proporcionas `max_length` (`max_length=None`). Esto sólo truncará la segunda frase de un par si le proporcionas un par de secuencias (o un batch de pares de secuencias). - `'only_first'` trunca hasta la longitud máxima especificada por el argumento `max_length` o la longitud máxima aceptada por el modelo si no se proporciona `max_length` (`max_length=None`). Esto sólo truncará la primera frase de un par si se proporciona un par de secuencias (o un lote de pares de secuencias). - `False` o `'do_not_truncate'` para no truncar las secuencias. Como hemos visto antes, este es el comportamiento por defecto. - `max_length` para controlar la longitud del padding/truncamiento. Puede ser un número entero o `None`, en cuyo caso será por defecto la longitud máxima que el modelo puede aceptar. Si el modelo no tiene una longitud máxima de entrada específica, el padding/truncamiento a `longitud_máxima` se desactiva. A continuación te mostramos en una tabla que resume la forma recomendada de configurar el padding y el truncamiento. Si utilizas un par de secuencias de entrada en algunos de los siguientes ejemplos, puedes sustituir `truncation=True` por una `STRATEGY` seleccionada en `['only_first', 'only_second', 'longest_first']`, es decir, `truncation='only_second'` o `truncation= 'longest_first'` para controlar cómo se truncan ambas secuencias del par como se ha detallado anteriormente. | Truncation | Padding | Instrucciones | |--------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------| | no truncation | no padding | `tokenizer(batch_sentences)` | | | padding secuencia max del batch | `tokenizer(batch_sentences, padding=True)` or | | | | `tokenizer(batch_sentences, padding='longest')` | | | padding long max de input model | `tokenizer(batch_sentences, padding='max_length')` | | | padding a una long especifica | `tokenizer(batch_sentences, padding='max_length', max_length=42)` | | truncation long max del input model | no padding | `tokenizer(batch_sentences, truncation=True)` or | | | | `tokenizer(batch_sentences, truncation=STRATEGY)` | | | padding secuencia max del batch | `tokenizer(batch_sentences, padding=True, truncation=True)` or | | | | `tokenizer(batch_sentences, padding=True, truncation=STRATEGY)` | | | padding long max de input model | `tokenizer(batch_sentences, padding='max_length', truncation=True)` or | | | | `tokenizer(batch_sentences, padding='max_length', truncation=STRATEGY)` | | | padding a una long especifica | Not possible | | truncation a una long especifica | no padding | `tokenizer(batch_sentences, truncation=True, max_length=42)` or | | | | `tokenizer(batch_sentences, truncation=STRATEGY, max_length=42)` | | | padding secuencia max del batch | `tokenizer(batch_sentences, padding=True, truncation=True, max_length=42)` or | | | | `tokenizer(batch_sentences, padding=True, truncation=STRATEGY, max_length=42)` | | | padding long max de input model | Not possible | | | padding a una long especifica | `tokenizer(batch_sentences, padding='max_length', truncation=True, max_length=42)` or | | | | `tokenizer(batch_sentences, padding='max_length', truncation=STRATEGY, max_length=42)` |
transformers/docs/source/es/preprocessing.md/0
{ "file_path": "transformers/docs/source/es/preprocessing.md", "repo_id": "transformers", "token_count": 13019 }
35
<!--Copyright 2024 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # El Trainer El [`Trainer`] es un bucle completo de entrenamiento y evaluación para modelos de PyTorch implementado en la biblioteca Transformers. Solo necesitas pasarle las piezas necesarias para el entrenamiento (modelo, tokenizador, conjunto de datos, función de evaluación, hiperparámetros de entrenamiento, etc.), y la clase [`Trainer`] se encarga del resto. Esto facilita comenzar a entrenar más rápido sin tener que escribir manualmente tu propio bucle de entrenamiento. Pero al mismo tiempo, [`Trainer`] es muy personalizable y ofrece una gran cantidad de opciones de entrenamiento para que puedas adaptarlo a tus necesidades exactas de entrenamiento. <Tip> Además de la clase [`Trainer`], Transformers también proporciona una clase [`Seq2SeqTrainer`] para tareas de secuencia a secuencia como traducción o resumen. También está la clase [~trl.SFTTrainer] de la biblioteca [TRL](https://hf.co/docs/trl) que envuelve la clase [`Trainer`] y está optimizada para entrenar modelos de lenguaje como Llama-2 y Mistral con técnicas autoregresivas. [`~trl.SFTTrainer`] también admite funciones como el empaquetado de secuencias, LoRA, cuantización y DeepSpeed para escalar eficientemente a cualquier tamaño de modelo. <br> Siéntete libre de consultar [la referencia de API](./main_classes/trainer) para estas otras clases tipo [`Trainer`] para aprender más sobre cuándo usar cada una. En general, [`Trainer`] es la opción más versátil y es apropiada para una amplia gama de tareas. [`Seq2SeqTrainer`] está diseñado para tareas de secuencia a secuencia y [`~trl.SFTTrainer`] está diseñado para entrenar modelos de lenguaje. </Tip> Antes de comenzar, asegúrate de tener instalado [Accelerate](https://hf.co/docs/accelerate), una biblioteca para habilitar y ejecutar el entrenamiento de PyTorch en entornos distribuidos. ```bash pip install accelerate # upgrade pip install accelerate --upgrade ``` Esta guía proporciona una visión general de la clase [`Trainer`]. ## Uso básico [`Trainer`] incluye todo el código que encontrarías en un bucle de entrenamiento básico: 1. Realiza un paso de entrenamiento para calcular la pérdida 2. Calcula los gradientes con el método [~accelerate.Accelerator.backward] 3. Actualiza los pesos basados en los gradientes 4. Repite este proceso hasta alcanzar un número predeterminado de épocas La clase [`Trainer`] abstrae todo este código para que no tengas que preocuparte por escribir manualmente un bucle de entrenamiento cada vez o si estás empezando con PyTorch y el entrenamiento. Solo necesitas proporcionar los componentes esenciales requeridos para el entrenamiento, como un modelo y un conjunto de datos, y la clase [`Trainer`] maneja todo lo demás. Si deseas especificar opciones de entrenamiento o hiperparámetros, puedes encontrarlos en la clase [`TrainingArguments`]. Por ejemplo, vamos a definir dónde guardar el modelo en output_dir y subir el modelo al Hub después del entrenamiento con `push_to_hub=True`. ```py from transformers import TrainingArguments training_args = TrainingArguments( output_dir="your-model", learning_rate=2e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=2, weight_decay=0.01, eval_strategy="epoch", save_strategy="epoch", load_best_model_at_end=True, push_to_hub=True, ) ``` Pase `training_args` al [`Trainer`] con un modelo, un conjunto de datos o algo para preprocesar el conjunto de datos (dependiendo en el tipo de datos pueda ser un tokenizer, extractor de caracteristicas o procesor del imagen), un recopilador de datos y una función para calcular las métricas que desea rastrear durante el entrenamiento. Finalmente, llame [`~Trainer.train`] para empezar entrenamiento! ```py from transformers import Trainer trainer = Trainer( model=model, args=training_args, train_dataset=dataset["train"], eval_dataset=dataset["test"], processing_class=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, ) trainer.train() ``` ### Los puntos de control La clase [`Trainer`] guarda los puntos de control del modelo en el directorio especificado en el parámetro `output_dir` de [`TrainingArguments`]. Encontrarás los puntos de control guardados en una subcarpeta checkpoint-000 donde los números al final corresponden al paso de entrenamiento. Guardar puntos de control es útil para reanudar el entrenamiento más tarde. ```py # resume from latest checkpoint trainer.train(resume_from_checkpoint=True) # resume from specific checkpoint saved in output directory trainer.train(resume_from_checkpoint="your-model/checkpoint-1000") ``` Puedes guardar tus puntos de control (por defecto, el estado del optimizador no se guarda) en el Hub configurando `push_to_hub=True` en [`TrainingArguments`] para confirmar y enviarlos. Otras opciones para decidir cómo se guardan tus puntos de control están configuradas en el parámetro [`hub_strategy`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.hub_strategy): * hub_strategy="checkpoint" envía el último punto de control a una subcarpeta llamada "last-checkpoint" desde la cual puedes reanudar el entrenamiento. * hub_strategy="all_checkpoints" envía todos los puntos de control al directorio definido en `output_dir` (verás un punto de control por carpeta en tu repositorio de modelos). Cuando reanudas el entrenamiento desde un punto de control, el [`Trainer`] intenta mantener los estados de los generadores de números aleatorios (RNG) de Python, NumPy y PyTorch iguales a como estaban cuando se guardó el punto de control. Pero debido a que PyTorch tiene varias configuraciones predeterminadas no determinísticas, no se garantiza que los estados de RNG sean los mismos. Si deseas habilitar la plena determinismo, echa un vistazo a la guía ["Controlling sources of randomness"](https://pytorch.org/docs/stable/notes/randomness#controlling-sources-of-randomness) para aprender qué puedes habilitar para hacer que tu entrenamiento sea completamente determinista. Sin embargo, ten en cuenta que al hacer ciertas configuraciones deterministas, el entrenamiento puede ser más lento. ## Personaliza el Trainer Si bien la clase [`Trainer`] está diseñada para ser accesible y fácil de usar, también ofrece mucha capacidad de personalización para usuarios más aventureros. Muchos de los métodos del [`Trainer`] pueden ser subclasificados y sobrescritos para admitir la funcionalidad que deseas, sin tener que reescribir todo el bucle de entrenamiento desde cero para adaptarlo. Estos métodos incluyen: * [~Trainer.get_train_dataloader] crea un entrenamiento de DataLoader * [~Trainer.get_eval_dataloader] crea una evaluación DataLoader * [~Trainer.get_test_dataloader] crea una prueba de DataLoader * [~Trainer.log] anota la información de los objetos varios que observa el entrenamiento * [~Trainer.create_optimizer_and_scheduler] crea un optimizador y la tasa programada de aprendizaje si no lo pasaron en __init__; estos pueden ser personalizados independientes con [~Trainer.create_optimizer] y [~Trainer.create_scheduler] respectivamente * [~Trainer.compute_loss] computa la pérdida en lote con las aportes del entrenamiento * [~Trainer.training_step] realiza el paso del entrenamiento * [~Trainer.prediction_step] realiza la predicción y paso de prueba * [~Trainer.evaluate] evalua el modelo y da las metricas evaluativas * [~Trainer.predict] hace las predicciones (con las metricas si hay etiquetas disponibles) en lote de prueba Por ejemplo, si deseas personalizar el método [`~Trainer.compute_loss`] para usar una pérdida ponderada en su lugar, puedes hacerlo de la siguiente manera: ```py from torch import nn from transformers import Trainer class CustomTrainer(Trainer): def compute_loss(self, model, inputs, return_outputs=False): labels = inputs.pop("labels") # forward pass outputs = model(**inputs) logits = outputs.get("logits") # compute custom loss for 3 labels with different weights loss_fct = nn.CrossEntropyLoss(weight=torch.tensor([1.0, 2.0, 3.0], device=model.device)) loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1)) return (loss, outputs) if return_outputs else loss ``` ### Callbacks Otra opción para personalizar el [`Trainer`] es utilizar [callbacks](callbacks). Los callbacks *no cambian nada* en el bucle de entrenamiento. Inspeccionan el estado del bucle de entrenamiento y luego ejecutan alguna acción (detención anticipada, registro de resultados, etc.) según el estado. En otras palabras, un callback no puede usarse para implementar algo como una función de pérdida personalizada y necesitarás subclasificar y sobrescribir el método [`~Trainer.compute_loss`] para eso. Por ejemplo, si deseas agregar un callback de detención anticipada al bucle de entrenamiento después de 10 pasos. ```py from transformers import TrainerCallback class EarlyStoppingCallback(TrainerCallback): def __init__(self, num_steps=10): self.num_steps = num_steps def on_step_end(self, args, state, control, **kwargs): if state.global_step >= self.num_steps: return {"should_training_stop": True} else: return {} ``` Luego, pásalo al parámetro `callback` del [`Trainer`]: ```py from transformers import Trainer trainer = Trainer( model=model, args=training_args, train_dataset=dataset["train"], eval_dataset=dataset["test"], processing_class=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, callback=[EarlyStoppingCallback()], ) ``` ## Logging <Tip> Comprueba el API referencia [logging](./main_classes/logging) para mas información sobre los niveles differentes de logging. </Tip> El [`Trainer`] está configurado a `logging.INFO` de forma predeterminada el cual informa errores, advertencias y otra información basica. Un [`Trainer`] réplica - en entornos distributos - está configurado a `logging.WARNING` el cual solamente informa errores y advertencias. Puedes cambiar el nivel de logging con los parametros [`log_level`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.log_level) y [`log_level_replica`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments.log_level_replica) en [`TrainingArguments`]. Para configurar el nivel de registro para cada nodo, usa el parámetro [`log_on_each_node`](https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.TrainingArguments.log_on_each_node) para determinar si deseas utilizar el nivel de registro en cada nodo o solo en el nodo principal. <Tip> [`Trainer`] establece el nivel de registro por separado para cada nodo en el método [`Trainer.init`], por lo que es posible que desees considerar establecer esto antes si estás utilizando otras funcionalidades de Transformers antes de crear el objeto [`Trainer`]. </Tip> Por ejemplo, para establecer que tu código principal y los módulos utilicen el mismo nivel de registro según cada nodo: ```py logger = logging.getLogger(__name__) logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) trainer = Trainer(...) ``` <hfoptions id="logging"> <hfoption id="single node"> Usa diferentes combinaciones de `log_level` y `log_level_replica` para configurar qué se registra en cada uno de los nodos. ```bash my_app.py ... --log_level warning --log_level_replica error ``` </hfoption> <hfoption id="multi-node"> Agrega el parámetro `log_on_each_node 0` para entornos multi-nodo. ```bash my_app.py ... --log_level warning --log_level_replica error --log_on_each_node 0 # set to only report errors my_app.py ... --log_level error --log_level_replica error --log_on_each_node 0 ``` </hfoption> </hfoptions> ## NEFTune [NEFTune](https://hf.co/papers/2310.05914) es una técnica que puede mejorar el rendimiento al agregar ruido a los vectores de incrustación durante el entrenamiento. Para habilitarlo en [`Trainer`], establece el parámetro `neftune_noise_alpha` en [`TrainingArguments`] para controlar cuánto ruido se agrega. ```py from transformers import TrainingArguments, Trainer training_args = TrainingArguments(..., neftune_noise_alpha=0.1) trainer = Trainer(..., args=training_args) ``` NEFTune se desactiva después del entrenamiento para restaurar la capa de incrustación original y evitar cualquier comportamiento inesperado. ## Accelerate y Trainer La clase [`Trainer`] está impulsada por [Accelerate](https://hf.co/docs/accelerate), una biblioteca para entrenar fácilmente modelos de PyTorch en entornos distribuidos con soporte para integraciones como [FullyShardedDataParallel (FSDP)](https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/) y [DeepSpeed](https://www.deepspeed.ai/). <Tip> Aprende más sobre las estrategias de fragmentación FSDP, descarga de CPU y más con el [`Trainer`] en la guía [Paralela de Datos Completamente Fragmentados](fsdp). </Tip> Para usar Accelerate con [`Trainer`], ejecuta el comando [`accelerate.config`](https://huggingface.co/docs/accelerate/package_reference/cli#accelerate-config) para configurar el entrenamiento para tu entorno de entrenamiento. Este comando crea un `config_file.yaml` que se utilizará cuando inicies tu script de entrenamiento. Por ejemplo, algunas configuraciones de ejemplo que puedes configurar son: <hfoptions id="config"> <hfoption id="DistributedDataParallel"> ```yml compute_environment: LOCAL_MACHINE distributed_type: MULTI_GPU downcast_bf16: 'no' gpu_ids: all machine_rank: 0 #change rank as per the node main_process_ip: 192.168.20.1 main_process_port: 9898 main_training_function: main mixed_precision: fp16 num_machines: 2 num_processes: 8 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` </hfoption> <hfoption id="FSDP"> ```yml compute_environment: LOCAL_MACHINE distributed_type: FSDP downcast_bf16: 'no' fsdp_config: fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_backward_prefetch_policy: BACKWARD_PRE fsdp_forward_prefetch: true fsdp_offload_params: false fsdp_sharding_strategy: 1 fsdp_state_dict_type: FULL_STATE_DICT fsdp_sync_module_states: true fsdp_transformer_layer_cls_to_wrap: BertLayer fsdp_use_orig_params: true machine_rank: 0 main_training_function: main mixed_precision: bf16 num_machines: 1 num_processes: 2 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` </hfoption> <hfoption id="DeepSpeed"> ```yml compute_environment: LOCAL_MACHINE deepspeed_config: deepspeed_config_file: /home/user/configs/ds_zero3_config.json zero3_init_flag: true distributed_type: DEEPSPEED downcast_bf16: 'no' machine_rank: 0 main_training_function: main num_machines: 1 num_processes: 4 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` </hfoption> <hfoption id="DeepSpeed with Accelerate plugin"> ```yml compute_environment: LOCAL_MACHINE deepspeed_config: gradient_accumulation_steps: 1 gradient_clipping: 0.7 offload_optimizer_device: cpu offload_param_device: cpu zero3_init_flag: true zero_stage: 2 distributed_type: DEEPSPEED downcast_bf16: 'no' machine_rank: 0 main_training_function: main mixed_precision: bf16 num_machines: 1 num_processes: 4 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` </hfoption> </hfoptions> El comando [`accelerate_launch`](https://huggingface.co/docs/accelerate/package_reference/cli#accelerate-launch) es la forma recomendada de lanzar tu script de entrenamiento en un sistema distribuido con Accelerate y [`Trainer`] con los parámetros especificados en `config_file.yaml`. Este archivo se guarda en la carpeta de caché de Accelerate y se carga automáticamente cuando ejecutas `accelerate_launch`. Por ejemplo, para ejecutar el script de entrenamiento [`run_glue.py`](https://github.com/huggingface/transformers/blob/f4db565b695582891e43a5e042e5d318e28f20b8/examples/pytorch/text-classification/run_glue.py#L4) con la configuración de FSDP: ```bash accelerate launch \ ./examples/pytorch/text-classification/run_glue.py \ --model_name_or_path bert-base-cased \ --task_name $TASK_NAME \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 16 \ --learning_rate 5e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ \ --overwrite_output_dir ``` También puedes especificar los parámetros del archivo config_file.yaml directamente en la línea de comandos: ```bash accelerate launch --num_processes=2 \ --use_fsdp \ --mixed_precision=bf16 \ --fsdp_auto_wrap_policy=TRANSFORMER_BASED_WRAP \ --fsdp_transformer_layer_cls_to_wrap="BertLayer" \ --fsdp_sharding_strategy=1 \ --fsdp_state_dict_type=FULL_STATE_DICT \ ./examples/pytorch/text-classification/run_glue.py --model_name_or_path bert-base-cased \ --task_name $TASK_NAME \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 16 \ --learning_rate 5e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ \ --overwrite_output_dir ``` Consulta el tutorial [Lanzamiento de tus scripts con Accelerate](https://huggingface.co/docs/accelerate/basic_tutorials/launch) para obtener más información sobre `accelerate_launch` y las configuraciones personalizadas.
transformers/docs/source/es/trainer.md/0
{ "file_path": "transformers/docs/source/es/trainer.md", "repo_id": "transformers", "token_count": 6928 }
36
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # TFLite में निर्यात करें [TensorFlow Lite](https://www.tensorflow.org/lite/guide) एक हल्का ढांचा है जो मशीन लर्निंग मॉडल को संसाधन-सीमित उपकरणों, जैसे मोबाइल फोन, एम्बेडेड सिस्टम और इंटरनेट ऑफ थिंग्स (IoT) उपकरणों पर तैनात करने के लिए है। TFLite को इन उपकरणों पर सीमित गणनात्मक शक्ति, मेमोरी और ऊर्जा खपत के साथ मॉडल को कुशलता से ऑप्टिमाइज़ और चलाने के लिए डिज़ाइन किया गया है। एक TensorFlow Lite मॉडल को एक विशेष कुशल पोर्टेबल प्रारूप में दर्शाया जाता है जिसे `.tflite` फ़ाइल एक्सटेंशन द्वारा पहचाना जाता है। 🤗 Optimum में `exporters.tflite` मॉड्यूल के माध्यम से 🤗 Transformers मॉडल को TFLite में निर्यात करने की कार्यक्षमता है। समर्थित मॉडल आर्किटेक्चर की सूची के लिए, कृपया [🤗 Optimum दस्तावेज़](https://huggingface.co/docs/optimum/exporters/tflite/overview) देखें। TFLite में एक मॉडल निर्यात करने के लिए, आवश्यक निर्भरताएँ स्थापित करें: ```bash pip install optimum[exporters-tf] ``` सभी उपलब्ध तर्कों की जांच करने के लिए, [🤗 Optimum दस्तावेज़](https://huggingface.co/docs/optimum/main/en/exporters/tflite/usage_guides/export_a_model) देखें, या कमांड लाइन में मदद देखें: ```bash optimum-cli export tflite --help ``` यदि आप 🤗 Hub से एक मॉडल का चेकपॉइंट निर्यात करना चाहते हैं, उदाहरण के लिए, `google-bert/bert-base-uncased`, निम्नलिखित कमांड चलाएँ: ```bash optimum-cli export tflite --model google-bert/bert-base-uncased --sequence_length 128 bert_tflite/ ``` आपको प्रगति को दर्शाते हुए लॉग दिखाई देंगे और यह दिखाएंगे कि परिणामस्वरूप `model.tflite` कहाँ सहेजा गया है, जैसे: ```bash Validating TFLite model... -[✓] TFLite model output names match reference model (logits) - Validating TFLite Model output "logits": -[✓] (1, 128, 30522) matches (1, 128, 30522) -[x] values not close enough, max diff: 5.817413330078125e-05 (atol: 1e-05) The TensorFlow Lite export succeeded with the warning: The maximum absolute difference between the output of the reference model and the TFLite exported model is not within the set tolerance 1e-05: - logits: max diff = 5.817413330078125e-05. The exported model was saved at: bert_tflite ``` उपरोक्त उदाहरण 🤗 Hub से एक चेकपॉइंट निर्यात करने को दर्शाता है। जब एक स्थानीय मॉडल निर्यात करते हैं, तो पहले सुनिश्चित करें कि आपने मॉडल के वज़न और टोकनाइज़र फ़ाइलों को एक ही निर्देशिका (`local_path`) में सहेजा है। CLI का उपयोग करते समय, चेकपॉइंट नाम के बजाय `model` तर्क में `local_path` पास करें।
transformers/docs/source/hi/tflite.md/0
{ "file_path": "transformers/docs/source/hi/tflite.md", "repo_id": "transformers", "token_count": 2416 }
37
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Condividi un modello Gli ultimi due tutorial ti hanno mostrato come puoi fare fine-tuning di un modello con PyTorch, Keras e 🤗 Accelerate per configurazioni distribuite. Il prossimo passo è quello di condividere il tuo modello con la community! In Hugging Face, crediamo nella condivisione della conoscenza e delle risorse in modo da democratizzare l'intelligenza artificiale per chiunque. Ti incoraggiamo a considerare di condividere il tuo modello con la community per aiutare altre persone a risparmiare tempo e risorse. In questo tutorial, imparerai due metodi per la condivisione di un modello trained o fine-tuned nel [Model Hub](https://huggingface.co/models): - Condividi in modo programmatico i tuoi file nell'Hub. - Trascina i tuoi file nell'Hub mediante interfaccia grafica. <iframe width="560" height="315" src="https://www.youtube.com/embed/XvSGPZFEjDY" title="YouTube video player" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe> <Tip> Per condividere un modello con la community, hai bisogno di un account su [huggingface.co](https://huggingface.co/join). Puoi anche unirti ad un'organizzazione esistente o crearne una nuova. </Tip> ## Caratteristiche dei repository Ogni repository nel Model Hub si comporta come un tipico repository di GitHub. I nostri repository offrono il versionamento, la cronologia dei commit, e la possibilità di visualizzare le differenze. Il versionamento all'interno del Model Hub è basato su git e [git-lfs](https://git-lfs.github.com/). In altre parole, puoi trattare un modello come un unico repository, consentendo un maggiore controllo degli accessi e maggiore scalabilità. Il controllo delle versioni consente *revisions*, un metodo per appuntare una versione specifica di un modello con un hash di commit, un tag o un branch. Come risultato, puoi caricare una specifica versione di un modello con il parametro `revision`: ```py >>> model = AutoModel.from_pretrained( ... "julien-c/EsperBERTo-small", revision="4c77982" # nome di un tag, di un branch, o commit hash ... ) ``` Anche i file possono essere modificati facilmente in un repository ed è possibile visualizzare la cronologia dei commit e le differenze: ![vis_diff](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vis_diff.png) ## Configurazione Prima di condividere un modello nell'Hub, hai bisogno delle tue credenziali di Hugging Face. Se hai accesso ad un terminale, esegui il seguente comando nell'ambiente virtuale in cui è installata la libreria 🤗 Transformers. Questo memorizzerà il tuo token di accesso nella cartella cache di Hugging Face (di default `~/.cache/`): ```bash huggingface-cli login ``` Se stai usando un notebook come Jupyter o Colaboratory, assicurati di avere la libreria [`huggingface_hub`](https://huggingface.co/docs/hub/adding-a-library) installata. Questa libreria ti permette di interagire in maniera programmatica con l'Hub. ```bash pip install huggingface_hub ``` Utilizza `notebook_login` per accedere all'Hub, e segui il link [qui](https://huggingface.co/settings/token) per generare un token con cui effettuare il login: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Converti un modello per tutti i framework Per assicurarti che il tuo modello possa essere utilizzato da persone che lavorano con un framework differente, ti raccomandiamo di convertire e caricare il tuo modello sia con i checkpoint di PyTorch che con quelli di TensorFlow. Anche se è possibile caricare il modello da un framework diverso, se si salta questo passaggio, il caricamento sarà più lento perché 🤗 Transformers ha bisogno di convertire i checkpoint al momento. Convertire un checkpoint per un altro framework è semplice. Assicurati di avere PyTorch e TensorFlow installati (vedi [qui](installation) per le istruzioni d'installazione), e poi trova il modello specifico per il tuo compito nell'altro framework. <frameworkcontent> <pt> Specifica `from_tf=True` per convertire un checkpoint da TensorFlow a PyTorch: ```py >>> pt_model = DistilBertForSequenceClassification.from_pretrained( ... "path/verso/il-nome-magnifico-che-hai-scelto", from_tf=True ... ) >>> pt_model.save_pretrained("path/verso/il-nome-magnifico-che-hai-scelto") ``` </pt> <tf> Specifica `from_pt=True` per convertire un checkpoint da PyTorch a TensorFlow: ```py >>> tf_model = TFDistilBertForSequenceClassification.from_pretrained( ... "path/verso/il-nome-magnifico-che-hai-scelto", from_pt=True ... ) ``` Poi puoi salvare il tuo nuovo modello in TensorFlow con il suo nuovo checkpoint: ```py >>> tf_model.save_pretrained("path/verso/il-nome-magnifico-che-hai-scelto") ``` </tf> <jax> Se un modello è disponibile in Flax, puoi anche convertire un checkpoint da PyTorch a Flax: ```py >>> flax_model = FlaxDistilBertForSequenceClassification.from_pretrained( ... "path/verso/il-nome-magnifico-che-hai-scelto", from_pt=True ... ) ``` </jax> </frameworkcontent> ## Condividi un modello durante il training <frameworkcontent> <pt> <Youtube id="Z1-XMy-GNLQ"/> Condividere un modello nell'Hub è tanto semplice quanto aggiungere un parametro extra o un callback. Ricorda dal [tutorial sul fine-tuning](training), la classe [`TrainingArguments`] è dove specifichi gli iperparametri e le opzioni addizionali per l'allenamento. Una di queste opzioni di training include l'abilità di condividere direttamente un modello nell'Hub. Imposta `push_to_hub=True` in [`TrainingArguments`]: ```py >>> training_args = TrainingArguments(output_dir="il-mio-bellissimo-modello", push_to_hub=True) ``` Passa gli argomenti per il training come di consueto al [`Trainer`]: ```py >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=small_train_dataset, ... eval_dataset=small_eval_dataset, ... compute_metrics=compute_metrics, ... ) ``` Dopo aver effettuato il fine-tuning del tuo modello, chiama [`~transformers.Trainer.push_to_hub`] sul [`Trainer`] per condividere il modello allenato nell'Hub. 🤗 Transformers aggiungerà in modo automatico persino gli iperparametri, i risultati del training e le versioni del framework alla scheda del tuo modello (model card, in inglese)! ```py >>> trainer.push_to_hub() ``` </pt> <tf> Condividi un modello nell'Hub con [`PushToHubCallback`]. Nella funzione [`PushToHubCallback`], aggiungi: - Una directory di output per il tuo modello. - Un tokenizer. - L'`hub_model_id`, che è il tuo username sull'Hub e il nome del modello. ```py >>> from transformers import PushToHubCallback >>> push_to_hub_callback = PushToHubCallback( ... output_dir="./il_path_dove_salvare_il_tuo_modello", ... tokenizer=tokenizer, ... hub_model_id="il-tuo-username/il-mio-bellissimo-modello", ... ) ``` Aggiungi il callback a [`fit`](https://keras.io/api/models/model_training_apis/), e 🤗 Transformers caricherà il modello allenato nell'Hub: ```py >>> model.fit(tf_train_dataset, validation_data=tf_validation_dataset, epochs=3, callbacks=push_to_hub_callback) ``` </tf> </frameworkcontent> ## Utilizzare la funzione `push_to_hub` Puoi anche chiamare `push_to_hub` direttamente sul tuo modello per caricarlo nell'Hub. Specifica il nome del tuo modello in `push_to_hub`: ```py >>> pt_model.push_to_hub("il-mio-bellissimo-modello") ``` Questo crea un repository sotto il proprio username con il nome del modello `il-mio-bellissimo-modello`. Ora chiunque può caricare il tuo modello con la funzione `from_pretrained`: ```py >>> from transformers import AutoModel >>> model = AutoModel.from_pretrained("il-tuo-username/il-mio-bellissimo-modello") ``` Se fai parte di un'organizzazione e vuoi invece condividere un modello sotto il nome dell'organizzazione, aggiungi il parametro `organization`: ```py >>> pt_model.push_to_hub("il-mio-bellissimo-modello", organization="la-mia-fantastica-org") ``` La funzione `push_to_hub` può essere anche utilizzata per aggiungere altri file al repository del modello. Per esempio, aggiungi un tokenizer ad un repository di un modello: ```py >>> tokenizer.push_to_hub("il-mio-bellissimo-modello") ``` O magari potresti voler aggiungere la versione di TensorFlow del tuo modello PyTorch a cui hai fatto fine-tuning: ```py >>> tf_model.push_to_hub("il-mio-bellissimo-modello") ``` Ora quando navighi nel tuo profilo Hugging Face, dovresti vedere il tuo repository del modello appena creato. Premendo sulla scheda **Files** vengono visualizzati tutti i file caricati nel repository. Per maggiori dettagli su come creare e caricare file ad un repository, fai riferimento alla documentazione [qui](https://huggingface.co/docs/hub/how-to-upstream). ## Carica un modello utilizzando l'interfaccia web Chi preferisce un approccio senza codice può caricare un modello tramite l'interfaccia web dell'hub. Visita [huggingface.co/new](https://huggingface.co/new) per creare un nuovo repository: ![new_model_repo](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/new_model_repo.png) Da qui, aggiungi alcune informazioni sul tuo modello: - Seleziona il/la **owner** del repository. Puoi essere te o qualunque organizzazione di cui fai parte. - Scegli un nome per il tuo modello, il quale sarà anche il nome del repository. - Scegli se il tuo modello è pubblico o privato. - Specifica la licenza utilizzata per il tuo modello. Ora premi sulla scheda **Files** e premi sul pulsante **Add file** per caricare un nuovo file al tuo repository. Trascina poi un file per caricarlo e aggiungere un messaggio di commit. ![upload_file](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/upload_file.png) ## Aggiungi una scheda del modello Per assicurarti che chiunque possa comprendere le abilità, limitazioni, i potenziali bias e le considerazioni etiche del tuo modello, per favore aggiungi una scheda del modello (model card, in inglese) al tuo repository. La scheda del modello è definita nel file `README.md`. Puoi aggiungere una scheda del modello: * Creando manualmente e caricando un file `README.md`. * Premendo sul pulsante **Edit model card** nel repository del tuo modello. Dai un'occhiata alla [scheda del modello](https://huggingface.co/distilbert/distilbert-base-uncased) di DistilBert per avere un buon esempio del tipo di informazioni che una scheda di un modello deve includere. Per maggiori dettagli legati ad altre opzioni che puoi controllare nel file `README.md`, come l'impatto ambientale o widget di esempio, fai riferimento alla documentazione [qui](https://huggingface.co/docs/hub/models-cards).
transformers/docs/source/it/model_sharing.md/0
{ "file_path": "transformers/docs/source/it/model_sharing.md", "repo_id": "transformers", "token_count": 4024 }
38
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Esporta modelli 🤗 Transformers Se devi implementare 🤗 modelli Transformers in ambienti di produzione, noi consigliamo di esportarli in un formato serializzato che può essere caricato ed eseguito su runtime e hardware specializzati. In questa guida ti mostreremo come farlo esporta 🤗 Modelli Transformers in due formati ampiamente utilizzati: ONNX e TorchScript. Una volta esportato, un modello può essere ottimizato per l'inferenza tramite tecniche come la quantizzazione e soppressione. Se sei interessato a ottimizzare i tuoi modelli per l'esecuzione con la massima efficienza, dai un'occhiata a [🤗 Optimum library](https://github.com/huggingface/optimum). ## ONNX Il progetto [ONNX (Open Neural Network eXchange)](http://onnx.ai) Il progetto onnx è un open standard che definisce un insieme comune di operatori e un formato di file comune a rappresentano modelli di deep learning in un'ampia varietà di framework, tra cui PyTorch e TensorFlow. Quando un modello viene esportato nel formato ONNX, questi operatori sono usati per costruire un grafico computazionale (often called an _intermediate representation_) che rappresenta il flusso di dati attraverso la rete neurale. Esponendo un grafico con operatori e tipi di dati standardizzati, ONNX rende più facile passare da un framework all'altro. Ad esempio, un modello allenato in PyTorch può essere esportato in formato ONNX e quindi importato in TensorFlow (e viceversa). 🤗 Transformers fornisce un pacchetto `transformers.onnx` che ti consente di convertire i checkpoint del modello in un grafico ONNX sfruttando gli oggetti di configurazione. Questi oggetti di configurazione sono già pronti per una serie di architetture di modelli, e sono progettati per essere facilmente estensibili ad altre architetture. Le configurazioni pronte includono le seguenti architetture: <!--This table is automatically generated by `make fix-copies`, do not fill manually!--> - ALBERT - BART - BEiT - BERT - BigBird - BigBird-Pegasus - Blenderbot - BlenderbotSmall - CamemBERT - ConvBERT - Data2VecText - Data2VecVision - DeiT - DistilBERT - ELECTRA - FlauBERT - GPT Neo - GPT-J - I-BERT - LayoutLM - M2M100 - Marian - mBART - MobileBERT - OpenAI GPT-2 - Perceiver - PLBart - RoBERTa - RoFormer - SqueezeBERT - T5 - ViT - XLM - XLM-RoBERTa - XLM-RoBERTa-XL Nelle prossime due sezioni, ti mostreremo come: * Esporta un modello supportato usando il pacchetto `transformers.onnx`. * Esporta un modello personalizzato per un'architettura non supportata. ### Esportazione di un modello in ONNX Per esportare un modello 🤗 Transformers in ONNX, dovrai prima installarne alcune dipendenze extra: ```bash pip install transformers[onnx] ``` Il pacchetto `transformers.onnx` può essere usato come modulo Python: ```bash python -m transformers.onnx --help usage: Hugging Face Transformers ONNX exporter [-h] -m MODEL [--feature {causal-lm, ...}] [--opset OPSET] [--atol ATOL] output positional arguments: output Path indicating where to store generated ONNX model. optional arguments: -h, --help show this help message and exit -m MODEL, --model MODEL Model ID on huggingface.co or path on disk to load model from. --feature {causal-lm, ...} The type of features to export the model with. --opset OPSET ONNX opset version to export the model with. --atol ATOL Absolute difference tolerance when validating the model. ``` L'esportazione di un checkpoint utilizzando una configurazione già pronta può essere eseguita come segue: ```bash python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/ ``` che dovrebbe mostrare i seguenti log: ```bash Validating ONNX model... -[✓] ONNX model output names match reference model ({'last_hidden_state'}) - Validating ONNX Model output "last_hidden_state": -[✓] (2, 8, 768) matches (2, 8, 768) -[✓] all values close (atol: 1e-05) All good, model saved at: onnx/model.onnx ``` Questo esporta un grafico ONNX del checkpoint definito dall'argomento `--model`. In questo esempio è `distilbert/distilbert-base-uncased`, ma può essere qualsiasi checkpoint Hugging Face Hub o uno memorizzato localmente. Il file risultante `model.onnx` può quindi essere eseguito su uno dei [tanti acceleratori](https://onnx.ai/supported-tools.html#deployModel) che supportano il lo standard ONNX. Ad esempio, possiamo caricare ed eseguire il modello con [ONNX Runtime](https://onnxruntime.ai/) come segue: ```python >>> from transformers import AutoTokenizer >>> from onnxruntime import InferenceSession >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased") >>> session = InferenceSession("onnx/model.onnx") >>> # ONNX Runtime expects NumPy arrays as input >>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np") >>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs)) ``` I nomi di output richiesti (cioè `["last_hidden_state"]`) possono essere ottenuti dando un'occhiata alla configurazione ONNX di ogni modello. Ad esempio, per DistilBERT abbiamo: ```python >>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig >>> config = DistilBertConfig() >>> onnx_config = DistilBertOnnxConfig(config) >>> print(list(onnx_config.outputs.keys())) ["last_hidden_state"] ``` Il processo è identico per i checkpoint TensorFlow sull'hub. Ad esempio, noi possiamo esportare un checkpoint TensorFlow puro da [Keras organizzazione](https://huggingface.co/keras-io) come segue: ```bash python -m transformers.onnx --model=keras-io/transformers-qa onnx/ ``` Per esportare un modello memorizzato localmente, devi disporre dei pesi del modello e file tokenizer memorizzati in una directory. Ad esempio, possiamo caricare e salvare un checkpoint come segue: <frameworkcontent> <pt> ```python >>> from transformers import AutoTokenizer, AutoModelForSequenceClassification >>> # Load tokenizer and PyTorch weights form the Hub >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased") >>> pt_model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") >>> # Save to disk >>> tokenizer.save_pretrained("local-pt-checkpoint") >>> pt_model.save_pretrained("local-pt-checkpoint") ``` Una volta salvato il checkpoint, possiamo esportarlo su ONNX puntando l'argomento `--model` del pacchetto `transformers.onnx` nella directory desiderata: ```bash python -m transformers.onnx --model=local-pt-checkpoint onnx/ ``` </pt> <tf> ```python >>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification >>> # Load tokenizer and TensorFlow weights from the Hub >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased") >>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased") >>> # Save to disk >>> tokenizer.save_pretrained("local-tf-checkpoint") >>> tf_model.save_pretrained("local-tf-checkpoint") ``` Once the checkpoint is saved, we can export it to ONNX by pointing the `--model` argument of the `transformers.onnx` package to the desired directory: ```bash python -m transformers.onnx --model=local-tf-checkpoint onnx/ ``` </tf> </frameworkcontent> ### Selezione delle caratteristiche per diverse topologie di modello Ogni configurazione già pronta viene fornita con una serie di _caratteristiche_ che ti consentono di esportare modelli per diversi tipi di topologie o attività. Come mostrato nella tabella di seguito, ogni caratteristica è associata a una diversa Auto Class: | Caratteristica | Auto Class | | ------------------------------------ | ------------------------------------ | | `causal-lm`, `causal-lm-with-past` | `AutoModelForCausalLM` | | `default`, `default-with-past` | `AutoModel` | | `masked-lm` | `AutoModelForMaskedLM` | | `question-answering` | `AutoModelForQuestionAnswering` | | `seq2seq-lm`, `seq2seq-lm-with-past` | `AutoModelForSeq2SeqLM` | | `sequence-classification` | `AutoModelForSequenceClassification` | | `token-classification` | `AutoModelForTokenClassification` | Per ciascuna configurazione, puoi trovare l'elenco delle funzionalità supportate tramite il `FeaturesManager`. Ad esempio, per DistilBERT abbiamo: ```python >>> from transformers.onnx.features import FeaturesManager >>> distilbert_features = list(FeaturesManager.get_supported_features_for_model_type("distilbert").keys()) >>> print(distilbert_features) ["default", "masked-lm", "causal-lm", "sequence-classification", "token-classification", "question-answering"] ``` Puoi quindi passare una di queste funzionalità all'argomento `--feature` nel pacchetto `transformers.onnx`. Ad esempio, per esportare un modello di classificazione del testo possiamo scegliere un modello ottimizzato dall'Hub ed eseguire: ```bash python -m transformers.onnx --model=distilbert/distilbert-base-uncased-finetuned-sst-2-english \ --feature=sequence-classification onnx/ ``` che visualizzerà i seguenti registri: ```bash Validating ONNX model... -[✓] ONNX model output names match reference model ({'logits'}) - Validating ONNX Model output "logits": -[✓] (2, 2) matches (2, 2) -[✓] all values close (atol: 1e-05) All good, model saved at: onnx/model.onnx ``` Puoi notare che in questo caso, i nomi di output del modello ottimizzato sono `logits` invece di `last_hidden_state` che abbiamo visto con il checkpoint `distilbert/distilbert-base-uncased` precedente. Questo è previsto dal modello ottimizato visto che ha una testa di e. <Tip> Le caratteristiche che hanno un suffisso `wtih-past` (ad es. `causal-lm-with-past`) corrispondono a topologie di modello con stati nascosti precalcolati (chiave e valori nei blocchi di attenzione) che possono essere utilizzati per la decodifica autoregressiva veloce. </Tip> ### Esportazione di un modello per un'architettura non supportata Se desideri esportare un modello la cui architettura non è nativamente supportata dalla libreria, ci sono tre passaggi principali da seguire: 1. Implementare una configurazione ONNX personalizzata. 2. Esportare il modello in ONNX. 3. Convalidare gli output di PyTorch e dei modelli esportati. In questa sezione, vedremo come DistilBERT è stato implementato per mostrare cosa è coinvolto in ogni passaggio. #### Implementazione di una configurazione ONNX personalizzata Iniziamo con l'oggetto di configurazione ONNX. Forniamo tre classi astratte da cui ereditare, a seconda del tipo di archittettura del modello che desideri esportare: * I modelli basati su encoder ereditano da [`~onnx.config.OnnxConfig`] * I modelli basati su decoder ereditano da [`~onnx.config.OnnxConfigWithPast`] * I modelli encoder-decoder ereditano da[`~onnx.config.OnnxSeq2SeqConfigWithPast`] <Tip> Un buon modo per implementare una configurazione ONNX personalizzata è guardare l'implementazione esistente nel file `configuration_<model_name>.py` di un'architettura simile. </Tip> Poiché DistilBERT è un modello basato su encoder, la sua configurazione eredita da `OnnxConfig`: ```python >>> from typing import Mapping, OrderedDict >>> from transformers.onnx import OnnxConfig >>> class DistilBertOnnxConfig(OnnxConfig): ... @property ... def inputs(self) -> Mapping[str, Mapping[int, str]]: ... return OrderedDict( ... [ ... ("input_ids", {0: "batch", 1: "sequence"}), ... ("attention_mask", {0: "batch", 1: "sequence"}), ... ] ... ) ``` Ogni oggetto di configurazione deve implementare la proprietà `inputs` e restituire una mappatura, dove ogni chiave corrisponde a un input previsto e ogni valore indica l'asse di quell'input. Per DistilBERT, possiamo vedere che sono richiesti due input: `input_ids` e `attention_mask`. Questi inputs hanno la stessa forma di `(batch_size, sequence_length)` per questo motivo vediamo gli stessi assi usati nella configurazione. <Tip> Puoi notare che la proprietà `inputs` per `DistilBertOnnxConfig` restituisce un `OrdinatoDict`. Ciò garantisce che gli input corrispondano alla loro posizione relativa all'interno del metodo `PreTrainedModel.forward()` durante il tracciamento del grafico. Raccomandiamo di usare un `OrderedDict` per le proprietà `inputs` e `outputs` quando si implementano configurazioni ONNX personalizzate. </Tip> Dopo aver implementato una configurazione ONNX, è possibile istanziarla fornendo alla configurazione del modello base come segue: ```python >>> from transformers import AutoConfig >>> config = AutoConfig.from_pretrained("distilbert/distilbert-base-uncased") >>> onnx_config = DistilBertOnnxConfig(config) ``` L'oggetto risultante ha diverse proprietà utili. Ad esempio è possibile visualizzare il Set operatore ONNX che verrà utilizzato durante l'esportazione: ```python >>> print(onnx_config.default_onnx_opset) 11 ``` È inoltre possibile visualizzare gli output associati al modello come segue: ```python >>> print(onnx_config.outputs) OrderedDict([("last_hidden_state", {0: "batch", 1: "sequence"})]) ``` Puoi notare che la proprietà degli output segue la stessa struttura degli input; esso restituisce un `OrderedDict` di output con nome e le loro forme. La struttura di output è legato alla scelta della funzione con cui viene inizializzata la configurazione. Per impostazione predefinita, la configurazione ONNX viene inizializzata con la funzione 'predefinita' che corrisponde all'esportazione di un modello caricato con la classe `AutoModel`. Se tu desideri esportare una topologia di modello diversa, è sufficiente fornire una funzionalità diversa a l'argomento `task` quando inizializzi la configurazione ONNX. Ad esempio, se volevamo esportare DistilBERT con una testa di classificazione per sequenze, potremmo usare: ```python >>> from transformers import AutoConfig >>> config = AutoConfig.from_pretrained("distilbert/distilbert-base-uncased") >>> onnx_config_for_seq_clf = DistilBertOnnxConfig(config, task="sequence-classification") >>> print(onnx_config_for_seq_clf.outputs) OrderedDict([('logits', {0: 'batch'})]) ``` <Tip> Tutte le proprietà e i metodi di base associati a [`~onnx.config.OnnxConfig`] e le altre classi di configurazione possono essere sovrascritte se necessario. Guarda [`BartOnnxConfig`] per un esempio avanzato. </Tip> #### Esportazione del modello Una volta implementata la configurazione ONNX, il passaggio successivo consiste nell'esportare il modello. Qui possiamo usare la funzione `export()` fornita dal pacchetto `transformers.onnx`. Questa funzione prevede la configurazione ONNX, insieme con il modello base e il tokenizer e il percorso per salvare il file esportato: ```python >>> from pathlib import Path >>> from transformers.onnx import export >>> from transformers import AutoTokenizer, AutoModel >>> onnx_path = Path("model.onnx") >>> model_ckpt = "distilbert/distilbert-base-uncased" >>> base_model = AutoModel.from_pretrained(model_ckpt) >>> tokenizer = AutoTokenizer.from_pretrained(model_ckpt) >>> onnx_inputs, onnx_outputs = export(tokenizer, base_model, onnx_config, onnx_config.default_onnx_opset, onnx_path) ``` Gli `onnx_inputs` e `onnx_outputs` restituiti dalla funzione `export()` sono liste di chiavi definite nelle proprietà di `input` e `output` della configurazione. Una volta esportato il modello, puoi verificare che il modello sia ben formato come segue: ```python >>> import onnx >>> onnx_model = onnx.load("model.onnx") >>> onnx.checker.check_model(onnx_model) ``` <Tip> Se il tuo modello è più largo di 2 GB, vedrai che molti file aggiuntivi sono creati durante l'esportazione. Questo è _previsto_ perché ONNX utilizza [Protocol Buffer](https://developers.google.com/protocol-buffers/) per memorizzare il modello e questi hanno un limite di dimensione 2 GB. Vedi la [Documentazione ONNX](https://github.com/onnx/onnx/blob/master/docs/ExternalData.md) per istruzioni su come caricare modelli con dati esterni. </Tip> #### Convalida degli output del modello Il passaggio finale consiste nel convalidare gli output dal modello di base e quello esportato corrispondere entro una soglia di tolleranza assoluta. Qui possiamo usare la Funzione `validate_model_outputs()` fornita dal pacchetto `transformers.onnx` come segue: ```python >>> from transformers.onnx import validate_model_outputs >>> validate_model_outputs( ... onnx_config, tokenizer, base_model, onnx_path, onnx_outputs, onnx_config.atol_for_validation ... ) ``` Questa funzione usa il metodo `OnnxConfig.generate_dummy_inputs()` per generare input per il modello di base e quello esportato e la tolleranza assoluta può essere definita nella configurazione. Generalmente troviamo una corrispondenza numerica nell'intervallo da 1e-6 a 1e-4, anche se è probabile che qualsiasi cosa inferiore a 1e-3 vada bene. ### Contribuire con una nuova configurazione a 🤗 Transformers Stiamo cercando di espandere l'insieme di configurazioni già pronte e di accettare contributi della community! Se vuoi contribuire con la tua aggiunta nella libreria, dovrai: * Implementare la configurazione ONNX nella corrispondente `configuration file _<model_name>.py` * Includere l'architettura del modello e le funzioni corrispondenti in [`~onnx.features.FeatureManager`] * Aggiungere la tua architettura del modello ai test in `test_onnx_v2.py` Scopri come stato contribuito la configurazione per [IBERT](https://github.com/huggingface/transformers/pull/14868/files) per avere un'idea di cosa è coinvolto. ## TorchScript <Tip> Questo è l'inizio dei nostri esperimenti con TorchScript e stiamo ancora esplorando le sue capacità con modelli con variable-input-size. È una nostra priorità e approfondiremo le nostre analisi nelle prossime versioni, con più esempi di codici, un'implementazione più flessibile e benchmark che confrontano i codici basati su Python con quelli compilati con TorchScript. </Tip> Secondo la documentazione di Pytorch: "TorchScript è un modo per creare modelli serializzabili e ottimizzabili da codice Pytorch". I due moduli di Pytorch [JIT e TRACE](https://pytorch.org/docs/stable/jit.html) consentono allo sviluppatore di esportare il loro modello da riutilizzare in altri programmi, come i programmi C++ orientati all'efficienza. Abbiamo fornito un'interfaccia che consente l'esportazione di modelli 🤗 Transformers in TorchScript in modo che possano essere riutilizzati in un ambiente diverso rispetto a un programma Python basato su Pytorch. Qui spieghiamo come esportare e utilizzare i nostri modelli utilizzando TorchScript. Esportare un modello richiede due cose: - Un passaggio in avanti con input fittizzi. - Istanziazione del modello con flag `torchscript`. Queste necessità implicano diverse cose a cui gli sviluppatori dovrebbero prestare attenzione. Questi dettagli mostrati sotto. ### Flag TorchScript e pesi legati Questo flag è necessario perché la maggior parte dei modelli linguistici in questo repository hanno pesi legati tra il loro strato "Embedding" e lo strato "Decoding". TorchScript non consente l'esportazione di modelli che hanno pesi legati, quindi è necessario prima slegare e clonare i pesi. Ciò implica che i modelli istanziati con il flag `torchscript` hanno il loro strato `Embedding` e strato `Decoding` separato, il che significa che non dovrebbero essere addestrati in futuro. L'allenamento de-sincronizza i due strati, portando a risultati inaspettati. Questo non è il caso per i modelli che non hanno una testa del modello linguistico, poiché quelli non hanno pesi legati. Questi modelli può essere esportato in sicurezza senza il flag `torchscript`. ### Input fittizi e standard lengths Gli input fittizzi sono usati per fare un modello passaggio in avanti . Mentre i valori degli input si propagano attraverso i strati, Pytorch tiene traccia delle diverse operazioni eseguite su ciascun tensore. Queste operazioni registrate vengono quindi utilizzate per creare la "traccia" del modello. La traccia viene creata relativamente alle dimensioni degli input. È quindi vincolato dalle dimensioni dell'input fittizio e non funzionerà per altre lunghezze di sequenza o dimensioni batch. Quando si proverà con una dimensione diversa, ci sarà errore come: `La dimensione espansa del tensore (3) deve corrispondere alla dimensione esistente (7) nella dimensione non singleton 2` will be raised. Si consiglia pertanto di tracciare il modello con una dimensione di input fittizia grande almeno quanto il più grande input che verrà fornito al modello durante l'inferenza. È possibile eseguire il padding per riempire i valori mancanti. Il modello sarà tracciato con una grande dimensione di input, tuttavia, anche le dimensioni della diverse matrici saranno grandi, risultando in più calcoli. Si raccomanda di prestare attenzione al numero totale di operazioni eseguite su ciascun input e di seguire da vicino le prestazioni durante l'esportazione di modelli di sequenza-lunghezza variabili. ### Usare TorchSscript in Python Di seguito è riportato un esempio, che mostra come salvare, caricare modelli e come utilizzare la traccia per l'inferenza. #### Salvare un modello Questo frammento di codice mostra come usare TorchScript per esportare un `BertModel`. Qui il `BertModel` è istanziato secondo una classe `BertConfig` e quindi salvato su disco con il nome del file `traced_bert.pt` ```python from transformers import BertModel, BertTokenizer, BertConfig import torch enc = BertTokenizer.from_pretrained("google-bert/bert-base-uncased") # Tokenizing input text text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]" tokenized_text = enc.tokenize(text) # Masking one of the input tokens masked_index = 8 tokenized_text[masked_index] = "[MASK]" indexed_tokens = enc.convert_tokens_to_ids(tokenized_text) segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1] # Creating a dummy input tokens_tensor = torch.tensor([indexed_tokens]) segments_tensors = torch.tensor([segments_ids]) dummy_input = [tokens_tensor, segments_tensors] # Initializing the model with the torchscript flag # Flag set to True even though it is not necessary as this model does not have an LM Head. config = BertConfig( vocab_size_or_config_json_file=32000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, torchscript=True, ) # Instantiating the model model = BertModel(config) # The model needs to be in evaluation mode model.eval() # If you are instantiating the model with *from_pretrained* you can also easily set the TorchScript flag model = BertModel.from_pretrained("google-bert/bert-base-uncased", torchscript=True) # Creating the trace traced_model = torch.jit.trace(model, [tokens_tensor, segments_tensors]) torch.jit.save(traced_model, "traced_bert.pt") ``` #### Caricare un modello Questo frammento di codice mostra come caricare il `BertModel` che era stato precedentemente salvato su disco con il nome `traced_bert.pt`. Stiamo riutilizzando il `dummy_input` precedentemente inizializzato. ```python loaded_model = torch.jit.load("traced_bert.pt") loaded_model.eval() all_encoder_layers, pooled_output = loaded_model(*dummy_input) ``` #### Utilizzare un modello tracciato per l'inferenza Usare il modello tracciato per l'inferenza è semplice come usare il suo metodo dunder `__call__`: ```python traced_model(tokens_tensor, segments_tensors) ``` ### Implementare modelli HuggingFace TorchScript su AWS utilizzando Neuron SDK AWS ha introdotto [Amazon EC2 Inf1](https://aws.amazon.com/ec2/instance-types/inf1/) famiglia di istanze per l'inferenza di machine learning a basso costo e ad alte prestazioni nel cloud. Le istanze Inf1 sono alimentate dal chip AWS Inferentia, un acceleratore hardware personalizzato, specializzato in carichi di lavoro di inferenza di deep learning. [AWS Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/#) è l'SDK per Inferentia che supporta il tracciamento e l'ottimizzazione dei modelli transformers per distribuzione su Inf1. L'SDK Neuron fornisce: 1. API di facile utilizzo con una riga di modifica del codice per tracciare e ottimizzare un modello TorchScript per l'inferenza nel cloud. 2. Ottimizzazioni delle prestazioni pronte all'uso per [miglioramento dei costi-prestazioni](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/benchmark/>) 3. Supporto per i modelli di trasformatori HuggingFace costruiti con [PyTorch](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.html) o [TensorFlow](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/tensorflow/huggingface_bert/huggingface_bert.html). #### Implicazioni Modelli Transformers basati su architettura [BERT (Bidirectional Encoder Representations from Transformers)](https://huggingface.co/docs/transformers/main/model_doc/bert), o sue varianti come [distilBERT](https://huggingface.co/docs/transformers/main/model_doc/distilbert) e [roBERTa](https://huggingface.co/docs/transformers/main/model_doc/roberta) funzioneranno meglio su Inf1 per attività non generative come la question answering estrattive, Classificazione della sequenza, Classificazione dei token. In alternativa, generazione di testo le attività possono essere adattate per essere eseguite su Inf1, secondo questo [tutorial AWS Neuron MarianMT](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/transformers-marianmt.html). Ulteriori informazioni sui modelli che possono essere convertiti fuori dagli schemi su Inferentia possono essere trovati nella [sezione Model Architecture Fit della documentazione Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/models/models-inferentia.html#models-inferentia). #### Dipendenze L'utilizzo di AWS Neuron per convertire i modelli richiede le seguenti dipendenze e l'ambiente: * A [Neuron SDK environment](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/pytorch-neuron/index.html#installation-guide), which comes pre-configured on [AWS Deep Learning AMI](https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-launching.html). #### Convertire un modello per AWS Neuron Usando lo stesso script come in [Usando TorchScipt in Python](https://huggingface.co/docs/transformers/main/en/serialization#using-torchscript-in-python) per tracciare un "BertModel", importi l'estensione del framework `torch.neuron` per accedere i componenti di Neuron SDK tramite un'API Python. ```python from transformers import BertModel, BertTokenizer, BertConfig import torch import torch.neuron ``` E modificare solo la riga di codice di traccia Da: ```python torch.jit.trace(model, [tokens_tensor, segments_tensors]) ``` A: ```python torch.neuron.trace(model, [token_tensor, segments_tensors]) ``` Questa modifica consente a Neuron SDK di tracciare il modello e ottimizzarlo per l'esecuzione nelle istanze Inf1. Per ulteriori informazioni sulle funzionalità, gli strumenti, i tutorial di esempi e gli ultimi aggiornamenti di AWS Neuron SDK, consultare la [documentazione AWS NeuronSDK](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/index.html).
transformers/docs/source/it/serialization.md/0
{ "file_path": "transformers/docs/source/it/serialization.md", "repo_id": "transformers", "token_count": 10324 }
39
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Glossary この用語集は、一般的な機械学習と 🤗 トランスフォーマーの用語を定義し、ドキュメンテーションをより理解するのに役立ちます。 ## A ### attention mask アテンション マスクは、シーケンスをバッチ処理する際に使用されるオプションの引数です。 <Youtube id="M6adb1j2jPI"/> この引数は、モデルにどのトークンを注視すべきか、どのトークンを注視しないかを示します。 例えば、次の2つのシーケンスを考えてみてください: ```python >>> from transformers import BertTokenizer >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased") >>> sequence_a = "This is a short sequence." >>> sequence_b = "This is a rather long sequence. It is at least longer than the sequence A." >>> encoded_sequence_a = tokenizer(sequence_a)["input_ids"] >>> encoded_sequence_b = tokenizer(sequence_b)["input_ids"] ``` The encoded versions have different lengths: ```python >>> len(encoded_sequence_a), len(encoded_sequence_b) (8, 19) ``` したがって、これらのシーケンスをそのまま同じテンソルに配置することはできません。最初のシーケンスは、 2番目のシーケンスの長さに合わせてパディングする必要があります。または、2番目のシーケンスは、最初のシーケンスの 長さに切り詰める必要があります。 最初の場合、IDのリストはパディングインデックスで拡張されます。トークナイザにリストを渡し、次のようにパディングするように 依頼できます: ```python >>> padded_sequences = tokenizer([sequence_a, sequence_b], padding=True) ``` 0sが追加されて、最初の文が2番目の文と同じ長さになるのがわかります: ```python >>> padded_sequences["input_ids"] [[101, 1188, 1110, 170, 1603, 4954, 119, 102, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [101, 1188, 1110, 170, 1897, 1263, 4954, 119, 1135, 1110, 1120, 1655, 2039, 1190, 1103, 4954, 138, 119, 102]] ``` これは、PyTorchまたはTensorFlowでテンソルに変換できます。注意マスクは、モデルがそれらに注意を払わないように、埋め込まれたインデックスの位置を示すバイナリテンソルです。[`BertTokenizer`]では、`1`は注意を払う必要がある値を示し、`0`は埋め込まれた値を示します。この注意マスクは、トークナイザが返す辞書のキー「attention_mask」の下にあります。 ```python >>> padded_sequences["attention_mask"] [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ``` ### autoencoding models [エンコーダーモデル](#encoder-models) および [マスク言語モデリング](#masked-language-modeling-mlm) を参照してください。 ### autoregressive models [因果言語モデリング](#causal-language-modeling) および [デコーダーモデル](#decoder-models) を参照してください。 ## B ### backbone バックボーンは、生の隠れた状態や特徴を出力するネットワーク(埋め込みと層)です。通常、特徴を入力として受け取るために [ヘッド](#head) に接続されており、予測を行います。たとえば、[`ViTModel`] は特定のヘッドが上にないバックボーンです。他のモデルも [`VitModel`] をバックボーンとして使用できます、例えば [DPT](model_doc/dpt) です。 ## C ### causal language modeling モデルがテキストを順番に読み、次の単語を予測する事前トレーニングタスクです。通常、モデルは文全体を読み取りますが、特定のタイムステップで未来のトークンを隠すためにモデル内でマスクを使用します。 ### channel カラー画像は、赤、緑、青(RGB)の3つのチャネルの値の組み合わせから成り立っており、グレースケール画像は1つのチャネルしか持ちません。🤗 Transformers では、チャネルは画像のテンソルの最初または最後の次元になることがあります:[`n_channels`, `height`, `width`] または [`height`, `width`, `n_channels`]。 ### connectionist temporal classification (CTC) 入力と出力が正確にどのように整列するかを正確に知らなくてもモデルを学習させるアルゴリズム。CTC は、特定の入力に対してすべての可能な出力の分布を計算し、その中から最も可能性の高い出力を選択します。CTC は、スピーカーの異なる発話速度など、さまざまな理由で音声がトランスクリプトと完全に整合しない場合に、音声認識タスクで一般的に使用されます。 ### convolution ニューラルネットワークの一種で、入力行列が要素ごとに小さな行列(カーネルまたはフィルター)と乗算され、値が新しい行列に合計されるレイヤーのタイプ。これは入力行列全体に対して繰り返される畳み込み操作として知られ、各操作は入力行列の異なるセグメントに適用されます。畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンで一般的に使用されています。 ## D ### decoder input IDs この入力はエンコーダーデコーダーモデルに特有であり、デコーダーに供給される入力IDを含みます。これらの入力は、翻訳や要約などのシーケンスツーシーケンスタスクに使用され、通常、各モデルに固有の方法で構築されます。 ほとんどのエンコーダーデコーダーモデル(BART、T5)は、`labels` から独自に `decoder_input_ids` を作成します。このようなモデルでは、`labels` を渡すことがトレーニングを処理する優れた方法です。 シーケンスツーシーケンストレーニングにおけるこれらの入力IDの処理方法を確認するために、各モデルのドキュメントを確認してください。 ### decoder models オートリグレッションモデルとも呼ばれ、モデルがテキストを順番に読み、次の単語を予測する事前トレーニングタスク(因果言語モデリング)に関与します。通常、モデルは文全体を読み取り、特定のタイムステップで未来のトークンを隠すマスクを使用して行われます。 <Youtube id="d_ixlCubqQw"/> ### deep learning (DL) ニューラルネットワークを使用する機械学習アルゴリズムで、複数の層を持っています。 ## E ### encoder models オートエンコーディングモデルとしても知られており、エンコーダーモデルは入力(テキストや画像など)を、埋め込みと呼ばれる簡略化された数値表現に変換します。エンコーダーモデルは、しばしば[マスクされた言語モデリング(#masked-language-modeling-mlm)](#masked-language-modeling-mlm)などの技術を使用して事前にトレーニングされ、入力シーケンスの一部をマスクし、モデルにより意味のある表現を作成することが強制されます。 <Youtube id="H39Z_720T5s"/> ## F ### feature extraction 生データをより情報豊かで機械学習アルゴリズムにとって有用な特徴のセットに選択および変換するプロセス。特徴抽出の例には、生のテキストを単語埋め込みに変換したり、画像/ビデオデータからエッジや形状などの重要な特徴を抽出したりすることが含まれます。 ### feed forward chunking トランスフォーマー内の各残差注意ブロックでは、通常、自己注意層の後に2つのフィードフォワード層が続きます。 フィードフォワード層の中間埋め込みサイズは、モデルの隠れたサイズよりも大きいことがよくあります(たとえば、`google-bert/bert-base-uncased`の場合)。 入力サイズが `[batch_size、sequence_length]` の場合、中間フィードフォワード埋め込み `[batch_size、sequence_length、config.intermediate_size]` を保存するために必要なメモリは、メモリの大部分を占めることがあります。[Reformer: The Efficient Transformer](https://arxiv.org/abs/2001.04451)の著者は、計算が `sequence_length` 次元に依存しないため、両方のフィードフォワード層の出力埋め込み `[batch_size、config.hidden_size]_0、...、[batch_size、config.hidden_size]_n` を個別に計算し、後で `[batch_size、sequence_length、config.hidden_size]` に連結することは数学的に等価であると気付きました。これにより、増加した計算時間とメモリ使用量のトレードオフが生じますが、数学的に等価な結果が得られます。 [`apply_chunking_to_forward`] 関数を使用するモデルの場合、`chunk_size` は並列に計算される出力埋め込みの数を定義し、メモリと時間の複雑さのトレードオフを定義します。`chunk_size` が 0 に設定されている場合、フィードフォワードのチャンキングは行われません。 ### finetuned models ファインチューニングは、事前にトレーニングされたモデルを取り、その重みを固定し、新しく追加された[model head](#head)で出力レイヤーを置き換える形式の転移学習です。モデルヘッドは対象のデータセットでトレーニングされます。 詳細については、[Fine-tune a pretrained model](https://huggingface.co/docs/transformers/training) チュートリアルを参照して、🤗 Transformersを使用したモデルのファインチューニング方法を学びましょう。 ## H ### head モデルヘッドは、ニューラルネットワークの最後のレイヤーを指し、生の隠れた状態を受け入れて異なる次元に射影します。各タスクに対して異なるモデルヘッドがあります。例えば: * [`GPT2ForSequenceClassification`] は、ベースの[`GPT2Model`]の上にあるシーケンス分類ヘッド(線形層)です。 * [`ViTForImageClassification`] は、ベースの[`ViTModel`]の`CLS`トークンの最終隠れた状態の上にある画像分類ヘッド(線形層)です。 * [`Wav2Vec2ForCTC`] は、[CTC](#connectionist-temporal-classification-ctc)を持つベースの[`Wav2Vec2Model`]の言語モデリングヘッドです。 ## I ### image patch ビジョンベースのトランスフォーマーモデルは、画像をより小さなパッチに分割し、それらを線形に埋め込み、モデルにシーケンスとして渡します。モデルの ### inference 推論は、トレーニングが完了した後に新しいデータでモデルを評価するプロセスです。 🤗 Transformers を使用して推論を実行する方法については、[推論のパイプライン](https://huggingface.co/docs/transformers/pipeline_tutorial) チュートリアルを参照してください。 ### input IDs 入力IDは、モデルへの入力として渡す必要があるパラメーターの中で最も一般的なものです。これらはトークンのインデックスであり、モデルによって入力として使用されるシーケンスを構築するトークンの数値表現です。 <Youtube id="VFp38yj8h3A"/> 各トークナイザーは異なる方法で動作しますが、基本的なメカニズムは同じです。以下はBERTトークナイザーを使用した例です。BERTトークナイザーは[WordPiece](https://arxiv.org/pdf/1609.08144.pdf)トークナイザーです。 ```python >>> from transformers import BertTokenizer >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased") >>> sequence = "A Titan RTX has 24GB of VRAM" ``` トークナイザーは、シーケンスをトークナイザー語彙で使用可能なトークンに分割します。 ```python >>> tokenized_sequence = tokenizer.tokenize(sequence) ``` トークンは単語またはサブワードです。 たとえば、ここでは "VRAM" はモデルの語彙に含まれていなかったため、"V"、"RA"、"M" に分割されました。 これらのトークンが別々の単語ではなく、同じ単語の一部であることを示すために、"RA" と "M" にはダブルハッシュのプレフィックスが追加されます。 ```python >>> print(tokenized_sequence) ['A', 'Titan', 'R', '##T', '##X', 'has', '24', '##GB', 'of', 'V', '##RA', '##M'] ``` これらのトークンは、モデルが理解できるようにIDに変換できます。これは、文をトークナイザーに直接供給して行うことができます。トークナイザーは、パフォーマンスの向上のために[🤗 Tokenizers](https://github.com/huggingface/tokenizers)のRust実装を活用しています。 ```python >>> inputs = tokenizer(sequence) ``` トークナイザーは、対応するモデルが正しく動作するために必要なすべての引数を含む辞書を返します。トークンのインデックスは、キー `input_ids` の下にあります。 ```python >>> encoded_sequence = inputs["input_ids"] >>> print(encoded_sequence) [101, 138, 18696, 155, 1942, 3190, 1144, 1572, 13745, 1104, 159, 9664, 2107, 102] ``` 注意:トークナイザは、関連するモデルがそれらを必要とする場合に自動的に「特別なトークン」を追加します。これらは、モデルが時折使用する特別なIDです。 前のIDシーケンスをデコードする場合、 ```python >>> decoded_sequence = tokenizer.decode(encoded_sequence) ``` 私たちは見ます ```python >>> print(decoded_sequence) [CLS] A Titan RTX has 24GB of VRAM [SEP] ``` これは[`BertModel`]がその入力を期待する方法です。 ## L ### Labels ラベルは、モデルが損失を計算するために渡すことができるオプションの引数です。これらのラベルは、モデルの予測の期待値であるべきです。モデルは、通常の損失を使用して、その予測と期待値(ラベル)との間の損失を計算します。 これらのラベルはモデルのヘッドに応じて異なります。たとえば: - シーケンス分類モデル([`BertForSequenceClassification`])の場合、モデルは次元が `(batch_size)` のテンソルを期待し、バッチ内の各値がシーケンス全体の予測ラベルに対応します。 - トークン分類モデル([`BertForTokenClassification`])の場合、モデルは次元が `(batch_size, seq_length)` のテンソルを期待し、各値が各個々のトークンの予測ラベルに対応します。 - マスク言語モデリングの場合([`BertForMaskedLM`])、モデルは次元が `(batch_size, seq_length)` のテンソルを期待し、各値が各個々のトークンの予測ラベルに対応します。ここでのラベルはマスクされたトークンのトークンIDであり、他のトークンには通常 -100 などの値が設定されます。 - シーケンス間のタスクの場合([`BartForConditionalGeneration`]、[`MBartForConditionalGeneration`])、モデルは次元が `(batch_size, tgt_seq_length)` のテンソルを期待し、各値が各入力シーケンスに関連付けられたターゲットシーケンスに対応します。トレーニング中、BARTとT5の両方は適切な `decoder_input_ids` とデコーダーのアテンションマスクを内部で生成します。通常、これらを提供する必要はありません。これはエンコーダーデコーダーフレームワークを利用するモデルには適用されません。 - 画像分類モデルの場合([`ViTForImageClassification`])、モデルは次元が `(batch_size)` のテンソルを期待し、バッチ内の各値が各個々の画像の予測ラベルに対応します。 - セマンティックセグメンテーションモデルの場合([`SegformerForSemanticSegmentation`])、モデルは次元が `(batch_size, height, width)` のテンソルを期待し、バッチ内の各値が各個々のピクセルの予測ラベルに対応します。 - 物体検出モデルの場合([`DetrForObjectDetection`])、モデルは各個々の画像の予測ラベルと境界ボックスの数に対応する `class_labels` と `boxes` キーを持つ辞書のリストを期待します。 - 自動音声認識モデルの場合([`Wav2Vec2ForCTC`])、モデルは次元が `(batch_size, target_length)` のテンソルを期待し、各値が各個々のトークンの予測ラベルに対応します。 <Tip> 各モデルのラベルは異なる場合があるため、常に各モデルのドキュメントを確認して、それらの特定のラベルに関する詳細情報を確認してください! </Tip> ベースモデル([`BertModel`])はラベルを受け入れません。これらはベースのトランスフォーマーモデルであり、単に特徴を出力します。 ### large language models (LLM) 大量のデータでトレーニングされた変換器言語モデル(GPT-3、BLOOM、OPT)を指す一般的な用語です。これらのモデルは通常、多くの学習可能なパラメータを持っています(たとえば、GPT-3の場合、1750億個)。 ## M ### masked language modeling (MLM) モデルはテキストの破損バージョンを見る事前トレーニングタスクで、通常はランダムに一部のトークンをマスキングして元のテキストを予測する必要があります。 ### multimodal テキストと別の種類の入力(たとえば画像)を組み合わせるタスクです。 ## N ### Natural language generation (NLG) テキストを生成する関連するすべてのタスク(たとえば、[Transformersで書く](https://transformer.huggingface.co/)、翻訳など)。 ### Natural language processing (NLP) テキストを扱う方法を一般的に表現したものです。 ### Natural language understanding (NLU) テキスト内に何があるかを理解する関連するすべてのタスク(たとえば、テキスト全体の分類、個々の単語の分類など)。 ## P ### pipeline 🤗 Transformersのパイプラインは、データの前処理と変換を特定の順序で実行してデータを処理し、モデルから予測を返す一連のステップを指す抽象化です。パイプラインに見られるいくつかのステージの例には、データの前処理、特徴抽出、正規化などがあります。 詳細については、[推論のためのパイプライン](https://huggingface.co/docs/transformers/pipeline_tutorial)を参照してください。 ### pixel values モデルに渡される画像の数値表現のテンソルです。ピクセル値は、形状が [`バッチサイズ`, `チャネル数`, `高さ`, `幅`] の行列で、画像プロセッサから生成されます。 ### pooling 行列を小さな行列に縮小する操作で、プール対象の次元の最大値または平均値を取ることが一般的です。プーリングレイヤーは一般的に畳み込みレイヤーの間に見られ、特徴表現をダウンサンプリングします。 ### position IDs トークンごとの位置が埋め込まれているRNNとは異なり、トランスフォーマーは各トークンの位置を把握していません。したがって、モデルはトークンの位置を識別するために位置ID(`position_ids`)を使用します。 これはオプションのパラメータです。モデルに `position_ids` が渡されない場合、IDは自動的に絶対的な位置埋め込みとして作成されます。 絶対的な位置埋め込みは範囲 `[0、config.max_position_embeddings - 1]` から選択されます。一部のモデルは、正弦波位置埋め込みや相対位置埋め込みなど、他のタイプの位置埋め込みを使用することがあります。 ### preprocessing 生データを機械学習モデルで簡単に処理できる形式に準備するタスクです。例えば、テキストは通常、トークン化によって前処理されます。他の入力タイプに対する前処理の具体的な方法を知りたい場合は、[Preprocess](https://huggingface.co/docs/transformers/preprocessing) チュートリアルをご覧ください。 ### pretrained model あるデータ(たとえば、Wikipedia全体など)で事前に学習されたモデルです。事前学習の方法には、自己教師ありの目的が含まれ、テキストを読み取り、次の単語を予測しようとするもの([因果言語モデリング](#causal-language-modeling)を参照)や、一部の単語をマスクし、それらを予測しようとするもの([マスク言語モデリング](#masked-language-modeling-mlm)を参照)があります。 音声とビジョンモデルには独自の事前学習の目的があります。たとえば、Wav2Vec2は音声モデルで、モデルに対して「真の」音声表現を偽の音声表現のセットから識別する必要がある対比的なタスクで事前学習されています。一方、BEiTはビジョンモデルで、一部の画像パッチをマスクし、モデルにマスクされたパッチを予測させるタスク(マスク言語モデリングの目的と似ています)で事前学習されています。 ## R ### recurrent neural network (RNN) テキストを処理するために層をループさせるモデルの一種です。 ### representation learning 生データの意味のある表現を学習する機械学習のサブフィールドです。表現学習の技術の一部には単語埋め込み、オートエンコーダー、Generative Adversarial Networks(GANs)などがあります。 ## S ### sampling rate 秒ごとに取られるサンプル(オーディオ信号など)の数をヘルツ単位で測定したものです。サンプリングレートは音声などの連続信号を離散化する結果です。 ### self-attention 入力の各要素は、どの他の要素に注意を払うべきかを検出します。 ### self-supervised learning モデルがラベルのないデータから自分自身の学習目標を作成する機械学習技術のカテゴリです。これは[教師なし学習](#unsupervised-learning)や[教師あり学習](#supervised-learning)とは異なり、学習プロセスはユーザーからは明示的には監督されていない点が異なります。 自己教師あり学習の1つの例は[マスク言語モデリング](#masked-language-modeling-mlm)で、モデルには一部のトークンが削除された文が与えられ、欠落したトークンを予測するように学習します。 ### semi-supervised learning ラベル付きデータの少量とラベルのないデータの大量を組み合わせてモデルの精度を向上させる広範な機械学習トレーニング技術のカテゴリです。[教師あり学習](#supervised-learning)や[教師なし学習](#unsupervised-learning)とは異なり、半教師あり学習のアプローチの1つは「セルフトレーニング」であり、モデルはラベル付きデータでトレーニングされ、次にラベルのないデータで予測を行います。モデルが最も自信を持って予測する部分がラベル付きデータセットに追加され、モデルの再トレーニングに使用されます。 ### sequence-to-sequence (seq2seq) 入力から新しいシーケンスを生成するモデルです。翻訳モデルや要約モデル([Bart](model_doc/bart)や[T5](model_doc/t5)など)などがこれに該当します。 ### stride [畳み込み](#convolution)または[プーリング](#pooling)において、ストライドはカーネルが行列上で移動する距離を指します。ストライドが1の場合、カーネルは1ピクセルずつ移動し、ストライドが2の場合、カーネルは2ピクセルずつ移動します。 ### supervised learning モデルのトレーニング方法の一つで、直接ラベル付きデータを使用してモデルの性能を修正し指導します。データがトレーニングされているモデルに供給され、その予測が既知のラベルと比較されます。モデルは予測がどれだけ誤っていたかに基づいて重みを更新し、プロセスはモデルの性能を最適化するために繰り返されます。 ## T ### token 文の一部であり、通常は単語ですが、サブワード(一般的でない単語はしばしばサブワードに分割されることがあります)または句読点の記号であることもあります。 ### token Type IDs 一部のモデルは、文のペアの分類や質問応答を行うことを目的としています。 <Youtube id="0u3ioSwev3s"/> これには異なる2つのシーケンスを単一の「input_ids」エントリに結合する必要があり、通常は分類子(`[CLS]`)や区切り記号(`[SEP]`)などの特別なトークンの助けを借りて実行されます。例えば、BERTモデルは次のように2つのシーケンス入力を構築します: 日本語訳を提供していただきたいです。Markdown形式で記述してください。 ```python >>> # [CLS] SEQUENCE_A [SEP] SEQUENCE_B [SEP] ``` 我々は、前述のように、2つのシーケンスを2つの引数として `tokenizer` に渡すことで、このような文を自動的に生成することができます(以前のようにリストではなく)。以下のように: ```python >>> from transformers import BertTokenizer >>> tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-cased") >>> sequence_a = "HuggingFace is based in NYC" >>> sequence_b = "Where is HuggingFace based?" >>> encoded_dict = tokenizer(sequence_a, sequence_b) >>> decoded = tokenizer.decode(encoded_dict["input_ids"]) ``` これに対応するコードは以下です: ```python >>> print(decoded) [CLS] HuggingFace is based in NYC [SEP] Where is HuggingFace based? [SEP] ``` 一部のモデルでは、1つのシーケンスがどこで終わり、別のシーケンスがどこで始まるかを理解するのに十分な情報が備わっています。ただし、BERTなどの他のモデルでは、トークンタイプID(セグメントIDとも呼ばれる)も使用されています。これは、モデル内の2つのシーケンスを識別するバイナリマスクとして表されます。 トークナイザは、このマスクを「token_type_ids」として返します。 ```python >>> encoded_dict["token_type_ids"] [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1] ``` 最初のシーケンス、つまり質問のために使用される「コンテキスト」は、すべてのトークンが「0」で表されています。一方、2番目のシーケンス、質問に対応するものは、すべてのトークンが「1」で表されています。 一部のモデル、例えば [`XLNetModel`] のように、追加のトークンが「2」で表されます。 ### transfer learning 事前に学習されたモデルを取り、それをタスク固有のデータセットに適応させる技術。ゼロからモデルを訓練する代わりに、既存のモデルから得た知識を出発点として活用できます。これにより学習プロセスが加速し、必要な訓練データの量が減少します。 ### transformer 自己注意ベースの深層学習モデルアーキテクチャ。 ## U ### unsupervised learning モデルに提供されるデータがラベル付けされていないモデルトレーニングの形態。教師なし学習の技術は、タスクに役立つパターンを見つけるためにデータ分布の統計情報を活用します。
transformers/docs/source/ja/glossary.md/0
{ "file_path": "transformers/docs/source/ja/glossary.md", "repo_id": "transformers", "token_count": 12796 }
40
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Trainer [`Trainer`] クラスは、ほとんどの標準的なユースケースに対して、PyTorch で機能を完全にトレーニングするための API を提供します。これは、[サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples) のほとんどで使用されています。 [`Trainer`] をインスタンス化する前に、トレーニング中にカスタマイズのすべてのポイントにアクセスするために [`TrainingArguments`] を作成します。 この API は、複数の GPU/TPU での分散トレーニング、[NVIDIA Apex](https://github.com/NVIDIA/apex) および PyTorch のネイティブ AMP による混合精度をサポートします。 [`Trainer`] には、上記の機能をサポートする基本的なトレーニング ループが含まれています。カスタム動作を挿入するには、それらをサブクラス化し、次のメソッドをオーバーライドします。 - **get_train_dataloader** -- トレーニング データローダーを作成します。 - **get_eval_dataloader** -- 評価用データローダーを作成します。 - **get_test_dataloader** -- テスト データローダーを作成します。 - **log** -- トレーニングを監視しているさまざまなオブジェクトに関する情報をログに記録します。 - **create_optimizer_and_scheduler** -- オプティマイザと学習率スケジューラが渡されなかった場合にセットアップします。 初期化。 `create_optimizer`メソッドと`create_scheduler`メソッドをサブクラス化またはオーバーライドすることもできることに注意してください。 別々に。 - **create_optimizer** -- init で渡されなかった場合にオプティマイザーをセットアップします。 - **create_scheduler** -- init で渡されなかった場合、学習率スケジューラを設定します。 - **compute_loss** - トレーニング入力のバッチの損失を計算します。 - **training_step** -- トレーニング ステップを実行します。 - **prediction_step** -- 評価/テスト ステップを実行します。 - **evaluate** -- 評価ループを実行し、メトリクスを返します。 - **predict** -- テスト セットの予測 (ラベルが使用可能な場合はメトリクスも含む) を返します。 <Tip warning={true}> [`Trainer`] クラスは 🤗 Transformers モデル用に最適化されており、驚くべき動作をする可能性があります 他の機種で使用する場合。独自のモデルで使用する場合は、次の点を確認してください。 - モデルは常に [`~utils.ModelOutput`] のタプルまたはサブクラスを返します。 - `labels` 引数が指定され、その損失が最初の値として返される場合、モデルは損失を計算できます。 タプルの要素 (モデルがタプルを返す場合) - モデルは複数のラベル引数を受け入れることができます ([`TrainingArguments`] で `label_names` を使用して、その名前を [`Trainer`] に示します) が、それらのいずれにも `"label"` という名前を付ける必要はありません。 </Tip> 以下は、加重損失を使用するように [`Trainer`] をカスタマイズする方法の例です (不均衡なトレーニング セットがある場合に役立ちます)。 ```python from torch import nn from transformers import Trainer class CustomTrainer(Trainer): def compute_loss(self, model, inputs, return_outputs=False): labels = inputs.pop("labels") # forward pass outputs = model(**inputs) logits = outputs.get("logits") # compute custom loss (suppose one has 3 labels with different weights) loss_fct = nn.CrossEntropyLoss(weight=torch.tensor([1.0, 2.0, 3.0], device=model.device)) loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1)) return (loss, outputs) if return_outputs else loss ``` PyTorch [`Trainer`] のトレーニング ループの動作をカスタマイズするもう 1 つの方法は、トレーニング ループの状態を検査できる [callbacks](コールバック) を使用することです (進行状況レポート、TensorBoard または他の ML プラットフォームでのログ記録など)。決定(早期停止など)。 ## Trainer [[autodoc]] Trainer - all ## Seq2SeqTrainer [[autodoc]] Seq2SeqTrainer - evaluate - predict ## TrainingArguments [[autodoc]] TrainingArguments - all ## Seq2SeqTrainingArguments [[autodoc]] Seq2SeqTrainingArguments - all ## Checkpoints デフォルトでは、[`Trainer`] はすべてのチェックポイントを、 [`TrainingArguments`] を使用しています。これらは、xxx を含む`checkpoint-xxx`という名前のサブフォルダーに保存されます。 それはトレーニングの段階でした。 チェックポイントからトレーニングを再開するには、次のいずれかを使用して [`Trainer.train`] を呼び出します。 - `resume_from_checkpoint=True` は最新のチェックポイントからトレーニングを再開します - `resume_from_checkpoint=checkpoint_dir` ディレクトリ内の特定のチェックポイントからトレーニングを再開します 合格した。 さらに、`push_to_hub=True` を使用すると、モデル ハブにチェックポイントを簡単に保存できます。デフォルトでは、すべて 中間チェックポイントに保存されたモデルは別のコミットに保存されますが、オプティマイザーの状態は保存されません。適応できます [`TrainingArguments`] の `hub-strategy` 値を次のいずれかにします。 - `"checkpoint"`: 最新のチェックポイントも last-checkpoint という名前のサブフォルダーにプッシュされます。 `trainer.train(resume_from_checkpoint="output_dir/last-checkpoint")` を使用してトレーニングを簡単に再開します。 - `"all_checkpoints"`: すべてのチェックポイントは、出力フォルダーに表示されるようにプッシュされます (したがって、1 つのチェックポイントが得られます) 最終リポジトリ内のフォルダーごとのチェックポイント フォルダー) ## Logging デフォルトでは、[`Trainer`] はメインプロセスに `logging.INFO` を使用し、レプリカがある場合には `logging.WARNING` を使用します。 これらのデフォルトは、[`TrainingArguments`] の 5 つの `logging` レベルのいずれかを使用するようにオーバーライドできます。 引数: - `log_level` - メインプロセス用 - `log_level_replica` - レプリカ用 さらに、[`TrainingArguments`] の `log_on_each_node` が `False` に設定されている場合、メイン ノードのみが メイン プロセスのログ レベル設定を使用すると、他のすべてのノードはレプリカのログ レベル設定を使用します。 [`Trainer`] は、`transformers` のログ レベルをノードごとに個別に設定することに注意してください。 [`Trainer.__init__`]。したがって、他の機能を利用する場合は、これをより早く設定することをお勧めします (次の例を参照)。 [`Trainer`] オブジェクトを作成する前の `transformers` 機能。 これをアプリケーションで使用する方法の例を次に示します。 ```python [...] logger = logging.getLogger(__name__) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) # set the main code and the modules it uses to the same log-level according to the node log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) trainer = Trainer(...) ``` そして、メイン ノードと他のすべてのノードで重複する可能性が高いものを出力しないように警告するだけを表示したい場合は、 警告: 次のように実行できます。 ```bash my_app.py ... --log_level warning --log_level_replica error ``` マルチノード環境で、各ノードのメインプロセスのログを繰り返したくない場合は、次のようにします。 上記を次のように変更します。 ```bash my_app.py ... --log_level warning --log_level_replica error --log_on_each_node 0 ``` その後、最初のノードのメイン プロセスのみが「警告」レベルでログに記録され、メイン ノード上の他のすべてのプロセスはログに記録されます。 ノードと他のノード上のすべてのプロセスは「エラー」レベルでログに記録されます。 アプリケーションをできるだけ静かにする必要がある場合は、次のようにします。 ```bash my_app.py ... --log_level error --log_level_replica error --log_on_each_node 0 ``` (マルチノード環境の場合は `--log_on_each_node 0` を追加します) ## Randomness [`Trainer`] によって生成されたチェックポイントから再開する場合、すべての努力がその状態を復元するために行われます。 _python_、_numpy_、および _pytorch_ の RNG 状態は、そのチェックポイントを保存した時点と同じ状態になります。 これにより、「停止して再開」というスタイルのトレーニングが、ノンストップトレーニングに可能な限り近づけられるはずです。 ただし、さまざまなデフォルトの非決定的な pytorch 設定により、これは完全に機能しない可能性があります。フルをご希望の場合は 決定論については、[ランダム性のソースの制御](https://pytorch.org/docs/stable/notes/randomness) を参照してください。ドキュメントで説明されているように、これらの設定の一部は 物事を決定論的にするもの (例: `torch.backends.cudnn.deterministic`) は物事を遅くする可能性があるため、これは デフォルトでは実行できませんが、必要に応じて自分で有効にすることができます。 ## Specific GPUs Selection どの GPU をどのような順序で使用するかをプログラムに指示する方法について説明します。 [`DistributedDataParallel`](https://pytorch.org/docs/stable/generated/torch.nn.Parallel.DistributedDataParallel.html) を使用して GPU のサブセットのみを使用する場合、使用する GPU の数を指定するだけです。 。たとえば、GPU が 4 つあるが、最初の 2 つを使用したい場合は、次のようにします。 ```bash torchrun --nproc_per_node=2 trainer-program.py ... ``` [`accelerate`](https://github.com/huggingface/accelerate) または [`deepspeed`](https://github.com/microsoft/DeepSpeed) がインストールされている場合は、次を使用して同じことを達成することもできます。の一つ: ```bash accelerate launch --num_processes 2 trainer-program.py ... ``` ```bash deepspeed --num_gpus 2 trainer-program.py ... ``` これらのランチャーを使用するために、Accelerate または [Deepspeed 統合](deepspeed) 機能を使用する必要はありません。 これまでは、プログラムに使用する GPU の数を指示できました。次に、特定の GPU を選択し、その順序を制御する方法について説明します。 次の環境変数は、使用する GPU とその順序を制御するのに役立ちます。 **`CUDA_VISIBLE_DEVICES`** 複数の GPU があり、そのうちの 1 つまたはいくつかの GPU だけを使用したい場合は、環境変数 `CUDA_VISIBLE_DEVICES` を使用する GPU のリストに設定します。 たとえば、4 つの GPU (0、1、2、3) があるとします。物理 GPU 0 と 2 のみで実行するには、次のようにします。 ```bash CUDA_VISIBLE_DEVICES=0,2 torchrun trainer-program.py ... ``` したがって、pytorch は 2 つの GPU のみを認識し、物理 GPU 0 と 2 はそれぞれ `cuda:0` と `cuda:1` にマッピングされます。 順序を変更することもできます。 ```bash CUDA_VISIBLE_DEVICES=2,0 torchrun trainer-program.py ... ``` ここでは、物理 GPU 0 と 2 がそれぞれ`cuda:1`と`cuda:0`にマッピングされています。 上記の例はすべて `DistributedDataParallel` 使用パターンのものですが、同じ方法が [`DataParallel`](https://pytorch.org/docs/stable/generated/torch.nn.DataParallel.html) でも機能します。 ```bash CUDA_VISIBLE_DEVICES=2,0 python trainer-program.py ... ``` GPU のない環境をエミュレートするには、次のようにこの環境変数を空の値に設定するだけです。 ```bash CUDA_VISIBLE_DEVICES= python trainer-program.py ... ``` 他の環境変数と同様に、これらをコマンド ラインに追加する代わりに、次のようにエクスポートすることもできます。 ```bash export CUDA_VISIBLE_DEVICES=0,2 torchrun trainer-program.py ... ``` ただし、この方法では、以前に環境変数を設定したことを忘れて、なぜ間違った GPU が使用されているのか理解できない可能性があるため、混乱を招く可能性があります。したがって、このセクションのほとんどの例で示されているように、同じコマンド ラインで特定の実行に対してのみ環境変数を設定するのが一般的です。 **`CUDA_DEVICE_ORDER`** 物理デバイスの順序を制御する追加の環境変数 `CUDA_DEVICE_ORDER` があります。選択肢は次の 2 つです。 1. PCIe バス ID 順 (`nvidia-smi` の順序と一致) - これがデフォルトです。 ```bash export CUDA_DEVICE_ORDER=PCI_BUS_ID ``` 2. GPU コンピューティング能力順に並べる ```bash export CUDA_DEVICE_ORDER=FASTEST_FIRST ``` ほとんどの場合、この環境変数を気にする必要はありませんが、古い GPU と新しい GPU が物理的に挿入されているため、遅い古いカードが遅くなっているように見えるような偏ったセットアップを行っている場合には、非常に役立ちます。初め。これを解決する 1 つの方法は、カードを交換することです。ただし、カードを交換できない場合 (デバイスの冷却が影響を受けた場合など)、`CUDA_DEVICE_ORDER=FASTEST_FIRST`を設定すると、常に新しい高速カードが最初に配置されます。ただし、`nvidia-smi`は依然として PCIe の順序でレポートするため、多少混乱するでしょう。 順序を入れ替えるもう 1 つの解決策は、以下を使用することです。 ```bash export CUDA_VISIBLE_DEVICES=1,0 ``` この例では 2 つの GPU だけを使用していますが、もちろん、コンピューターに搭載されている数の GPU にも同じことが当てはまります。 また、この環境変数を設定する場合は、`~/.bashrc` ファイルまたはその他の起動設定ファイルに設定して、忘れるのが最善です。 ## Trainer Integrations [`Trainer`] は、トレーニングを劇的に改善する可能性のあるライブラリをサポートするように拡張されました。 時間とはるかに大きなモデルに適合します。 現在、サードパーティのソリューション [DeepSpeed](https://github.com/microsoft/DeepSpeed) および [PyTorch FSDP](https://pytorch.org/docs/stable/fsdp.html) をサポートしています。論文 [ZeRO: メモリの最適化兆パラメータ モデルのトレーニングに向けて、Samyam Rajbhandari、Jeff Rasley、Olatunji Ruwase、Yuxiong He 著](https://arxiv.org/abs/1910.02054)。 この提供されるサポートは、この記事の執筆時点では新しくて実験的なものです。 DeepSpeed と PyTorch FSDP のサポートはアクティブであり、それに関する問題は歓迎しますが、FairScale 統合は PyTorch メインに統合されているため、もうサポートしていません ([PyTorch FSDP 統合](#pytorch-fully-sharded-data-parallel)) <a id='zero-install-notes'></a> ### CUDA Extension Installation Notes この記事の執筆時点では、Deepspeed を使用するには、CUDA C++ コードをコンパイルする必要があります。 すべてのインストールの問題は、[Deepspeed](https://github.com/microsoft/DeepSpeed/issues) の対応する GitHub の問題を通じて対処する必要がありますが、ビルド中に発生する可能性のある一般的な問題がいくつかあります。 CUDA 拡張機能を構築する必要がある PyTorch 拡張機能。 したがって、次の操作を実行中に CUDA 関連のビルドの問題が発生した場合は、次のとおりです。 ```bash pip install deepspeed ``` まず次の注意事項をお読みください。 これらのノートでは、`pytorch` が CUDA `10.2` でビルドされた場合に何をすべきかの例を示します。あなたの状況が次のような場合 異なる場合は、バージョン番号を目的のバージョンに調整することを忘れないでください。 #### Possible problem #1 Pytorch には独自の CUDA ツールキットが付属していますが、これら 2 つのプロジェクトをビルドするには、同一バージョンの CUDA が必要です。 システム全体にインストールされます。 たとえば、Python 環境に `cudatoolkit==10.2` を指定して `pytorch` をインストールした場合は、次のものも必要です。 CUDA `10.2` がシステム全体にインストールされました。 正確な場所はシステムによって異なる場合がありますが、多くのシステムでは`/usr/local/cuda-10.2`が最も一般的な場所です。 Unix システム。 CUDA が正しく設定され、`PATH`環境変数に追加されると、 次のようにしてインストール場所を指定します。 ```bash which nvcc ``` CUDA がシステム全体にインストールされていない場合は、最初にインストールしてください。お気に入りを使用して手順を見つけることができます 検索エンジン。たとえば、Ubuntu を使用している場合は、[ubuntu cuda 10.2 install](https://www.google.com/search?q=ubuntu+cuda+10.2+install) を検索するとよいでしょう。 #### Possible problem #2 もう 1 つの考えられる一般的な問題は、システム全体に複数の CUDA ツールキットがインストールされている可能性があることです。たとえばあなた がある可能性があり: ```bash /usr/local/cuda-10.2 /usr/local/cuda-11.0 ``` この状況では、`PATH` および `LD_LIBRARY_PATH` 環境変数に以下が含まれていることを確認する必要があります。 目的の CUDA バージョンへの正しいパス。通常、パッケージ インストーラーは、これらに、 最後のバージョンがインストールされました。適切なパッケージが見つからないためにパッケージのビルドが失敗するという問題が発生した場合は、 CUDA バージョンがシステム全体にインストールされているにもかかわらず、前述の 2 つを調整する必要があることを意味します 環境変数。 まず、その内容を見てみましょう。 ```bash echo $PATH echo $LD_LIBRARY_PATH ``` それで、中に何が入っているかがわかります。 `LD_LIBRARY_PATH` が空である可能性があります。 `PATH` は実行可能ファイルが存在する場所をリストし、`LD_LIBRARY_PATH` は共有ライブラリの場所を示します。 探すことです。どちらの場合も、前のエントリが後のエントリより優先されます。 `:` は複数を区切るために使用されます エントリ。 ここで、ビルド プログラムに特定の CUDA ツールキットの場所を指示するには、最初にリストされる希望のパスを挿入します。 やっていること: ```bash export PATH=/usr/local/cuda-10.2/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda-10.2/lib64:$LD_LIBRARY_PATH ``` 既存の値を上書きするのではなく、先頭に追加することに注意してください。 もちろん、必要に応じてバージョン番号やフルパスを調整します。割り当てたディレクトリが実際に機能することを確認してください 存在する。 `lib64` サブディレクトリは、`libcudart.so` などのさまざまな CUDA `.so` オブジェクトが存在する場所です。 システムでは別の名前が付けられますが、現実を反映するように調整してください。 #### Possible problem #3 一部の古い CUDA バージョンは、新しいコンパイラでのビルドを拒否する場合があります。たとえば、あなたは`gcc-9`を持っていますが、それが必要です `gcc-7`。 それにはさまざまな方法があります。 最新の CUDA ツールキットをインストールできる場合は、通常、新しいコンパイラがサポートされているはずです。 あるいは、既に所有しているコンパイラに加えて、下位バージョンのコンパイラをインストールすることもできます。 すでに存在しますが、デフォルトではないため、ビルドシステムはそれを認識できません。 「gcc-7」がインストールされているが、 ビルドシステムが見つからないというメッセージを表示する場合は、次の方法で解決できる可能性があります。 ```bash sudo ln -s /usr/bin/gcc-7 /usr/local/cuda-10.2/bin/gcc sudo ln -s /usr/bin/g++-7 /usr/local/cuda-10.2/bin/g++ ``` ここでは、`/usr/local/cuda-10.2/bin/gcc` から `gcc-7` へのシンボリックリンクを作成しています。 `/usr/local/cuda-10.2/bin/` は `PATH` 環境変数内にある必要があります (前の問題の解決策を参照)。 `gcc-7` (および `g++7`) が見つかるはずで、ビルドは成功します。 いつものように、状況に合わせて例のパスを編集してください。 ### PyTorch Fully Sharded Data parallel より大きなバッチ サイズで巨大なモデルのトレーニングを高速化するには、完全にシャード化されたデータ並列モデルを使用できます。 このタイプのデータ並列パラダイムでは、オプティマイザーの状態、勾配、パラメーターをシャーディングすることで、より多くのデータと大規模なモデルをフィッティングできます。 この機能とその利点の詳細については、[完全シャーディング データ並列ブログ](https://pytorch.org/blog/introducing-pytorch-full-sharded-data-Parallel-api/) をご覧ください。 最新の PyTorch の Fully Sharded Data Parallel (FSDP) トレーニング機能を統合しました。 必要なのは、設定を通じて有効にすることだけです。 **FSDP サポートに必要な PyTorch バージョン**: PyTorch Nightly (リリース後にこれを読んだ場合は 1.12.0) FSDP を有効にしたモデルの保存は、最近の修正でのみ利用できるためです。 **使用法**: - 配布されたランチャーが追加されていることを確認してください まだ使用していない場合は、`-m torch.distributed.launch --nproc_per_node=NUMBER_OF_GPUS_YOU_HAVE`を使用します。 - **シャーディング戦略**: - FULL_SHARD : データ並列ワーカー/GPU にわたるシャード オプティマイザーの状態 + 勾配 + モデル パラメーター。 このためには、コマンドライン引数に`--fsdp full_shard`を追加します。 - SHARD_GRAD_OP : シャード オプティマイザーの状態 + データ並列ワーカー/GPU 全体の勾配。 このためには、コマンドライン引数に`--fsdp shard_grad_op`を追加します。 - NO_SHARD : シャーディングなし。このためには、コマンドライン引数に`--fsdp no_shard`を追加します。 - パラメータと勾配を CPU にオフロードするには、 コマンドライン引数に`--fsdp "full_shard offload"`または`--fsdp "shard_grad_op offload"`を追加します。 - `default_auto_wrap_policy` を使用して FSDP でレイヤーを自動的に再帰的にラップするには、 コマンドライン引数に`--fsdp "full_shard auto_wrap"`または`--fsdp "shard_grad_op auto_wrap"`を追加します。 - CPU オフロードと自動ラッピングの両方を有効にするには、 コマンドライン引数に`--fsdp "full_shard offload auto_wrap"`または`--fsdp "shard_grad_op offload auto_wrap"`を追加します。 - 残りの FSDP 構成は、`--fsdp_config <path_to_fsdp_config.json>`を介して渡されます。それは、次のいずれかの場所です。 FSDP json 構成ファイル (例: `fsdp_config.json`)、またはすでにロードされている json ファイルを `dict` として使用します。 - 自動ラッピングが有効な場合は、トランスベースの自動ラップ ポリシーまたはサイズ ベースの自動ラップ ポリシーを使用できます。 - トランスフォーマーベースの自動ラップポリシーの場合、構成ファイルで `fsdp_transformer_layer_cls_to_wrap` を指定することをお勧めします。指定しない場合、使用可能な場合、デフォルト値は `model._no_split_modules` になります。 これは、ラップするトランスフォーマー層クラス名のリスト (大文字と小文字を区別) を指定します (例: [`BertLayer`]、[`GPTJBlock`]、[`T5Block`] ...)。 重みを共有するサブモジュール (埋め込み層など) が異なる FSDP ラップされたユニットにならないようにする必要があるため、これは重要です。 このポリシーを使用すると、マルチヘッド アテンションとそれに続くいくつかの MLP レイヤーを含むブロックごとにラッピングが発生します。 共有埋め込みを含む残りの層は、同じ最も外側の FSDP ユニットにラップされるのが便利です。 したがって、トランスベースのモデルにはこれを使用してください。 - サイズベースの自動ラップポリシーの場合は、設定ファイルに`fsdp_min_num_params`を追加してください。 自動ラッピングのための FSDP のパラメータの最小数を指定します。 - 設定ファイルで `fsdp_backward_prefetch` を指定できるようになりました。次のパラメータのセットをいつプリフェッチするかを制御します。 `backward_pre` と `backward_pos` が利用可能なオプションです。 詳細については、`torch.distributed.fsdp.full_sharded_data_Parallel.BackwardPrefetch`を参照してください。 - 設定ファイルで `fsdp_forward_prefetch` を指定できるようになりました。次のパラメータのセットをいつプリフェッチするかを制御します。 `True`の場合、FSDP はフォワード パスでの実行中に、次に来るオールギャザーを明示的にプリフェッチします。 - 設定ファイルで `limit_all_gathers` を指定できるようになりました。 `True`の場合、FSDP は CPU スレッドを明示的に同期して、実行中のオールギャザが多すぎるのを防ぎます。 - `activation_checkpointing`を設定ファイルで指定できるようになりました。 `True`の場合、FSDP アクティベーション チェックポイントは、FSDP のアクティベーションをクリアすることでメモリ使用量を削減する手法です。 特定のレイヤーを処理し、バックワード パス中にそれらを再計算します。事実上、これは余分な計算時間を犠牲にします メモリ使用量を削減します。 **注意すべき注意点がいくつかあります** - これは `generate` と互換性がないため、 `--predict_with_generate` とも互換性がありません すべての seq2seq/clm スクリプト (翻訳/要約/clm など)。 問題 [#21667](https://github.com/huggingface/transformers/issues/21667) を参照してください。 ### PyTorch/XLA Fully Sharded Data parallel TPU ユーザーの皆様に朗報です。 PyTorch/XLA は FSDP をサポートするようになりました。 最新の Fully Sharded Data Parallel (FSDP) トレーニングがすべてサポートされています。 詳細については、[FSDP を使用した Cloud TPU での PyTorch モデルのスケーリング](https://pytorch.org/blog/scaling-pytorch-models-on-cloud-tpus-with-fsdp/) および [PyTorch/XLA 実装 を参照してください。 FSDP の](https://github.com/pytorch/xla/tree/master/torch_xla/distributed/fsdp) 必要なのは、設定を通じて有効にすることだけです。 **FSDP サポートに必要な PyTorch/XLA バージョン**: >=2.0 **使用法**: `--fsdp "full shard"` を、`--fsdp_config <path_to_fsdp_config.json>` に加えられる次の変更とともに渡します。 - PyTorch/XLA FSDP を有効にするには、`xla`を`True`に設定する必要があります。 - `xla_fsdp_settings` 値は、XLA FSDP ラッピング パラメータを格納する辞書です。 オプションの完全なリストについては、[こちら]( https://github.com/pytorch/xla/blob/master/torch_xla/distributed/fsdp/xla_full_sharded_data_Parallel.py)。 - `xla_fsdp_grad_ckpt`。 `True`の場合、ネストされた XLA FSDP でラップされた各レイヤー上で勾配チェックポイントを使用します。 この設定は、xla フラグが true に設定されており、自動ラッピング ポリシーが指定されている場合にのみ使用できます。 `fsdp_min_num_params` または `fsdp_transformer_layer_cls_to_wrap`。 - トランスフォーマー ベースの自動ラップ ポリシーまたはサイズ ベースの自動ラップ ポリシーのいずれかを使用できます。 - トランスフォーマーベースの自動ラップポリシーの場合、構成ファイルで `fsdp_transformer_layer_cls_to_wrap` を指定することをお勧めします。指定しない場合、使用可能な場合、デフォルト値は `model._no_split_modules` になります。 これは、ラップするトランスフォーマー層クラス名のリスト (大文字と小文字を区別) を指定します (例: [`BertLayer`]、[`GPTJBlock`]、[`T5Block`] ...)。 重みを共有するサブモジュール (埋め込み層など) が異なる FSDP ラップされたユニットにならないようにする必要があるため、これは重要です。 このポリシーを使用すると、マルチヘッド アテンションとそれに続くいくつかの MLP レイヤーを含むブロックごとにラッピングが発生します。 共有埋め込みを含む残りの層は、同じ最も外側の FSDP ユニットにラップされるのが便利です。 したがって、トランスベースのモデルにはこれを使用してください。 - サイズベースの自動ラップポリシーの場合は、設定ファイルに`fsdp_min_num_params`を追加してください。 自動ラッピングのための FSDP のパラメータの最小数を指定します。 ### Using Trainer for accelerated PyTorch Training on Mac PyTorch v1.12 リリースにより、開発者と研究者は Apple シリコン GPU を利用してモデル トレーニングを大幅に高速化できます。 これにより、プロトタイピングや微調整などの機械学習ワークフローを Mac 上でローカルで実行できるようになります。 PyTorch のバックエンドとしての Apple の Metal Performance Shaders (MPS) はこれを可能にし、新しい `"mps"` デバイス経由で使用できます。 これにより、計算グラフとプリミティブが MPS Graph フレームワークと MPS によって提供される調整されたカーネルにマッピングされます。 詳細については、公式ドキュメント [Mac での Accelerated PyTorch Training の紹介](https://pytorch.org/blog/introducing-accelerated-pytorch-training-on-mac/) を参照してください。 および [MPS バックエンド](https://pytorch.org/docs/stable/notes/mps.html)。 <Tip warning={false}> MacOS マシンに PyTorch >= 1.13 (執筆時点ではナイトリー バージョン) をインストールすることを強くお勧めします。 トランスベースのモデルのモデルの正確性とパフォーマンスの向上に関連する主要な修正が行われています。 詳細については、https://github.com/pytorch/pytorch/issues/82707 を参照してください。 </Tip> **Apple Silicon チップを使用したトレーニングと推論の利点** 1. ユーザーがローカルで大規模なネットワークやバッチ サイズをトレーニングできるようにします 2. ユニファイド メモリ アーキテクチャにより、データ取得の遅延が短縮され、GPU がメモリ ストア全体に直接アクセスできるようになります。 したがって、エンドツーエンドのパフォーマンスが向上します。 3. クラウドベースの開発に関連するコストや追加のローカル GPU の必要性を削減します。 **前提条件**: mps サポートを備えたトーチをインストールするには、 この素晴らしいメディア記事 [GPU アクセラレーションが M1 Mac の PyTorch に登場](https://medium.com/towards-data-science/gpu-acceleration-comes-to-pytorch-on-m1-macs-195c399efcc1) に従ってください。 。 **使用法**: `mps` デバイスは、`cuda` デバイスが使用される方法と同様に利用可能な場合、デフォルトで使用されます。 したがって、ユーザーによるアクションは必要ありません。 たとえば、以下のコマンドを使用して、Apple Silicon GPU を使用して公式の Glue テキスト分類タスクを (ルート フォルダーから) 実行できます。 ```bash export TASK_NAME=mrpc python examples/pytorch/text-classification/run_glue.py \ --model_name_or_path google-bert/bert-base-cased \ --task_name $TASK_NAME \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ \ --overwrite_output_dir ``` **注意すべきいくつかの注意事項** 1. 一部の PyTorch 操作は mps に実装されていないため、エラーがスローされます。 これを回避する 1 つの方法は、環境変数 `PYTORCH_ENABLE_MPS_FALLBACK=1` を設定することです。 これらの操作では CPU にフォールバックします。ただし、それでも UserWarning がスローされます。 2. 分散セットアップ`gloo`および`nccl`は、`mps`デバイスでは動作しません。 これは、現在「mps」デバイス タイプの単一 GPU のみを使用できることを意味します。 最後に、覚えておいてください。 🤗 `Trainer` は MPS バックエンドのみを統合するため、 MPS バックエンドの使用に関して問題や質問がある場合は、 [PyTorch GitHub](https://github.com/pytorch/pytorch/issues) に問題を提出してください。 ## Using Accelerate Launcher with Trainer 加速してトレーナーにパワーを与えましょう。ユーザーが期待することに関しては、次のとおりです。 - トレーナー引数に対して FSDP、DeepSpeed などのトレーナー インテレーションを変更せずに使用し続けることができます。 - トレーナーで Accelerate Launcher を使用できるようになりました (推奨)。 トレーナーで Accelerate Launcher を使用する手順: 1. 🤗 Accelerate がインストールされていることを確認してください。Accelerate がないと `Trainer` を使用することはできません。そうでない場合は、`pip install accelerate`してください。 Accelerate のバージョンを更新する必要がある場合もあります: `pip install activate --upgrade` 2. `accelerate config`を実行し、アンケートに記入します。以下は加速設定の例です。 a. DDP マルチノード マルチ GPU 構成: ```yaml compute_environment: LOCAL_MACHINE distributed_type: MULTI_GPU downcast_bf16: 'no' gpu_ids: all machine_rank: 0 #change rank as per the node main_process_ip: 192.168.20.1 main_process_port: 9898 main_training_function: main mixed_precision: fp16 num_machines: 2 num_processes: 8 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` b. FSDP config: ```yaml compute_environment: LOCAL_MACHINE distributed_type: FSDP downcast_bf16: 'no' fsdp_config: fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_backward_prefetch_policy: BACKWARD_PRE fsdp_forward_prefetch: true fsdp_offload_params: false fsdp_sharding_strategy: 1 fsdp_state_dict_type: FULL_STATE_DICT fsdp_sync_module_states: true fsdp_transformer_layer_cls_to_wrap: BertLayer fsdp_use_orig_params: true machine_rank: 0 main_training_function: main mixed_precision: bf16 num_machines: 1 num_processes: 2 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` c.ファイルを指す DeepSpeed 構成: ```yaml compute_environment: LOCAL_MACHINE deepspeed_config: deepspeed_config_file: /home/user/configs/ds_zero3_config.json zero3_init_flag: true distributed_type: DEEPSPEED downcast_bf16: 'no' machine_rank: 0 main_training_function: main num_machines: 1 num_processes: 4 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` d.加速プラグインを使用した DeepSpeed 構成: ```yaml compute_environment: LOCAL_MACHINE deepspeed_config: gradient_accumulation_steps: 1 gradient_clipping: 0.7 offload_optimizer_device: cpu offload_param_device: cpu zero3_init_flag: true zero_stage: 2 distributed_type: DEEPSPEED downcast_bf16: 'no' machine_rank: 0 main_training_function: main mixed_precision: bf16 num_machines: 1 num_processes: 4 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` 3. 加速設定またはランチャー引数によって上記で処理された引数以外の引数を使用して、トレーナー スクリプトを実行します。 以下は、上記の FSDP 構成で`accelerate launcher`を使用して`run_glue.py`を実行する例です。 ```bash cd transformers accelerate launch \ ./examples/pytorch/text-classification/run_glue.py \ --model_name_or_path google-bert/bert-base-cased \ --task_name $TASK_NAME \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 16 \ --learning_rate 5e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ \ --overwrite_output_dir ``` 4. `accelerate launch`するための cmd 引数を直接使用することもできます。上の例は次のようにマッピングされます。 ```bash cd transformers accelerate launch --num_processes=2 \ --use_fsdp \ --mixed_precision=bf16 \ --fsdp_auto_wrap_policy=TRANSFORMER_BASED_WRAP \ --fsdp_transformer_layer_cls_to_wrap="BertLayer" \ --fsdp_sharding_strategy=1 \ --fsdp_state_dict_type=FULL_STATE_DICT \ ./examples/pytorch/text-classification/run_glue.py --model_name_or_path google-bert/bert-base-cased \ --task_name $TASK_NAME \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 16 \ --learning_rate 5e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ \ --overwrite_output_dir ``` 詳細については、🤗 Accelerate CLI ガイドを参照してください: [🤗 Accelerate スクリプトの起動](https://huggingface.co/docs/accelerate/basic_tutorials/launch)。 移動されたセクション: [ <a href="./deepspeed#deepspeed-trainer-integration">DeepSpeed</a><a id="deepspeed"></a> | <a href="./deepspeed#deepspeed-installation">Installation</a><a id="installation"></a> | <a href="./deepspeed#deepspeed-multi-gpu">Deployment with multiple GPUs</a><a id="deployment-with-multiple-gpus"></a> | <a href="./deepspeed#deepspeed-one-gpu">Deployment with one GPU</a><a id="deployment-with-one-gpu"></a> | <a href="./deepspeed#deepspeed-notebook">Deployment in Notebooks</a><a id="deployment-in-notebooks"></a> | <a href="./deepspeed#deepspeed-config">Configuration</a><a id="configuration"></a> | <a href="./deepspeed#deepspeed-config-passing">Passing Configuration</a><a id="passing-configuration"></a> | <a href="./deepspeed#deepspeed-config-shared">Shared Configuration</a><a id="shared-configuration"></a> | <a href="./deepspeed#deepspeed-zero">ZeRO</a><a id="zero"></a> | <a href="./deepspeed#deepspeed-zero2-config">ZeRO-2 Config</a><a id="zero-2-config"></a> | <a href="./deepspeed#deepspeed-zero3-config">ZeRO-3 Config</a><a id="zero-3-config"></a> | <a href="./deepspeed#deepspeed-nvme">NVMe Support</a><a id="nvme-support"></a> | <a href="./deepspeed#deepspeed-zero2-zero3-performance">ZeRO-2 vs ZeRO-3 Performance</a><a id="zero-2-vs-zero-3-performance"></a> | <a href="./deepspeed#deepspeed-zero2-example">ZeRO-2 Example</a><a id="zero-2-example"></a> | <a href="./deepspeed#deepspeed-zero3-example">ZeRO-3 Example</a><a id="zero-3-example"></a> | <a href="./deepspeed#deepspeed-optimizer">Optimizer</a><a id="optimizer"></a> | <a href="./deepspeed#deepspeed-scheduler">Scheduler</a><a id="scheduler"></a> | <a href="./deepspeed#deepspeed-fp32">fp32 Precision</a><a id="fp32-precision"></a> | <a href="./deepspeed#deepspeed-amp">Automatic Mixed Precision</a><a id="automatic-mixed-precision"></a> | <a href="./deepspeed#deepspeed-bs">Batch Size</a><a id="batch-size"></a> | <a href="./deepspeed#deepspeed-grad-acc">Gradient Accumulation</a><a id="gradient-accumulation"></a> | <a href="./deepspeed#deepspeed-grad-clip">Gradient Clipping</a><a id="gradient-clipping"></a> | <a href="./deepspeed#deepspeed-weight-extraction">Getting The Model Weights Out</a><a id="getting-the-model-weights-out"></a> ]
transformers/docs/source/ja/main_classes/trainer.md/0
{ "file_path": "transformers/docs/source/ja/main_classes/trainer.md", "repo_id": "transformers", "token_count": 19572 }
41
<!--Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BigBird ## Overview BigBird モデルは、[Big Bird: Transformers for Longer Sequences](https://arxiv.org/abs/2007.14062) で提案されました。 ザヒール、マンジルとグルガネシュ、グルとダベイ、クマール・アヴィナヴァとエインズリー、ジョシュアとアルベルティ、クリスとオンタノン、 サンティアゴとファム、フィリップとラブラ、アニルードとワン、キーファンとヤン、リーなど。 BigBird は注目度が低い BERT などの Transformer ベースのモデルをさらに長いシーケンスに拡張する、Transformer ベースのモデル。まばらに加えて アテンションと同様に、BigBird は入力シーケンスにランダム アテンションだけでなくグローバル アテンションも適用します。理論的には、 まばらで全体的でランダムな注意を適用すると、完全な注意に近づくことが示されていますが、 長いシーケンスでは計算効率が大幅に向上します。より長いコンテキストを処理できる機能の結果として、 BigBird は、質問応答や BERT または RoBERTa と比較した要約。 論文の要約は次のとおりです。 *BERT などのトランスフォーマーベースのモデルは、NLP で最も成功した深層学習モデルの 1 つです。 残念ながら、それらの中核的な制限の 1 つは、シーケンスに対する二次依存性 (主にメモリに関する) です。 完全な注意メカニズムによる長さです。これを解決するために、BigBird は、まばらな注意メカニズムを提案します。 この二次依存関係を線形に削減します。 BigBird がシーケンス関数の汎用近似器であることを示します。 チューリングは完全であるため、二次完全注意モデルのこれらの特性が保存されます。途中、私たちの 理論分析により、O(1) 個のグローバル トークン (CLS など) を持つ利点の一部が明らかになり、 スパース注意メカニズムの一部としてのシーケンス。提案されたスパース アテンションは、次の長さのシーケンスを処理できます。 同様のハードウェアを使用して以前に可能であったものの 8 倍。より長いコンテキストを処理できる機能の結果として、 BigBird は、質問応答や要約などのさまざまな NLP タスクのパフォーマンスを大幅に向上させます。私達も ゲノミクスデータへの新しいアプリケーションを提案します。* チップ: - BigBird の注意がどのように機能するかについての詳細な説明については、[このブログ投稿](https://huggingface.co/blog/big-bird) を参照してください。 - BigBird には、**original_full** と **block_sparse** の 2 つの実装が付属しています。シーケンス長が 1024 未満の場合、次を使用します。 **block_sparse** を使用してもメリットがないため、**original_full** を使用することをお勧めします。 - コードは現在、3 ブロックと 2 グローバル ブロックのウィンドウ サイズを使用しています。 - シーケンスの長さはブロック サイズで割り切れる必要があります。 - 現在の実装では **ITC** のみがサポートされています。 - 現在の実装では **num_random_blocks = 0** はサポートされていません - BigBird は絶対位置埋め込みを備えたモデルであるため、通常は入力を右側にパディングすることをお勧めします。 左。 このモデルは、[vasudevgupta](https://huggingface.co/vasudevgupta) によって提供されました。元のコードが見つかる [こちら](https://github.com/google-research/bigbird)。 ## ドキュメント リソース - [テキスト分類タスクガイド](../tasks/sequence_classification) - [トークン分類タスクガイド](../tasks/token_classification) - [質問回答タスク ガイド](../tasks/question_answering) - [因果言語モデリング タスク ガイド](../tasks/language_modeling) - [マスクされた言語モデリング タスク ガイド](../tasks/masked_lang_modeling) - [多肢選択タスク ガイド](../tasks/multiple_choice) ## BigBirdConfig [[autodoc]] BigBirdConfig ## BigBirdTokenizer [[autodoc]] BigBirdTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## BigBirdTokenizerFast [[autodoc]] BigBirdTokenizerFast ## BigBird specific outputs [[autodoc]] models.big_bird.modeling_big_bird.BigBirdForPreTrainingOutput <frameworkcontent> <pt> ## BigBirdModel [[autodoc]] BigBirdModel - forward ## BigBirdForPreTraining [[autodoc]] BigBirdForPreTraining - forward ## BigBirdForCausalLM [[autodoc]] BigBirdForCausalLM - forward ## BigBirdForMaskedLM [[autodoc]] BigBirdForMaskedLM - forward ## BigBirdForSequenceClassification [[autodoc]] BigBirdForSequenceClassification - forward ## BigBirdForMultipleChoice [[autodoc]] BigBirdForMultipleChoice - forward ## BigBirdForTokenClassification [[autodoc]] BigBirdForTokenClassification - forward ## BigBirdForQuestionAnswering [[autodoc]] BigBirdForQuestionAnswering - forward </pt> <jax> ## FlaxBigBirdModel [[autodoc]] FlaxBigBirdModel - __call__ ## FlaxBigBirdForPreTraining [[autodoc]] FlaxBigBirdForPreTraining - __call__ ## FlaxBigBirdForCausalLM [[autodoc]] FlaxBigBirdForCausalLM - __call__ ## FlaxBigBirdForMaskedLM [[autodoc]] FlaxBigBirdForMaskedLM - __call__ ## FlaxBigBirdForSequenceClassification [[autodoc]] FlaxBigBirdForSequenceClassification - __call__ ## FlaxBigBirdForMultipleChoice [[autodoc]] FlaxBigBirdForMultipleChoice - __call__ ## FlaxBigBirdForTokenClassification [[autodoc]] FlaxBigBirdForTokenClassification - __call__ ## FlaxBigBirdForQuestionAnswering [[autodoc]] FlaxBigBirdForQuestionAnswering - __call__ </jax> </frameworkcontent>
transformers/docs/source/ja/model_doc/big_bird.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/big_bird.md", "repo_id": "transformers", "token_count": 2762 }
42
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # CLAP ## Overview CLAP モデルは、[Large Scale Contrastive Language-Audio pretraining with feature fusion and keyword-to-caption augmentation](https://arxiv.org/pdf/2211.06687.pdf)、Yusong Wu、Ke Chen、Tianyu Zhang、Yuchen Hui、Taylor Berg-Kirkpatrick、Shlomo Dubnov 著。 CLAP (Contrastive Language-Audio Pretraining) は、さまざまな (音声、テキスト) ペアでトレーニングされたニューラル ネットワークです。タスクに合わせて直接最適化することなく、音声が与えられた場合に最も関連性の高いテキスト スニペットを予測するように指示できます。 CLAP モデルは、SWINTransformer を使用して log-Mel スペクトログラム入力からオーディオ特徴を取得し、RoBERTa モデルを使用してテキスト特徴を取得します。次に、テキストとオーディオの両方の特徴が、同じ次元の潜在空間に投影されます。投影されたオーディオとテキストの特徴の間のドット積が、同様のスコアとして使用されます。 論文の要約は次のとおりです。 *対照学習は、マルチモーダル表現学習の分野で目覚ましい成功を収めています。この論文では、音声データと自然言語記述を組み合わせて音声表現を開発する、対照的な言語音声事前トレーニングのパイプラインを提案します。この目標を達成するために、私たちはまず、さまざまなデータ ソースからの 633,526 個の音声とテキストのペアの大規模なコレクションである LAION-Audio-630K をリリースします。次に、さまざまなオーディオ エンコーダとテキスト エンコーダを考慮して、対照的な言語とオーディオの事前トレーニング モデルを構築します。機能融合メカニズムとキーワードからキャプションへの拡張をモデル設計に組み込んで、モデルが可変長の音声入力を処理できるようにし、パフォーマンスを向上させます。 3 番目に、包括的な実験を実行して、テキストから音声への取得、ゼロショット音声分類、教師付き音声分類の 3 つのタスクにわたってモデルを評価します。結果は、私たちのモデルがテキストから音声への検索タスクにおいて優れたパフォーマンスを達成していることを示しています。オーディオ分類タスクでは、モデルはゼロショット設定で最先端のパフォーマンスを達成し、非ゼロショット設定でもモデルの結果に匹敵するパフォーマンスを得ることができます。 LAION-オーディオ-6* このモデルは、[Younes Belkada](https://huggingface.co/ybelkada) および [Arthur Zucker](https://huggingface.co/ArthurZ) によって提供されました。 元のコードは [こちら](https://github.com/LAION-AI/Clap) にあります。 ## ClapConfig [[autodoc]] ClapConfig - from_text_audio_configs ## ClapTextConfig [[autodoc]] ClapTextConfig ## ClapAudioConfig [[autodoc]] ClapAudioConfig ## ClapFeatureExtractor [[autodoc]] ClapFeatureExtractor ## ClapProcessor [[autodoc]] ClapProcessor ## ClapModel [[autodoc]] ClapModel - forward - get_text_features - get_audio_features ## ClapTextModel [[autodoc]] ClapTextModel - forward ## ClapTextModelWithProjection [[autodoc]] ClapTextModelWithProjection - forward ## ClapAudioModel [[autodoc]] ClapAudioModel - forward ## ClapAudioModelWithProjection [[autodoc]] ClapAudioModelWithProjection - forward
transformers/docs/source/ja/model_doc/clap.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/clap.md", "repo_id": "transformers", "token_count": 1775 }
43
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # DeBERTa ## Overview DeBERTa モデルは、Pengcheng He、Xiaodong Liu、Jianfeng Gao、Weizhu Chen によって [DeBERTa: Decoding-enhanced BERT with Disentangled Attendant](https://arxiv.org/abs/2006.03654) で提案されました。Google のモデルに基づいています。 2018年にリリースされたBERTモデルと2019年にリリースされたFacebookのRoBERTaモデル。 これは、もつれた注意を解きほぐし、使用されるデータの半分を使用して強化されたマスク デコーダ トレーニングを備えた RoBERTa に基づいて構築されています。 ロベルタ。 論文の要約は次のとおりです。 *事前トレーニングされたニューラル言語モデルの最近の進歩により、多くの自然言語モデルのパフォーマンスが大幅に向上しました。 言語処理 (NLP) タスク。この論文では、新しいモデル アーキテクチャ DeBERTa (Decoding-enhanced BERT with これは、2 つの新しい技術を使用して BERT モデルと RoBERTa モデルを改善します。 1つ目は、 もつれを解く注意メカニズム。各単語は、その内容をエンコードする 2 つのベクトルを使用して表現され、 単語間の注意の重みは、それらの単語のもつれ解除行列を使用して計算されます。 内容と相対的な位置。 2 番目に、強化されたマスク デコーダを使用して、出力ソフトマックス レイヤを次のように置き換えます。 モデルの事前トレーニング用にマスクされたトークンを予測します。これら 2 つの手法により効率が大幅に向上することを示します。 モデルの事前トレーニングと下流タスクのパフォーマンスの向上。 RoBERTa-Large と比較すると、DeBERTa モデルは半分のレベルでトレーニングされています。 トレーニング データは幅広い NLP タスクで一貫して優れたパフォーマンスを示し、MNLI で +0.9% の改善を達成しました。 (90.2% 対 91.1%)、SQuAD v2.0 では +2.3% (88.4% 対 90.7%)、RACE では +3.6% (83.2% 対 86.8%) でした。 DeBERTa コードと 事前トレーニングされたモデルは https://github.com/microsoft/DeBERTa で公開されます。* このモデルは [DeBERTa](https://huggingface.co/DeBERTa) によって寄稿されました。このモデルの TF 2.0 実装は、 [kamalkraj](https://huggingface.co/kamalkraj) による寄稿。元のコードは [こちら](https://github.com/microsoft/DeBERTa) にあります。 ## Resources DeBERTa を使い始めるのに役立つ公式 Hugging Face およびコミュニティ (🌎 で示される) リソースのリスト。ここに含めるリソースの送信に興味がある場合は、お気軽にプル リクエストを開いてください。審査させていただきます。リソースは、既存のリソースを複製するのではなく、何か新しいものを示すことが理想的です。 <PipelineTag pipeline="text-classification"/> - DeBERTa を使用して [DeepSpeed を使用して大規模モデルのトレーニングを加速する](https://huggingface.co/blog/accelerate-deepspeed) 方法に関するブログ投稿。 - DeBERTa による [機械学習によるスーパーチャージされた顧客サービス](https://huggingface.co/blog/supercharge-customer-service-with-machine-learning) に関するブログ投稿。 - [`DebertaForSequenceClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)。 - [`TFDebertaForSequenceClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb)。 - [テキスト分類タスクガイド](../tasks/sequence_classification) <PipelineTag pipeline="token-classification" /> - [`DebertaForTokenClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)。 - [`TFDebertaForTokenClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb)。 - [トークン分類](https://huggingface.co/course/chapter7/2?fw=pt) 🤗 ハグフェイスコースの章。 - 🤗 ハグフェイスコースの [バイトペアエンコーディングのトークン化](https://huggingface.co/course/chapter6/5?fw=pt) の章。 - [トークン分類タスクガイド](../tasks/token_classification) <PipelineTag pipeline="fill-mask"/> - [`DebertaForMaskedLM`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) でサポートされています。 [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)。 - [`TFDebertaForMaskedLM`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/lang-modeling#run_mlmpy) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb)。 - [マスクされた言語モデリング](https://huggingface.co/course/chapter7/3?fw=pt) 🤗 顔のハグ コースの章。 - [マスク言語モデリング タスク ガイド](../tasks/masked_language_modeling) <PipelineTag pipeline="question-answering"/> - [`DebertaForQuestionAnswering`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)。 - [`TFDebertaForQuestionAnswering`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb)。 - [質問回答](https://huggingface.co/course/chapter7/7?fw=pt) 🤗 ハグフェイスコースの章。 - [質問回答タスク ガイド](../tasks/question_answering) ## DebertaConfig [[autodoc]] DebertaConfig ## DebertaTokenizer [[autodoc]] DebertaTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary ## DebertaTokenizerFast [[autodoc]] DebertaTokenizerFast - build_inputs_with_special_tokens - create_token_type_ids_from_sequences <frameworkcontent> <pt> ## DebertaModel [[autodoc]] DebertaModel - forward ## DebertaPreTrainedModel [[autodoc]] DebertaPreTrainedModel ## DebertaForMaskedLM [[autodoc]] DebertaForMaskedLM - forward ## DebertaForSequenceClassification [[autodoc]] DebertaForSequenceClassification - forward ## DebertaForTokenClassification [[autodoc]] DebertaForTokenClassification - forward ## DebertaForQuestionAnswering [[autodoc]] DebertaForQuestionAnswering - forward </pt> <tf> ## TFDebertaModel [[autodoc]] TFDebertaModel - call ## TFDebertaPreTrainedModel [[autodoc]] TFDebertaPreTrainedModel - call ## TFDebertaForMaskedLM [[autodoc]] TFDebertaForMaskedLM - call ## TFDebertaForSequenceClassification [[autodoc]] TFDebertaForSequenceClassification - call ## TFDebertaForTokenClassification [[autodoc]] TFDebertaForTokenClassification - call ## TFDebertaForQuestionAnswering [[autodoc]] TFDebertaForQuestionAnswering - call </tf> </frameworkcontent>
transformers/docs/source/ja/model_doc/deberta.md/0
{ "file_path": "transformers/docs/source/ja/model_doc/deberta.md", "repo_id": "transformers", "token_count": 3598 }
44
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Efficient Inference on CPU このガイドは、CPU上で大規模なモデルの効率的な推論に焦点を当てています。 ## `BetterTransformer` for faster inference 最近、テキスト、画像、および音声モデルのCPU上での高速な推論のために`BetterTransformer`を統合しました。詳細については、この統合に関するドキュメンテーションを[こちら](https://huggingface.co/docs/optimum/bettertransformer/overview)で確認してください。 ## PyTorch JITモード(TorchScript) TorchScriptは、PyTorchコードからシリアライズ可能で最適化可能なモデルを作成する方法です。任意のTorchScriptプログラムは、Python依存性のないプロセスで保存およびロードできます。 デフォルトのイーガーモードと比較して、PyTorchのjitモードは通常、オペレーターフュージョンなどの最適化手法によりモデル推論のパフォーマンスが向上します。 TorchScriptの簡単な紹介については、[PyTorch TorchScriptチュートリアル](https://pytorch.org/tutorials/beginner/Intro_to_TorchScript_tutorial.html#tracing-modules)を参照してください。 ### JITモードでのIPEXグラフ最適化 Intel® Extension for PyTorchは、Transformersシリーズモデルのjitモードにさらなる最適化を提供します。Intel® Extension for PyTorchをjitモードで使用することを強くお勧めします。Transformersモデルからよく使用されるオペレーターパターンのいくつかは、既にIntel® Extension for PyTorchでjitモードのフュージョンに対応しています。これらのフュージョンパターン(Multi-head-attentionフュージョン、Concat Linear、Linear+Add、Linear+Gelu、Add+LayerNormフュージョンなど)は有効でパフォーマンスが良いです。フュージョンの利点は、ユーザーに透過的に提供されます。分析によれば、最も人気のある質問応答、テキスト分類、トークン分類のNLPタスクの約70%が、これらのフュージョンパターンを使用してFloat32精度とBFloat16混合精度の両方でパフォーマンスの利点を得ることができます。 [IPEXグラフ最適化の詳細情報](https://intel.github.io/intel-extension-for-pytorch/cpu/latest/tutorials/features/graph_optimization.html)を確認してください。 #### IPEX installation: IPEXのリリースはPyTorchに従っています。[IPEXのインストール方法](https://intel.github.io/intel-extension-for-pytorch/)を確認してください。 ### Usage of JIT-mode Trainerで評価または予測のためにJITモードを有効にするには、ユーザーはTrainerコマンド引数に`jit_mode_eval`を追加する必要があります。 <Tip warning={true}> PyTorch >= 1.14.0の場合、jitモードはjit.traceでdict入力がサポートされているため、予測と評価に任意のモデルに利益をもたらす可能性があります。 PyTorch < 1.14.0の場合、jitモードはforwardパラメーターの順序がjit.traceのタプル入力の順序と一致するモデルに利益をもたらす可能性があります(質問応答モデルなど)。jit.traceがタプル入力の順序と一致しない場合、テキスト分類モデルなど、jit.traceは失敗し、これをフォールバックさせるために例外でキャッチしています。ログはユーザーに通知するために使用されます。 </Tip> [Transformers質問応答の使用例](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering)を参考にしてください。 - Inference using jit mode on CPU: <pre>python run_qa.py \ --model_name_or_path csarron/bert-base-uncased-squad-v1 \ --dataset_name squad \ --do_eval \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/ \ --no_cuda \ <b>--jit_mode_eval </b></pre> - Inference with IPEX using jit mode on CPU: <pre>python run_qa.py \ --model_name_or_path csarron/bert-base-uncased-squad-v1 \ --dataset_name squad \ --do_eval \ --max_seq_length 384 \ --doc_stride 128 \ --output_dir /tmp/ \ --no_cuda \ <b>--use_ipex \</b> <b>--jit_mode_eval</b></pre>
transformers/docs/source/ja/perf_infer_cpu.md/0
{ "file_path": "transformers/docs/source/ja/perf_infer_cpu.md", "repo_id": "transformers", "token_count": 1977 }
45
<!--⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Webサーバー用のパイプラインの使用 <Tip> 推論エンジンの作成は複雑なトピックであり、"最適な"ソリューションはおそらく問題の領域に依存するでしょう。CPUまたはGPUを使用していますか?最低のレイテンシ、最高のスループット、多くのモデルのサポート、または特定のモデルの高度な最適化を望んでいますか? このトピックに取り組むための多くの方法があり、私たちが紹介するのは、おそらく最適なソリューションではないかもしれないが、始めるための良いデフォルトです。 </Tip> 重要なことは、Webサーバーはリクエストを待機し、受信したように扱うシステムであるため、[データセット](pipeline_tutorial#using-pipelines-on-a-dataset)のように、イテレータを使用できることです。 通常、Webサーバーは並列処理(マルチスレッド、非同期など)されて、さまざまなリクエストを同時に処理します。一方、パイプライン(および主にその基礎となるモデル)は並列処理にはあまり適していません。それらは多くのRAMを使用するため、実行中に利用可能なリソースをすべて提供するか、計算集約型のジョブである場合に最適です。 Webサーバーは受信と送信の軽い負荷を処理し、実際の作業を1つのスレッドで処理するようにします。この例では`starlette`を使用します。実際のフレームワークはあまり重要ではありませんが、別のフレームワークを使用している場合は、同じ効果を得るためにコードを調整または変更する必要があるかもしれません。 `server.py`を作成してください: ```py from starlette.applications import Starlette from starlette.responses import JSONResponse from starlette.routing import Route from transformers import pipeline import asyncio async def homepage(request): payload = await request.body() string = payload.decode("utf-8") response_q = asyncio.Queue() await request.app.model_queue.put((string, response_q)) output = await response_q.get() return JSONResponse(output) async def server_loop(q): pipe = pipeline(model="google-bert/bert-base-uncased") while True: (string, response_q) = await q.get() out = pipe(string) await response_q.put(out) app = Starlette( routes=[ Route("/", homepage, methods=["POST"]), ], ) @app.on_event("startup") async def startup_event(): q = asyncio.Queue() app.model_queue = q asyncio.create_task(server_loop(q)) ``` ここから始めることができます: ```bash uvicorn server:app ``` そして、次のようにクエリできます: ```bash curl -X POST -d "test [MASK]" http://localhost:8000/ #[{"score":0.7742936015129089,"token":1012,"token_str":".","sequence":"test."},...] ``` そして、これでウェブサーバーを作成する方法の良いアイデアを持っています! 本当に重要なのは、モデルを**一度だけ**ロードすることです。これにより、ウェブサーバー上にモデルのコピーがないため、不必要なRAMが使用されなくなります。 その後、キューイングメカニズムを使用して、動的バッチ処理を行うなど、いくつかのアイテムを蓄積してから推論を行うなど、高度な処理を行うことができます: <Tip warning={true}> 以下のコードサンプルは、可読性のために擬似コードのように書かれています。システムリソースに合理的かどうかを確認せずに実行しないでください! </Tip> ```py (string, rq) = await q.get() strings = [] queues = [] while True: try: (string, rq) = await asyncio.wait_for(q.get(), timeout=0.001) # 1ms except asyncio.exceptions.TimeoutError: break strings.append(string) queues.append(rq) strings outs = pipe(strings, batch_size=len(strings)) for rq, out in zip(queues, outs): await rq.put(out) ``` まず第一に、通常はあまり良いアイデアではないバッチサイズの制限がありません。次に、タイムアウトはキューの取得ごとにリセットされるため、推論を実行する前に1ms以上待つ可能性があります(最初のリクエストの遅延に1ms分遅れが生じます)。 1msの締め切りを1回だけ持つのが良いでしょう。 これは、キューに何もない場合でも常に1ms待機しますが、キューに何もない場合に推論を開始したい場合は適していないかもしれません。ただし、バッチ処理が本当に重要な場合には意味があるかもしれません。再度、1つの最適な解決策は存在しません。 ## Few things you might want to consider ### Error checking 本番環境では多くの問題が発生する可能性があります:メモリ不足、スペース不足、モデルの読み込みが失敗するかもしれません、クエリが誤っているかもしれません、クエリが正しい場合でもモデルの構成エラーのために実行に失敗するかもしれませんなど。 一般的には、サーバーがエラーをユーザーに出力すると良いため、これらのエラーを表示するための多くの`try..except`ステートメントを追加することは良いアイデアです。ただし、セキュリティコンテキストに応じてこれらのエラーをすべて表示することはセキュリティリスクになる可能性があることに注意してください。 ### Circuit breaking Webサーバーは通常、過負荷時に正しいエラーを返す方が良いです。クエリを無期限に待つ代わりに適切なエラーを返します。長時間待つ代わりに503エラーを返すか、長時間待ってから504エラーを返すかです。 提案されたコードでは単一のキューがあるため、キューサイズを見ることは、Webサーバーが負荷に耐える前にエラーを返すための基本的な方法です。 ### Blocking the main thread 現在、PyTorchは非同期を認識していないため、計算はメインスレッドをブロックします。つまり、PyTorchが独自のスレッド/プロセスで実行されるようにすると良いでしょう。提案されたコードは、スレッドと非同期とキューがうまく連携しないため、これは行われていませんが、最終的には同じことを行います。 これは、単一のアイテムの推論が長い場合(>1秒)に重要です。この場合、推論中にすべてのクエリが1秒待たなければならないことを意味します。 ### Dynamic batching 一般的に、バッチ処理は1回のアイテムを1回渡すよりも改善されることは必ずしもありません(詳細は[バッチ処理の詳細](./main_classes/pipelines#pipeline-batching)を参照)。しかし、正しい設定で使用すると非常に効果的です。APIではデフォルトで動的バッチ処理は行われません(遅延の機会が多すぎます)。しかし、非常に大規模なモデルであるBLOOM推論の場合、動的バッチ処理は**重要**です。これにより、すべてのユーザーにとってまともなエクスペリエンスを提供できます。 以上が、提供されたテキストのMarkdown形式の翻訳です。
transformers/docs/source/ja/pipeline_webserver.md/0
{ "file_path": "transformers/docs/source/ja/pipeline_webserver.md", "repo_id": "transformers", "token_count": 3402 }
46
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Masked language modeling [[open-in-colab]] <Youtube id="mqElG5QJWUg"/> マスクされた言語モデリングはシーケンス内のマスクされたトークンを予測し、モデルはトークンを双方向に処理できます。これ これは、モデルが左右のトークンに完全にアクセスできることを意味します。マスクされた言語モデリングは、次のようなタスクに最適です。 シーケンス全体の文脈をよく理解する必要があります。 BERT はマスクされた言語モデルの一例です。 このガイドでは、次の方法を説明します。 1. [ELI5](https://huggingface.co/distilbert/distilroberta-base) の [r/askscience](https://www.reddit.com/r/askscience/) サブセットで [DistilRoBERTa](https://huggingface.co/distilbert/distilroberta-base) を微調整します。 ://huggingface.co/datasets/eli5) データセット。 2. 微調整したモデルを推論に使用します。 <Tip> このタスクと互換性のあるすべてのアーキテクチャとチェックポイントを確認するには、[タスクページ](https://huggingface.co/tasks/fill-mask) を確認することをお勧めします。 </Tip> 始める前に、必要なライブラリがすべてインストールされていることを確認してください。 ```bash pip install transformers datasets evaluate ``` モデルをアップロードしてコミュニティと共有できるように、Hugging Face アカウントにログインすることをお勧めします。プロンプトが表示されたら、トークンを入力してログインします。 ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Load ELI5 dataset まず、ELI5 データセットの r/askscience サブセットの小さいサブセットを 🤗 データセット ライブラリからロードします。これで データセット全体のトレーニングにさらに時間を費やす前に、実験してすべてが機能することを確認する機会が与えられます。 ```py >>> from datasets import load_dataset >>> eli5 = load_dataset("eli5", split="train_asks[:5000]") ``` [`~datasets.Dataset.train_test_split`] メソッドを使用して、データセットの `train_asks` をトレイン セットとテスト セットに分割します。 ```py >>> eli5 = eli5.train_test_split(test_size=0.2) ``` 次に、例を見てみましょう。 ```py >>> eli5["train"][0] {'answers': {'a_id': ['c3d1aib', 'c3d4lya'], 'score': [6, 3], 'text': ["The velocity needed to remain in orbit is equal to the square root of Newton's constant times the mass of earth divided by the distance from the center of the earth. I don't know the altitude of that specific mission, but they're usually around 300 km. That means he's going 7-8 km/s.\n\nIn space there are no other forces acting on either the shuttle or the guy, so they stay in the same position relative to each other. If he were to become unable to return to the ship, he would presumably run out of oxygen, or slowly fall into the atmosphere and burn up.", "Hope you don't mind me asking another question, but why aren't there any stars visible in this photo?"]}, 'answers_urls': {'url': []}, 'document': '', 'q_id': 'nyxfp', 'selftext': '_URL_0_\n\nThis was on the front page earlier and I have a few questions about it. Is it possible to calculate how fast the astronaut would be orbiting the earth? Also how does he stay close to the shuttle so that he can return safely, i.e is he orbiting at the same speed and can therefore stay next to it? And finally if his propulsion system failed, would he eventually re-enter the atmosphere and presumably die?', 'selftext_urls': {'url': ['http://apod.nasa.gov/apod/image/1201/freeflyer_nasa_3000.jpg']}, 'subreddit': 'askscience', 'title': 'Few questions about this space walk photograph.', 'title_urls': {'url': []}} ``` これは多くのことのように見えるかもしれませんが、実際に関心があるのは`text`フィールドだけです。言語モデリング タスクの優れた点は、次の単語がラベル * であるため、ラベル (教師なしタスクとも呼ばれます) が必要ないことです。 ## Preprocess <Youtube id="8PmhEIXhBvI"/> マスクされた言語モデリングの場合、次のステップは、`text`サブフィールドを処理するために DistilRoBERTa トークナイザーをロードすることです。 ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilroberta-base") ``` 上の例からわかるように、`text`フィールドは実際には`answers`内にネストされています。これは、次のことを行う必要があることを意味します [` flatten`](https://huggingface.co/docs/datasets/process.html#flatten) メソッドを使用して、ネストされた構造から `text` サブフィールドを抽出します。 ```py >>> eli5 = eli5.flatten() >>> eli5["train"][0] {'answers.a_id': ['c3d1aib', 'c3d4lya'], 'answers.score': [6, 3], 'answers.text': ["The velocity needed to remain in orbit is equal to the square root of Newton's constant times the mass of earth divided by the distance from the center of the earth. I don't know the altitude of that specific mission, but they're usually around 300 km. That means he's going 7-8 km/s.\n\nIn space there are no other forces acting on either the shuttle or the guy, so they stay in the same position relative to each other. If he were to become unable to return to the ship, he would presumably run out of oxygen, or slowly fall into the atmosphere and burn up.", "Hope you don't mind me asking another question, but why aren't there any stars visible in this photo?"], 'answers_urls.url': [], 'document': '', 'q_id': 'nyxfp', 'selftext': '_URL_0_\n\nThis was on the front page earlier and I have a few questions about it. Is it possible to calculate how fast the astronaut would be orbiting the earth? Also how does he stay close to the shuttle so that he can return safely, i.e is he orbiting at the same speed and can therefore stay next to it? And finally if his propulsion system failed, would he eventually re-enter the atmosphere and presumably die?', 'selftext_urls.url': ['http://apod.nasa.gov/apod/image/1201/freeflyer_nasa_3000.jpg'], 'subreddit': 'askscience', 'title': 'Few questions about this space walk photograph.', 'title_urls.url': []} ``` `answers`接頭辞で示されるように、各サブフィールドは個別の列になり、`text`フィールドはリストになりました。その代わり 各文を個別にトークン化する場合は、リストを文字列に変換して、それらをまとめてトークン化できるようにします。 以下は、各例の文字列のリストを結合し、結果をトークン化する最初の前処理関数です。 ```py >>> def preprocess_function(examples): ... return tokenizer([" ".join(x) for x in examples["answers.text"]]) ``` この前処理関数をデータセット全体に適用するには、🤗 Datasets [`~datasets.Dataset.map`] メソッドを使用します。 `map` 関数を高速化するには、`batched=True` を設定してデータセットの複数の要素を一度に処理し、`num_proc` でプロセスの数を増やします。不要な列を削除します。 ```py >>> tokenized_eli5 = eli5.map( ... preprocess_function, ... batched=True, ... num_proc=4, ... remove_columns=eli5["train"].column_names, ... ) ``` このデータセットにはトークン シーケンスが含まれていますが、その一部はモデルの最大入力長よりも長くなります。 2 番目の前処理関数を使用して、 - すべてのシーケンスを連結します - 連結されたシーケンスを`block_size`で定義された短いチャンクに分割します。これは、最大入力長より短く、GPU RAM に十分な長さである必要があります。 ```py >>> block_size = 128 >>> def group_texts(examples): ... # Concatenate all texts. ... concatenated_examples = {k: sum(examples[k], []) for k in examples.keys()} ... total_length = len(concatenated_examples[list(examples.keys())[0]]) ... # We drop the small remainder, we could add padding if the model supported it instead of this drop, you can ... # customize this part to your needs. ... if total_length >= block_size: ... total_length = (total_length // block_size) * block_size ... # Split by chunks of block_size. ... result = { ... k: [t[i : i + block_size] for i in range(0, total_length, block_size)] ... for k, t in concatenated_examples.items() ... } ... return result ``` データセット全体に`group_texts`関数を適用します。 ```py >>> lm_dataset = tokenized_eli5.map(group_texts, batched=True, num_proc=4) ``` 次に、[`DataCollat​​orForLanguageModeling`] を使用してサンプルのバッチを作成します。データセット全体を最大長までパディングするのではなく、照合中にバッチ内の最長の長さまで文を *動的にパディング* する方が効率的です。 <frameworkcontent> <pt> シーケンス終了トークンをパディング トークンとして使用し、データを反復するたびにランダムにトークンをマスクするために `mlm_probability` を指定します。 ```py >>> from transformers import DataCollatorForLanguageModeling >>> tokenizer.pad_token = tokenizer.eos_token >>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15) ``` </pt> <tf> シーケンス終了トークンをパディング トークンとして使用し、データを反復するたびにランダムにトークンをマスクするために `mlm_probability` を指定します。 ```py >>> from transformers import DataCollatorForLanguageModeling >>> data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm_probability=0.15, return_tensors="tf") ``` </tf> </frameworkcontent> ## Train <frameworkcontent> <pt> <Tip> [`Trainer`] を使用したモデルの微調整に慣れていない場合は、[ここ](../training#train-with-pytorch-trainer) の基本的なチュートリアルをご覧ください。 </Tip> これでモデルのトレーニングを開始する準備が整いました。 [`AutoModelForMaskedLM`] を使用して DistilRoBERTa をロードします。 ```py >>> from transformers import AutoModelForMaskedLM >>> model = AutoModelForMaskedLM.from_pretrained("distilbert/distilroberta-base") ``` この時点で残っている手順は次の 3 つだけです。 1. [`TrainingArguments`] でトレーニング ハイパーパラメータを定義します。唯一の必須パラメータは、モデルの保存場所を指定する `output_dir` です。 `push_to_hub=True`を設定して、このモデルをハブにプッシュします (モデルをアップロードするには、Hugging Face にサインインする必要があります)。 2. トレーニング引数をモデル、データセット、データ照合器とともに [`Trainer`] に渡します。 3. [`~Trainer.train`] を呼び出してモデルを微調整します。 ```py >>> training_args = TrainingArguments( ... output_dir="my_awesome_eli5_mlm_model", ... eval_strategy="epoch", ... learning_rate=2e-5, ... num_train_epochs=3, ... weight_decay=0.01, ... push_to_hub=True, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=lm_dataset["train"], ... eval_dataset=lm_dataset["test"], ... data_collator=data_collator, ... ) >>> trainer.train() ``` トレーニングが完了したら、 [`~transformers.Trainer.evaluate`] メソッドを使用してモデルを評価し、その複雑さを取得します。 ```py >>> import math >>> eval_results = trainer.evaluate() >>> print(f"Perplexity: {math.exp(eval_results['eval_loss']):.2f}") Perplexity: 8.76 ``` 次に、 [`~transformers.Trainer.push_to_hub`] メソッドを使用してモデルをハブに共有し、誰もがモデルを使用できるようにします。 ```py >>> trainer.push_to_hub() ``` </pt> <tf> <Tip> Keras を使用したモデルの微調整に慣れていない場合は、[こちら](../training#train-a-tensorflow-model-with-keras) の基本的なチュートリアルをご覧ください。 </Tip> TensorFlow でモデルを微調整するには、オプティマイザー関数、学習率スケジュール、およびいくつかのトレーニング ハイパーパラメーターをセットアップすることから始めます。 ```py >>> from transformers import create_optimizer, AdamWeightDecay >>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01) ``` 次に、[`TFAutoModelForMaskedLM`] を使用して DistilRoBERTa をロードできます。 ```py >>> from transformers import TFAutoModelForMaskedLM >>> model = TFAutoModelForMaskedLM.from_pretrained("distilbert/distilroberta-base") ``` [`~transformers.TFPreTrainedModel.prepare_tf_dataset`] を使用して、データセットを `tf.data.Dataset` 形式に変換します。 ```py >>> tf_train_set = model.prepare_tf_dataset( ... lm_dataset["train"], ... shuffle=True, ... batch_size=16, ... collate_fn=data_collator, ... ) >>> tf_test_set = model.prepare_tf_dataset( ... lm_dataset["test"], ... shuffle=False, ... batch_size=16, ... collate_fn=data_collator, ... ) ``` [`compile`](https://keras.io/api/models/model_training_apis/#compile-method) を使用してトレーニング用のモデルを設定します。 Transformers モデルにはすべてデフォルトのタスク関連の損失関数があるため、次の場合を除き、損失関数を指定する必要はないことに注意してください。 ```py >>> import tensorflow as tf >>> model.compile(optimizer=optimizer) # No loss argument! ``` This can be done by specifying where to push your model and tokenizer in the [`~transformers.PushToHubCallback`]: ```py >>> from transformers.keras_callbacks import PushToHubCallback >>> callback = PushToHubCallback( ... output_dir="my_awesome_eli5_mlm_model", ... tokenizer=tokenizer, ... ) ``` ついに、モデルのトレーニングを開始する準備が整いました。トレーニングおよび検証データセット、エポック数、コールバックを指定して [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) を呼び出し、モデルを微調整します。 ```py >>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=[callback]) ``` トレーニングが完了すると、モデルは自動的にハブにアップロードされ、誰でも使用できるようになります。 </tf> </frameworkcontent> <Tip> マスクされた言語モデリング用にモデルを微調整する方法のより詳細な例については、対応するドキュメントを参照してください。 [PyTorch ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb) または [TensorFlow ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb)。 </Tip> ## Inference モデルを微調整したので、それを推論に使用できるようになりました。 モデルに空白を埋めるテキストを考え出し、特別な `<mask>` トークンを使用して空白を示します。 ```py >>> text = "The Milky Way is a <mask> galaxy." ``` 推論用に微調整されたモデルを試す最も簡単な方法は、それを [`pipeline`] で使用することです。モデルを使用してフィルマスクの`pipeline`をインスタンス化し、テキストをそれに渡します。必要に応じて、`top_k`パラメータを使用して、返す予測の数を指定できます。 ```py >>> from transformers import pipeline >>> mask_filler = pipeline("fill-mask", "stevhliu/my_awesome_eli5_mlm_model") >>> mask_filler(text, top_k=3) [{'score': 0.5150994658470154, 'token': 21300, 'token_str': ' spiral', 'sequence': 'The Milky Way is a spiral galaxy.'}, {'score': 0.07087188959121704, 'token': 2232, 'token_str': ' massive', 'sequence': 'The Milky Way is a massive galaxy.'}, {'score': 0.06434620916843414, 'token': 650, 'token_str': ' small', 'sequence': 'The Milky Way is a small galaxy.'}] ``` <frameworkcontent> <pt> テキストをトークン化し、`input_ids`を PyTorch テンソルとして返します。 `<mask>` トークンの位置も指定する必要があります。 ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_eli5_mlm_model") >>> inputs = tokenizer(text, return_tensors="pt") >>> mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1] ``` 入力をモデルに渡し、マスクされたトークンの`logits`を返します。 ```py >>> from transformers import AutoModelForMaskedLM >>> model = AutoModelForMaskedLM.from_pretrained("stevhliu/my_awesome_eli5_mlm_model") >>> logits = model(**inputs).logits >>> mask_token_logits = logits[0, mask_token_index, :] ``` 次に、マスクされた 3 つのトークンを最も高い確率で返し、出力します。 ```py >>> top_3_tokens = torch.topk(mask_token_logits, 3, dim=1).indices[0].tolist() >>> for token in top_3_tokens: ... print(text.replace(tokenizer.mask_token, tokenizer.decode([token]))) The Milky Way is a spiral galaxy. The Milky Way is a massive galaxy. The Milky Way is a small galaxy. ``` </pt> <tf> テキストをトークン化し、`input_ids`を TensorFlow テンソルとして返します。 `<mask>` トークンの位置も指定する必要があります。 ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("stevhliu/my_awesome_eli5_mlm_model") >>> inputs = tokenizer(text, return_tensors="tf") >>> mask_token_index = tf.where(inputs["input_ids"] == tokenizer.mask_token_id)[0, 1] ``` 入力をモデルに渡し、マスクされたトークンの`logits`を返します。 ```py >>> from transformers import TFAutoModelForMaskedLM >>> model = TFAutoModelForMaskedLM.from_pretrained("stevhliu/my_awesome_eli5_mlm_model") >>> logits = model(**inputs).logits >>> mask_token_logits = logits[0, mask_token_index, :] ``` 次に、マスクされた 3 つのトークンを最も高い確率で返し、出力します。 ```py >>> top_3_tokens = tf.math.top_k(mask_token_logits, 3).indices.numpy() >>> for token in top_3_tokens: ... print(text.replace(tokenizer.mask_token, tokenizer.decode([token]))) The Milky Way is a spiral galaxy. The Milky Way is a massive galaxy. The Milky Way is a small galaxy. ``` </tf> </frameworkcontent>
transformers/docs/source/ja/tasks/masked_language_modeling.md/0
{ "file_path": "transformers/docs/source/ja/tasks/masked_language_modeling.md", "repo_id": "transformers", "token_count": 7720 }
47
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # How 🤗 Transformers solve tasks [🤗 Transformersでできること](task_summary)で、自然言語処理(NLP)、音声とオーディオ、コンピュータビジョンのタスク、それらの重要なアプリケーションについて学びました。このページでは、モデルがこれらのタスクをどのように解決するかを詳しく見て、モデルの内部で何が起こっているかを説明します。特定のタスクを解決するためには多くの方法があり、一部のモデルは特定のテクニックを実装するか、または新しい観点からタスクに取り組むかもしれませんが、Transformerモデルにとって、一般的なアイデアは同じです。柔軟なアーキテクチャのおかげで、ほとんどのモデルはエンコーダ、デコーダ、またはエンコーダ-デコーダ構造の変種です。Transformerモデル以外にも、当社のライブラリにはコンピュータビジョンタスクに今でも使用されているいくつかの畳み込みニューラルネットワーク(CNN)もあります。また、現代のCNNがどのように機能するかも説明します。 タスクがどのように解決されるかを説明するために、モデル内部で有用な予測を出力するために何が起こるかについて説明します。 - [Wav2Vec2](model_doc/wav2vec2):オーディオ分類および自動音声認識(ASR)向け - [Vision Transformer(ViT)](model_doc/vit)および[ConvNeXT](model_doc/convnext):画像分類向け - [DETR](model_doc/detr):オブジェクト検出向け - [Mask2Former](model_doc/mask2former):画像セグメンテーション向け - [GLPN](model_doc/glpn):深度推定向け - [BERT](model_doc/bert):エンコーダを使用するテキスト分類、トークン分類、および質問応答などのNLPタスク向け - [GPT2](model_doc/gpt2):デコーダを使用するテキスト生成などのNLPタスク向け - [BART](model_doc/bart):エンコーダ-デコーダを使用する要約および翻訳などのNLPタスク向け <Tip> さらに進む前に、元のTransformerアーキテクチャの基本的な知識を持つと良いです。エンコーダ、デコーダ、および注意力がどのように動作するかを知っておくと、異なるTransformerモデルがどのように動作するかを理解するのに役立ちます。始めているか、リフレッシュが必要な場合は、詳細な情報については当社の[コース](https://huggingface.co/course/chapter1/4?fw=pt)をチェックしてください! </Tip> ## Speech and audio [Wav2Vec2](model_doc/wav2vec2)は、未ラベルの音声データで事前トレーニングされ、オーディオ分類および自動音声認識のラベル付きデータでファインチューンされた自己教師モデルです。 <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/wav2vec2_architecture.png"/> </div> このモデルには主に次の4つのコンポーネントがあります。 1. *特徴エンコーダ*:生の音声波形を受け取り、平均値をゼロに正規化し、単位分散に変換し、それを20msごとの特徴ベクトルのシーケンスに変換します。 2. 波形は自然に連続しているため、テキストのシーケンスを単語に分割できるようにできるように、特徴ベクトルは*量子化モジュール*に渡され、離散音声ユニットを学習しようとします。音声ユニットは*コードブック*(語彙と考えることができます)として知られるコードワードのコレクションから選択されます。コードブックから、連続したオーディオ入力を最もよく表すベクトルまたは音声ユニット(ターゲットラベルと考えることができます)が選択され、モデルを介して転送されます。 3. 特徴ベクトルの約半分はランダムにマスクされ、マスクされた特徴ベクトルは*コンテキストネットワーク*に供給されます。これは、相対的な位置エンベッディングも追加するTransformerエンコーダです。 4. コンテキストネットワークの事前トレーニングの目的は*コントラスティブタスク*です。モデルはマスクされた予測の真の量子化音声表現を、偽の予測のセットから予測しなければならず、モデルは最も似たコンテキストベクトルと量子化音声ユニット(ターゲットラベル)を見つけるように促されます。 今、Wav2Vec2は事前トレーニングされているので、オーディオ分類または自動音声認識のためにデータをファインチューンできます! ### Audio classification 事前トレーニングされたモデルをオーディオ分類に使用するには、基本的なWav2Vec2モデルの上にシーケンス分類ヘッドを追加します。分類ヘッドはエンコーダの隠れた状態を受け入れる線形層で、各オーディオフレームから学習された特徴を表します。これらの隠れた状態は長さが異なる可能性があるため、最初に隠れた状態がプールされ、次にクラスラベルに対するロジットに変換されます。ロジットとターゲット間のクロスエントロピー損失が計算され、最も可能性の高いクラスを見つけるために使用されます。 オーディオ分類を試す準備はできましたか?Wav2Vec2をファインチューンして推論に使用する方法を学ぶための完全な[オーディオ分類ガイド](tasks/audio_classification)をチェックしてください! ### Automatic speech recognition 事前トレーニングされたモデルを自動音声認識に使用するには、[connectionist temporal classification(CTC)](glossary#connectionist-temporal-classification-ctc)のための基本的なWav2Vec2モデルの上に言語モデリングヘッドを追加します。言語モデリングヘッドはエンコーダの隠れた状態を受け入れ、それらをロジットに変換します。各ロジットはトークンクラスを表し(トークン数はタスクの語彙から来ます)、ロジットとターゲット間のCTC損失が計算され、次に転写に変換されます。 自動音声認識を試す準備はできましたか?Wav2Vec2をファインチューンして推論に使用する方法を学ぶための完全な[自動音声認識ガイド](tasks/asr)をチェックしてください! ## Computer vision コンピュータビジョンのタスクをアプローチする方法は2つあります。 1. 画像をパッチのシーケンスに分割し、Transformerを使用して並列に処理します。 2. [ConvNeXT](model_doc/convnext)などのモダンなCNNを使用します。これらは畳み込み層を使用しますが、モダンなネットワーク設計を採用しています。 <Tip> サードアプローチでは、Transformerと畳み込みを組み合わせたものもあります(例:[Convolutional Vision Transformer](model_doc/cvt)または[LeViT](model_doc/levit))。これらについては議論しませんが、これらはここで調べる2つのアプローチを組み合わせています。 </Tip> ViTとConvNeXTは画像分類によく使用されますが、オブジェクト検出、セグメンテーション、深度推定などの他のビジョンタスクに対しては、DETR、Mask2Former、GLPNなどが適しています。 ### Image classification ViTとConvNeXTの両方を画像分類に使用できます。主な違いは、ViTが注意メカニズムを使用し、ConvNeXTが畳み込みを使用することです。 #### Transformer [ViT](model_doc/vit)は畳み込みを完全にTransformerアーキテクチャで置き換えます。元のTransformerに精通している場合、ViTの理解は既にほとんど完了しています。 <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/vit_architecture.jpg"/> </div> ViTが導入した主な変更点は、画像をTransformerに供給する方法です。 1. 画像は正方形で重ならないパッチのシーケンスに分割され、各パッチはベクトルまたは*パッチ埋め込み*に変換されます。パッチ埋め込みは、適切な入力次元を作成するために2D畳み込み層から生成されます(基本のTransformerの場合、各パッチ埋め込みに768の値があります)。224x224ピクセルの画像がある場合、それを16x16の画像パッチに分割できます。テキストが単語にトークン化されるように、画像はパッチのシーケンスに「トークン化」されます。 2. *学習埋め込み*、つまり特別な `[CLS]` トークンが、BERTのようにパッチ埋め込みの先頭に追加されます。 `[CLS]` トークンの最終的な隠れた状態は、付属の分類ヘッドの入力として使用されます。他の出力は無視されます。このトークンは、モデルが画像の表現をエンコードする方法を学ぶのに役立ちます。 3. パッチと学習埋め込みに追加する最後の要素は*位置埋め込み*です。モデルは画像パッチがどのように並べられているかを知りませんので、位置埋め込みも学習可能で、パッチ埋め込みと同じサイズを持ちます。最後に、すべての埋め込みがTransformerエンコーダに渡されます。 4. 出力、具体的には `[CLS]` トークンの出力だけが、多層パーセプトロンヘッド(MLP)に渡されます。ViTの事前トレーニングの目的は単純に分類です。他の分類ヘッドと同様に、MLPヘッドは出力をクラスラベルに対するロジットに変換し、クロスエントロピー損失を計算して最も可能性の高いクラスを見つけます。 画像分類を試す準備はできましたか?ViTをファインチューンして推論に使用する方法を学ぶための完全な[画像分類ガイド](tasks/image_classification)をチェックしてください! #### CNN <Tip> このセクションでは畳み込みについて簡単に説明していますが、画像の形状とサイズがどのように変化するかを事前に理解していると役立ちます。畳み込みに慣れていない場合は、fastaiの書籍から[Convolution Neural Networks chapter](https://github.com/fastai/fastbook/blob/master/13_convolutions.ipynb)をチェックしてみてください! </Tip> [ConvNeXT](model_doc/convnext)は、性能を向上させるために新しいモダンなネットワーク設計を採用したCNNアーキテクチャです。ただし、畳み込みはモデルの中核にまだあります。高レベルから見た場合、[畳み込み(convolution)](glossary#convolution)は、小さな行列(*カーネル*)が画像のピクセルの小さなウィンドウに乗算される操作です。それは特定のテクスチャや線の曲率などの特徴を計算します。その後、次のピクセルのウィンドウに移動します。畳み込みが移動する距離は*ストライド*として知られています。 <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convolution.gif"/> </div> <small>[Convolution Arithmetic for Deep Learning](https://arxiv.org/abs/1603.07285) からの基本的なパディングやストライドのない畳み込み。</small> この出力を別の畳み込み層に供給し、各連続した層ごとに、ネットワークはホットドッグやロケットのようなより複雑で抽象的なものを学習します。畳み込み層の間には、特徴の次元を削減し、特徴の位置の変動に対してモデルをより堅牢にするためにプーリング層を追加するのが一般的です。 <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/convnext_architecture.png"/> </div> ConvNeXTは、以下の5つの方法でCNNをモダン化しています。 1. 各ステージのブロック数を変更し、画像をより大きなストライドと対応するカーネルサイズで*パッチ化*します。重ならないスライディングウィンドウは、これにより画像をパッチに分割するViTの戦略と似ています。 2. *ボトルネック* レイヤーはチャネル数を縮小し、それを復元します。1x1の畳み込みを実行するのは速く、深さを増やすことができます。逆ボトルネックは逆のことを行い、チャネル数を拡張し、それを縮小します。これはメモリ効率が高いです。 3. ボトルネックレイヤー内の通常の3x3の畳み込み層を、*深度方向の畳み込み*で置き換えます。これは各入力チャネルに個別に畳み込みを適用し、最後にそれらを積み重ねる畳み込みです。これにより、性能向上のためにネットワーク幅が広がります。 4. ViTはグローバル受容野を持っているため、その注意メカニズムのおかげで一度に画像の多くを見ることができます。ConvNeXTはこの効果を再現しようとし、カーネルサイズを7x7に増やします。 5. ConvNeXTはまた、Transformerモデルを模倣するいくつかのレイヤーデザイン変更を行っています。アクティベーションと正規化レイヤーが少なく、活性化関数はReLUの代わりにGELUに切り替え、BatchNormの代わりにLayerNormを使用しています。 畳み込みブロックからの出力は、分類ヘッドに渡され、出力をロジットに変換し、最も可能性の高いラベルを見つけるためにクロスエントロピー損失が計算されます。 ### Object detection [DETR](model_doc/detr)、*DEtection TRansformer*、はCNNとTransformerエンコーダーデコーダーを組み合わせたエンドツーエンドのオブジェクト検出モデルです。 <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/detr_architecture.png"/> </div> 1. 事前トレーニングされたCNN *バックボーン* は、ピクセル値で表される画像を受け取り、それの低解像度の特徴マップを作成します。特徴マップには次元削減のために1x1の畳み込みが適用され、高レベルの画像表現を持つ新しい特徴マップが作成されます。Transformerは連続モデルであるため、特徴マップは特徴ベクトルのシーケンスに平坦化され、位置エンベディングと組み合わせられます。 2. 特徴ベクトルはエンコーダーに渡され、その注意レイヤーを使用して画像表現を学習します。次に、エンコーダーの隠れ状態はデコーダーの*オブジェクトクエリ*と組み合わされます。オブジェクトクエリは、画像の異なる領域に焦点を当てる学習埋め込みで、各注意レイヤーを進行するにつれて更新されます。デコーダーの隠れ状態は、各オブジェクトクエリに対してバウンディングボックスの座標とクラスラベルを予測するフィードフォワードネットワークに渡されます。または、存在しない場合は `no object` が渡されます。 DETRは各オブジェクトクエリを並行してデコードして、*N*の最終的な予測(*N*はクエリの数)を出力します。典型的な自己回帰モデルが1つの要素を1回ずつ予測するのとは異なり、オブジェクト検出はセット予測タスク(`バウンディングボックス`、`クラスラベル`)であり、1回のパスで*N*の予測を行います。 3. 訓練中、DETRは*二部マッチング損失*を使用して、固定された数の予測と固定された一連の正解ラベルを比較します。 *N*のラベルセットに正解ラベルが少ない場合、 `no object` クラスでパディングされます。この損失関数は、DETRに予測と正解ラベルとの間で1対1の割り当てを見つけるように促します。バウンディングボックスまたはクラスラベルのどちらかが正しくない場合、損失が発生します。同様に、DETRが存在しないオブジェクトを予測した場合、罰金が科せられます。これにより、DETRは1つの非常に顕著なオブジェクトに焦点を当てるのではなく、画像内の他のオブジェクトを見つけるように促されます。 DETRの上にオブジェクト検出ヘッドを追加して、クラスラベルとバウンディングボックスの座標を見つけます。オブジェクト検出ヘッドには2つのコンポーネントがあります:デコーダーの隠れ状態をクラスラベルのロジットに変換するための線形層、およびバウンディングボックスを予測するためのMLPです。 オブジェクト検出を試す準備はできましたか?DETROの完全な[オブジェクト検出ガイド](tasks/object_detection)をチェックして、DETROのファインチューニング方法と推論方法を学んでください! ### Image segmentation [Mask2Former](model_doc/mask2former)は、すべての種類の画像セグメンテーションタスクを解決するためのユニバーサルアーキテクチャです。従来のセグメンテーションモデルは通常、インスタンス、セマンティック、またはパノプティックセグメンテーションの特定のサブタスクに合わせて設計されています。Mask2Formerは、それらのタスクのそれぞれを*マスク分類*の問題として捉えます。マスク分類はピクセルを*N*のセグメントにグループ化し、与えられた画像に対して*N*のマスクとそれに対応するクラスラベルを予測します。このセクションでは、Mask2Formerの動作方法を説明し、最後にSegFormerのファインチューニングを試すことができます。 <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/mask2former_architecture.png"/> </div> Mask2Formerの主要なコンポーネントは次の3つです。 1. [Swin](model_doc/swin)バックボーンは画像を受け入れ、3つの連続する3x3の畳み込みから低解像度の画像特徴マップを作成します。 2. 特徴マップは*ピクセルデコーダー*に渡され、低解像度の特徴を高解像度のピクセル埋め込みに徐々にアップサンプリングします。ピクセルデコーダーは実際には解像度1/32、1/16、および1/8のオリジナル画像のマルチスケール特徴(低解像度と高解像度の特徴を含む)を生成します。 3. これらの異なるスケールの特徴マップのそれぞれは、高解像度の特徴から小さいオブジェクトをキャプチャするために1回ずつトランスフォーマーデコーダーレイヤーに渡されます。Mask2Formerの要点は、デコーダーの*マスクアテンション*メカニズムです。クロスアテンションが画像全体に注意を向けることができるのに対し、マスクアテンションは画像の特定の領域にのみ焦点を当てます。これは速く、ローカルな画像特徴だけでもモデルが学習できるため、パフォーマンスが向上します。 4. [DETR](tasks_explained#object-detection)と同様に、Mask2Formerも学習されたオブジェクトクエリを使用し、画像の特徴と組み合わせてセットの予測(`クラスラベル`、`マスク予測`)を行います。デコーダーの隠れ状態は線形層に渡され、クラスラベルに対するロジットに変換されます。ロジットと正解ラベル間のクロスエントロピー損失が最も可能性の高いものを見つけます。 マスク予測は、ピクセル埋め込みと最終的なデコーダーの隠れ状態を組み合わせて生成されます。シグモイドクロスエントロピーやダイス損失がロジットと正解マスクの間で最も可能性の高いマスクを見つけます。 セグメンテーションタスクに取り組む準備ができましたか?SegFormerのファインチューニング方法と推論方法を学ぶために、完全な[画像セグメンテーションガイド](tasks/semantic_segmentation)をチェックしてみてください! ### Depth estimation [GLPN](model_doc/glpn)、*Global-Local Path Network*、はセグメンテーションまたは深度推定などの密な予測タスクに適しています。[SegFormer](model_doc/segformer)エンコーダーを軽量デコーダーと組み合わせたTransformerベースの深度推定モデルです。 <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/glpn_architecture.jpg"/> </div> 1. ViTのように、画像はパッチのシーケンスに分割されますが、これらの画像パッチは小さいです。これはセグメンテーションや深度推定などの密な予測タスクに適しています。画像パッチはパッチ埋め込みに変換されます(パッチ埋め込みの作成方法の詳細については、[画像分類](#image-classification)セクションを参照してください)。これらのパッチ埋め込みはエンコーダーに渡されます。 2. エンコーダーはパッチ埋め込みを受け入れ、複数のエンコーダーブロックを通じてそれらを渡します。各ブロックにはアテンションとMix-FFNレイヤーが含まれています。後者の役割は位置情報を提供することです。各エンコーダーブロックの最後には、階層的表現を作成するための*パッチマージング*レイヤーがあります。隣接するパッチのグループごとの特徴が連結され、連結された特徴に対して線形層が適用され、パッチの数を1/4の解像度に削減します。これが次のエンコーダーブロックへの入力となり、ここではこのプロセス全体が繰り返され、元の画像の1/8、1/16、および1/32の解像度の画像特徴が得られます。 3. 軽量デコーダーは、エンコーダーからの最後の特徴マップ(1/32スケール)を受け取り、それを1/16スケールにアップサンプリングします。その後、特徴は各特徴に対するアテンションマップからローカルとグローバルな特徴を選択して組み合わせる*セレクティブフィーチャーフュージョン(SFF)*モジュールに渡され、1/8にアップサンプリングされます。このプロセスはデコードされた特徴が元の画像と同じサイズになるまで繰り返されます。 4. デコードされた特徴は、最終的な予測を行うためにセマンティックセグメンテーション、深度推定、またはその他の密な予測タスクに供給されます。セマンティックセグメンテーションの場合、特徴はクラス数に対するロジットに変換され、クロスエントロピー損失を使用して最適化されます。深度推定の場合、特徴は深度マップに変換され、平均絶対誤差(MAE)または平均二乗誤差(MSE)損失が使用されます。 ## Natural language processing Transformerは最初に機械翻訳のために設計され、それ以降、ほとんどのNLPタスクを解決するためのデフォルトのアーキテクチャとなっています。一部のタスクはTransformerのエンコーダー構造に適しており、他のタスクはデコーダーに適しています。さらに、一部のタスクではTransformerのエンコーダー-デコーダー構造を使用します。 ### Text classification [BERT](model_doc/bert)はエンコーダーのみのモデルであり、テキストの豊かな表現を学習するために両側の単語に注意を払うことで、深い双方向性を効果的に実装した最初のモデルです。 1. BERTは[WordPiece](tokenizer_summary#wordpiece)トークナイゼーションを使用してテキストのトークン埋め込みを生成します。単一の文と文のペアを区別するために、特別な `[SEP]` トークンが追加されます。 `[CLS]` トークンはすべてのテキストシーケンスの先頭に追加されます。 `[CLS]` トークンとともに最終出力は、分類タスクのための入力として使用されます。BERTはまた、トークンが文のペアの最初または2番目の文に属するかどうかを示すセグメント埋め込みを追加します。 2. BERTは、事前トレーニングで2つの目標を使用します:マスクされた言語モデリングと次の文の予測です。マスクされた言語モデリングでは、入力トークンの一部がランダムにマスクされ、モデルはこれらを予測する必要があります。これにより、モデルが全ての単語を見て「次の単語」を予測することができる双方向性の問題が解決されます。予測されたマスクトークンの最終的な隠れた状態は、ソフトマックスを使用した単語のマスクを予測するためのフィードフォワードネットワークに渡されます。 2番目の事前トレーニングオブジェクトは次の文の予測です。モデルは文Aの後に文Bが続くかどうかを予測する必要があります。半分の場合、文Bは次の文であり、残りの半分の場合、文Bはランダムな文です。予測(次の文かどうか)は、2つのクラス(`IsNext`および`NotNext`)に対するソフトマックスを持つフィードフォワードネットワークに渡されます。 3. 入力埋め込みは、最終的な隠れた状態を出力するために複数のエンコーダーレイヤーを介して渡されます。 事前訓練済みモデルをテキスト分類に使用するには、ベースのBERTモデルの上にシーケンス分類ヘッドを追加します。シーケンス分類ヘッドは最終的な隠れた状態を受け入れ、それらをロジットに変換するための線形層です。クロスエントロピー損失は、ロジットとターゲット間で最も可能性の高いラベルを見つけるために計算されます。 テキスト分類を試してみる準備はできましたか?DistilBERTを微調整し、推論に使用する方法を学ぶために、完全な[テキスト分類ガイド](tasks/sequence_classification)をチェックしてみてください! ### Token classification BERTを名前エンティティ認識(NER)などのトークン分類タスクに使用するには、ベースのBERTモデルの上にトークン分類ヘッドを追加します。トークン分類ヘッドは最終的な隠れた状態を受け入れ、それらをロジットに変換するための線形層です。クロスエントロピー損失は、ロジットと各トークン間で最も可能性の高いラベルを見つけるために計算されます。 トークン分類を試してみる準備はできましたか?DistilBERTを微調整し、推論に使用する方法を学ぶために、完全な[トークン分類ガイド](tasks/token_classification)をチェックしてみてください! ### Question answering BERTを質問応答に使用するには、ベースのBERTモデルの上にスパン分類ヘッドを追加します。この線形層は最終的な隠れた状態を受け入れ、回答に対応するテキストの「スパン」開始と終了のロジットを計算します。クロスエントロピー損失は、ロジットとラベル位置との間で最も可能性の高いテキストスパンを見つけるために計算されます。 質問応答を試してみる準備はできましたか?DistilBERTを微調整し、推論に使用する方法を学ぶために、完全な[質問応答ガイド](tasks/question_answering)をチェックしてみてください! <Tip> 💡 注意してください。一度事前トレーニングが完了したBERTを使用してさまざまなタスクに簡単に適用できることに注目してください。必要なのは、事前トレーニング済みモデルに特定のヘッドを追加して、隠れた状態を所望の出力に変換することだけです! </Tip> ### Text generation [GPT-2](model_doc/gpt2)は大量のテキストで事前トレーニングされたデコーダー専用モデルです。プロンプトを与えると説得力のあるテキストを生成し、明示的にトレーニングされていないにもかかわらず、質問応答などの他のNLPタスクも完了できます。 <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/gpt2_architecture.png"/> </div> 1. GPT-2は[バイトペアエンコーディング(BPE)](tokenizer_summary#bytepair-encoding-bpe)を使用して単語をトークナイズし、トークン埋め込みを生成します。位置エンコーディングがトークン埋め込みに追加され、各トークンの位置を示します。入力埋め込みは複数のデコーダーブロックを介して最終的な隠れた状態を出力するために渡されます。各デコーダーブロック内で、GPT-2は「マスクされた自己注意」レイヤーを使用します。これは、GPT-2が未来のトークンに注意を払うことはできないことを意味します。GPT-2は左側のトークンにのみ注意を払うことが許可されています。これはBERTの[`mask`]トークンとは異なり、マスクされた自己注意では未来のトークンに対してスコアを`0`に設定するための注意マスクが使用されます。 2. デコーダーからの出力は、言語モデリングヘッドに渡され、最終的な隠れた状態をロジットに変換するための線形変換を実行します。ラベルはシーケンス内の次のトークンであり、これはロジットを右に1つずらして生成されます。クロスエントロピー損失は、シフトされたロジットとラベル間で計算され、次に最も可能性の高いトークンを出力します。 GPT-2の事前トレーニングの目標は完全に[因果言語モデリング](glossary#causal-language-modeling)に基づいており、シーケンス内の次の単語を予測します。これにより、GPT-2はテキスト生成を含むタスクで特に優れた性能を発揮します。 テキスト生成を試してみる準備はできましたか?DistilGPT-2を微調整し、推論に使用する方法を学ぶために、完全な[因果言語モデリングガイド](tasks/language_modeling#causal-language-modeling)をチェックしてみてください! <Tip> テキスト生成に関する詳細は、[テキスト生成戦略](generation_strategies)ガイドをチェックしてみてください! </Tip> ### Summarization [BART](model_doc/bart) や [T5](model_doc/t5) のようなエンコーダーデコーダーモデルは、要約タスクのシーケンス・トゥ・シーケンス・パターンに設計されています。このセクションでは、BARTの動作方法を説明し、最後にT5の微調整を試すことができます。 <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bart_architecture.png"/> </div> 1. BARTのエンコーダーアーキテクチャは、BERTと非常に似ており、テキストのトークンと位置エンベディングを受け入れます。BARTは、入力を破壊してからデコーダーで再構築することによって事前トレーニングされます。特定の破壊戦略を持つ他のエンコーダーとは異なり、BARTは任意の種類の破壊を適用できます。ただし、*テキストインフィリング*破壊戦略が最適です。テキストインフィリングでは、いくつかのテキストスパンが**単一の** [`mask`] トークンで置き換えられます。これは重要です、なぜならモデルはマスクされたトークンを予測しなければならず、モデルに欠落トークンの数を予測させるからです。入力埋め込みとマスクされたスパンはエンコーダーを介して最終的な隠れた状態を出力しますが、BERTとは異なり、BARTは単語を予測するための最終的なフィードフォワードネットワークを最後に追加しません。 2. エンコーダーの出力はデコーダーに渡され、デコーダーはエンコーダーの出力からマスクされたトークンと非破壊トークンを予測する必要があります。これにより、デコーダーは元のテキストを復元するのに役立つ追加のコンテキストが提供されます。デコーダーからの出力は言語モデリングヘッドに渡され、隠れた状態をロジットに変換するための線形変換を実行します。クロスエントロピー損失は、ロジットとラベルの間で計算され、ラベルは単に右にシフトされたトークンです。 要約を試す準備はできましたか?T5を微調整して推論に使用する方法を学ぶために、完全な[要約ガイド](tasks/summarization)をご覧ください! <Tip> テキスト生成に関する詳細は、[テキスト生成戦略](generation_strategies)ガイドをチェックしてみてください! </Tip> ### Translation 翻訳は、もう一つのシーケンス・トゥ・シーケンス・タスクの例であり、[BART](model_doc/bart) や [T5](model_doc/t5) のようなエンコーダーデコーダーモデルを使用して実行できます。このセクションでは、BARTの動作方法を説明し、最後にT5の微調整を試すことができます。 BARTは、ソース言語をターゲット言語にデコードできるようにするために、別個にランダムに初期化されたエンコーダーを追加することで翻訳に適応します。この新しいエンコーダーの埋め込みは、元の単語埋め込みの代わりに事前トレーニング済みのエンコーダーに渡されます。ソースエンコーダーは、モデルの出力からのクロスエントロピー損失を用いてソースエンコーダー、位置エンベディング、および入力エンベディングを更新することによって訓練されます。この最初のステップではモデルパラメータが固定され、すべてのモデルパラメータが2番目のステップで一緒に訓練されます。 その後、翻訳のために多言語版のmBARTが登場し、多言語で事前トレーニングされたモデルとして利用可能です。 翻訳を試す準備はできましたか?T5を微調整して推論に使用する方法を学ぶために、完全な[翻訳ガイド](tasks/summarization)をご覧ください! <Tip> テキスト生成に関する詳細は、[テキスト生成戦略](generation_strategies)ガイドをチェックしてみてください! </Tip>
transformers/docs/source/ja/tasks_explained.md/0
{ "file_path": "transformers/docs/source/ja/tasks_explained.md", "repo_id": "transformers", "token_count": 16553 }
48
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BERTology BERT와 같은 대규모 트랜스포머의 내부 동작을 조사하는 연구 분야가 점점 더 중요해지고 있습니다. 혹자는 "BERTology"라 칭하기도 합니다. 이 분야의 좋은 예시는 다음과 같습니다: - BERT는 고전적인 NLP 파이프라인의 재발견 - Ian Tenney, Dipanjan Das, Ellie Pavlick: https://arxiv.org/abs/1905.05950 - 16개의 헤드가 정말로 1개보다 나은가? - Paul Michel, Omer Levy, Graham Neubig: https://arxiv.org/abs/1905.10650 - BERT는 무엇을 보는가? BERT의 어텐션 분석 - Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D. Manning: https://arxiv.org/abs/1906.04341 - CAT-probing: 프로그래밍 언어에 대해 사전훈련된 모델이 어떻게 코드 구조를 보는지 알아보기 위한 메트릭 기반 접근 방법: https://arxiv.org/abs/2210.04633 우리는 이 새로운 연구 분야의 발전을 돕기 위해, BERT/GPT/GPT-2 모델에 내부 표현을 살펴볼 수 있는 몇 가지 기능을 추가했습니다. 이 기능들은 주로 Paul Michel의 훌륭한 작업을 참고하여 개발되었습니다 (https://arxiv.org/abs/1905.10650): - BERT/GPT/GPT-2의 모든 은닉 상태에 접근하기, - BERT/GPT/GPT-2의 각 헤드의 모든 어텐션 가중치에 접근하기, - 헤드의 출력 값과 그래디언트를 검색하여 헤드 중요도 점수를 계산하고 https://arxiv.org/abs/1905.10650에서 설명된 대로 헤드를 제거하는 기능을 제공합니다. 이러한 기능들을 이해하고 직접 사용해볼 수 있도록 [bertology.py](https://github.com/huggingface/transformers/tree/main/examples/research_projects/bertology/run_bertology.py) 예제 스크립트를 추가했습니다. 이 예제 스크립트에서는 GLUE에 대해 사전훈련된 모델에서 정보를 추출하고 모델을 가지치기(prune)해봅니다.
transformers/docs/source/ko/bertology.md/0
{ "file_path": "transformers/docs/source/ko/bertology.md", "repo_id": "transformers", "token_count": 1557 }
49
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # BARThez [[barthez]] ## 개요 [[overview]] BARThez 모델은 2020년 10월 23일, Moussa Kamal Eddine, Antoine J.-P. Tixier, Michalis Vazirgiannis에 의해 [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321)에서 제안되었습니다. 이 논문의 초록: *자기지도 학습에 의해 가능해진 귀납적 전이 학습은 자연어 처리(NLP) 분야 전반에 걸쳐 큰 반향을 일으켰으며, BERT와 BART와 같은 모델들은 수많은 자연어 이해 작업에서 새로운 최첨단 성과를 기록했습니다. 일부 주목할 만한 예외가 있지만, 대부분의 사용 가능한 모델과 연구는 영어에 집중되어 있었습니다. 본 연구에서는 BARThez를 소개합니다. 이는 (우리가 아는 한) 프랑스어를 위한 첫 번째 BART 모델입니다. BARThez는 과거 연구에서 얻은 매우 큰 프랑스어 단일 언어 말뭉치로 사전훈련되었으며, BART의 변형 방식에 맞게 조정되었습니다. CamemBERT 및 FlauBERT와 같은 기존의 BERT 기반 프랑스어 모델과 달리, BARThez는 생성 작업에 특히 적합합니다. 이는 인코더뿐만 아니라 디코더도 사전훈련되었기 때문입니다. 우리는 FLUE 벤치마크에서의 판별 작업 외에도 이 논문과 함께 공개하는 새로운 요약 데이터셋인 OrangeSum에서 BARThez를 평가했습니다. 또한 이미 사전훈련된 다국어 BART의 사전훈련을 BARThez의 말뭉치로 계속 진행하였으며, 결과적으로 얻어진 모델인 mBARTHez가 기본 BARThez보다 유의미한 성능 향상을 보였고, CamemBERT 및 FlauBERT와 동등하거나 이를 능가함을 보였습니다.* 이 모델은 [moussakam](https://huggingface.co/moussakam)이 기여했습니다. 저자의 코드는 [여기](https://github.com/moussaKam/BARThez)에서 찾을 수 있습니다. <Tip> BARThez 구현은 🤗 BART와 동일하나, 토큰화에서 차이가 있습니다. 구성 클래스와 그 매개변수에 대한 정보는 [BART 문서](bart)를 참조하십시오. BARThez 전용 토크나이저는 아래에 문서화되어 있습니다. </Tip> ## 리소스 [[resources]] - BARThez는 🤗 BART와 유사한 방식으로 시퀀스-투-시퀀스 작업에 맞춰 미세 조정될 수 있습니다. 다음을 확인하세요: [examples/pytorch/summarization/](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization/README.md). ## BarthezTokenizer [[bartheztokenizer]] [[autodoc]] BarthezTokenizer ## BarthezTokenizerFast [[bartheztokenizerfast]] [[autodoc]] BarthezTokenizerFast
transformers/docs/source/ko/model_doc/barthez.md/0
{ "file_path": "transformers/docs/source/ko/model_doc/barthez.md", "repo_id": "transformers", "token_count": 2134 }
50
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # ESM [[esm]] ## 개요 [[overview]] 이 페이지는 Meta AI의 Fundamental AI Research 팀에서 제공하는 Transformer 단백질 언어 모델에 대한 코드와 사전 훈련된 가중치를 제공합니다. 여기에는 최첨단인 ESMFold와 ESM-2, 그리고 이전에 공개된 ESM-1b와 ESM-1v가 포함됩니다. Transformer 단백질 언어 모델은 Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo, Myle Ott, C. Lawrence Zitnick, Jerry Ma, Rob Fergus의 논문 [Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences](https://www.pnas.org/content/118/15/e2016239118)에서 소개되었습니다. 이 논문의 첫 번째 버전은 2019년에 [출판 전 논문](https://www.biorxiv.org/content/10.1101/622803v1?versioned=true) 형태로 공개되었습니다. ESM-2는 다양한 구조 예측 작업에서 테스트된 모든 단일 시퀀스 단백질 언어 모델을 능가하며, 원자 수준의 구조 예측을 가능하게 합니다. 이 모델은 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos Santos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, Alexander Rives의 논문 [Language models of protein sequences at the scale of evolution enable accurate structure prediction](https://doi.org/10.1101/2022.07.20.500902)에서 공개되었습니다. 이 논문에서 함께 소개된 ESMFold는 ESM-2 스템을 사용하며, 최첨단의 정확도로 단백질 접힘 구조를 예측할 수 있는 헤드를 갖추고 있습니다. [AlphaFold2](https://www.nature.com/articles/s41586-021-03819-2)와 달리, 이는 대형 사전 훈련된 단백질 언어 모델 스템의 토큰 임베딩에 의존하며, 추론 시 다중 시퀀스 정렬(MSA) 단계를 수행하지 않습니다. 이는 ESMFold 체크포인트가 완전히 "독립적"이며, 예측을 위해 알려진 단백질 시퀀스와 구조의 데이터베이스, 그리고 그와 관련 외부 쿼리 도구를 필요로 하지 않는다는 것을 의미합니다. 그리고 그 결과, 훨씬 빠릅니다. "Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences"의 초록은 다음과 같습니다: *인공지능 분야에서는 대규모의 데이터와 모델 용량을 갖춘 비지도 학습의 조합이 표현 학습과 통계적 생성에서 주요한 발전을 이끌어냈습니다. 생명 과학에서는 시퀀싱 기술의 성장이 예상되며, 자연 시퀀스 다양성에 대한 전례 없는 데이터가 나올 것으로 기대됩니다. 진화적 단계에서 볼 때, 단백질 언어 모델링은 생물학을 위한 예측 및 생성 인공지능을 향한 논리적인 단계에 있습니다. 이를 위해 우리는 진화적 다양성을 아우르는 2억 5천만 개의 단백질 시퀀스에서 추출한 860억 개의 아미노산에 대해 심층 컨텍스트 언어 모델을 비지도 학습으로 훈련합니다. 그 결과 모델은 그 표현에서 생물학적 속성에 대한 정보를 포함합니다. 이 표현은 시퀀스 데이터만으로 학습됩니다. 학습된 표현 공간은 아미노산의 생화학적 특성 수준에서부터 단백질의 원거리 상동성까지 구조를 반영하는 다중 규모의 조직을 가지고 있습니다. 이 표현에는 2차 및 3차 구조에 대한 정보가 인코딩되어 있으며, 선형 전사에 의해 식별 될 수 있습니다. 표현 학습은 돌연변이에 의한 효과와 2차 구조의 최첨단 지도 예측을 가능하게 하고, 넓은 범위의 접촉 부위 예측을 위한 최첨단 특징을 향상시킵니다.* "Language models of protein sequences at the scale of evolution enable accurate structure prediction"의 초록은 다음과 같습니다: *대형 언어 모델은 최근 규모가 커짐에 따라 긴급한 기능을 개발하여 단순한 패턴 매칭을 넘어 더 높은 수준의 추론을 수행하고 생생한 이미지와 텍스트를 생성하는 것으로 나타났습니다. 더 작은 규모에서 훈련된 단백질 시퀀스의 언어 모델이 연구되었지만, 그들이 규모가 커짐에 따라 생물학에 대해 무엇을 배우는지는 거의 알려져 있지 않습니다. 이 연구에서 우리는 현재까지 평가된 가장 큰 150억 개의 매개변수를 가진 모델을 훈련합니다. 우리는 모델이 규모가 커짐에 따라 단일 아미노산의 해상도로 단백질의 3차원 구조를 예측할 수 있는 정보를 학습한다는 것을 발견했습니다. 우리는 개별 단백질 시퀀스로부터 직접 고정밀 원자 수준의 엔드-투-엔드 구조 예측을 하기 위한 ESMFold를 제시합니다. ESMFold는 언어 모델에 잘 이해되는 낮은 퍼플렉서티를 가진 시퀀스에 대해 AlphaFold2와 RoseTTAFold와 유사한 정확도를 가지고 있습니다. ESMFold의 추론은 AlphaFold2보다 한 자릿수 빠르며, 메타게놈 단백질의 구조적 공간을 실용적인 시간 내에 탐색할 수 있게 합니다.* 원본 코드는 [여기](https://github.com/facebookresearch/esm)에서 찾을 수 있으며, Meta AI의 Fundamental AI Research 팀에서 개발되었습니다. ESM-1b, ESM-1v, ESM-2는 [jasonliu](https://huggingface.co/jasonliu)와 [Matt](https://huggingface.co/Rocketknight1)에 의해 HuggingFace에 기여되었습니다. ESMFold는 [Matt](https://huggingface.co/Rocketknight1)와 [Sylvain](https://huggingface.co/sgugger)에 의해 HuggingFace에 기여되었으며, 이 과정에서 많은 도움을 준 Nikita Smetanin, Roshan Rao, Tom Sercu에게 큰 감사를 드립니다! ## 사용 팁 [[usage-tips]] - ESM 모델은 마스크드 언어 모델링(MLM) 목표로 훈련되었습니다. - HuggingFace의 ESMFold 포트는 [openfold](https://github.com/aqlaboratory/openfold) 라이브러리의 일부를 사용합니다. `openfold` 라이브러리는 Apache License 2.0에 따라 라이선스가 부여됩니다. ## 리소스 [[resources]] - [텍스트 분류 작업 가이드](../tasks/sequence_classification) - [토큰 분류 작업 가이드](../tasks/token_classification) - [마스킹드 언어 모델링 작업 가이드](../tasks/masked_language_modeling) ## EsmConfig [[transformers.EsmConfig]] [[autodoc]] EsmConfig - all ## EsmTokenizer [[transformers.EsmTokenizer]] [[autodoc]] EsmTokenizer - build_inputs_with_special_tokens - get_special_tokens_mask - create_token_type_ids_from_sequences - save_vocabulary <frameworkcontent> <pt> ## EsmModel [[transformers.EsmModel]] [[autodoc]] EsmModel - forward ## EsmForMaskedLM [[transformers.EsmForMaskedLM]] [[autodoc]] EsmForMaskedLM - forward ## EsmForSequenceClassification [[transformers.EsmForSequenceClassification]] [[autodoc]] EsmForSequenceClassification - forward ## EsmForTokenClassification [[transformers.EsmForTokenClassification]] [[autodoc]] EsmForTokenClassification - forward ## EsmForProteinFolding [[transformers.EsmForProteinFolding]] [[autodoc]] EsmForProteinFolding - forward </pt> <tf> ## TFEsmModel [[transformers.TFEsmModel]] [[autodoc]] TFEsmModel - call ## TFEsmForMaskedLM [[transformers.TFEsmForMaskedLM]] [[autodoc]] TFEsmForMaskedLM - call ## TFEsmForSequenceClassification [[transformers.TFEsmForSequenceClassification]] [[autodoc]] TFEsmForSequenceClassification - call ## TFEsmForTokenClassification [[transformers.TFEsmForTokenClassification]] [[autodoc]] TFEsmForTokenClassification - call </tf> </frameworkcontent>
transformers/docs/source/ko/model_doc/esm.md/0
{ "file_path": "transformers/docs/source/ko/model_doc/esm.md", "repo_id": "transformers", "token_count": 5246 }
51
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # PatchTST[[patchtst]] ## 개요[[overview]] The PatchTST 모델은 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, Jayant Kalagnanam이 제안한 [시계열 하나가 64개의 단어만큼 가치있다: 트랜스포머를 이용한 장기예측](https://arxiv.org/abs/2211.14730)라는 논문에서 소개되었습니다. 이 모델은 고수준에서 시계열을 주어진 크기의 패치로 벡터화하고, 결과로 나온 벡터 시퀀스를 트랜스포머를 통해 인코딩한 다음 적절한 헤드를 통해 예측 길이의 예측을 출력합니다. 모델은 다음 그림과 같이 도식화됩니다: ![모델](https://github.com/namctin/transformers/assets/8100/150af169-29de-419a-8d98-eb78251c21fa) 해당 논문의 초록입니다: *우리는 다변량 시계열 예측과 자기 감독 표현 학습을 위한 효율적인 트랜스포머 기반 모델 설계를 제안합니다. 이는 두 가지 주요 구성 요소를 기반으로 합니다: (i) 시계열을 하위 시리즈 수준의 패치로 분할하여 트랜스포머의 입력 토큰으로 사용 (ii) 각 채널이 모든 시리즈에 걸쳐 동일한 임베딩과 트랜스포머 가중치를 공유하는 단일 단변량 시계열을 포함하는 채널 독립성. 패칭 설계는 자연스럽게 세 가지 이점을 가집니다: - 지역적 의미 정보가 임베딩에 유지됩니다; - 동일한 룩백 윈도우에 대해 어텐션 맵의 계산과 메모리 사용량이 제곱으로 감소합니다 - 모델이 더 긴 과거를 참조할 수 있습니다. 우리의 채널 독립적 패치 시계열 트랜스포머(PatchTST)는 최신 트랜스포머 기반 모델들과 비교했을 때 장기 예측 정확도를 크게 향상시킬 수 있습니다. 또한 모델을 자기지도 사전 훈련 작업에 적용하여, 대규모 데이터셋에 대한 지도 학습을 능가하는 아주 뛰어난 미세 조정 성능을 달성했습니다. 한 데이터셋에서 마스크된 사전 훈련 표현을 다른 데이터셋으로 전이하는 것도 최고 수준의 예측 정확도(SOTA)를 산출했습니다.* 이 모델은 [namctin](https://huggingface.co/namctin), [gsinthong](https://huggingface.co/gsinthong), [diepi](https://huggingface.co/diepi), [vijaye12](https://huggingface.co/vijaye12), [wmgifford](https://huggingface.co/wmgifford), [kashif](https://huggingface.co/kashif)에 의해 기여 되었습니다. 원본코드는 [이곳](https://github.com/yuqinie98/PatchTST)에서 확인할 수 있습니다. ## 사용 팁[[usage-tips]] 이 모델은 시계열 분류와 시계열 회귀에도 사용될 수 있습니다. 각각 [`PatchTSTForClassification`]와 [`PatchTSTForRegression`] 클래스를 참조하세요. ## 자료[[resources]] - PatchTST를 자세히 설명하는 블로그 포스트는 [이곳](https://huggingface.co/blog/patchtst)에서 찾을 수 있습니다. 이 블로그는 Google Colab에서도 열어볼 수 있습니다. ## PatchTSTConfig[[transformers.PatchTSTConfig]] [[autodoc]] PatchTSTConfig ## PatchTSTModel[[transformers.PatchTSTModel]] [[autodoc]] PatchTSTModel - forward ## PatchTSTForPrediction[[transformers.PatchTSTForPrediction]] [[autodoc]] PatchTSTForPrediction - forward ## PatchTSTForClassification[[transformers.PatchTSTForClassification]] [[autodoc]] PatchTSTForClassification - forward ## PatchTSTForPretraining[[transformers.PatchTSTForPretraining]] [[autodoc]] PatchTSTForPretraining - forward ## PatchTSTForRegression[[transformers.PatchTSTForRegression]] [[autodoc]] PatchTSTForRegression - forward
transformers/docs/source/ko/model_doc/patchtst.md/0
{ "file_path": "transformers/docs/source/ko/model_doc/patchtst.md", "repo_id": "transformers", "token_count": 2697 }
52
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 패딩과 잘라내기[[padding-and-truncation]] 배치 입력은 길이가 다른 경우가 많아서 고정 크기 텐서로 변환할 수 없습니다. 패딩과 잘라내기는 다양한 길이의 배치에서 직사각형 텐서를 생성할 수 있도록 이 문제를 해결하는 전략입니다. 패딩은 특수한 **패딩 토큰**을 추가하여 짧은 시퀀스가 배치에서 가장 긴 시퀀스 또는 모델에서 허용하는 최대 길이와 동일한 길이를 갖도록 합니다. 잘라내기는 긴 시퀀스를 잘라내어 패딩과 다른 방식으로 시퀀스의 길이를 동일하게 합니다. 대부분의 경우 배치에 가장 긴 시퀀스의 길이로 패딩하고 모델이 허용할 수 있는 최대 길이로 잘라내는 것이 잘 작동합니다. 그러나 필요하다면 API가 지원하는 더 많은 전략을 사용할 수 있습니다. 필요한 인수는 `padding`, `truncation`, `max_length` 세 가지입니다. `padding` 인수는 패딩을 제어합니다. 불리언 또는 문자열일 수 있습니다: - `True` 또는 `'longest'`: 배치에서 가장 긴 시퀀스로 패딩합니다(단일 시퀀스만 제공하는 경우 패딩이 적용되지 않습니다). - `'max_length'`: `max_length` 인수가 지정한 길이로 패딩하거나, `max_length`가 제공되지 않은 경우(`max_length=None`) 모델에서 허용되는 최대 길이로 패딩합니다. 단일 시퀀스만 제공하는 경우에도 패딩이 적용됩니다. - `False` 또는 `'do_not_pad'`: 패딩이 적용되지 않습니다. 이것이 기본 동작입니다. `truncation` 인수는 잘라낼 방법을 정합니다. 불리언 또는 문자열일 수 있습니다: - `True` 또는 `longest_first`: `max_length` 인수가 지정한 최대 길이로 잘라내거나, `max_length`가 제공되지 않은 경우(`max_length=None`) 모델에서 허용되는 최대 길이로 잘라냅니다. 시퀀스 쌍에서 가장 긴 시퀀스의 토큰을 적절한 길이에 도달할 때까지 하나씩 제거합니다. - `'only_second'`: `max_length` 인수가 지정한 최대 길이로 잘라내거나, `max_length`가 제공되지 않은 경우(`max_length=None`) 모델에서 허용되는 최대 길이로 잘라냅니다. 시퀀스 쌍(또는 시퀀스 쌍의 배치)가 제공된 경우 쌍의 두 번째 문장만 잘라냅니다. - `'only_first'`: `max_length` 인수가 지정한 최대 길이로 잘라내거나, `max_length`가 제공되지 않은 경우(`max_length=None`) 모델에서 허용되는 최대 길이로 잘라냅니다. 시퀀스 쌍(또는 시퀀스 쌍의 배치)가 제공된 경우 쌍의 첫 번째 문장만 잘라냅니다. - `False` 또는 `'do_not_truncate'`: 잘라내기를 적용하지 않습니다. 이것이 기본 동작입니다. `max_length` 인수는 패딩 및 잘라내기를 적용할 길이를 제어합니다. 이 인수는 정수 또는 `None`일 수 있으며, `None`일 경우 모델이 허용할 수 있는 최대 길이로 기본값이 설정됩니다. 모델에 특정한 최대 입력 길이가 없는 경우 `max_length`에 대한 잘라내기 또는 패딩이 비활성화됩니다. 다음 표에는 패딩 및 잘라내기를 설정하는 권장 방법이 요약되어 있습니다. 입력으로 시퀀스 쌍을 사용하는 경우, 다음 예제에서 `truncation=True`를 `['only_first', 'only_second', 'longest_first']`에서 선택한 `STRATEGY`, 즉 `truncation='only_second'` 또는 `truncation='longest_first'`로 바꾸면 앞서 설명한 대로 쌍의 두 시퀀스가 잘리는 방식을 제어할 수 있습니다. | 잘라내기 | 패딩 | 사용 방법 | |--------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------| | 잘라내기 없음 | 패딩 없음 | `tokenizer(batch_sentences)` | | | 배치 내 최대 길이로 패딩 | `tokenizer(batch_sentences, padding=True)` 또는 | | | | `tokenizer(batch_sentences, padding='longest')` | | | 모델의 최대 입력 길이로 패딩 | `tokenizer(batch_sentences, padding='max_length')` | | | 특정 길이로 패딩 | `tokenizer(batch_sentences, padding='max_length', max_length=42)` | | | 다양한 길이로 패딩 | `tokenizer(batch_sentences, padding=True, pad_to_multiple_of=8)` | | 모델의 최대 입력 길이로 잘라내기 | 패딩 없음 | `tokenizer(batch_sentences, truncation=True)` 또는 | | | | `tokenizer(batch_sentences, truncation=STRATEGY)` | | | 배치 내 최대 길이로 패딩 | `tokenizer(batch_sentences, padding=True, truncation=True)` 또는 | | | | `tokenizer(batch_sentences, padding=True, truncation=STRATEGY)` | | | 모델의 최대 입력 길이로 패딩 | `tokenizer(batch_sentences, padding='max_length', truncation=True)` 또는 | | | | `tokenizer(batch_sentences, padding='max_length', truncation=STRATEGY)` | | | 특정 길이로 패딩 | 사용 불가 | | 특정 길이로 잘라내기 | 패딩 없음 | `tokenizer(batch_sentences, truncation=True, max_length=42)` 또는 | | | | `tokenizer(batch_sentences, truncation=STRATEGY, max_length=42)` | | | 배치 내 최대 길이로 패딩 | `tokenizer(batch_sentences, padding=True, truncation=True, max_length=42)` 또는 | | | | `tokenizer(batch_sentences, padding=True, truncation=STRATEGY, max_length=42)` | | | 모델의 최대 입력 길이로 패딩 | 사용 불가 | | | 특정 길이로 패딩 | `tokenizer(batch_sentences, padding='max_length', truncation=True, max_length=42)` 또는 | | | | `tokenizer(batch_sentences, padding='max_length', truncation=STRATEGY, max_length=42)` |
transformers/docs/source/ko/pad_truncation.md/0
{ "file_path": "transformers/docs/source/ko/pad_truncation.md", "repo_id": "transformers", "token_count": 5964 }
53
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 전처리[[preprocess]] [[open-in-colab]] 모델을 훈련하려면 데이터 세트를 모델에 맞는 입력 형식으로 전처리해야 합니다. 텍스트, 이미지 또는 오디오인지 관계없이 데이터를 텐서 배치로 변환하고 조립할 필요가 있습니다. 🤗 Transformers는 모델에 대한 데이터를 준비하는 데 도움이 되는 일련의 전처리 클래스를 제공합니다. 이 튜토리얼에서는 다음 내용을 배울 수 있습니다: * 텍스트는 [Tokenizer](./main_classes/tokenizer)를 사용하여 토큰 시퀀스로 변환하고 토큰의 숫자 표현을 만든 후 텐서로 조립합니다. * 음성 및 오디오는 [Feature extractor](./main_classes/feature_extractor)를 사용하여 오디오 파형에서 시퀀스 특성을 파악하여 텐서로 변환합니다. * 이미지 입력은 [ImageProcessor](./main_classes/image)을 사용하여 이미지를 텐서로 변환합니다. * 멀티모달 입력은 [Processor](./main_classes/processors)을 사용하여 토크나이저와 특성 추출기 또는 이미지 프로세서를 결합합니다. <Tip> `AutoProcessor`는 **언제나** 작동하여 토크나이저, 이미지 프로세서, 특성 추출기 또는 프로세서 등 사용 중인 모델에 맞는 클래스를 자동으로 선택합니다. </Tip> 시작하기 전에 🤗 Datasets를 설치하여 실험에 사용할 데이터를 불러올 수 있습니다: ```bash pip install datasets ``` ## 자연어처리[[natural-language-processing]] <Youtube id="Yffk5aydLzg"/> 텍스트 데이터를 전처리하기 위한 기본 도구는 [tokenizer](main_classes/tokenizer)입니다. 토크나이저는 일련의 규칙에 따라 텍스트를 *토큰*으로 나눕니다. 토큰은 숫자로 변환되고 텐서는 모델 입력이 됩니다. 모델에 필요한 추가 입력은 토크나이저에 의해 추가됩니다. <Tip> 사전훈련된 모델을 사용할 계획이라면 모델과 함께 사전훈련된 토크나이저를 사용하는 것이 중요합니다. 이렇게 하면 텍스트가 사전훈련 말뭉치와 동일한 방식으로 분할되고 사전훈련 중에 동일한 해당 토큰-인덱스 쌍(일반적으로 *vocab*이라고 함)을 사용합니다. </Tip> 시작하려면 [`AutoTokenizer.from_pretrained`] 메소드를 사용하여 사전훈련된 토크나이저를 불러오세요. 모델과 함께 사전훈련된 *vocab*을 다운로드합니다: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-cased") ``` 그 다음으로 텍스트를 토크나이저에 넣어주세요: ```py >>> encoded_input = tokenizer("Do not meddle in the affairs of wizards, for they are subtle and quick to anger.") >>> print(encoded_input) {'input_ids': [101, 2079, 2025, 19960, 10362, 1999, 1996, 3821, 1997, 16657, 1010, 2005, 2027, 2024, 11259, 1998, 4248, 2000, 4963, 1012, 102], 'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]} ``` 토크나이저는 세 가지 중요한 항목을 포함한 딕셔너리를 반환합니다: * [input_ids](glossary#input-ids)는 문장의 각 토큰에 해당하는 인덱스입니다. * [attention_mask](glossary#attention-mask)는 토큰을 처리해야 하는지 여부를 나타냅니다. * [token_type_ids](glossary#token-type-ids)는 두 개 이상의 시퀀스가 있을 때 토큰이 속한 시퀀스를 식별합니다. `input_ids`를 디코딩하여 입력을 반환합니다: ```py >>> tokenizer.decode(encoded_input["input_ids"]) '[CLS] Do not meddle in the affairs of wizards, for they are subtle and quick to anger. [SEP]' ``` 토크나이저가 두 개의 특수한 토큰(분류 토큰 `CLS`와 분할 토큰 `SEP`)을 문장에 추가했습니다. 모든 모델에 특수한 토큰이 필요한 것은 아니지만, 필요하다면 토크나이저가 자동으로 추가합니다. 전처리할 문장이 여러 개 있는 경우에는 리스트로 토크나이저에 전달합니다: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_inputs = tokenizer(batch_sentences) >>> print(encoded_inputs) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1]]} ``` ### 패딩[[pad]] 모델 입력인 텐서는 모양이 균일해야 하지만, 문장의 길이가 항상 같지는 않기 때문에 문제가 될 수 있습니다. 패딩은 짧은 문장에 특수한 *패딩 토큰*을 추가하여 텐서를 직사각형 모양이 되도록 하는 전략입니다. `padding` 매개변수를 `True`로 설정하여 배치 내의 짧은 시퀀스를 가장 긴 시퀀스에 맞춰 패딩합니다. ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True) >>> print(encoded_input) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]} ``` 길이가 짧은 첫 문장과 세 번째 문장이 이제 `0`으로 채워졌습니다. ### 잘라내기[[truncation]] 한편, 때로는 시퀀스가 모델에서 처리하기에 너무 길 수도 있습니다. 이 경우, 시퀀스를 더 짧게 줄일 필요가 있습니다. 모델에서 허용하는 최대 길이로 시퀀스를 자르려면 `truncation` 매개변수를 `True`로 설정하세요: ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True) >>> print(encoded_input) {'input_ids': [[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]]} ``` <Tip> 다양한 패딩과 잘라내기 인수에 대해 더 알아보려면 [패딩과 잘라내기](./pad_truncation) 개념 가이드를 확인해보세요. </Tip> ### 텐서 만들기[[build-tensors]] 마지막으로, 토크나이저가 모델에 공급되는 실제 텐서를 반환하도록 합니다. `return_tensors` 매개변수를 PyTorch의 경우 `pt`, TensorFlow의 경우 `tf`로 설정하세요: <frameworkcontent> <pt> ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="pt") >>> print(encoded_input) {'input_ids': tensor([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]])} ``` </pt> <tf> ```py >>> batch_sentences = [ ... "But what about second breakfast?", ... "Don't think he knows about second breakfast, Pip.", ... "What about elevensies?", ... ] >>> encoded_input = tokenizer(batch_sentences, padding=True, truncation=True, return_tensors="tf") >>> print(encoded_input) {'input_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[101, 1252, 1184, 1164, 1248, 6462, 136, 102, 0, 0, 0, 0, 0, 0, 0], [101, 1790, 112, 189, 1341, 1119, 3520, 1164, 1248, 6462, 117, 21902, 1643, 119, 102], [101, 1327, 1164, 5450, 23434, 136, 102, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>, 'token_type_ids': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>, 'attention_mask': <tf.Tensor: shape=(2, 9), dtype=int32, numpy= array([[1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]], dtype=int32)>} ``` </tf> </frameworkcontent> ## 오디오[[audio]] 오디오 작업은 모델에 맞는 데이터 세트를 준비하기 위해 [특성 추출기](main_classes/feature_extractor)가 필요합니다. 특성 추출기는 원시 오디오 데이터에서 특성를 추출하고 이를 텐서로 변환하는 것이 목적입니다. 오디오 데이터 세트에 특성 추출기를 사용하는 방법을 보기 위해 [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) 데이터 세트를 가져오세요. (데이터 세트를 가져오는 방법은 🤗 [데이터 세트 튜토리얼](https://huggingface.co/docs/datasets/load_hub)에서 자세히 설명하고 있습니다.) ```py >>> from datasets import load_dataset, Audio >>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train") ``` `audio` 열의 첫 번째 요소에 접근하여 입력을 살펴보세요. `audio` 열을 호출하면 오디오 파일을 자동으로 가져오고 리샘플링합니다. ```py >>> dataset[0]["audio"] {'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414, 0. , 0. ], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', 'sampling_rate': 8000} ``` 이렇게 하면 세 가지 항목이 반환됩니다: * `array`는 1D 배열로 가져와서 (필요한 경우) 리샘플링된 음성 신호입니다. * `path`는 오디오 파일의 위치를 가리킵니다. * `sampling_rate`는 음성 신호에서 초당 측정되는 데이터 포인트 수를 나타냅니다. 이 튜토리얼에서는 [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) 모델을 사용합니다. 모델 카드를 보면 Wav2Vec2가 16kHz 샘플링된 음성 오디오를 기반으로 사전훈련된 것을 알 수 있습니다. 모델을 사전훈련하는 데 사용된 데이터 세트의 샘플링 레이트와 오디오 데이터의 샘플링 레이트가 일치해야 합니다. 데이터의 샘플링 레이트가 다르면 데이터를 리샘플링해야 합니다. 1. 🤗 Datasets의 [`~datasets.Dataset.cast_column`] 메소드를 사용하여 샘플링 레이트를 16kHz로 업샘플링하세요: ```py >>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000)) ``` 2. 오디오 파일을 리샘플링하기 위해 `audio` 열을 다시 호출합니다: ```py >>> dataset[0]["audio"] {'array': array([ 2.3443763e-05, 2.1729663e-04, 2.2145823e-04, ..., 3.8356509e-05, -7.3497440e-06, -2.1754686e-05], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~JOINT_ACCOUNT/602ba55abb1e6d0fbce92065.wav', 'sampling_rate': 16000} ``` 다음으로, 입력을 정규화하고 패딩할 특성 추출기를 가져오세요. 텍스트 데이터의 경우, 더 짧은 시퀀스에 대해 `0`이 추가됩니다. 오디오 데이터에도 같은 개념이 적용됩니다. 특성 추출기는 배열에 `0`(묵음으로 해석)을 추가합니다. [`AutoFeatureExtractor.from_pretrained`]를 사용하여 특성 추출기를 가져오세요: ```py >>> from transformers import AutoFeatureExtractor >>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base") ``` 오디오 `array`를 특성 추출기에 전달하세요. 또한, 발생할 수 있는 조용한 오류(silent errors)를 더 잘 디버깅할 수 있도록 특성 추출기에 `sampling_rate` 인수를 추가하는 것을 권장합니다. ```py >>> audio_input = [dataset[0]["audio"]["array"]] >>> feature_extractor(audio_input, sampling_rate=16000) {'input_values': [array([ 3.8106556e-04, 2.7506407e-03, 2.8015103e-03, ..., 5.6335266e-04, 4.6588284e-06, -1.7142107e-04], dtype=float32)]} ``` 토크나이저와 마찬가지로 배치 내에서 가변적인 시퀀스를 처리하기 위해 패딩 또는 잘라내기를 적용할 수 있습니다. 이 두 개의 오디오 샘플의 시퀀스 길이를 확인해보세요: ```py >>> dataset[0]["audio"]["array"].shape (173398,) >>> dataset[1]["audio"]["array"].shape (106496,) ``` 오디오 샘플의 길이가 동일하도록 데이터 세트를 전처리하는 함수를 만드세요. 최대 샘플 길이를 지정하면 특성 추출기가 해당 길이에 맞춰 시퀀스를 패딩하거나 잘라냅니다: ```py >>> def preprocess_function(examples): ... audio_arrays = [x["array"] for x in examples["audio"]] ... inputs = feature_extractor( ... audio_arrays, ... sampling_rate=16000, ... padding=True, ... max_length=100000, ... truncation=True, ... ) ... return inputs ``` `preprocess_function`을 데이터 세트의 처음 예시 몇 개에 적용해보세요: ```py >>> processed_dataset = preprocess_function(dataset[:5]) ``` 이제 샘플 길이가 모두 같고 지정된 최대 길이에 맞게 되었습니다. 드디어 전처리된 데이터 세트를 모델에 전달할 수 있습니다! ```py >>> processed_dataset["input_values"][0].shape (100000,) >>> processed_dataset["input_values"][1].shape (100000,) ``` ## 컴퓨터 비전[[computer-vision]] 컴퓨터 비전 작업의 경우, 모델에 대한 데이터 세트를 준비하기 위해 [이미지 프로세서](main_classes/image_processor)가 필요합니다. 이미지 전처리는 이미지를 모델이 예상하는 입력으로 변환하는 여러 단계로 이루어집니다. 이러한 단계에는 크기 조정, 정규화, 색상 채널 보정, 이미지의 텐서 변환 등이 포함됩니다. <Tip> 이미지 전처리는 이미지 증강 기법을 몇 가지 적용한 뒤에 할 수도 있습니다. 이미지 전처리 및 이미지 증강은 모두 이미지 데이터를 변형하지만, 서로 다른 목적을 가지고 있습니다: * 이미지 증강은 과적합(over-fitting)을 방지하고 모델의 견고함(resiliency)을 높이는 데 도움이 되는 방식으로 이미지를 수정합니다. 밝기와 색상 조정, 자르기, 회전, 크기 조정, 확대/축소 등 다양한 방법으로 데이터를 증강할 수 있습니다. 그러나 증강으로 이미지의 의미가 바뀌지 않도록 주의해야 합니다. * 이미지 전처리는 이미지가 모델이 예상하는 입력 형식과 일치하도록 보장합니다. 컴퓨터 비전 모델을 미세 조정할 때 이미지는 모델이 초기에 훈련될 때와 정확히 같은 방식으로 전처리되어야 합니다. 이미지 증강에는 원하는 라이브러리를 무엇이든 사용할 수 있습니다. 이미지 전처리에는 모델과 연결된 `ImageProcessor`를 사용합니다. </Tip> [food101](https://huggingface.co/datasets/food101) 데이터 세트를 가져와서 컴퓨터 비전 데이터 세트에서 이미지 프로세서를 어떻게 사용하는지 알아보세요. 데이터 세트를 불러오는 방법은 🤗 [데이터 세트 튜토리얼](https://huggingface.co/docs/datasets/load_hub)을 참고하세요. <Tip> 데이터 세트가 상당히 크기 때문에 🤗 Datasets의 `split` 매개변수를 사용하여 훈련 세트에서 작은 샘플만 가져오세요! </Tip> ```py >>> from datasets import load_dataset >>> dataset = load_dataset("food101", split="train[:100]") ``` 다음으로, 🤗 Datasets의 [`image`](https://huggingface.co/docs/datasets/package_reference/main_classes?highlight=image#datasets.Image)로 이미지를 확인해보세요: ```py >>> dataset[0]["image"] ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/vision-preprocess-tutorial.png"/> </div> [`AutoImageProcessor.from_pretrained`]로 이미지 프로세서를 가져오세요: ```py >>> from transformers import AutoImageProcessor >>> image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224") ``` 먼저 이미지 증강 단계를 추가해 봅시다. 아무 라이브러리나 사용해도 괜찮지만, 이번 튜토리얼에서는 torchvision의 [`transforms`](https://pytorch.org/vision/stable/transforms.html) 모듈을 사용하겠습니다. 다른 데이터 증강 라이브러리를 사용해보고 싶다면, [Albumentations](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_albumentations.ipynb) 또는 [Kornia notebooks](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification_kornia.ipynb)에서 어떻게 사용하는지 배울 수 있습니다. 1. [`Compose`](https://pytorch.org/vision/master/generated/torchvision.transforms.Compose.html)로 [`RandomResizedCrop`](https://pytorch.org/vision/main/generated/torchvision.transforms.RandomResizedCrop.html)와 [`ColorJitter`](https://pytorch.org/vision/main/generated/torchvision.transforms.ColorJitter.html) 등 변환을 몇 가지 연결하세요. 참고로 크기 조정에 필요한 이미지의 크기 요구사항은 `image_processor`에서 가져올 수 있습니다. 일부 모델은 정확한 높이와 너비를 요구하지만, 제일 짧은 변의 길이(`shortest_edge`)만 정의된 모델도 있습니다. ```py >>> from torchvision.transforms import RandomResizedCrop, ColorJitter, Compose >>> size = ( ... image_processor.size["shortest_edge"] ... if "shortest_edge" in image_processor.size ... else (image_processor.size["height"], image_processor.size["width"]) ... ) >>> _transforms = Compose([RandomResizedCrop(size), ColorJitter(brightness=0.5, hue=0.5)]) ``` 2. 모델은 입력으로 [`pixel_values`](model_doc/visionencoderdecoder#transformers.VisionEncoderDecoderModel.forward.pixel_values)를 받습니다. `ImageProcessor`는 이미지 정규화 및 적절한 텐서 생성을 처리할 수 있습니다. 배치 이미지에 대한 이미지 증강 및 이미지 전처리를 결합하고 `pixel_values`를 생성하는 함수를 만듭니다: ```py >>> def transforms(examples): ... images = [_transforms(img.convert("RGB")) for img in examples["image"]] ... examples["pixel_values"] = image_processor(images, do_resize=False, return_tensors="pt")["pixel_values"] ... return examples ``` <Tip> 위의 예에서는 이미지 증강 중에 이미지 크기를 조정했기 때문에 `do_resize=False`로 설정하고, 해당 `image_processor`에서 `size` 속성을 활용했습니다. 이미지 증강 중에 이미지 크기를 조정하지 않은 경우 이 매개변수를 생략하세요. 기본적으로는 `ImageProcessor`가 크기 조정을 처리합니다. 증강 변환 과정에서 이미지를 정규화하려면 `image_processor.image_mean` 및 `image_processor.image_std` 값을 사용하세요. </Tip> 3. 🤗 Datasets의 [`set_transform`](https://huggingface.co/docs/datasets/process#format-transform)를 사용하여 실시간으로 변환을 적용합니다: ```py >>> dataset.set_transform(transforms) ``` 4. 이제 이미지에 접근하면 이미지 프로세서가 `pixel_values`를 추가한 것을 알 수 있습니다. 드디어 처리된 데이터 세트를 모델에 전달할 수 있습니다! ```py >>> dataset[0].keys() ``` 다음은 변형이 적용된 후의 이미지입니다. 이미지가 무작위로 잘려나갔고 색상 속성이 다릅니다. ```py >>> import numpy as np >>> import matplotlib.pyplot as plt >>> img = dataset[0]["pixel_values"] >>> plt.imshow(img.permute(1, 2, 0)) ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/preprocessed_image.png"/> </div> <Tip> `ImageProcessor`는 객체 감지, 시맨틱 세그멘테이션(semantic segmentation), 인스턴스 세그멘테이션(instance segmentation), 파놉틱 세그멘테이션(panoptic segmentation)과 같은 작업에 대한 후처리 방법을 제공합니다. 이러한 방법은 모델의 원시 출력을 경계 상자나 세그멘테이션 맵과 같은 의미 있는 예측으로 변환해줍니다. </Tip> ### 패딩[[pad]] 예를 들어, [DETR](./model_doc/detr)와 같은 경우에는 모델이 훈련할 때 크기 조정 증강을 적용합니다. 이로 인해 배치 내 이미지 크기가 달라질 수 있습니다. [`DetrImageProcessor`]의 [`DetrImageProcessor.pad`]를 사용하고 사용자 정의 `collate_fn`을 정의해서 배치 이미지를 처리할 수 있습니다. ```py >>> def collate_fn(batch): ... pixel_values = [item["pixel_values"] for item in batch] ... encoding = image_processor.pad(pixel_values, return_tensors="pt") ... labels = [item["labels"] for item in batch] ... batch = {} ... batch["pixel_values"] = encoding["pixel_values"] ... batch["pixel_mask"] = encoding["pixel_mask"] ... batch["labels"] = labels ... return batch ``` ## 멀티모달[[multimodal]] 멀티모달 입력이 필요한 작업의 경우, 모델에 데이터 세트를 준비하기 위한 [프로세서](main_classes/processors)가 필요합니다. 프로세서는 토크나이저와 특성 추출기와 같은 두 가지 처리 객체를 결합합니다. [LJ Speech](https://huggingface.co/datasets/lj_speech) 데이터 세트를 가져와서 자동 음성 인식(ASR)을 위한 프로세서를 사용하는 방법을 확인하세요. (데이터 세트를 가져오는 방법에 대한 자세한 내용은 🤗 [데이터 세트 튜토리얼](https://huggingface.co/docs/datasets/load_hub)에서 볼 수 있습니다.) ```py >>> from datasets import load_dataset >>> lj_speech = load_dataset("lj_speech", split="train") ``` 자동 음성 인식(ASR)에서는 `audio`와 `text`에만 집중하면 되므로, 다른 열들은 제거할 수 있습니다: ```py >>> lj_speech = lj_speech.map(remove_columns=["file", "id", "normalized_text"]) ``` 이제 `audio`와 `text`열을 살펴보세요: ```py >>> lj_speech[0]["audio"] {'array': array([-7.3242188e-04, -7.6293945e-04, -6.4086914e-04, ..., 7.3242188e-04, 2.1362305e-04, 6.1035156e-05], dtype=float32), 'path': '/root/.cache/huggingface/datasets/downloads/extracted/917ece08c95cf0c4115e45294e3cd0dee724a1165b7fc11798369308a465bd26/LJSpeech-1.1/wavs/LJ001-0001.wav', 'sampling_rate': 22050} >>> lj_speech[0]["text"] 'Printing, in the only sense with which we are at present concerned, differs from most if not from all the arts and crafts represented in the Exhibition' ``` 기존에 사전훈련된 모델에서 사용된 데이터 세트와 새로운 오디오 데이터 세트의 샘플링 레이트를 일치시키기 위해 오디오 데이터 세트의 샘플링 레이트를 [리샘플링](preprocessing#audio)해야 합니다! ```py >>> lj_speech = lj_speech.cast_column("audio", Audio(sampling_rate=16_000)) ``` [`AutoProcessor.from_pretrained`]로 프로세서를 가져오세요: ```py >>> from transformers import AutoProcessor >>> processor = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h") ``` 1. `array`에 들어 있는 오디오 데이터를 `input_values`로 변환하고 `text`를 토큰화하여 `labels`로 변환하는 함수를 만듭니다. 모델의 입력은 다음과 같습니다: ```py >>> def prepare_dataset(example): ... audio = example["audio"] ... example.update(processor(audio=audio["array"], text=example["text"], sampling_rate=16000)) ... return example ``` 2. 샘플을 `prepare_dataset` 함수에 적용하세요: ```py >>> prepare_dataset(lj_speech[0]) ``` 이제 프로세서가 `input_values`와 `labels`를 추가하고, 샘플링 레이트도 올바르게 16kHz로 다운샘플링했습니다. 드디어 처리된 데이터 세트를 모델에 전달할 수 있습니다!
transformers/docs/source/ko/preprocessing.md/0
{ "file_path": "transformers/docs/source/ko/preprocessing.md", "repo_id": "transformers", "token_count": 17108 }
54
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 이미지 분류[[image-classification]] [[open-in-colab]] <Youtube id="tjAIM7BOYhw"/> 이미지 분류는 이미지에 레이블 또는 클래스를 할당합니다. 텍스트 또는 오디오 분류와 달리 입력은 이미지를 구성하는 픽셀 값입니다. 이미지 분류에는 자연재해 후 피해 감지, 농작물 건강 모니터링, 의료 이미지에서 질병의 징후 검사 지원 등 다양한 응용 사례가 있습니다. 이 가이드에서는 다음을 설명합니다: 1. [Food-101](https://huggingface.co/datasets/food101) 데이터 세트에서 [ViT](model_doc/vit)를 미세 조정하여 이미지에서 식품 항목을 분류합니다. 2. 추론을 위해 미세 조정 모델을 사용합니다. <Tip> 이 작업과 호환되는 모든 아키텍처와 체크포인트를 보려면 [작업 페이지](https://huggingface.co/tasks/image-classification)를 확인하는 것이 좋습니다. </Tip> 시작하기 전에, 필요한 모든 라이브러리가 설치되어 있는지 확인하세요: ```bash pip install transformers datasets evaluate ``` Hugging Face 계정에 로그인하여 모델을 업로드하고 커뮤니티에 공유하는 것을 권장합니다. 메시지가 표시되면, 토큰을 입력하여 로그인하세요: ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## Food-101 데이터 세트 가져오기[[load-food101-dataset]] 🤗 Datasets 라이브러리에서 Food-101 데이터 세트의 더 작은 부분 집합을 가져오는 것으로 시작합니다. 이렇게 하면 전체 데이터 세트에 대한 훈련에 많은 시간을 할애하기 전에 실험을 통해 모든 것이 제대로 작동하는지 확인할 수 있습니다. ```py >>> from datasets import load_dataset >>> food = load_dataset("food101", split="train[:5000]") ``` 데이터 세트의 `train`을 [`~datasets.Dataset.train_test_split`] 메소드를 사용하여 훈련 및 테스트 세트로 분할하세요: ```py >>> food = food.train_test_split(test_size=0.2) ``` 그리고 예시를 살펴보세요: ```py >>> food["train"][0] {'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=512x512 at 0x7F52AFC8AC50>, 'label': 79} ``` 데이터 세트의 각 예제에는 두 개의 필드가 있습니다: - `image`: 식품 항목의 PIL 이미지 - `label`: 식품 항목의 레이블 클래스 모델이 레이블 ID에서 레이블 이름을 쉽게 가져올 수 있도록 레이블 이름을 정수로 매핑하고, 정수를 레이블 이름으로 매핑하는 사전을 만드세요: ```py >>> labels = food["train"].features["label"].names >>> label2id, id2label = dict(), dict() >>> for i, label in enumerate(labels): ... label2id[label] = str(i) ... id2label[str(i)] = label ``` 이제 레이블 ID를 레이블 이름으로 변환할 수 있습니다: ```py >>> id2label[str(79)] 'prime_rib' ``` ## 전처리[[preprocess]] 다음 단계는 이미지를 텐서로 처리하기 위해 ViT 이미지 프로세서를 가져오는 것입니다: ```py >>> from transformers import AutoImageProcessor >>> checkpoint = "google/vit-base-patch16-224-in21k" >>> image_processor = AutoImageProcessor.from_pretrained(checkpoint) ``` <frameworkcontent> <pt> 이미지에 몇 가지 이미지 변환을 적용하여 과적합에 대해 모델을 더 견고하게 만듭니다. 여기서 Torchvision의 [`transforms`](https://pytorch.org/vision/stable/transforms.html) 모듈을 사용하지만, 원하는 이미지 라이브러리를 사용할 수도 있습니다. 이미지의 임의 부분을 크롭하고 크기를 조정한 다음, 이미지 평균과 표준 편차로 정규화하세요: ```py >>> from torchvision.transforms import RandomResizedCrop, Compose, Normalize, ToTensor >>> normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std) >>> size = ( ... image_processor.size["shortest_edge"] ... if "shortest_edge" in image_processor.size ... else (image_processor.size["height"], image_processor.size["width"]) ... ) >>> _transforms = Compose([RandomResizedCrop(size), ToTensor(), normalize]) ``` 그런 다음 전처리 함수를 만들어 변환을 적용하고 이미지의 `pixel_values`(모델에 대한 입력)를 반환하세요: ```py >>> def transforms(examples): ... examples["pixel_values"] = [_transforms(img.convert("RGB")) for img in examples["image"]] ... del examples["image"] ... return examples ``` 전체 데이터 세트에 전처리 기능을 적용하려면 🤗 Datasets [`~datasets.Dataset.with_transform`]을 사용합니다. 데이터 세트의 요소를 가져올 때 변환이 즉시 적용됩니다: ```py >>> food = food.with_transform(transforms) ``` 이제 [`DefaultDataCollator`]를 사용하여 예제 배치를 만듭니다. 🤗 Transformers의 다른 데이터 콜레이터와 달리, `DefaultDataCollator`는 패딩과 같은 추가적인 전처리를 적용하지 않습니다. ```py >>> from transformers import DefaultDataCollator >>> data_collator = DefaultDataCollator() ``` </pt> </frameworkcontent> <frameworkcontent> <tf> 과적합을 방지하고 모델을 보다 견고하게 만들기 위해 데이터 세트의 훈련 부분에 데이터 증강을 추가합니다. 여기서 Keras 전처리 레이어로 훈련 데이터에 대한 변환(데이터 증강 포함)과 검증 데이터에 대한 변환(중앙 크로핑, 크기 조정, 정규화만)을 정의합니다. `tf.image` 또는 다른 원하는 라이브러리를 사용할 수 있습니다. ```py >>> from tensorflow import keras >>> from tensorflow.keras import layers >>> size = (image_processor.size["height"], image_processor.size["width"]) >>> train_data_augmentation = keras.Sequential( ... [ ... layers.RandomCrop(size[0], size[1]), ... layers.Rescaling(scale=1.0 / 127.5, offset=-1), ... layers.RandomFlip("horizontal"), ... layers.RandomRotation(factor=0.02), ... layers.RandomZoom(height_factor=0.2, width_factor=0.2), ... ], ... name="train_data_augmentation", ... ) >>> val_data_augmentation = keras.Sequential( ... [ ... layers.CenterCrop(size[0], size[1]), ... layers.Rescaling(scale=1.0 / 127.5, offset=-1), ... ], ... name="val_data_augmentation", ... ) ``` 다음으로 한 번에 하나의 이미지가 아니라 이미지 배치에 적절한 변환을 적용하는 함수를 만듭니다. ```py >>> import numpy as np >>> import tensorflow as tf >>> from PIL import Image >>> def convert_to_tf_tensor(image: Image): ... np_image = np.array(image) ... tf_image = tf.convert_to_tensor(np_image) ... # `expand_dims()` is used to add a batch dimension since ... # the TF augmentation layers operates on batched inputs. ... return tf.expand_dims(tf_image, 0) >>> def preprocess_train(example_batch): ... """Apply train_transforms across a batch.""" ... images = [ ... train_data_augmentation(convert_to_tf_tensor(image.convert("RGB"))) for image in example_batch["image"] ... ] ... example_batch["pixel_values"] = [tf.transpose(tf.squeeze(image)) for image in images] ... return example_batch ... def preprocess_val(example_batch): ... """Apply val_transforms across a batch.""" ... images = [ ... val_data_augmentation(convert_to_tf_tensor(image.convert("RGB"))) for image in example_batch["image"] ... ] ... example_batch["pixel_values"] = [tf.transpose(tf.squeeze(image)) for image in images] ... return example_batch ``` 🤗 Datasets [`~datasets.Dataset.set_transform`]를 사용하여 즉시 변환을 적용하세요: ```py food["train"].set_transform(preprocess_train) food["test"].set_transform(preprocess_val) ``` 최종 전처리 단계로 `DefaultDataCollator`를 사용하여 예제 배치를 만듭니다. 🤗 Transformers의 다른 데이터 콜레이터와 달리 `DefaultDataCollator`는 패딩과 같은 추가 전처리를 적용하지 않습니다. ```py >>> from transformers import DefaultDataCollator >>> data_collator = DefaultDataCollator(return_tensors="tf") ``` </tf> </frameworkcontent> ## 평가[[evaluate]] 훈련 중에 평가 지표를 포함하면 모델의 성능을 평가하는 데 도움이 되는 경우가 많습니다. 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) 라이브러리로 평가 방법을 빠르게 가져올 수 있습니다. 이 작업에서는 [accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy) 평가 지표를 가져옵니다. (🤗 Evaluate [빠른 둘러보기](https://huggingface.co/docs/evaluate/a_quick_tour)를 참조하여 평가 지표를 가져오고 계산하는 방법에 대해 자세히 알아보세요): ```py >>> import evaluate >>> accuracy = evaluate.load("accuracy") ``` 그런 다음 예측과 레이블을 [`~evaluate.EvaluationModule.compute`]에 전달하여 정확도를 계산하는 함수를 만듭니다: ```py >>> import numpy as np >>> def compute_metrics(eval_pred): ... predictions, labels = eval_pred ... predictions = np.argmax(predictions, axis=1) ... return accuracy.compute(predictions=predictions, references=labels) ``` 이제 `compute_metrics` 함수를 사용할 준비가 되었으며, 훈련을 설정하면 이 함수로 되돌아올 것입니다. ## 훈련[[train]] <frameworkcontent> <pt> <Tip> [`Trainer`]를 사용하여 모델을 미세 조정하는 방법에 익숙하지 않은 경우, [여기](../training#train-with-pytorch-trainer)에서 기본 튜토리얼을 확인하세요! </Tip> 이제 모델을 훈련시킬 준비가 되었습니다! [`AutoModelForImageClassification`]로 ViT를 가져옵니다. 예상되는 레이블 수, 레이블 매핑 및 레이블 수를 지정하세요: ```py >>> from transformers import AutoModelForImageClassification, TrainingArguments, Trainer >>> model = AutoModelForImageClassification.from_pretrained( ... checkpoint, ... num_labels=len(labels), ... id2label=id2label, ... label2id=label2id, ... ) ``` 이제 세 단계만 거치면 끝입니다: 1. [`TrainingArguments`]에서 훈련 하이퍼파라미터를 정의하세요. `image` 열이 삭제되기 때문에 미사용 열을 제거하지 않는 것이 중요합니다. `image` 열이 없으면 `pixel_values`을 생성할 수 없습니다. 이 동작을 방지하려면 `remove_unused_columns=False`로 설정하세요! 다른 유일한 필수 매개변수는 모델 저장 위치를 지정하는 `output_dir`입니다. `push_to_hub=True`로 설정하면 이 모델을 허브에 푸시합니다(모델을 업로드하려면 Hugging Face에 로그인해야 합니다). 각 에폭이 끝날 때마다, [`Trainer`]가 정확도를 평가하고 훈련 체크포인트를 저장합니다. 2. [`Trainer`]에 모델, 데이터 세트, 토크나이저, 데이터 콜레이터 및 `compute_metrics` 함수와 함께 훈련 인수를 전달하세요. 3. [`~Trainer.train`]을 호출하여 모델을 미세 조정하세요. ```py >>> training_args = TrainingArguments( ... output_dir="my_awesome_food_model", ... remove_unused_columns=False, ... eval_strategy="epoch", ... save_strategy="epoch", ... learning_rate=5e-5, ... per_device_train_batch_size=16, ... gradient_accumulation_steps=4, ... per_device_eval_batch_size=16, ... num_train_epochs=3, ... warmup_ratio=0.1, ... logging_steps=10, ... load_best_model_at_end=True, ... metric_for_best_model="accuracy", ... push_to_hub=True, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... data_collator=data_collator, ... train_dataset=food["train"], ... eval_dataset=food["test"], ... processing_class=image_processor, ... compute_metrics=compute_metrics, ... ) >>> trainer.train() ``` 훈련이 완료되면, 모든 사람이 모델을 사용할 수 있도록 [`~transformers.Trainer.push_to_hub`] 메소드로 모델을 허브에 공유하세요: ```py >>> trainer.push_to_hub() ``` </pt> </frameworkcontent> <frameworkcontent> <tf> <Tip> Keras를 사용하여 모델을 미세 조정하는 방법에 익숙하지 않은 경우, 먼저 [기본 튜토리얼](./training#train-a-tensorflow-model-with-keras)을 확인하세요! </Tip> TensorFlow에서 모델을 미세 조정하려면 다음 단계를 따르세요: 1. 훈련 하이퍼파라미터를 정의하고 옵티마이저와 학습률 스케쥴을 설정합니다. 2. 사전 훈련된 모델을 인스턴스화합니다. 3. 🤗 Dataset을 `tf.data.Dataset`으로 변환합니다. 4. 모델을 컴파일합니다. 5. 콜백을 추가하고 훈련을 수행하기 위해 `fit()` 메소드를 사용합니다. 6. 커뮤니티와 공유하기 위해 모델을 🤗 Hub에 업로드합니다. 하이퍼파라미터, 옵티마이저 및 학습률 스케쥴을 정의하는 것으로 시작합니다: ```py >>> from transformers import create_optimizer >>> batch_size = 16 >>> num_epochs = 5 >>> num_train_steps = len(food["train"]) * num_epochs >>> learning_rate = 3e-5 >>> weight_decay_rate = 0.01 >>> optimizer, lr_schedule = create_optimizer( ... init_lr=learning_rate, ... num_train_steps=num_train_steps, ... weight_decay_rate=weight_decay_rate, ... num_warmup_steps=0, ... ) ``` 그런 다음 레이블 매핑과 함께 [`TFAuto ModelForImageClassification`]으로 ViT를 가져옵니다: ```py >>> from transformers import TFAutoModelForImageClassification >>> model = TFAutoModelForImageClassification.from_pretrained( ... checkpoint, ... id2label=id2label, ... label2id=label2id, ... ) ``` 데이터 세트를 [`~datasets.Dataset.to_tf_dataset`]와 `data_collator`를 사용하여 `tf.data.Dataset` 형식으로 변환하세요: ```py >>> # converting our train dataset to tf.data.Dataset >>> tf_train_dataset = food["train"].to_tf_dataset( ... columns="pixel_values", label_cols="label", shuffle=True, batch_size=batch_size, collate_fn=data_collator ... ) >>> # converting our test dataset to tf.data.Dataset >>> tf_eval_dataset = food["test"].to_tf_dataset( ... columns="pixel_values", label_cols="label", shuffle=True, batch_size=batch_size, collate_fn=data_collator ... ) ``` `compile()`를 사용하여 훈련 모델을 구성하세요: ```py >>> from tensorflow.keras.losses import SparseCategoricalCrossentropy >>> loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) >>> model.compile(optimizer=optimizer, loss=loss) ``` 예측에서 정확도를 계산하고 모델을 🤗 Hub로 푸시하려면 [Keras callbacks](../main_classes/keras_callbacks)를 사용하세요. `compute_metrics` 함수를 [KerasMetricCallback](../main_classes/keras_callbacks#transformers.KerasMetricCallback)에 전달하고, [PushToHubCallback](../main_classes/keras_callbacks#transformers.PushToHubCallback)을 사용하여 모델을 업로드합니다: ```py >>> from transformers.keras_callbacks import KerasMetricCallback, PushToHubCallback >>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_eval_dataset) >>> push_to_hub_callback = PushToHubCallback( ... output_dir="food_classifier", ... tokenizer=image_processor, ... save_strategy="no", ... ) >>> callbacks = [metric_callback, push_to_hub_callback] ``` 이제 모델을 훈련할 준비가 되었습니다! 훈련 및 검증 데이터 세트, 에폭 수와 함께 `fit()`을 호출하고, 콜백을 사용하여 모델을 미세 조정합니다: ```py >>> model.fit(tf_train_dataset, validation_data=tf_eval_dataset, epochs=num_epochs, callbacks=callbacks) Epoch 1/5 250/250 [==============================] - 313s 1s/step - loss: 2.5623 - val_loss: 1.4161 - accuracy: 0.9290 Epoch 2/5 250/250 [==============================] - 265s 1s/step - loss: 0.9181 - val_loss: 0.6808 - accuracy: 0.9690 Epoch 3/5 250/250 [==============================] - 252s 1s/step - loss: 0.3910 - val_loss: 0.4303 - accuracy: 0.9820 Epoch 4/5 250/250 [==============================] - 251s 1s/step - loss: 0.2028 - val_loss: 0.3191 - accuracy: 0.9900 Epoch 5/5 250/250 [==============================] - 238s 949ms/step - loss: 0.1232 - val_loss: 0.3259 - accuracy: 0.9890 ``` 축하합니다! 모델을 미세 조정하고 🤗 Hub에 공유했습니다. 이제 추론에 사용할 수 있습니다! </tf> </frameworkcontent> <Tip> 이미지 분류를 위한 모델을 미세 조정하는 자세한 예제는 다음 [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)을 참조하세요. </Tip> ## 추론[[inference]] 좋아요, 이제 모델을 미세 조정했으니 추론에 사용할 수 있습니다! 추론을 수행하고자 하는 이미지를 가져와봅시다: ```py >>> ds = load_dataset("food101", split="validation[:10]") >>> image = ds["image"][0] ``` <div class="flex justify-center"> <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png" alt="image of beignets"/> </div> 미세 조정 모델로 추론을 시도하는 가장 간단한 방법은 [`pipeline`]을 사용하는 것입니다. 모델로 이미지 분류를 위한 `pipeline`을 인스턴스화하고 이미지를 전달합니다: ```py >>> from transformers import pipeline >>> classifier = pipeline("image-classification", model="my_awesome_food_model") >>> classifier(image) [{'score': 0.31856709718704224, 'label': 'beignets'}, {'score': 0.015232225880026817, 'label': 'bruschetta'}, {'score': 0.01519392803311348, 'label': 'chicken_wings'}, {'score': 0.013022331520915031, 'label': 'pork_chop'}, {'score': 0.012728818692266941, 'label': 'prime_rib'}] ``` 원한다면, `pipeline`의 결과를 수동으로 복제할 수도 있습니다: <frameworkcontent> <pt> 이미지를 전처리하기 위해 이미지 프로세서를 가져오고 `input`을 PyTorch 텐서로 반환합니다: ```py >>> from transformers import AutoImageProcessor >>> import torch >>> image_processor = AutoImageProcessor.from_pretrained("my_awesome_food_model") >>> inputs = image_processor(image, return_tensors="pt") ``` 입력을 모델에 전달하고 logits을 반환합니다: ```py >>> from transformers import AutoModelForImageClassification >>> model = AutoModelForImageClassification.from_pretrained("my_awesome_food_model") >>> with torch.no_grad(): ... logits = model(**inputs).logits ``` 확률이 가장 높은 예측 레이블을 가져오고, 모델의 `id2label` 매핑을 사용하여 레이블로 변환합니다: ```py >>> predicted_label = logits.argmax(-1).item() >>> model.config.id2label[predicted_label] 'beignets' ``` </pt> </frameworkcontent> <frameworkcontent> <tf> 이미지를 전처리하기 위해 이미지 프로세서를 가져오고 `input`을 TensorFlow 텐서로 반환합니다: ```py >>> from transformers import AutoImageProcessor >>> image_processor = AutoImageProcessor.from_pretrained("MariaK/food_classifier") >>> inputs = image_processor(image, return_tensors="tf") ``` 입력을 모델에 전달하고 logits을 반환합니다: ```py >>> from transformers import TFAutoModelForImageClassification >>> model = TFAutoModelForImageClassification.from_pretrained("MariaK/food_classifier") >>> logits = model(**inputs).logits ``` 확률이 가장 높은 예측 레이블을 가져오고, 모델의 `id2label` 매핑을 사용하여 레이블로 변환합니다: ```py >>> predicted_class_id = int(tf.math.argmax(logits, axis=-1)[0]) >>> model.config.id2label[predicted_class_id] 'beignets' ``` </tf> </frameworkcontent>
transformers/docs/source/ko/tasks/image_classification.md/0
{ "file_path": "transformers/docs/source/ko/tasks/image_classification.md", "repo_id": "transformers", "token_count": 11495 }
55
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 번역[[translation]] [[open-in-colab]] <Youtube id="1JvfrvZgi6c"/> 번역은 한 언어로 된 시퀀스를 다른 언어로 변환합니다. 번역이나 요약은 입력을 받아 일련의 출력을 반환하는 강력한 프레임워크인 시퀀스-투-시퀀스 문제로 구성할 수 있는 대표적인 태스크입니다. 번역 시스템은 일반적으로 다른 언어로 된 텍스트 간의 번역에 사용되지만, 음성 간의 통역이나 텍스트-음성 또는 음성-텍스트와 같은 조합에도 사용될 수 있습니다. 이 가이드에서 학습할 내용은: 1. 영어 텍스트를 프랑스어로 번역하기 위해 [T5](https://huggingface.co/google-t5/t5-small) 모델을 OPUS Books 데이터세트의 영어-프랑스어 하위 집합으로 파인튜닝하는 방법과 2. 파인튜닝된 모델을 추론에 사용하는 방법입니다. <Tip> 이 작업과 호환되는 모든 아키텍처와 체크포인트를 보려면 [작업 페이지](https://huggingface.co/tasks/translation)를 확인하는 것이 좋습니다. </Tip> 시작하기 전에 필요한 라이브러리가 모두 설치되어 있는지 확인하세요: ```bash pip install transformers datasets evaluate sacrebleu ``` 모델을 업로드하고 커뮤니티와 공유할 수 있도록 Hugging Face 계정에 로그인하는 것이 좋습니다. 새로운 창이 표시되면 토큰을 입력하여 로그인하세요. ```py >>> from huggingface_hub import notebook_login >>> notebook_login() ``` ## OPUS Books 데이터세트 가져오기[[load-opus-books-dataset]] 먼저 🤗 Datasets 라이브러리에서 [OPUS Books](https://huggingface.co/datasets/opus_books) 데이터세트의 영어-프랑스어 하위 집합을 가져오세요. ```py >>> from datasets import load_dataset >>> books = load_dataset("opus_books", "en-fr") ``` 데이터세트를 [`~datasets.Dataset.train_test_split`] 메서드를 사용하여 훈련 및 테스트 데이터로 분할하세요. ```py >>> books = books["train"].train_test_split(test_size=0.2) ``` 훈련 데이터에서 예시를 살펴볼까요? ```py >>> books["train"][0] {'id': '90560', 'translation': {'en': 'But this lofty plateau measured only a few fathoms, and soon we reentered Our Element.', 'fr': 'Mais ce plateau élevé ne mesurait que quelques toises, et bientôt nous fûmes rentrés dans notre élément.'}} ``` 반환된 딕셔너리의 `translation` 키가 텍스트의 영어, 프랑스어 버전을 포함하고 있는 것을 볼 수 있습니다. ## 전처리[[preprocess]] <Youtube id="XAR8jnZZuUs"/> 다음 단계로 영어-프랑스어 쌍을 처리하기 위해 T5 토크나이저를 가져오세요. ```py >>> from transformers import AutoTokenizer >>> checkpoint = "google-t5/t5-small" >>> tokenizer = AutoTokenizer.from_pretrained(checkpoint) ``` 만들 전처리 함수는 아래 요구사항을 충족해야 합니다: 1. T5가 번역 태스크임을 인지할 수 있도록 입력 앞에 프롬프트를 추가하세요. 여러 NLP 태스크를 할 수 있는 모델 중 일부는 이렇게 태스크 프롬프트를 미리 줘야합니다. 2. 원어(영어)과 번역어(프랑스어)를 별도로 토큰화하세요. 영어 어휘로 사전 학습된 토크나이저로 프랑스어 텍스트를 토큰화할 수는 없기 때문입니다. 3. `max_length` 매개변수로 설정한 최대 길이보다 길지 않도록 시퀀스를 truncate하세요. ```py >>> source_lang = "en" >>> target_lang = "fr" >>> prefix = "translate English to French: " >>> def preprocess_function(examples): ... inputs = [prefix + example[source_lang] for example in examples["translation"]] ... targets = [example[target_lang] for example in examples["translation"]] ... model_inputs = tokenizer(inputs, text_target=targets, max_length=128, truncation=True) ... return model_inputs ``` 전체 데이터세트에 전처리 함수를 적용하려면 🤗 Datasets의 [`~datasets.Dataset.map`] 메서드를 사용하세요. `map` 함수의 속도를 높이려면 `batched=True`를 설정하여 데이터세트의 여러 요소를 한 번에 처리하는 방법이 있습니다. ```py >>> tokenized_books = books.map(preprocess_function, batched=True) ``` 이제 [`DataCollatorForSeq2Seq`]를 사용하여 예제 배치를 생성합니다. 데이터세트의 최대 길이로 전부를 padding하는 대신, 데이터 정렬 중 각 배치의 최대 길이로 문장을 *동적으로 padding*하는 것이 더 효율적입니다. <frameworkcontent> <pt> ```py >>> from transformers import DataCollatorForSeq2Seq >>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint) ``` </pt> <tf> ```py >>> from transformers import DataCollatorForSeq2Seq >>> data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=checkpoint, return_tensors="tf") ``` </tf> </frameworkcontent> ## 평가[[evalulate]] 훈련 중에 메트릭을 포함하면 모델의 성능을 평가하는 데 도움이 됩니다. 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) 라이브러리로 평가 방법(evaluation method)을 빠르게 가져올 수 있습니다. 현재 태스크에 적합한 SacreBLEU 메트릭을 가져오세요. (메트릭을 가져오고 계산하는 방법에 대해 자세히 알아보려면 🤗 Evaluate [둘러보기](https://huggingface.co/docs/evaluate/a_quick_tour)를 참조하세요): ```py >>> import evaluate >>> metric = evaluate.load("sacrebleu") ``` 그런 다음 [`~evaluate.EvaluationModule.compute`]에 예측값과 레이블을 전달하여 SacreBLEU 점수를 계산하는 함수를 생성하세요: ```py >>> import numpy as np >>> def postprocess_text(preds, labels): ... preds = [pred.strip() for pred in preds] ... labels = [[label.strip()] for label in labels] ... return preds, labels >>> def compute_metrics(eval_preds): ... preds, labels = eval_preds ... if isinstance(preds, tuple): ... preds = preds[0] ... decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True) ... labels = np.where(labels != -100, labels, tokenizer.pad_token_id) ... decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True) ... decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels) ... result = metric.compute(predictions=decoded_preds, references=decoded_labels) ... result = {"bleu": result["score"]} ... prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds] ... result["gen_len"] = np.mean(prediction_lens) ... result = {k: round(v, 4) for k, v in result.items()} ... return result ``` 이제 `compute_metrics` 함수는 준비되었고, 훈련 과정을 설정할 때 다시 살펴볼 예정입니다. ## 훈련[[train]] <frameworkcontent> <pt> <Tip> [`Trainer`]로 모델을 파인튜닝하는 방법에 익숙하지 않다면 [여기](../training#train-with-pytorch-trainer)에서 기본 튜토리얼을 살펴보시기 바랍니다! </Tip> 모델을 훈련시킬 준비가 되었군요! [`AutoModelForSeq2SeqLM`]으로 T5를 로드하세요: ```py >>> from transformers import AutoModelForSeq2SeqLM, Seq2SeqTrainingArguments, Seq2SeqTrainer >>> model = AutoModelForSeq2SeqLM.from_pretrained(checkpoint) ``` 이제 세 단계만 거치면 끝입니다: 1. [`Seq2SeqTrainingArguments`]에서 훈련 하이퍼파라미터를 정의하세요. 유일한 필수 매개변수는 모델을 저장할 위치인 `output_dir`입니다. 모델을 Hub에 푸시하기 위해 `push_to_hub=True`로 설정하세요. (모델을 업로드하려면 Hugging Face에 로그인해야 합니다.) [`Trainer`]는 에폭이 끝날때마다 SacreBLEU 메트릭을 평가하고 훈련 체크포인트를 저장합니다. 2. [`Seq2SeqTrainer`]에 훈련 인수를 전달하세요. 모델, 데이터 세트, 토크나이저, data collator 및 `compute_metrics` 함수도 덩달아 전달해야 합니다. 3. [`~Trainer.train`]을 호출하여 모델을 파인튜닝하세요. ```py >>> training_args = Seq2SeqTrainingArguments( ... output_dir="my_awesome_opus_books_model", ... eval_strategy="epoch", ... learning_rate=2e-5, ... per_device_train_batch_size=16, ... per_device_eval_batch_size=16, ... weight_decay=0.01, ... save_total_limit=3, ... num_train_epochs=2, ... predict_with_generate=True, ... fp16=True, ... push_to_hub=True, ... ) >>> trainer = Seq2SeqTrainer( ... model=model, ... args=training_args, ... train_dataset=tokenized_books["train"], ... eval_dataset=tokenized_books["test"], ... processing_class=tokenizer, ... data_collator=data_collator, ... compute_metrics=compute_metrics, ... ) >>> trainer.train() ``` 학습이 완료되면 [`~transformers.Trainer.push_to_hub`] 메서드로 모델을 Hub에 공유하세요. 이러면 누구나 모델을 사용할 수 있게 됩니다: ```py >>> trainer.push_to_hub() ``` </pt> <tf> <Tip> Keras로 모델을 파인튜닝하는 방법이 익숙하지 않다면, [여기](../training#train-a-tensorflow-model-with-keras)에서 기본 튜토리얼을 살펴보시기 바랍니다! </Tip> TensorFlow에서 모델을 파인튜닝하려면 우선 optimizer 함수, 학습률 스케줄 등의 훈련 하이퍼파라미터를 설정하세요: ```py >>> from transformers import AdamWeightDecay >>> optimizer = AdamWeightDecay(learning_rate=2e-5, weight_decay_rate=0.01) ``` 이제 [`TFAutoModelForSeq2SeqLM`]로 T5를 가져오세요: ```py >>> from transformers import TFAutoModelForSeq2SeqLM >>> model = TFAutoModelForSeq2SeqLM.from_pretrained(checkpoint) ``` [`~transformers.TFPreTrainedModel.prepare_tf_dataset`]로 데이터 세트를 `tf.data.Dataset` 형식으로 변환하세요: ```py >>> tf_train_set = model.prepare_tf_dataset( ... tokenized_books["train"], ... shuffle=True, ... batch_size=16, ... collate_fn=data_collator, ... ) >>> tf_test_set = model.prepare_tf_dataset( ... tokenized_books["test"], ... shuffle=False, ... batch_size=16, ... collate_fn=data_collator, ... ) ``` 훈련하기 위해 [`compile`](https://keras.io/api/models/model_training_apis/#compile-method) 메서드로 모델을 구성하세요: ```py >>> import tensorflow as tf >>> model.compile(optimizer=optimizer) ``` 훈련을 시작하기 전에 예측값으로부터 SacreBLEU 메트릭을 계산하는 방법과 모델을 Hub에 업로드하는 방법 두 가지를 미리 설정해둬야 합니다. 둘 다 [Keras callbacks](../main_classes/keras_callbacks)로 구현하세요. [`~transformers.KerasMetricCallback`]에 `compute_metrics` 함수를 전달하세요. ```py >>> from transformers.keras_callbacks import KerasMetricCallback >>> metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_validation_set) ``` 모델과 토크나이저를 업로드할 위치를 [`~transformers.PushToHubCallback`]에서 지정하세요: ```py >>> from transformers.keras_callbacks import PushToHubCallback >>> push_to_hub_callback = PushToHubCallback( ... output_dir="my_awesome_opus_books_model", ... tokenizer=tokenizer, ... ) ``` 이제 콜백들을 한데로 묶어주세요: ```py >>> callbacks = [metric_callback, push_to_hub_callback] ``` 드디어 모델을 훈련시킬 모든 준비를 마쳤군요! 이제 훈련 및 검증 데이터 세트에 [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) 메서드를 에폭 수와 만들어둔 콜백과 함께 호출하여 모델을 파인튜닝하세요: ```py >>> model.fit(x=tf_train_set, validation_data=tf_test_set, epochs=3, callbacks=callbacks) ``` 학습이 완료되면 모델이 자동으로 Hub에 업로드되고, 누구나 사용할 수 있게 됩니다! </tf> </frameworkcontent> <Tip> 번역을 위해 모델을 파인튜닝하는 방법에 대한 보다 자세한 예제는 해당 [PyTorch 노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation.ipynb) 또는 [TensorFlow 노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/translation-tf.ipynb)을 참조하세요. </Tip> ## 추론[[inference]] 좋아요, 이제 모델을 파인튜닝했으니 추론에 사용할 수 있습니다! 다른 언어로 번역하고 싶은 텍스트를 써보세요. T5의 경우 원하는 태스크를 입력의 접두사로 추가해야 합니다. 예를 들어 영어에서 프랑스어로 번역하는 경우, 아래와 같은 접두사가 추가됩니다: ```py >>> text = "translate English to French: Legumes share resources with nitrogen-fixing bacteria." ``` 파인튜닝된 모델로 추론하기에 제일 간단한 방법은 [`pipeline`]을 사용하는 것입니다. 해당 모델로 번역 `pipeline`을 만든 뒤, 텍스트를 전달하세요: ```py >>> from transformers import pipeline # Change `xx` to the language of the input and `yy` to the language of the desired output. # Examples: "en" for English, "fr" for French, "de" for German, "es" for Spanish, "zh" for Chinese, etc; translation_en_to_fr translates English to French # You can view all the lists of languages here - https://huggingface.co/languages >>> translator = pipeline("translation_xx_to_yy", model="my_awesome_opus_books_model") >>> translator(text) [{'translation_text': 'Legumes partagent des ressources avec des bactéries azotantes.'}] ``` 원한다면 `pipeline`의 결과를 직접 복제할 수도 있습니다: <frameworkcontent> <pt> 텍스트를 토큰화하고 `input_ids`를 PyTorch 텐서로 반환하세요: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model") >>> inputs = tokenizer(text, return_tensors="pt").input_ids ``` [`~generation.GenerationMixin.generate`] 메서드로 번역을 생성하세요. 다양한 텍스트 생성 전략 및 생성을 제어하기 위한 매개변수에 대한 자세한 내용은 [Text Generation](../main_classes/text_generation) API를 살펴보시기 바랍니다. ```py >>> from transformers import AutoModelForSeq2SeqLM >>> model = AutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model") >>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95) ``` 생성된 토큰 ID들을 다시 텍스트로 디코딩하세요: ```py >>> tokenizer.decode(outputs[0], skip_special_tokens=True) 'Les lignées partagent des ressources avec des bactéries enfixant l'azote.' ``` </pt> <tf> 텍스트를 토큰화하고 `input_ids`를 TensorFlow 텐서로 반환하세요: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("my_awesome_opus_books_model") >>> inputs = tokenizer(text, return_tensors="tf").input_ids ``` [`~transformers.generation_tf_utils.TFGenerationMixin.generate`] 메서드로 번역을 생성하세요. 다양한 텍스트 생성 전략 및 생성을 제어하기 위한 매개변수에 대한 자세한 내용은 [Text Generation](../main_classes/text_generation) API를 살펴보시기 바랍니다. ```py >>> from transformers import TFAutoModelForSeq2SeqLM >>> model = TFAutoModelForSeq2SeqLM.from_pretrained("my_awesome_opus_books_model") >>> outputs = model.generate(inputs, max_new_tokens=40, do_sample=True, top_k=30, top_p=0.95) ``` 생성된 토큰 ID들을 다시 텍스트로 디코딩하세요: ```py >>> tokenizer.decode(outputs[0], skip_special_tokens=True) 'Les lugumes partagent les ressources avec des bactéries fixatrices d'azote.' ``` </tf> </frameworkcontent>
transformers/docs/source/ko/tasks/translation.md/0
{ "file_path": "transformers/docs/source/ko/tasks/translation.md", "repo_id": "transformers", "token_count": 9509 }
56
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # Classificação de tokens <Youtube id="wVHdVlPScxA"/> A classificação de tokens atribui um rótulo a tokens individuais em uma frase. Uma das tarefas de classificação de tokens mais comuns é o Reconhecimento de Entidade Nomeada, também chamada de NER (sigla em inglês para Named Entity Recognition). O NER tenta encontrar um rótulo para cada entidade em uma frase, como uma pessoa, local ou organização. Este guia mostrará como realizar o fine-tuning do [DistilBERT](https://huggingface.co/distilbert/distilbert-base-uncased) no conjunto de dados [WNUT 17](https://huggingface.co/datasets/wnut_17) para detectar novas entidades. <Tip> Consulte a [página de tarefas de classificação de tokens](https://huggingface.co/tasks/token-classification) para obter mais informações sobre outras formas de classificação de tokens e seus modelos, conjuntos de dados e métricas associadas. </Tip> ## Carregando o conjunto de dados WNUT 17 Carregue o conjunto de dados WNUT 17 da biblioteca 🤗 Datasets: ```py >>> from datasets import load_dataset >>> wnut = load_dataset("wnut_17") ``` E dê uma olhada em um exemplo: ```py >>> wnut["train"][0] {'id': '0', 'ner_tags': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 8, 8, 0, 7, 0, 0, 0, 0, 0, 0, 0, 0], 'tokens': ['@paulwalk', 'It', "'s", 'the', 'view', 'from', 'where', 'I', "'m", 'living', 'for', 'two', 'weeks', '.', 'Empire', 'State', 'Building', '=', 'ESB', '.', 'Pretty', 'bad', 'storm', 'here', 'last', 'evening', '.'] } ``` Cada número em `ner_tags` representa uma entidade. Converta o número em um rótulo para obter mais informações: ```py >>> label_list = wnut["train"].features[f"ner_tags"].feature.names >>> label_list [ "O", "B-corporation", "I-corporation", "B-creative-work", "I-creative-work", "B-group", "I-group", "B-location", "I-location", "B-person", "I-person", "B-product", "I-product", ] ``` O `ner_tag` descreve uma entidade, como uma organização, local ou pessoa. A letra que prefixa cada `ner_tag` indica a posição do token da entidade: - `B-` indica o início de uma entidade. - `I-` indica que um token está contido dentro da mesma entidade (por exemplo, o token `State` pode fazer parte de uma entidade como `Empire State Building`). - `0` indica que o token não corresponde a nenhuma entidade. ## Pré-processamento <Youtube id="iY2AZYdZAr0"/> Carregue o tokenizer do DistilBERT para processar os `tokens`: ```py >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased") ``` Como a entrada já foi dividida em palavras, defina `is_split_into_words=True` para tokenizar as palavras em subpalavras: ```py >>> tokenized_input = tokenizer(example["tokens"], is_split_into_words=True) >>> tokens = tokenizer.convert_ids_to_tokens(tokenized_input["input_ids"]) >>> tokens ['[CLS]', '@', 'paul', '##walk', 'it', "'", 's', 'the', 'view', 'from', 'where', 'i', "'", 'm', 'living', 'for', 'two', 'weeks', '.', 'empire', 'state', 'building', '=', 'es', '##b', '.', 'pretty', 'bad', 'storm', 'here', 'last', 'evening', '.', '[SEP]'] ``` Ao adicionar os tokens especiais `[CLS]` e `[SEP]` e a tokenização de subpalavras uma incompatibilidade é gerada entre a entrada e os rótulos. Uma única palavra correspondente a um único rótulo pode ser dividida em duas subpalavras. Você precisará realinhar os tokens e os rótulos da seguinte forma: 1. Mapeie todos os tokens para a palavra correspondente com o método [`word_ids`](https://huggingface.co/docs/tokenizers/python/latest/api/reference.html#tokenizers.Encoding.word_ids). 2. Atribuindo o rótulo `-100` aos tokens especiais `[CLS]` e `[SEP]` para que a função de loss do PyTorch ignore eles. 3. Rotular apenas o primeiro token de uma determinada palavra. Atribuindo `-100` a outros subtokens da mesma palavra. Aqui está como você pode criar uma função para realinhar os tokens e rótulos e truncar sequências para não serem maiores que o comprimento máximo de entrada do DistilBERT: ```py >>> def tokenize_and_align_labels(examples): ... tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True) ... labels = [] ... for i, label in enumerate(examples[f"ner_tags"]): ... word_ids = tokenized_inputs.word_ids(batch_index=i) # Map tokens to their respective word. ... previous_word_idx = None ... label_ids = [] ... for word_idx in word_ids: # Set the special tokens to -100. ... if word_idx is None: ... label_ids.append(-100) ... elif word_idx != previous_word_idx: # Only label the first token of a given word. ... label_ids.append(label[word_idx]) ... else: ... label_ids.append(-100) ... previous_word_idx = word_idx ... labels.append(label_ids) ... tokenized_inputs["labels"] = labels ... return tokenized_inputs ``` Use a função [`map`](https://huggingface.co/docs/datasets/process#map) do 🤗 Datasets para tokenizar e alinhar os rótulos em todo o conjunto de dados. Você pode acelerar a função `map` configurando `batched=True` para processar vários elementos do conjunto de dados de uma só vez: ```py >>> tokenized_wnut = wnut.map(tokenize_and_align_labels, batched=True) ``` Use o [`DataCollatorForTokenClassification`] para criar um batch de exemplos. Ele também *preencherá dinamicamente* seu texto e rótulos para o comprimento do elemento mais longo em seu batch, para que tenham um comprimento uniforme. Embora seja possível preencher seu texto na função `tokenizer` configurando `padding=True`, o preenchimento dinâmico é mais eficiente. <frameworkcontent> <pt> ```py >>> from transformers import DataCollatorForTokenClassification >>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer) ``` </pt> <tf> ```py >>> from transformers import DataCollatorForTokenClassification >>> data_collator = DataCollatorForTokenClassification(tokenizer=tokenizer, return_tensors="tf") ``` </tf> </frameworkcontent> ## Treinamento <frameworkcontent> <pt> Carregue o DistilBERT com o [`AutoModelForTokenClassification`] junto com o número de rótulos esperados: ```py >>> from transformers import AutoModelForTokenClassification, TrainingArguments, Trainer >>> model = AutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased", num_labels=14) ``` <Tip> Se você não estiver familiarizado com o fine-tuning de um modelo com o [`Trainer`], dê uma olhada no tutorial básico [aqui](../training#finetune-with-trainer)! </Tip> Nesse ponto, restam apenas três passos: 1. Definir seus hiperparâmetros de treinamento em [`TrainingArguments`]. 2. Passar os argumentos de treinamento para o [`Trainer`] junto com o modelo, conjunto de dados, tokenizador e o data collator. 3. Chamar a função [`~Trainer.train`] para executar o fine-tuning do seu modelo. ```py >>> training_args = TrainingArguments( ... output_dir="./results", ... eval_strategy="epoch", ... learning_rate=2e-5, ... per_device_train_batch_size=16, ... per_device_eval_batch_size=16, ... num_train_epochs=3, ... weight_decay=0.01, ... ) >>> trainer = Trainer( ... model=model, ... args=training_args, ... train_dataset=tokenized_wnut["train"], ... eval_dataset=tokenized_wnut["test"], ... processing_class=tokenizer, ... data_collator=data_collator, ... ) >>> trainer.train() ``` </pt> <tf> Para executar o fine-tuning de um modelo no TensorFlow, comece convertendo seu conjunto de dados para o formato `tf.data.Dataset` com [`to_tf_dataset`](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Dataset.to_tf_dataset). Nessa execução você deverá especificar as entradas e rótulos (no parâmetro `columns`), se deseja embaralhar o conjunto de dados, o tamanho do batch e o data collator: ```py >>> tf_train_set = tokenized_wnut["train"].to_tf_dataset( ... columns=["attention_mask", "input_ids", "labels"], ... shuffle=True, ... batch_size=16, ... collate_fn=data_collator, ... ) >>> tf_validation_set = tokenized_wnut["validation"].to_tf_dataset( ... columns=["attention_mask", "input_ids", "labels"], ... shuffle=False, ... batch_size=16, ... collate_fn=data_collator, ... ) ``` <Tip> Se você não estiver familiarizado com o fine-tuning de um modelo com o Keras, dê uma olhada no tutorial básico [aqui](training#finetune-with-keras)! </Tip> Configure o otimizador e alguns hiperparâmetros de treinamento: ```py >>> from transformers import create_optimizer >>> batch_size = 16 >>> num_train_epochs = 3 >>> num_train_steps = (len(tokenized_wnut["train"]) // batch_size) * num_train_epochs >>> optimizer, lr_schedule = create_optimizer( ... init_lr=2e-5, ... num_train_steps=num_train_steps, ... weight_decay_rate=0.01, ... num_warmup_steps=0, ... ) ``` Carregue o DistilBERT com o [`TFAutoModelForTokenClassification`] junto com o número de rótulos esperados: ```py >>> from transformers import TFAutoModelForTokenClassification >>> model = TFAutoModelForTokenClassification.from_pretrained("distilbert/distilbert-base-uncased", num_labels=2) ``` Configure o modelo para treinamento com o método [`compile`](https://keras.io/api/models/model_training_apis/#compile-method): ```py >>> import tensorflow as tf >>> model.compile(optimizer=optimizer) ``` Chame o método [`fit`](https://keras.io/api/models/model_training_apis/#fit-method) para executar o fine-tuning do modelo: ```py >>> model.fit(x=tf_train_set, validation_data=tf_validation_set, epochs=3) ``` </tf> </frameworkcontent> <Tip> Para obter um exemplo mais aprofundado de como executar o fine-tuning de um modelo para classificação de tokens, dê uma olhada nesse [notebook utilizando PyTorch](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb) ou nesse [notebook utilizando TensorFlow](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb). </Tip>
transformers/docs/source/pt/tasks/token_classification.md/0
{ "file_path": "transformers/docs/source/pt/tasks/token_classification.md", "repo_id": "transformers", "token_count": 4237 }
57
<!--Copyright 2023 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 聊天模型的模板 ## 介绍 LLM 的一个常见应用场景是聊天。在聊天上下文中,不再是连续的文本字符串构成的语句(不同于标准的语言模型), 聊天模型由一条或多条消息组成的对话组成,每条消息都有一个“用户”或“助手”等 **角色**,还包括消息文本。 与`Tokenizer`类似,不同的模型对聊天的输入格式要求也不同。这就是我们添加**聊天模板**作为一个功能的原因。 聊天模板是`Tokenizer`的一部分。用来把问答的对话内容转换为模型的输入`prompt`。 让我们通过一个快速的示例来具体说明,使用`BlenderBot`模型。 BlenderBot有一个非常简单的默认模板,主要是在对话轮之间添加空格: ```python >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill") >>> chat = [ ... {"role": "user", "content": "Hello, how are you?"}, ... {"role": "assistant", "content": "I'm doing great. How can I help you today?"}, ... {"role": "user", "content": "I'd like to show off how chat templating works!"}, ... ] >>> tokenizer.apply_chat_template(chat, tokenize=False) " Hello, how are you? I'm doing great. How can I help you today? I'd like to show off how chat templating works!</s>" ``` 注意,整个聊天对话内容被压缩成了一整个字符串。如果我们使用默认设置的`tokenize=True`,那么该字符串也将被tokenized处理。 不过,为了看到更复杂的模板实际运行,让我们使用`mistralai/Mistral-7B-Instruct-v0.1`模型。 ```python >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1") >>> chat = [ ... {"role": "user", "content": "Hello, how are you?"}, ... {"role": "assistant", "content": "I'm doing great. How can I help you today?"}, ... {"role": "user", "content": "I'd like to show off how chat templating works!"}, ... ] >>> tokenizer.apply_chat_template(chat, tokenize=False) "<s>[INST] Hello, how are you? [/INST]I'm doing great. How can I help you today?</s> [INST] I'd like to show off how chat templating works! [/INST]" ``` 可以看到,这一次tokenizer已经添加了[INST]和[/INST]来表示用户消息的开始和结束。 Mistral-instruct是有使用这些token进行训练的,但BlenderBot没有。 ## 我如何使用聊天模板? 正如您在上面的示例中所看到的,聊天模板非常容易使用。只需构建一系列带有`role`和`content`键的消息, 然后将其传递给[`~PreTrainedTokenizer.apply_chat_template`]方法。 另外,在将聊天模板用作模型预测的输入时,还建议使用`add_generation_prompt=True`来添加[generation prompt](#什么是generation-prompts)。 这是一个准备`model.generate()`的示例,使用`Zephyr`模型: ```python from transformers import AutoModelForCausalLM, AutoTokenizer checkpoint = "HuggingFaceH4/zephyr-7b-beta" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint) # You may want to use bfloat16 and/or move to GPU here messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate", }, {"role": "user", "content": "How many helicopters can a human eat in one sitting?"}, ] tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") print(tokenizer.decode(tokenized_chat[0])) ``` 这将生成Zephyr期望的输入格式的字符串。它看起来像这样: ```text <|system|> You are a friendly chatbot who always responds in the style of a pirate</s> <|user|> How many helicopters can a human eat in one sitting?</s> <|assistant|> ``` 现在我们已经按照`Zephyr`的要求传入prompt了,我们可以使用模型来生成对用户问题的回复: ```python outputs = model.generate(tokenized_chat, max_new_tokens=128) print(tokenizer.decode(outputs[0])) ``` 输出结果是: ```text <|system|> You are a friendly chatbot who always responds in the style of a pirate</s> <|user|> How many helicopters can a human eat in one sitting?</s> <|assistant|> Matey, I'm afraid I must inform ye that humans cannot eat helicopters. Helicopters are not food, they are flying machines. Food is meant to be eaten, like a hearty plate o' grog, a savory bowl o' stew, or a delicious loaf o' bread. But helicopters, they be for transportin' and movin' around, not for eatin'. So, I'd say none, me hearties. None at all. ``` 啊,原来这么容易! ## 有自动化的聊天`pipeline`吗? 有的,[`TextGenerationPipeline`]。这个`pipeline`的设计是为了方便使用聊天模型。让我们再试一次 Zephyr 的例子,但这次使用`pipeline`: ```python from transformers import pipeline pipe = pipeline("text-generation", "HuggingFaceH4/zephyr-7b-beta") messages = [ { "role": "system", "content": "You are a friendly chatbot who always responds in the style of a pirate", }, {"role": "user", "content": "How many helicopters can a human eat in one sitting?"}, ] print(pipe(messages, max_new_tokens=256)['generated_text'][-1]) ``` ```text {'role': 'assistant', 'content': "Matey, I'm afraid I must inform ye that humans cannot eat helicopters. Helicopters are not food, they are flying machines. Food is meant to be eaten, like a hearty plate o' grog, a savory bowl o' stew, or a delicious loaf o' bread. But helicopters, they be for transportin' and movin' around, not for eatin'. So, I'd say none, me hearties. None at all."} ``` [`TextGenerationPipeline`]将负责处理所有的`tokenized`并调用`apply_chat_template`,一旦模型有了聊天模板,您只需要初始化pipeline并传递消息列表! ## 什么是"generation prompts"? 您可能已经注意到`apply_chat_template`方法有一个`add_generation_prompt`参数。 这个参数告诉模板添加模型开始答复的标记。例如,考虑以下对话: ```python messages = [ {"role": "user", "content": "Hi there!"}, {"role": "assistant", "content": "Nice to meet you!"}, {"role": "user", "content": "Can I ask a question?"} ] ``` 这是`add_generation_prompt=False`的结果,使用ChatML模板: ```python tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=False) """<|im_start|>user Hi there!<|im_end|> <|im_start|>assistant Nice to meet you!<|im_end|> <|im_start|>user Can I ask a question?<|im_end|> """ ``` 下面这是`add_generation_prompt=True`的结果: ```python tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) """<|im_start|>user Hi there!<|im_end|> <|im_start|>assistant Nice to meet you!<|im_end|> <|im_start|>user Can I ask a question?<|im_end|> <|im_start|>assistant """ ``` 这一次我们添加了模型开始答复的标记。这可以确保模型生成文本时只会给出答复,而不会做出意外的行为,比如继续用户的消息。 记住,聊天模型只是语言模型,它们被训练来继续文本,而聊天对它们来说只是一种特殊的文本! 你需要用适当的控制标记来引导它们,让它们知道自己应该做什么。 并非所有模型都需要生成提示。一些模型,如BlenderBot和LLaMA,在模型回复之前没有任何特殊标记。 在这些情况下,`add_generation_prompt`参数将不起作用。`add_generation_prompt`参数取决于你所使用的模板。 ## 我可以在训练中使用聊天模板吗? 可以!我们建议您将聊天模板应用为数据集的预处理步骤。之后,您可以像进行任何其他语言模型训练任务一样继续。 在训练时,通常应该设置`add_generation_prompt=False`,因为添加的助手标记在训练过程中并不会有帮助。 让我们看一个例子: ```python from transformers import AutoTokenizer from datasets import Dataset tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta") chat1 = [ {"role": "user", "content": "Which is bigger, the moon or the sun?"}, {"role": "assistant", "content": "The sun."} ] chat2 = [ {"role": "user", "content": "Which is bigger, a virus or a bacterium?"}, {"role": "assistant", "content": "A bacterium."} ] dataset = Dataset.from_dict({"chat": [chat1, chat2]}) dataset = dataset.map(lambda x: {"formatted_chat": tokenizer.apply_chat_template(x["chat"], tokenize=False, add_generation_prompt=False)}) print(dataset['formatted_chat'][0]) ``` 结果是: ```text <|user|> Which is bigger, the moon or the sun?</s> <|assistant|> The sun.</s> ``` 这样,后面你可以使用`formatted_chat`列,跟标准语言建模任务中一样训练即可。 ## 高级:聊天模板是如何工作的? 模型的聊天模板存储在`tokenizer.chat_template`属性上。如果没有设置,则将使用该模型的默认模板。 让我们来看看`BlenderBot`的模板: ```python >>> from transformers import AutoTokenizer >>> tokenizer = AutoTokenizer.from_pretrained("facebook/blenderbot-400M-distill") >>> tokenizer.chat_template "{% for message in messages %}{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}{{ message['content'] }}{% if not loop.last %}{{ ' ' }}{% endif %}{% endfor %}{{ eos_token }}" ``` 这看着有点复杂。让我们添加一些换行和缩进,使其更易读。 请注意,默认情况下忽略每个块后的第一个换行以及块之前的任何前导空格, 使用Jinja的`trim_blocks`和`lstrip_blocks`标签。 这里,请注意空格的使用。我们强烈建议您仔细检查模板是否打印了多余的空格! ``` {% for message in messages %} {% if message['role'] == 'user' %} {{ ' ' }} {% endif %} {{ message['content'] }} {% if not loop.last %} {{ ' ' }} {% endif %} {% endfor %} {{ eos_token }} ``` 如果你之前不了解[Jinja template](https://jinja.palletsprojects.com/en/3.1.x/templates/)。 Jinja是一种模板语言,允许你编写简单的代码来生成文本。 在许多方面,代码和语法类似于Python。在纯Python中,这个模板看起来会像这样: ```python for idx, message in enumerate(messages): if message['role'] == 'user': print(' ') print(message['content']) if not idx == len(messages) - 1: # Check for the last message in the conversation print(' ') print(eos_token) ``` 这里使用Jinja模板处理如下三步: 1. 对于每条消息,如果消息是用户消息,则在其前面添加一个空格,否则不打印任何内容 2. 添加消息内容 3. 如果消息不是最后一条,请在其后添加两个空格。在最后一条消息之后,打印`EOS`。 这是一个简单的模板,它不添加任何控制tokens,也不支持`system`消息(常用于指导模型在后续对话中如何表现)。 但 Jinja 给了你很大的灵活性来做这些事情!让我们看一个 Jinja 模板, 它可以实现类似于LLaMA的prompt输入(请注意,真正的LLaMA模板包括`system`消息,请不要在实际代码中使用这个简单模板!) ``` {% for message in messages %} {% if message['role'] == 'user' %} {{ bos_token + '[INST] ' + message['content'] + ' [/INST]' }} {% elif message['role'] == 'system' %} {{ '<<SYS>>\\n' + message['content'] + '\\n<</SYS>>\\n\\n' }} {% elif message['role'] == 'assistant' %} {{ ' ' + message['content'] + ' ' + eos_token }} {% endif %} {% endfor %} ``` 这里稍微看一下,就能明白这个模板的作用:它根据每条消息的“角色”添加对应的消息。 `user`、`assistant`、`system`的消息需要分别处理,因为它们代表不同的角色输入。 ## 高级:编辑聊天模板 ### 如何创建聊天模板? 很简单,你只需编写一个jinja模板并设置`tokenizer.chat_template`。你也可以从一个现有模板开始,只需要简单编辑便可以! 例如,我们可以采用上面的LLaMA模板,并在助手消息中添加"[ASST]"和"[/ASST]": ``` {% for message in messages %} {% if message['role'] == 'user' %} {{ bos_token + '[INST] ' + message['content'].strip() + ' [/INST]' }} {% elif message['role'] == 'system' %} {{ '<<SYS>>\\n' + message['content'].strip() + '\\n<</SYS>>\\n\\n' }} {% elif message['role'] == 'assistant' %} {{ '[ASST] ' + message['content'] + ' [/ASST]' + eos_token }} {% endif %} {% endfor %} ``` 现在,只需设置`tokenizer.chat_template`属性。下次使用[`~PreTrainedTokenizer.apply_chat_template`]时,它将使用您的新模板! 此属性将保存在`tokenizer_config.json`文件中,因此您可以使用[`~utils.PushToHubMixin.push_to_hub`]将新模板上传到 Hub, 这样每个人都可以使用你模型的模板! ```python template = tokenizer.chat_template template = template.replace("SYS", "SYSTEM") # Change the system token tokenizer.chat_template = template # Set the new template tokenizer.push_to_hub("model_name") # Upload your new template to the Hub! ``` 由于[`~PreTrainedTokenizer.apply_chat_template`]方法是由[`TextGenerationPipeline`]类调用, 因此一旦你设置了聊天模板,您的模型将自动与[`TextGenerationPipeline`]兼容。 ### “默认”模板是什么? 在引入聊天模板(chat_template)之前,聊天prompt是在模型中通过硬编码处理的。为了向前兼容,我们保留了这种硬编码处理聊天prompt的方法。 如果一个模型没有设置聊天模板,但其模型有默认模板,`TextGenerationPipeline`类和`apply_chat_template`等方法将使用该模型的聊天模板。 您可以通过检查`tokenizer.default_chat_template`属性来查找`tokenizer`的默认模板。 这是我们纯粹为了向前兼容性而做的事情,以避免破坏任何现有的工作流程。即使默认的聊天模板适用于您的模型, 我们强烈建议通过显式设置`chat_template`属性来覆盖默认模板,以便向用户清楚地表明您的模型已经正确的配置了聊天模板, 并且为了未来防范默认模板被修改或弃用的情况。 ### 我应该使用哪个模板? 在为已经训练过的聊天模型设置模板时,您应确保模板与模型在训练期间看到的消息格式完全匹配,否则可能会导致性能下降。 即使您继续对模型进行训练,也应保持聊天模板不变,这样可能会获得最佳性能。 这与`tokenization`非常类似,在推断时,你选用跟训练时一样的`tokenization`,通常会获得最佳性能。 如果您从头开始训练模型,或者在微调基础语言模型进行聊天时,您有很大的自由选择适当的模板! LLMs足够聪明,可以学会处理许多不同的输入格式。我们为没有特定类别模板的模型提供一个默认模板,该模板遵循 `ChatML` format格式要求,对于许多用例来说, 这是一个很好的、灵活的选择。 默认模板看起来像这样: ``` {% for message in messages %} {{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}} {% endfor %} ``` 如果您喜欢这个模板,下面是一行代码的模板形式,它可以直接复制到您的代码中。这一行代码还包括了[generation prompts](#什么是"generation prompts"?), 但请注意它不会添加`BOS`或`EOS`token。 如果您的模型需要这些token,它们不会被`apply_chat_template`自动添加,换句话说,文本的默认处理参数是`add_special_tokens=False`。 这是为了避免模板和`add_special_tokens`逻辑产生冲突,如果您的模型需要特殊tokens,请确保将它们添加到模板中! ``` tokenizer.chat_template = "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}" ``` 该模板将每条消息包装在`<|im_start|>`和`<|im_end|>`tokens里面,并将角色简单地写为字符串,这样可以灵活地训练角色。输出如下: ```text <|im_start|>system You are a helpful chatbot that will do its best not to say anything so stupid that people tweet about it.<|im_end|> <|im_start|>user How are you?<|im_end|> <|im_start|>assistant I'm doing great!<|im_end|> ``` `user`,`system`和`assistant`是对话助手模型的标准角色,如果您的模型要与[`TextGenerationPipeline`]兼容,我们建议你使用这些角色。 但您可以不局限于这些角色,模板非常灵活,任何字符串都可以成为角色。 ### 如何添加聊天模板? 如果您有任何聊天模型,您应该设置它们的`tokenizer.chat_template`属性,并使用[`~PreTrainedTokenizer.apply_chat_template`]测试, 然后将更新后的`tokenizer`推送到 Hub。 即使您不是模型所有者,如果您正在使用一个空的聊天模板或者仍在使用默认的聊天模板, 请发起一个[pull request](https://huggingface.co/docs/hub/repositories-pull-requests-discussions),以便正确设置该属性! 一旦属性设置完成,就完成了!`tokenizer.apply_chat_template`现在将在该模型中正常工作, 这意味着它也会自动支持在诸如`TextGenerationPipeline`的地方! 通过确保模型具有这一属性,我们可以确保整个社区都能充分利用开源模型的全部功能。 格式不匹配已经困扰这个领域并悄悄地损害了性能太久了,是时候结束它们了! ## 高级:模板写作技巧 如果你对Jinja不熟悉,我们通常发现编写聊天模板的最简单方法是先编写一个简短的Python脚本,按照你想要的方式格式化消息,然后将该脚本转换为模板。 请记住,模板处理程序将接收对话历史作为名为`messages`的变量。每条`message`都是一个带有两个键`role`和`content`的字典。 您可以在模板中像在Python中一样访问`messages`,这意味着您可以使用`{% for message in messages %}`进行循环, 或者例如使用`{{ messages[0] }}`访问单个消息。 您也可以使用以下提示将您的代码转换为Jinja: ### For循环 在Jinja中,for循环看起来像这样: ``` {% for message in messages %} {{ message['content'] }} {% endfor %} ``` 请注意,`{{ expression block }}`中的内容将被打印到输出。您可以在表达式块中使用像`+`这样的运算符来组合字符串。 ### If语句 Jinja中的if语句如下所示: ``` {% if message['role'] == 'user' %} {{ message['content'] }} {% endif %} ``` 注意Jinja使用`{% endfor %}`和`{% endif %}`来表示`for`和`if`的结束。 ### 特殊变量 在您的模板中,您将可以访问`messages`列表,但您还可以访问其他几个特殊变量。 这些包括特殊`token`,如`bos_token`和`eos_token`,以及我们上面讨论过的`add_generation_prompt`变量。 您还可以使用`loop`变量来访问有关当前循环迭代的信息,例如使用`{% if loop.last %}`来检查当前消息是否是对话中的最后一条消息。 以下是一个示例,如果`add_generation_prompt=True`需要在对话结束时添加`generate_prompt`: ``` {% if loop.last and add_generation_prompt %} {{ bos_token + 'Assistant:\n' }} {% endif %} ``` ### 空格的注意事项 我们已经尽可能尝试让Jinja忽略除`{{ expressions }}`之外的空格。 然而,请注意Jinja是一个通用的模板引擎,它可能会将同一行文本块之间的空格视为重要,并将其打印到输出中。 我们**强烈**建议在上传模板之前检查一下,确保模板没有在不应该的地方打印额外的空格!
transformers/docs/source/zh/chat_templating.md/0
{ "file_path": "transformers/docs/source/zh/chat_templating.md", "repo_id": "transformers", "token_count": 11132 }
58
<!--Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 自定义层和工具 此页面列出了库使用的所有自定义层,以及它为模型提供的实用函数。 其中大多数只有在您研究库中模型的代码时才有用。 ## Pytorch自定义模块 [[autodoc]] pytorch_utils.Conv1D [[autodoc]] modeling_utils.PoolerStartLogits - forward [[autodoc]] modeling_utils.PoolerEndLogits - forward [[autodoc]] modeling_utils.PoolerAnswerClass - forward [[autodoc]] modeling_utils.SquadHeadOutput [[autodoc]] modeling_utils.SQuADHead - forward [[autodoc]] modeling_utils.SequenceSummary - forward ## PyTorch帮助函数 [[autodoc]] pytorch_utils.apply_chunking_to_forward [[autodoc]] pytorch_utils.find_pruneable_heads_and_indices [[autodoc]] pytorch_utils.prune_layer [[autodoc]] pytorch_utils.prune_conv1d_layer [[autodoc]] pytorch_utils.prune_linear_layer ## TensorFlow自定义层 [[autodoc]] modeling_tf_utils.TFConv1D [[autodoc]] modeling_tf_utils.TFSequenceSummary ## TensorFlow loss 函数 [[autodoc]] modeling_tf_utils.TFCausalLanguageModelingLoss [[autodoc]] modeling_tf_utils.TFMaskedLanguageModelingLoss [[autodoc]] modeling_tf_utils.TFMultipleChoiceLoss [[autodoc]] modeling_tf_utils.TFQuestionAnsweringLoss [[autodoc]] modeling_tf_utils.TFSequenceClassificationLoss [[autodoc]] modeling_tf_utils.TFTokenClassificationLoss ## TensorFlow帮助函数 [[autodoc]] modeling_tf_utils.get_initializer [[autodoc]] modeling_tf_utils.keras_serializable [[autodoc]] modeling_tf_utils.shape_list
transformers/docs/source/zh/internal/modeling_utils.md/0
{ "file_path": "transformers/docs/source/zh/internal/modeling_utils.md", "repo_id": "transformers", "token_count": 845 }
59
<!--Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the ⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> # 在 Apple Silicon 芯片上进行 PyTorch 训练 之前,在 Mac 上训练模型仅限于使用 CPU 训练。不过随着PyTorch v1.12的发布,您可以通过在 Apple Silicon 芯片的 GPU 上训练模型来显著提高性能和训练速度。这是通过将 Apple 的 Metal 性能着色器 (Metal Performance Shaders, MPS) 作为后端集成到PyTorch中实现的。[MPS后端](https://pytorch.org/docs/stable/notes/mps.html) 将 PyTorch 操作视为自定义的 Metal 着色器来实现,并将对应模块部署到`mps`设备上。 <Tip warning={true}> 某些 PyTorch 操作目前还未在 MPS 上实现,可能会抛出错误提示。可以通过设置环境变量`PYTORCH_ENABLE_MPS_FALLBACK=1`来使用CPU内核以避免这种情况发生(您仍然会看到一个`UserWarning`)。 <br> 如果您遇到任何其他错误,请在[PyTorch库](https://github.com/pytorch/pytorch/issues)中创建一个 issue,因为[`Trainer`]类中只集成了 MPS 后端. </Tip> 配置好`mps`设备后,您可以: * 在本地训练更大的网络或更大的批量大小 * 降低数据获取延迟,因为 GPU 的统一内存架构允许直接访问整个内存存储 * 降低成本,因为您不需要再在云端 GPU 上训练或增加额外的本地 GPU 在确保已安装PyTorch后就可以开始使用了。 MPS 加速支持macOS 12.3及以上版本。 ```bash pip install torch torchvision torchaudio ``` [`TrainingArguments`]类默认使用`mps`设备(如果可用)因此无需显式设置设备。例如,您可以直接运行[run_glue.py](https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py)脚本,在无需进行任何修改的情况下自动启用 MPS 后端。 ```diff export TASK_NAME=mrpc python examples/pytorch/text-classification/run_glue.py \ --model_name_or_path google-bert/bert-base-cased \ --task_name $TASK_NAME \ - --use_mps_device \ --do_train \ --do_eval \ --max_seq_length 128 \ --per_device_train_batch_size 32 \ --learning_rate 2e-5 \ --num_train_epochs 3 \ --output_dir /tmp/$TASK_NAME/ \ --overwrite_output_dir ``` 用于[分布式设置](https://pytorch.org/docs/stable/distributed.html#backends)的后端(如`gloo`和`nccl`)不支持`mps`设备,这也意味着使用 MPS 后端时只能在单个 GPU 上进行训练。 您可以在[Introducing Accelerated PyTorch Training on Mac](https://pytorch.org/blog/introducing-accelerated-pytorch-training-on-mac/)博客文章中了解有关 MPS 后端的更多信息。
transformers/docs/source/zh/perf_train_special.md/0
{ "file_path": "transformers/docs/source/zh/perf_train_special.md", "repo_id": "transformers", "token_count": 1624 }
60
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Examples We host a wide range of example scripts for multiple learning frameworks. Simply choose your favorite: [TensorFlow](https://github.com/huggingface/transformers/tree/main/examples/tensorflow), [PyTorch](https://github.com/huggingface/transformers/tree/main/examples/pytorch) or [JAX/Flax](https://github.com/huggingface/transformers/tree/main/examples/flax). We also have some [research projects](https://github.com/huggingface/transformers/tree/main/examples/research_projects), as well as some [legacy examples](https://github.com/huggingface/transformers/tree/main/examples/legacy). Note that unlike the main examples these are not actively maintained, and may require specific older versions of dependencies in order to run. While we strive to present as many use cases as possible, the example scripts are just that - examples. It is expected that they won't work out-of-the-box on your specific problem and that you will be required to change a few lines of code to adapt them to your needs. To help you with that, most of the examples fully expose the preprocessing of the data, allowing you to tweak and edit them as required. Please discuss on the [forum](https://discuss.huggingface.co/) or in an [issue](https://github.com/huggingface/transformers/issues) a feature you would like to implement in an example before submitting a PR; we welcome bug fixes, but since we want to keep the examples as simple as possible it's unlikely that we will merge a pull request adding more functionality at the cost of readability. ## Important note **Important** To make sure you can successfully run the latest versions of the example scripts, you have to **install the library from source** and install some example-specific requirements. To do this, execute the following steps in a new virtual environment: ```bash git clone https://github.com/huggingface/transformers cd transformers pip install . ``` Then cd in the example folder of your choice and run ```bash pip install -r requirements.txt ``` To browse the examples corresponding to released versions of 🤗 Transformers, click on the line below and then on your desired version of the library: <details> <summary>Examples for older versions of 🤗 Transformers</summary> <ul> <li><a href="https://github.com/huggingface/transformers/tree/v4.21.0/examples">v4.21.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.20.1/examples">v4.20.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.19.4/examples">v4.19.4</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.18.0/examples">v4.18.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.17.0/examples">v4.17.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.16.2/examples">v4.16.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.15.0/examples">v4.15.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.14.1/examples">v4.14.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.13.0/examples">v4.13.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.12.5/examples">v4.12.5</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.11.3/examples">v4.11.3</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.10.3/examples">v4.10.3</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.9.2/examples">v4.9.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.8.2/examples">v4.8.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.7.0/examples">v4.7.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.6.1/examples">v4.6.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.5.1/examples">v4.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.4.2/examples">v4.4.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.3.3/examples">v4.3.3</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.2.2/examples">v4.2.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.1.1/examples">v4.1.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v4.0.1/examples">v4.0.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.5.1/examples">v3.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.4.0/examples">v3.4.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.3.1/examples">v3.3.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.2.0/examples">v3.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.1.0/examples">v3.1.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v3.0.2/examples">v3.0.2</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.11.0/examples">v2.11.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.10.0/examples">v2.10.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.9.1/examples">v2.9.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.8.0/examples">v2.8.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.7.0/examples">v2.7.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.6.0/examples">v2.6.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.5.1/examples">v2.5.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.4.0/examples">v2.4.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.3.0/examples">v2.3.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.2.0/examples">v2.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.1.0/examples">v2.1.1</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v2.0.0/examples">v2.0.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.2.0/examples">v1.2.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.1.0/examples">v1.1.0</a></li> <li><a href="https://github.com/huggingface/transformers/tree/v1.0.0/examples">v1.0.0</a></li> </ul> </details> Alternatively, you can switch your cloned 🤗 Transformers to a specific version (for instance with v3.5.1) with ```bash git checkout tags/v3.5.1 ``` and run the example command as usual afterward. ## Running the Examples on Remote Hardware with Auto-Setup [run_on_remote.py](./run_on_remote.py) is a script that launches any example on remote self-hosted hardware, with automatic hardware and environment setup. It uses [Runhouse](https://github.com/run-house/runhouse) to launch on self-hosted hardware (e.g. in your own cloud account or on-premise cluster) but there are other options for running remotely as well. You can easily customize the example used, command line arguments, dependencies, and type of compute hardware, and then run the script to automatically launch the example. You can refer to [hardware setup](https://www.run.house/docs/tutorials/quick-start-cloud) for more information about hardware and dependency setup with Runhouse, or this [Colab tutorial](https://colab.research.google.com/drive/1sh_aNQzJX5BKAdNeXthTNGxKz7sM9VPc) for a more in-depth walkthrough. You can run the script with the following commands: ```bash # First install runhouse: pip install runhouse # For an on-demand V100 with whichever cloud provider you have configured: python run_on_remote.py \ --example pytorch/text-generation/run_generation.py \ --model_type=gpt2 \ --model_name_or_path=openai-community/gpt2 \ --prompt "I am a language model and" # For byo (bring your own) cluster: python run_on_remote.py --host <cluster_ip> --user <ssh_user> --key_path <ssh_key_path> \ --example <example> <args> # For on-demand instances python run_on_remote.py --instance <instance> --provider <provider> \ --example <example> <args> ``` You can also adapt the script to your own needs.
transformers/examples/README.md/0
{ "file_path": "transformers/examples/README.md", "repo_id": "transformers", "token_count": 3274 }
61
<!--- Copyright 2021 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Image Classification training examples The following example showcases how to train/fine-tune `ViT` for image-classification using the JAX/Flax backend. JAX/Flax allows you to trace pure functions and compile them into efficient, fused accelerator code on both GPU and TPU. Models written in JAX/Flax are **immutable** and updated in a purely functional way which enables simple and efficient model parallelism. In this example we will train/fine-tune the model on the [imagenette](https://github.com/fastai/imagenette) dataset. ## Prepare the dataset We will use the [imagenette](https://github.com/fastai/imagenette) dataset to train/fine-tune our model. Imagenette is a subset of 10 easily classified classes from Imagenet (tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas pump, golf ball, parachute). ### Download and extract the data. ```bash wget https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz tar -xvzf imagenette2.tgz ``` This will create a `imagenette2` dir with two subdirectories `train` and `val` each with multiple subdirectories per class. The training script expects the following directory structure ```bash root/dog/xxx.png root/dog/xxy.png root/dog/[...]/xxz.png root/cat/123.png root/cat/nsdf3.png root/cat/[...]/asd932_.png ``` ## Train the model Next we can run the example script to fine-tune the model: ```bash python run_image_classification.py \ --output_dir ./vit-base-patch16-imagenette \ --model_name_or_path google/vit-base-patch16-224-in21k \ --train_dir="imagenette2/train" \ --validation_dir="imagenette2/val" \ --num_train_epochs 5 \ --learning_rate 1e-3 \ --per_device_train_batch_size 128 --per_device_eval_batch_size 128 \ --overwrite_output_dir \ --preprocessing_num_workers 32 \ --push_to_hub ``` This should finish in ~7mins with 99% validation accuracy.
transformers/examples/flax/vision/README.md/0
{ "file_path": "transformers/examples/flax/vision/README.md", "repo_id": "transformers", "token_count": 775 }
62
#!/usr/bin/env bash if ! [ -f ./dev.txt ]; then echo "Download dev dataset...." curl -L -o ./dev.txt 'https://github.com/UniversalDependencies/UD_English-EWT/raw/master/en_ewt-ud-dev.conllu' fi if ! [ -f ./test.txt ]; then echo "Download test dataset...." curl -L -o ./test.txt 'https://github.com/UniversalDependencies/UD_English-EWT/raw/master/en_ewt-ud-test.conllu' fi if ! [ -f ./train.txt ]; then echo "Download train dataset...." curl -L -o ./train.txt 'https://github.com/UniversalDependencies/UD_English-EWT/raw/master/en_ewt-ud-train.conllu' fi export MAX_LENGTH=200 export BERT_MODEL=bert-base-uncased export OUTPUT_DIR=postagger-model export BATCH_SIZE=32 export NUM_EPOCHS=3 export SAVE_STEPS=750 export SEED=1 # Add parent directory to python path to access lightning_base.py export PYTHONPATH="../":"${PYTHONPATH}" python3 run_ner.py --data_dir ./ \ --task_type POS \ --model_name_or_path $BERT_MODEL \ --output_dir $OUTPUT_DIR \ --max_seq_length $MAX_LENGTH \ --num_train_epochs $NUM_EPOCHS \ --train_batch_size $BATCH_SIZE \ --seed $SEED \ --gpus 1 \ --do_train \ --do_predict
transformers/examples/legacy/pytorch-lightning/run_pos.sh/0
{ "file_path": "transformers/examples/legacy/pytorch-lightning/run_pos.sh", "repo_id": "transformers", "token_count": 440 }
63
#!/usr/bin/env python # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seq2seq_trainer import Seq2SeqTrainer from seq2seq_training_args import Seq2SeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( Seq2SeqDataCollator, Seq2SeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) tokenizer_name: Optional[str] = field( default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) freeze_encoder: bool = field(default=False, metadata={"help": "Whether tp freeze the encoder."}) freeze_embeds: bool = field(default=False, metadata={"help": "Whether to freeze the embeddings."}) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ data_dir: str = field( metadata={"help": "The input data dir. Should contain the .tsv files (or other data files) for the task."} ) task: Optional[str] = field( default="summarization", metadata={"help": "Task name, summarization (or summarization_{dataset} for pegasus) or translation"}, ) max_source_length: Optional[int] = field( default=1024, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) max_target_length: Optional[int] = field( default=128, metadata={ "help": ( "The maximum total sequence length for target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) val_max_target_length: Optional[int] = field( default=142, metadata={ "help": ( "The maximum total sequence length for validation target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded. " "This argument is also used to override the ``max_length`` param of ``model.generate``, which is used " "during ``evaluate`` and ``predict``." ) }, ) test_max_target_length: Optional[int] = field( default=142, metadata={ "help": ( "The maximum total sequence length for test target text after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) n_train: Optional[int] = field(default=-1, metadata={"help": "# training examples. -1 means use all."}) n_val: Optional[int] = field(default=-1, metadata={"help": "# validation examples. -1 means use all."}) n_test: Optional[int] = field(default=-1, metadata={"help": "# test examples. -1 means use all."}) src_lang: Optional[str] = field(default=None, metadata={"help": "Source language id for translation."}) tgt_lang: Optional[str] = field(default=None, metadata={"help": "Target language id for translation."}) eval_beams: Optional[int] = field(default=None, metadata={"help": "# num_beams to use for evaluation."}) ignore_pad_token_for_loss: bool = field( default=True, metadata={"help": "If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."}, ) def handle_metrics(split, metrics, output_dir): """ Log and save metrics Args: - split: one of train, val, test - metrics: metrics dict - output_dir: where to save the metrics """ logger.info(f"***** {split} metrics *****") for key in sorted(metrics.keys()): logger.info(f" {key} = {metrics[key]}") save_json(metrics, os.path.join(output_dir, f"{split}_results.json")) def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() check_output_dir(training_args) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED), training_args.fp16, ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() logger.info("Training/evaluation parameters %s", training_args) # Set seed set_seed(training_args.seed) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: if getattr(training_args, p, None): assert hasattr(config, p), f"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(config, p, getattr(training_args, p)) tokenizer = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, ) model = AutoModelForSeq2SeqLM.from_pretrained( model_args.model_name_or_path, from_tf=".ckpt" in model_args.model_name_or_path, config=config, cache_dir=model_args.cache_dir, ) # use task specific params use_task_specific_params(model, data_args.task) # set num_beams for evaluation if data_args.eval_beams is None: data_args.eval_beams = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(tokenizer, MBartTokenizer): model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.tgt_lang] else: model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.tgt_lang) if model_args.freeze_embeds: freeze_embeds(model) if model_args.freeze_encoder: freeze_params(model.get_encoder()) assert_all_frozen(model.get_encoder()) dataset_class = Seq2SeqDataset # Get datasets train_dataset = ( dataset_class( tokenizer, type_path="train", data_dir=data_args.data_dir, n_obs=data_args.n_train, max_target_length=data_args.max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_train else None ) eval_dataset = ( dataset_class( tokenizer, type_path="val", data_dir=data_args.data_dir, n_obs=data_args.n_val, max_target_length=data_args.val_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_eval or training_args.eval_strategy != EvaluationStrategy.NO else None ) test_dataset = ( dataset_class( tokenizer, type_path="test", data_dir=data_args.data_dir, n_obs=data_args.n_test, max_target_length=data_args.test_max_target_length, max_source_length=data_args.max_source_length, prefix=model.config.prefix or "", ) if training_args.do_predict else None ) # Initialize our Trainer compute_metrics_fn = ( build_compute_metrics_fn(data_args.task, tokenizer) if training_args.predict_with_generate else None ) trainer = Seq2SeqTrainer( model=model, args=training_args, data_args=data_args, train_dataset=train_dataset, eval_dataset=eval_dataset, data_collator=Seq2SeqDataCollator( tokenizer, data_args, model.config.decoder_start_token_id, training_args.tpu_num_cores ), compute_metrics=compute_metrics_fn, processing_class=tokenizer, ) all_metrics = {} # Training if training_args.do_train: logger.info("*** Train ***") train_result = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None ) metrics = train_result.metrics metrics["train_n_objs"] = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("train", metrics, training_args.output_dir) all_metrics.update(metrics) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir, "trainer_state.json")) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir) # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate(metric_key_prefix="val") metrics["val_n_objs"] = data_args.n_val metrics["val_loss"] = round(metrics["val_loss"], 4) if trainer.is_world_process_zero(): handle_metrics("val", metrics, training_args.output_dir) all_metrics.update(metrics) if training_args.do_predict: logger.info("*** Predict ***") test_output = trainer.predict(test_dataset=test_dataset, metric_key_prefix="test") metrics = test_output.metrics metrics["test_n_objs"] = data_args.n_test if trainer.is_world_process_zero(): metrics["test_loss"] = round(metrics["test_loss"], 4) handle_metrics("test", metrics, training_args.output_dir) all_metrics.update(metrics) if training_args.predict_with_generate: test_preds = tokenizer.batch_decode( test_output.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True ) test_preds = lmap(str.strip, test_preds) write_txt_file(test_preds, os.path.join(training_args.output_dir, "test_generations.txt")) if trainer.is_world_process_zero(): save_json(all_metrics, os.path.join(training_args.output_dir, "all_results.json")) return all_metrics def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers/examples/legacy/seq2seq/finetune_trainer.py/0
{ "file_path": "transformers/examples/legacy/seq2seq/finetune_trainer.py", "repo_id": "transformers", "token_count": 5726 }
64
#!/usr/bin/env python # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fire from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer def save_randomly_initialized_version(config_name: str, save_dir: str, **config_kwargs): """Save a randomly initialized version of a model using a pretrained config. Args: config_name: which config to use save_dir: where to save the resulting model and tokenizer config_kwargs: Passed to AutoConfig Usage:: save_randomly_initialized_version("facebook/bart-large-cnn", "distilbart_random_cnn_6_3", encoder_layers=6, decoder_layers=3, num_beams=3) """ cfg = AutoConfig.from_pretrained(config_name, **config_kwargs) model = AutoModelForSeq2SeqLM.from_config(cfg) model.save_pretrained(save_dir) AutoTokenizer.from_pretrained(config_name).save_pretrained(save_dir) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
transformers/examples/legacy/seq2seq/save_randomly_initialized_model.py/0
{ "file_path": "transformers/examples/legacy/seq2seq/save_randomly_initialized_model.py", "repo_id": "transformers", "token_count": 498 }
65
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. export WANDB_PROJECT=distilbart-trainer export BS=32 export m=sshleifer/student_cnn_12_6 export tok=facebook/bart-large export MAX_TGT_LEN=142 python finetune_trainer.py \ --model_name_or_path $m --tokenizer_name $tok \ --data_dir cnn_dm \ --output_dir distilbart-cnn-12-6 --overwrite_output_dir \ --learning_rate=3e-5 \ --warmup_steps 500 --sortish_sampler \ --fp16 \ --n_val 500 \ --gradient_accumulation_steps=1 \ --per_device_train_batch_size=$BS --per_device_eval_batch_size=$BS \ --freeze_encoder --freeze_embeds \ --num_train_epochs=2 \ --save_steps 3000 --eval_steps 3000 \ --logging_first_step \ --max_target_length 56 --val_max_target_length $MAX_TGT_LEN --test_max_target_length $MAX_TGT_LEN\ --do_train --do_eval --do_predict \ --eval_strategy steps \ --predict_with_generate --sortish_sampler \ "$@"
transformers/examples/legacy/seq2seq/train_distilbart_cnn.sh/0
{ "file_path": "transformers/examples/legacy/seq2seq/train_distilbart_cnn.sh", "repo_id": "transformers", "token_count": 540 }
66
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from examples/modular-transformers/modular_new_model.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_new_model.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # Example where we only want to overwrite the defaults of an init from ...configuration_utils import PretrainedConfig class NewModelConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`NewModelModel`]. It is used to instantiate an NewModel model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the NewModel-7B. e.g. [google/new_model-7b](https://huggingface.co/google/new_model-7b) Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 256000): Vocabulary size of the NewModel model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`NewModelModel`] hidden_size (`int`, *optional*, defaults to 3072): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 24576): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 28): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer decoder. num_key_value_heads (`int`, *optional*, defaults to 16): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details checkout [this paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `num_attention_heads`. head_dim (`int`, *optional*, defaults to 256): The attention head dimension. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The legacy activation function. It is overwritten by the `hidden_activation`. hidden_activation (`str` or `function`, *optional*): The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"` if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function. max_position_embeddings (`int`, *optional*, defaults to 8192): The maximum sequence length that this model might ever be used with. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. pad_token_id (`int`, *optional*, defaults to 0): Padding token id. eos_token_id (`int`, *optional*, defaults to 1): End of stream token id. bos_token_id (`int`, *optional*, defaults to 2): Beginning of stream token id. tie_word_embeddings (`bool`, *optional*, defaults to `True`): Whether to tie weight embeddings rope_theta (`float`, *optional*, defaults to 10000.0): The base period of the RoPE embeddings. attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`): Whether to use a bias in the query, key, value and output projection layers during self-attention. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. ```python >>> from transformers import NewModelModel, NewModelConfig >>> # Initializing a NewModel new_model-7b style configuration >>> configuration = NewModelConfig() >>> # Initializing a model from the new_model-7b style configuration >>> model = NewModelModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "new_model" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=256030, hidden_size=64, intermediate_size=90, num_hidden_layers=28, num_attention_heads=16, num_key_value_heads=16, head_dim=256, hidden_act="gelu_pytorch_tanh", hidden_activation=None, max_position_embeddings=1500, initializer_range=0.02, rms_norm_eps=1e-6, use_cache=True, pad_token_id=0, eos_token_id=1, bos_token_id=2, tie_word_embeddings=True, rope_theta=10000.0, attention_bias=False, attention_dropout=0.0, **kwargs, ): super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) self.vocab_size = vocab_size self.max_position_embeddings = max_position_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.head_dim = head_dim self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.hidden_activation = hidden_activation self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.attention_bias = attention_bias self.attention_dropout = attention_dropout @property def num_heads(self): return self.num_attention_heads
transformers/examples/modular-transformers/configuration_new_model.py/0
{ "file_path": "transformers/examples/modular-transformers/configuration_new_model.py", "repo_id": "transformers", "token_count": 3013 }
67
import torch from transformers.models.llama.modeling_llama import LlamaModel def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 4] x2 = x[..., x.shape[-1] // 4 :] return torch.cat((-x2, x1), dim=-1) # example where we need some deps and some functions class DummyModel(LlamaModel): pass
transformers/examples/modular-transformers/modular_dummy.py/0
{ "file_path": "transformers/examples/modular-transformers/modular_dummy.py", "repo_id": "transformers", "token_count": 142 }
68
#!/usr/bin/env python # coding=utf-8 # Copyright The HuggingFace Team and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning a 🤗 Transformers model on multiple choice relying on the accelerate library without using a Trainer. """ # You can also adapt this script on your own multiple choice task. Pointers for this are left as comments. import argparse import json import logging import math import os import random from dataclasses import dataclass from itertools import chain from pathlib import Path from typing import Optional, Union import datasets import evaluate import torch from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from datasets import load_dataset from huggingface_hub import HfApi from torch.utils.data import DataLoader from tqdm.auto import tqdm import transformers from transformers import ( CONFIG_MAPPING, MODEL_MAPPING, AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, PreTrainedTokenizerBase, SchedulerType, default_data_collator, get_scheduler, ) from transformers.utils import PaddingStrategy, check_min_version, send_example_telemetry # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.49.0.dev0") logger = get_logger(__name__) # You should update this to your particular problem to have better documentation of `model_type` MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def parse_args(): parser = argparse.ArgumentParser(description="Finetune a transformers model on a multiple choice task") parser.add_argument( "--dataset_name", type=str, default=None, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--train_file", type=str, default=None, help="A csv or a json file containing the training data." ) parser.add_argument( "--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_seq_length", type=int, default=128, help=( "The maximum total input sequence length after tokenization. Sequences longer than this will be truncated," " sequences shorter will be padded if `--pad_to_max_length` is passed." ), ) parser.add_argument( "--pad_to_max_length", action="store_true", help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=False, ) parser.add_argument( "--config_name", type=str, default=None, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--use_slow_tokenizer", action="store_true", help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).", ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--model_type", type=str, default=None, help="Model type to use if training from scratch.", choices=MODEL_TYPES, ) parser.add_argument( "--debug", action="store_true", help="Activate debug mode and run training only with a subset of data.", ) parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") parser.add_argument( "--trust_remote_code", action="store_true", help=( "Whether to trust the execution of code from datasets/models defined on the Hub." " This option should only be set to `True` for repositories you trust and in which you have read the" " code, as it will execute code present on the Hub on your local machine." ), ) parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to enable experiment trackers for logging.", ) parser.add_argument( "--report_to", type=str, default="all", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,' ' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations. ' "Only applicable when `--with_tracking` is passed." ), ) args = parser.parse_args() if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." return args @dataclass class DataCollatorForMultipleChoice: """ Data collator that will dynamically pad the inputs for multiple choice received. Args: tokenizer ([`PreTrainedTokenizer`] or [`PreTrainedTokenizerFast`]): The tokenizer used for encoding the data. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (`int`, *optional*): Maximum length of the returned list and optionally padding length (see above). pad_to_multiple_of (`int`, *optional*): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). """ tokenizer: PreTrainedTokenizerBase padding: Union[bool, str, PaddingStrategy] = True max_length: Optional[int] = None pad_to_multiple_of: Optional[int] = None def __call__(self, features): label_name = "label" if "label" in features[0].keys() else "labels" labels = [feature.pop(label_name) for feature in features] batch_size = len(features) num_choices = len(features[0]["input_ids"]) flattened_features = [ [{k: v[i] for k, v in feature.items()} for i in range(num_choices)] for feature in features ] flattened_features = list(chain(*flattened_features)) batch = self.tokenizer.pad( flattened_features, padding=self.padding, max_length=self.max_length, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) # Un-flatten batch = {k: v.view(batch_size, num_choices, -1) for k, v in batch.items()} # Add back labels batch["labels"] = torch.tensor(labels, dtype=torch.int64) return batch def main(): args = parse_args() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_swag_no_trainer", args) # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. # If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers # in the environment accelerator_log_kwargs = {} if args.with_tracking: accelerator_log_kwargs["log_with"] = args.report_to accelerator_log_kwargs["project_dir"] = args.output_dir accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, **accelerator_log_kwargs) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: # Retrieve of infer repo_name repo_name = args.hub_model_id if repo_name is None: repo_name = Path(args.output_dir).absolute().name # Create repo and retrieve repo_id api = HfApi() repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( args.dataset_name, args.dataset_config_name, trust_remote_code=args.trust_remote_code ) else: data_files = {} if args.train_file is not None: data_files["train"] = args.train_file extension = args.train_file.split(".")[-1] if args.validation_file is not None: data_files["validation"] = args.validation_file extension = args.validation_file.split(".")[-1] raw_datasets = load_dataset(extension, data_files=data_files) # Trim a number of training examples if args.debug: for split in raw_datasets.keys(): raw_datasets[split] = raw_datasets[split].select(range(100)) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. if raw_datasets["train"] is not None: column_names = raw_datasets["train"].column_names else: column_names = raw_datasets["validation"].column_names # When using your own dataset or a different dataset from swag, you will probably need to change this. ending_names = [f"ending{i}" for i in range(4)] context_name = "sent1" question_header_name = "sent2" label_column_name = "label" if "label" in column_names else "labels" # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if args.config_name: config = AutoConfig.from_pretrained(args.model_name_or_path, trust_remote_code=args.trust_remote_code) elif args.model_name_or_path: config = AutoConfig.from_pretrained(args.model_name_or_path, trust_remote_code=args.trust_remote_code) else: config = CONFIG_MAPPING[args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") if args.tokenizer_name: tokenizer = AutoTokenizer.from_pretrained( args.tokenizer_name, use_fast=not args.use_slow_tokenizer, trust_remote_code=args.trust_remote_code ) elif args.model_name_or_path: tokenizer = AutoTokenizer.from_pretrained( args.model_name_or_path, use_fast=not args.use_slow_tokenizer, trust_remote_code=args.trust_remote_code ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script. " "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if args.model_name_or_path: model = AutoModelForMultipleChoice.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, trust_remote_code=args.trust_remote_code, ) else: logger.info("Training new model from scratch") model = AutoModelForMultipleChoice.from_config(config, trust_remote_code=args.trust_remote_code) # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch # on a small vocab and want a smaller embedding size, remove this test. embedding_size = model.get_input_embeddings().weight.shape[0] if len(tokenizer) > embedding_size: model.resize_token_embeddings(len(tokenizer)) # Preprocessing the datasets. # First we tokenize all the texts. padding = "max_length" if args.pad_to_max_length else False def preprocess_function(examples): first_sentences = [[context] * 4 for context in examples[context_name]] question_headers = examples[question_header_name] second_sentences = [ [f"{header} {examples[end][i]}" for end in ending_names] for i, header in enumerate(question_headers) ] labels = examples[label_column_name] # Flatten out first_sentences = list(chain(*first_sentences)) second_sentences = list(chain(*second_sentences)) # Tokenize tokenized_examples = tokenizer( first_sentences, second_sentences, max_length=args.max_seq_length, padding=padding, truncation=True, ) # Un-flatten tokenized_inputs = {k: [v[i : i + 4] for i in range(0, len(v), 4)] for k, v in tokenized_examples.items()} tokenized_inputs["labels"] = labels return tokenized_inputs with accelerator.main_process_first(): processed_datasets = raw_datasets.map( preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names ) train_dataset = processed_datasets["train"] eval_dataset = processed_datasets["validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # DataLoaders creation: if args.pad_to_max_length: # If padding was already done ot max length, we use the default data collator that will just convert everything # to tensors. data_collator = default_data_collator else: # Otherwise, `DataCollatorWithPadding` will apply dynamic padding for us (by padding to the maximum length of # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). # For fp8, we pad to multiple of 16. if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None data_collator = DataCollatorForMultipleChoice(tokenizer, pad_to_multiple_of=pad_to_multiple_of) train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size) # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate) # Use the device given by the `accelerator` object. device = accelerator.device model.to(device) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps * accelerator.num_processes, num_training_steps=args.max_train_steps if overrode_max_train_steps else args.max_train_steps * accelerator.num_processes, ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # Figure out how many steps we should save the Accelerator states checkpointing_steps = args.checkpointing_steps if checkpointing_steps is not None and checkpointing_steps.isdigit(): checkpointing_steps = int(checkpointing_steps) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if args.with_tracking: experiment_config = vars(args) # TensorBoard cannot log Enums, need the raw value experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value accelerator.init_trackers("swag_no_trainer", experiment_config) # Metrics metric = evaluate.load("accuracy") # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 starting_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": checkpoint_path = args.resume_from_checkpoint path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last checkpoint_path = path path = os.path.basename(checkpoint_path) accelerator.print(f"Resumed from checkpoint: {checkpoint_path}") accelerator.load_state(checkpoint_path) # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("epoch_", "")) + 1 resume_step = None completed_steps = starting_epoch * num_update_steps_per_epoch else: # need to multiply `gradient_accumulation_steps` to reflect real steps resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps starting_epoch = resume_step // len(train_dataloader) completed_steps = resume_step // args.gradient_accumulation_steps resume_step -= starting_epoch * len(train_dataloader) # update the progress_bar if load from checkpoint progress_bar.update(completed_steps) for epoch in range(starting_epoch, args.num_train_epochs): model.train() if args.with_tracking: total_loss = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We skip the first `n` batches in the dataloader when resuming from a checkpoint active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) else: active_dataloader = train_dataloader for step, batch in enumerate(active_dataloader): with accelerator.accumulate(model): outputs = model(**batch) loss = outputs.loss # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(loss) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) completed_steps += 1 if isinstance(checkpointing_steps, int): if completed_steps % checkpointing_steps == 0 and accelerator.sync_gradients: output_dir = f"step_{completed_steps}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if completed_steps >= args.max_train_steps: break model.eval() for step, batch in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) predictions, references = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=predictions, references=references, ) eval_metric = metric.compute() accelerator.print(f"epoch {epoch}: {eval_metric}") if args.with_tracking: accelerator.log( { "accuracy": eval_metric, "train_loss": total_loss.item() / len(train_dataloader), "epoch": epoch, "step": completed_steps, }, step=completed_steps, ) if args.push_to_hub and epoch < args.num_train_epochs - 1: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) api.upload_folder( commit_message=f"Training in progress epoch {epoch}", folder_path=args.output_dir, repo_id=repo_id, repo_type="model", token=args.hub_token, ) if args.checkpointing_steps == "epoch": output_dir = f"epoch_{epoch}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if args.with_tracking: accelerator.end_training() if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) if args.push_to_hub: api.upload_folder( commit_message="End of training", folder_path=args.output_dir, repo_id=repo_id, repo_type="model", token=args.hub_token, ) all_results = {f"eval_{k}": v for k, v in eval_metric.items()} with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: json.dump(all_results, f) if __name__ == "__main__": main()
transformers/examples/pytorch/multiple-choice/run_swag_no_trainer.py/0
{ "file_path": "transformers/examples/pytorch/multiple-choice/run_swag_no_trainer.py", "repo_id": "transformers", "token_count": 12214 }
69
<!--- Copyright 2022 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> # Semantic segmentation examples This directory contains 2 scripts that showcase how to fine-tune any model supported by the [`AutoModelForSemanticSegmentation` API](https://huggingface.co/docs/transformers/main/en/model_doc/auto#transformers.AutoModelForSemanticSegmentation) (such as [SegFormer](https://huggingface.co/docs/transformers/main/en/model_doc/segformer), [BEiT](https://huggingface.co/docs/transformers/main/en/model_doc/beit), [DPT](https://huggingface.co/docs/transformers/main/en/model_doc/dpt)) using PyTorch. ![segformer_inference_widget](https://user-images.githubusercontent.com/48327001/163667406-01f323a6-72ec-4e7e-bdeb-7d9da71b0697.gif) Content: * [Note on custom data](#note-on-custom-data) * [PyTorch version, Trainer](#pytorch-version-trainer) * [PyTorch version, no Trainer](#pytorch-version-no-trainer) * [Reload and perform inference](#reload-and-perform-inference) * [Important notes](#important-notes) ## Note on custom data In case you'd like to use the script with custom data, there are 2 things required: 1) creating a DatasetDict 2) creating an id2label mapping. Below, these are explained in more detail. ### Creating a `DatasetDict` The script assumes that you have a `DatasetDict` with 2 columns, "image" and "label", both of type [Image](https://huggingface.co/docs/datasets/package_reference/main_classes#datasets.Image). This can be created as follows: ```python from datasets import Dataset, DatasetDict, Image # your images can of course have a different extension # semantic segmentation maps are typically stored in the png format image_paths_train = ["path/to/image_1.jpg/jpg", "path/to/image_2.jpg/jpg", ..., "path/to/image_n.jpg/jpg"] label_paths_train = ["path/to/annotation_1.png", "path/to/annotation_2.png", ..., "path/to/annotation_n.png"] # same for validation # image_paths_validation = [...] # label_paths_validation = [...] def create_dataset(image_paths, label_paths): dataset = Dataset.from_dict({"image": sorted(image_paths), "label": sorted(label_paths)}) dataset = dataset.cast_column("image", Image()) dataset = dataset.cast_column("label", Image()) return dataset # step 1: create Dataset objects train_dataset = create_dataset(image_paths_train, label_paths_train) validation_dataset = create_dataset(image_paths_validation, label_paths_validation) # step 2: create DatasetDict dataset = DatasetDict({ "train": train_dataset, "validation": validation_dataset, } ) # step 3: push to hub (assumes you have ran the huggingface-cli login command in a terminal/notebook) dataset.push_to_hub("name of repo on the hub") # optionally, you can push to a private repo on the hub # dataset.push_to_hub("name of repo on the hub", private=True) ``` An example of such a dataset can be seen at [nielsr/ade20k-demo](https://huggingface.co/datasets/nielsr/ade20k-demo). ### Creating an id2label mapping Besides that, the script also assumes the existence of an `id2label.json` file in the repo, containing a mapping from integers to actual class names. An example of that can be seen [here](https://huggingface.co/datasets/nielsr/ade20k-demo/blob/main/id2label.json). This can be created in Python as follows: ```python import json # simple example id2label = {0: 'cat', 1: 'dog'} with open('id2label.json', 'w') as fp: json.dump(id2label, fp) ``` You can easily upload this by clicking on "Add file" in the "Files and versions" tab of your repo on the hub. ## PyTorch version, Trainer Based on the script [`run_semantic_segmentation.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/semantic-segmentation/run_semantic_segmentation.py). The script leverages the [🤗 Trainer API](https://huggingface.co/docs/transformers/main_classes/trainer) to automatically take care of the training for you, running on distributed environments right away. Here we show how to fine-tune a [SegFormer](https://huggingface.co/nvidia/mit-b0) model on the [segments/sidewalk-semantic](https://huggingface.co/datasets/segments/sidewalk-semantic) dataset: In order to use `segments/sidewalk-semantic`: - Log in to Hugging Face with `huggingface-cli login` (token can be accessed [here](https://huggingface.co/settings/tokens)). - Accept terms of use for `sidewalk-semantic` on [dataset page](https://huggingface.co/datasets/segments/sidewalk-semantic). ```bash python run_semantic_segmentation.py \ --model_name_or_path nvidia/mit-b0 \ --dataset_name segments/sidewalk-semantic \ --output_dir ./segformer_outputs/ \ --remove_unused_columns False \ --do_train \ --do_eval \ --push_to_hub \ --push_to_hub_model_id segformer-finetuned-sidewalk-10k-steps \ --max_steps 10000 \ --learning_rate 0.00006 \ --lr_scheduler_type polynomial \ --per_device_train_batch_size 8 \ --per_device_eval_batch_size 8 \ --logging_strategy steps \ --logging_steps 100 \ --eval_strategy epoch \ --save_strategy epoch \ --seed 1337 ``` The resulting model can be seen here: https://huggingface.co/nielsr/segformer-finetuned-sidewalk-10k-steps. The corresponding Weights and Biases report [here](https://wandb.ai/nielsrogge/huggingface/reports/SegFormer-fine-tuning--VmlldzoxODY5NTQ2). Note that it's always advised to check the original paper to know the details regarding training hyperparameters. E.g. from the SegFormer paper: > We trained the models using AdamW optimizer for 160K iterations on ADE20K, Cityscapes, and 80K iterations on COCO-Stuff. (...) We used a batch size of 16 for ADE20K and COCO-Stuff, and a batch size of 8 for Cityscapes. The learning rate was set to an initial value of 0.00006 and then used a “poly” LR schedule with factor 1.0 by default. Note that you can replace the model and dataset by simply setting the `model_name_or_path` and `dataset_name` arguments respectively, with any model or dataset from the [hub](https://huggingface.co/). For an overview of all possible arguments, we refer to the [docs](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments) of the `TrainingArguments`, which can be passed as flags. ## PyTorch version, no Trainer Based on the script [`run_semantic_segmentation_no_trainer.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/semantic-segmentation/run_semantic_segmentation.py). The script leverages [🤗 `Accelerate`](https://github.com/huggingface/accelerate), which allows to write your own training loop in PyTorch, but have it run instantly on any (distributed) environment, including CPU, multi-CPU, GPU, multi-GPU and TPU. It also supports mixed precision. First, run: ```bash accelerate config ``` and reply to the questions asked regarding the environment on which you'd like to train. Then ```bash accelerate test ``` that will check everything is ready for training. Finally, you can launch training with ```bash accelerate launch run_semantic_segmentation_no_trainer.py --output_dir segformer-finetuned-sidewalk --with_tracking --push_to_hub ``` and boom, you're training, possibly on multiple GPUs, logging everything to all trackers found in your environment (like Weights and Biases, Tensorboard) and regularly pushing your model to the hub (with the repo name being equal to `args.output_dir` at your HF username) 🤗 With the default settings, the script fine-tunes a [SegFormer]((https://huggingface.co/docs/transformers/main/en/model_doc/segformer)) model on the [segments/sidewalk-semantic](https://huggingface.co/datasets/segments/sidewalk-semantic) dataset. The resulting model can be seen here: https://huggingface.co/nielsr/segformer-finetuned-sidewalk. Note that the script usually requires quite a few epochs to achieve great results, e.g. the SegFormer authors fine-tuned their model for 160k steps (batches) on [`scene_parse_150`](https://huggingface.co/datasets/scene_parse_150). ## Reload and perform inference This means that after training, you can easily load your trained model as follows: ```python from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation model_name = "name_of_repo_on_the_hub_or_path_to_local_folder" image_processor = AutoImageProcessor.from_pretrained(model_name) model = AutoModelForSemanticSegmentation.from_pretrained(model_name) ``` and perform inference as follows: ```python from PIL import Image import requests import torch url = "http://images.cocodataset.org/val2017/000000039769.jpg" image = Image.open(requests.get(url, stream=True).raw) # prepare image for the model inputs = image_processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits # rescale logits to original image size logits = nn.functional.interpolate(outputs.logits.detach().cpu(), size=image.size[::-1], # (height, width) mode='bilinear', align_corners=False) predicted = logits.argmax(1) ``` For visualization of the segmentation maps, we refer to the [example notebook](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/SegFormer/Segformer_inference_notebook.ipynb). ## Important notes Some datasets, like [`scene_parse_150`](https://huggingface.co/datasets/scene_parse_150), contain a "background" label that is not part of the classes. The Scene Parse 150 dataset for instance contains labels between 0 and 150, with 0 being the background class, and 1 to 150 being actual class names (like "tree", "person", etc.). For these kind of datasets, one replaces the background label (0) by 255, which is the `ignore_index` of the PyTorch model's loss function, and reduces all labels by 1. This way, the `labels` are PyTorch tensors containing values between 0 and 149, and 255 for all background/padding. In case you're training on such a dataset, make sure to set the ``do_reduce_labels`` flag, which will take care of this.
transformers/examples/pytorch/semantic-segmentation/README.md/0
{ "file_path": "transformers/examples/pytorch/semantic-segmentation/README.md", "repo_id": "transformers", "token_count": 3502 }
70
# coding=utf-8 # Copyright 2018 HuggingFace Inc.. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock from accelerate.utils import write_basic_config from transformers.testing_utils import ( TestCasePlus, backend_device_count, run_command, slow, torch_device, ) logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() def get_setup_file(): parser = argparse.ArgumentParser() parser.add_argument("-f") args = parser.parse_args() return args.f def get_results(output_dir): results = {} path = os.path.join(output_dir, "all_results.json") if os.path.exists(path): with open(path, "r") as f: results = json.load(f) else: raise ValueError(f"can't find {path}") return results stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class ExamplesTestsNoTrainer(TestCasePlus): @classmethod def setUpClass(cls): # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU cls.tmpdir = tempfile.mkdtemp() cls.configPath = os.path.join(cls.tmpdir, "default_config.yml") write_basic_config(save_location=cls.configPath) cls._launch_args = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def tearDownClass(cls): shutil.rmtree(cls.tmpdir) @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"}) def test_run_glue_no_trainer(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert/distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --num_warmup_steps=2 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs) result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_accuracy"], 0.75) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "glue_no_trainer"))) @unittest.skip("Zach is working on this.") @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"}) def test_run_clm_no_trainer(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilbert/distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if backend_device_count(torch_device) > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs) result = get_results(tmp_dir) self.assertLess(result["perplexity"], 100) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "clm_no_trainer"))) @unittest.skip("Zach is working on this.") @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"}) def test_run_mlm_no_trainer(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilbert/distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs) result = get_results(tmp_dir) self.assertLess(result["perplexity"], 42) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "mlm_no_trainer"))) @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"}) def test_run_ner_no_trainer(self): # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu epochs = 7 if backend_device_count(torch_device) > 1 else 2 tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path google-bert/bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs) result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_accuracy"], 0.75) self.assertLess(result["train_loss"], 0.6) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "ner_no_trainer"))) @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"}) def test_run_squad_no_trainer(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path google-bert/bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs) result = get_results(tmp_dir) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"], 28) self.assertGreaterEqual(result["eval_exact"], 28) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "qa_no_trainer"))) @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"}) def test_run_swag_no_trainer(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path google-bert/bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs) result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_accuracy"], 0.8) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "swag_no_trainer"))) @slow @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"}) def test_run_summarization_no_trainer(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path google-t5/t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs) result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_rouge1"], 10) self.assertGreaterEqual(result["eval_rouge2"], 2) self.assertGreaterEqual(result["eval_rougeL"], 7) self.assertGreaterEqual(result["eval_rougeLsum"], 7) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "summarization_no_trainer"))) @slow @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"}) def test_run_translation_no_trainer(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs) result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_bleu"], 30) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "epoch_0"))) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "translation_no_trainer"))) @slow def test_run_semantic_segmentation_no_trainer(self): stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs) result = get_results(tmp_dir) self.assertGreaterEqual(result["eval_overall_accuracy"], 0.10) @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"}) def test_run_image_classification_no_trainer(self): tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --trust_remote_code --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 --label_column_name labels """.split() run_command(self._launch_args + testargs) result = get_results(tmp_dir) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"], 0.4) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "step_1"))) self.assertTrue(os.path.exists(os.path.join(tmp_dir, "image_classification_no_trainer"))) @slow @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"}) def test_run_object_detection_no_trainer(self): stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" {self.examples_dir}/pytorch/object-detection/run_object_detection_no_trainer.py --model_name_or_path qubvel-hf/detr-resnet-50-finetuned-10k-cppe5 --dataset_name qubvel-hf/cppe-5-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=1e-6 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs) result = get_results(tmp_dir) self.assertGreaterEqual(result["test_map"], 0.10) @slow @mock.patch.dict(os.environ, {"WANDB_MODE": "offline", "DVCLIVE_TEST": "true"}) def test_run_instance_segmentation_no_trainer(self): stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) tmp_dir = self.get_auto_remove_tmp_dir() testargs = f""" {self.examples_dir}/pytorch/instance-segmentation/run_instance_segmentation_no_trainer.py --model_name_or_path qubvel-hf/finetune-instance-segmentation-ade20k-mini-mask2former --output_dir {tmp_dir} --dataset_name qubvel-hf/ade20k-nano --do_reduce_labels --image_height 256 --image_width 256 --num_train_epochs 1 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --seed 1234 """.split() run_command(self._launch_args + testargs) result = get_results(tmp_dir) self.assertGreaterEqual(result["test_map"], 0.1)
transformers/examples/pytorch/test_accelerate_examples.py/0
{ "file_path": "transformers/examples/pytorch/test_accelerate_examples.py", "repo_id": "transformers", "token_count": 7396 }
71
#!/usr/bin/env python # coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning a 🤗 Transformers model on token classification tasks (NER, POS, CHUNKS) relying on the accelerate library without using a Trainer. """ import argparse import json import logging import math import os import random from pathlib import Path import datasets import evaluate import numpy as np import torch from accelerate import Accelerator from accelerate.logging import get_logger from accelerate.utils import set_seed from datasets import ClassLabel, load_dataset from huggingface_hub import HfApi from torch.utils.data import DataLoader from tqdm.auto import tqdm import transformers from transformers import ( CONFIG_MAPPING, MODEL_MAPPING, AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorForTokenClassification, PretrainedConfig, SchedulerType, default_data_collator, get_scheduler, ) from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.49.0.dev0") logger = get_logger(__name__) require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt") # You should update this to your particular problem to have better documentation of `model_type` MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def parse_args(): parser = argparse.ArgumentParser( description="Finetune a transformers model on a text classification task (NER) with accelerate library" ) parser.add_argument( "--dataset_name", type=str, default=None, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--train_file", type=str, default=None, help="A csv or a json file containing the training data." ) parser.add_argument( "--validation_file", type=str, default=None, help="A csv or a json file containing the validation data." ) parser.add_argument( "--text_column_name", type=str, default=None, help="The column name of text to input in the file (a csv or JSON file).", ) parser.add_argument( "--label_column_name", type=str, default=None, help="The column name of label to input in the file (a csv or JSON file).", ) parser.add_argument( "--max_length", type=int, default=128, help=( "The maximum total input sequence length after tokenization. Sequences longer than this will be truncated," " sequences shorter will be padded if `--pad_to_max_length` is passed." ), ) parser.add_argument( "--pad_to_max_length", action="store_true", help="If passed, pad all samples to `max_length`. Otherwise, dynamic padding is used.", ) parser.add_argument( "--model_name_or_path", type=str, help="Path to pretrained model or model identifier from huggingface.co/models.", required=False, ) parser.add_argument( "--config_name", type=str, default=None, help="Pretrained config name or path if not the same as model_name", ) parser.add_argument( "--tokenizer_name", type=str, default=None, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--per_device_train_batch_size", type=int, default=8, help="Batch size (per device) for the training dataloader.", ) parser.add_argument( "--per_device_eval_batch_size", type=int, default=8, help="Batch size (per device) for the evaluation dataloader.", ) parser.add_argument( "--learning_rate", type=float, default=5e-5, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument("--weight_decay", type=float, default=0.0, help="Weight decay to use.") parser.add_argument("--num_train_epochs", type=int, default=3, help="Total number of training epochs to perform.") parser.add_argument( "--max_train_steps", type=int, default=None, help="Total number of training steps to perform. If provided, overrides num_train_epochs.", ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.", choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"], ) parser.add_argument( "--num_warmup_steps", type=int, default=0, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.") parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") parser.add_argument( "--model_type", type=str, default=None, help="Model type to use if training from scratch.", choices=MODEL_TYPES, ) parser.add_argument( "--label_all_tokens", action="store_true", help="Setting labels of all special tokens to -100 and thus PyTorch will ignore them.", ) parser.add_argument( "--return_entity_level_metrics", action="store_true", help="Indication whether entity level metrics are to be returner.", ) parser.add_argument( "--task_name", type=str, default="ner", choices=["ner", "pos", "chunk"], help="The name of the task.", ) parser.add_argument( "--debug", action="store_true", help="Activate debug mode and run training only with a subset of data.", ) parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument( "--hub_model_id", type=str, help="The name of the repository to keep in sync with the local `output_dir`." ) parser.add_argument("--hub_token", type=str, help="The token to use to push to the Model Hub.") parser.add_argument( "--trust_remote_code", action="store_true", help=( "Whether to trust the execution of code from datasets/models defined on the Hub." " This option should only be set to `True` for repositories you trust and in which you have read the" " code, as it will execute code present on the Hub on your local machine." ), ) parser.add_argument( "--checkpointing_steps", type=str, default=None, help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.", ) parser.add_argument( "--resume_from_checkpoint", type=str, default=None, help="If the training should continue from a checkpoint folder.", ) parser.add_argument( "--with_tracking", action="store_true", help="Whether to enable experiment trackers for logging.", ) parser.add_argument( "--report_to", type=str, default="all", help=( 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,' ' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations. ' "Only applicable when `--with_tracking` is passed." ), ) parser.add_argument( "--ignore_mismatched_sizes", action="store_true", help="Whether or not to enable to load a pretrained model whose head dimensions are different.", ) args = parser.parse_args() # Sanity checks if args.task_name is None and args.train_file is None and args.validation_file is None: raise ValueError("Need either a task name or a training/validation file.") else: if args.train_file is not None: extension = args.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if args.validation_file is not None: extension = args.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." if args.push_to_hub: assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed." return args def main(): args = parse_args() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_ner_no_trainer", args) # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. # If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers # in the environment accelerator = ( Accelerator(log_with=args.report_to, project_dir=args.output_dir) if args.with_tracking else Accelerator() ) # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) logger.info(accelerator.state, main_process_only=False) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: # Retrieve of infer repo_name repo_name = args.hub_model_id if repo_name is None: repo_name = Path(args.output_dir).absolute().name # Create repo and retrieve repo_id api = HfApi() repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) accelerator.wait_for_everyone() # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets for token classification task available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'tokens' or the first column if no column called # 'tokens' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if args.dataset_name is not None: # Downloading and loading a dataset from the hub. raw_datasets = load_dataset( args.dataset_name, args.dataset_config_name, trust_remote_code=args.trust_remote_code ) else: data_files = {} if args.train_file is not None: data_files["train"] = args.train_file extension = args.train_file.split(".")[-1] if args.validation_file is not None: data_files["validation"] = args.validation_file extension = args.validation_file.split(".")[-1] raw_datasets = load_dataset(extension, data_files=data_files) # Trim a number of training examples if args.debug: for split in raw_datasets.keys(): raw_datasets[split] = raw_datasets[split].select(range(100)) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. if raw_datasets["train"] is not None: column_names = raw_datasets["train"].column_names features = raw_datasets["train"].features else: column_names = raw_datasets["validation"].column_names features = raw_datasets["validation"].features if args.text_column_name is not None: text_column_name = args.text_column_name elif "tokens" in column_names: text_column_name = "tokens" else: text_column_name = column_names[0] if args.label_column_name is not None: label_column_name = args.label_column_name elif f"{args.task_name}_tags" in column_names: label_column_name = f"{args.task_name}_tags" else: label_column_name = column_names[1] # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the # unique labels. def get_label_list(labels): unique_labels = set() for label in labels: unique_labels = unique_labels | set(label) label_list = list(unique_labels) label_list.sort() return label_list # If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere. # Otherwise, we have to get the list of labels manually. labels_are_int = isinstance(features[label_column_name].feature, ClassLabel) if labels_are_int: label_list = features[label_column_name].feature.names label_to_id = {i: i for i in range(len(label_list))} else: label_list = get_label_list(raw_datasets["train"][label_column_name]) label_to_id = {l: i for i, l in enumerate(label_list)} num_labels = len(label_list) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if args.config_name: config = AutoConfig.from_pretrained( args.config_name, num_labels=num_labels, trust_remote_code=args.trust_remote_code ) elif args.model_name_or_path: config = AutoConfig.from_pretrained( args.model_name_or_path, num_labels=num_labels, trust_remote_code=args.trust_remote_code ) else: config = CONFIG_MAPPING[args.model_type]() logger.warning("You are instantiating a new config instance from scratch.") tokenizer_name_or_path = args.tokenizer_name if args.tokenizer_name else args.model_name_or_path if not tokenizer_name_or_path: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script. " "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) if config.model_type in {"bloom", "gpt2", "roberta"}: tokenizer = AutoTokenizer.from_pretrained( tokenizer_name_or_path, use_fast=True, add_prefix_space=True, trust_remote_code=args.trust_remote_code ) else: tokenizer = AutoTokenizer.from_pretrained( tokenizer_name_or_path, use_fast=True, trust_remote_code=args.trust_remote_code ) if args.model_name_or_path: model = AutoModelForTokenClassification.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, ignore_mismatched_sizes=args.ignore_mismatched_sizes, trust_remote_code=args.trust_remote_code, ) else: logger.info("Training new model from scratch") model = AutoModelForTokenClassification.from_config(config, trust_remote_code=args.trust_remote_code) # We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch # on a small vocab and want a smaller embedding size, remove this test. embedding_size = model.get_input_embeddings().weight.shape[0] if len(tokenizer) > embedding_size: embedding_size = model.get_input_embeddings().weight.shape[0] if len(tokenizer) > embedding_size: model.resize_token_embeddings(len(tokenizer)) # Model has labels -> use them. if model.config.label2id != PretrainedConfig(num_labels=num_labels).label2id: if sorted(model.config.label2id.keys()) == sorted(label_list): # Reorganize `label_list` to match the ordering of the model. if labels_are_int: label_to_id = {i: int(model.config.label2id[l]) for i, l in enumerate(label_list)} label_list = [model.config.id2label[i] for i in range(num_labels)] else: label_list = [model.config.id2label[i] for i in range(num_labels)] label_to_id = {l: i for i, l in enumerate(label_list)} else: logger.warning( "Your model seems to have been trained with labels, but they don't match the dataset: " f"model labels: {sorted(model.config.label2id.keys())}, dataset labels:" f" {sorted(label_list)}.\nIgnoring the model labels as a result.", ) # Set the correspondences label/ID inside the model config model.config.label2id = {l: i for i, l in enumerate(label_list)} model.config.id2label = dict(enumerate(label_list)) # Map that sends B-Xxx label to its I-Xxx counterpart b_to_i_label = [] for idx, label in enumerate(label_list): if label.startswith("B-") and label.replace("B-", "I-") in label_list: b_to_i_label.append(label_list.index(label.replace("B-", "I-"))) else: b_to_i_label.append(idx) # Preprocessing the datasets. # First we tokenize all the texts. padding = "max_length" if args.pad_to_max_length else False # Tokenize all texts and align the labels with them. def tokenize_and_align_labels(examples): tokenized_inputs = tokenizer( examples[text_column_name], max_length=args.max_length, padding=padding, truncation=True, # We use this argument because the texts in our dataset are lists of words (with a label for each word). is_split_into_words=True, ) labels = [] for i, label in enumerate(examples[label_column_name]): word_ids = tokenized_inputs.word_ids(batch_index=i) previous_word_idx = None label_ids = [] for word_idx in word_ids: # Special tokens have a word id that is None. We set the label to -100 so they are automatically # ignored in the loss function. if word_idx is None: label_ids.append(-100) # We set the label for the first token of each word. elif word_idx != previous_word_idx: label_ids.append(label_to_id[label[word_idx]]) # For the other tokens in a word, we set the label to either the current label or -100, depending on # the label_all_tokens flag. else: if args.label_all_tokens: label_ids.append(b_to_i_label[label_to_id[label[word_idx]]]) else: label_ids.append(-100) previous_word_idx = word_idx labels.append(label_ids) tokenized_inputs["labels"] = labels return tokenized_inputs with accelerator.main_process_first(): processed_raw_datasets = raw_datasets.map( tokenize_and_align_labels, batched=True, remove_columns=raw_datasets["train"].column_names, desc="Running tokenizer on dataset", ) train_dataset = processed_raw_datasets["train"] eval_dataset = processed_raw_datasets["validation"] # Log a few random samples from the training set: for index in random.sample(range(len(train_dataset)), 3): logger.info(f"Sample {index} of the training set: {train_dataset[index]}.") # DataLoaders creation: if args.pad_to_max_length: # If padding was already done ot max length, we use the default data collator that will just convert everything # to tensors. data_collator = default_data_collator else: # Otherwise, `DataCollatorForTokenClassification` will apply dynamic padding for us (by padding to the maximum length of # the samples passed). When using mixed precision, we add `pad_to_multiple_of=8` to pad all tensors to multiple # of 8s, which will enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). # For fp8, we pad to multiple of 16. if accelerator.mixed_precision == "fp8": pad_to_multiple_of = 16 elif accelerator.mixed_precision != "no": pad_to_multiple_of = 8 else: pad_to_multiple_of = None data_collator = DataCollatorForTokenClassification(tokenizer, pad_to_multiple_of=pad_to_multiple_of) train_dataloader = DataLoader( train_dataset, shuffle=True, collate_fn=data_collator, batch_size=args.per_device_train_batch_size ) eval_dataloader = DataLoader(eval_dataset, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size) # Optimizer # Split weights in two groups, one with weight decay and the other not. no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, { "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0, }, ] optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate) # Use the device given by the `accelerator` object. device = accelerator.device model.to(device) # Scheduler and math around the number of training steps. overrode_max_train_steps = False num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if args.max_train_steps is None: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch overrode_max_train_steps = True lr_scheduler = get_scheduler( name=args.lr_scheduler_type, optimizer=optimizer, num_warmup_steps=args.num_warmup_steps, num_training_steps=args.max_train_steps, ) # Prepare everything with our `accelerator`. model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, eval_dataloader, lr_scheduler ) # We need to recalculate our total training steps as the size of the training dataloader may have changed. num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) if overrode_max_train_steps: args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch # Afterwards we recalculate our number of training epochs args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) # Figure out how many steps we should save the Accelerator states checkpointing_steps = args.checkpointing_steps if checkpointing_steps is not None and checkpointing_steps.isdigit(): checkpointing_steps = int(checkpointing_steps) # We need to initialize the trackers we use, and also store our configuration. # The trackers initializes automatically on the main process. if args.with_tracking: experiment_config = vars(args) # TensorBoard cannot log Enums, need the raw value experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value accelerator.init_trackers("ner_no_trainer", experiment_config) # Metrics metric = evaluate.load("seqeval") def get_labels(predictions, references): # Transform predictions and references tensos to numpy arrays if device.type == "cpu": y_pred = predictions.detach().clone().numpy() y_true = references.detach().clone().numpy() else: y_pred = predictions.detach().cpu().clone().numpy() y_true = references.detach().cpu().clone().numpy() # Remove ignored index (special tokens) true_predictions = [ [label_list[p] for (p, l) in zip(pred, gold_label) if l != -100] for pred, gold_label in zip(y_pred, y_true) ] true_labels = [ [label_list[l] for (p, l) in zip(pred, gold_label) if l != -100] for pred, gold_label in zip(y_pred, y_true) ] return true_predictions, true_labels def compute_metrics(): results = metric.compute() if args.return_entity_level_metrics: # Unpack nested dictionaries final_results = {} for key, value in results.items(): if isinstance(value, dict): for n, v in value.items(): final_results[f"{key}_{n}"] = v else: final_results[key] = value return final_results else: return { "precision": results["overall_precision"], "recall": results["overall_recall"], "f1": results["overall_f1"], "accuracy": results["overall_accuracy"], } # Train! total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps logger.info("***** Running training *****") logger.info(f" Num examples = {len(train_dataset)}") logger.info(f" Num Epochs = {args.num_train_epochs}") logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}") logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") logger.info(f" Total optimization steps = {args.max_train_steps}") # Only show the progress bar once on each machine. progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process) completed_steps = 0 starting_epoch = 0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": checkpoint_path = args.resume_from_checkpoint path = os.path.basename(args.resume_from_checkpoint) else: # Get the most recent checkpoint dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()] dirs.sort(key=os.path.getctime) path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last checkpoint_path = path path = os.path.basename(checkpoint_path) accelerator.print(f"Resumed from checkpoint: {checkpoint_path}") accelerator.load_state(checkpoint_path) # Extract `epoch_{i}` or `step_{i}` training_difference = os.path.splitext(path)[0] if "epoch" in training_difference: starting_epoch = int(training_difference.replace("epoch_", "")) + 1 resume_step = None completed_steps = starting_epoch * num_update_steps_per_epoch else: # need to multiply `gradient_accumulation_steps` to reflect real steps resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps starting_epoch = resume_step // len(train_dataloader) completed_steps = resume_step // args.gradient_accumulation_steps resume_step -= starting_epoch * len(train_dataloader) # update the progress_bar if load from checkpoint progress_bar.update(completed_steps) for epoch in range(starting_epoch, args.num_train_epochs): model.train() if args.with_tracking: total_loss = 0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We skip the first `n` batches in the dataloader when resuming from a checkpoint active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step) else: active_dataloader = train_dataloader for step, batch in enumerate(active_dataloader): outputs = model(**batch) loss = outputs.loss # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() loss = loss / args.gradient_accumulation_steps accelerator.backward(loss) if step % args.gradient_accumulation_steps == 0 or step == len(train_dataloader) - 1: optimizer.step() lr_scheduler.step() optimizer.zero_grad() progress_bar.update(1) completed_steps += 1 if isinstance(checkpointing_steps, int): if completed_steps % checkpointing_steps == 0 and accelerator.sync_gradients: output_dir = f"step_{completed_steps}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if completed_steps >= args.max_train_steps: break model.eval() samples_seen = 0 for step, batch in enumerate(eval_dataloader): with torch.no_grad(): outputs = model(**batch) predictions = outputs.logits.argmax(dim=-1) labels = batch["labels"] if not args.pad_to_max_length: # necessary to pad predictions and labels for being gathered predictions = accelerator.pad_across_processes(predictions, dim=1, pad_index=-100) labels = accelerator.pad_across_processes(labels, dim=1, pad_index=-100) predictions_gathered, labels_gathered = accelerator.gather((predictions, labels)) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.num_processes > 1: if step == len(eval_dataloader) - 1: predictions_gathered = predictions_gathered[: len(eval_dataloader.dataset) - samples_seen] labels_gathered = labels_gathered[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += labels_gathered.shape[0] preds, refs = get_labels(predictions_gathered, labels_gathered) metric.add_batch( predictions=preds, references=refs, ) # predictions and preferences are expected to be a nested list of labels, not label_ids eval_metric = compute_metrics() accelerator.print(f"epoch {epoch}:", eval_metric) if args.with_tracking: accelerator.log( { "seqeval": eval_metric, "train_loss": total_loss.item() / len(train_dataloader), "epoch": epoch, "step": completed_steps, }, step=completed_steps, ) if args.push_to_hub and epoch < args.num_train_epochs - 1: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) api.upload_folder( commit_message=f"Training in progress epoch {epoch}", folder_path=args.output_dir, repo_id=repo_id, repo_type="model", token=args.hub_token, ) if args.checkpointing_steps == "epoch": output_dir = f"epoch_{epoch}" if args.output_dir is not None: output_dir = os.path.join(args.output_dir, output_dir) accelerator.save_state(output_dir) if args.with_tracking: accelerator.end_training() if args.output_dir is not None: accelerator.wait_for_everyone() unwrapped_model = accelerator.unwrap_model(model) unwrapped_model.save_pretrained( args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save ) if accelerator.is_main_process: tokenizer.save_pretrained(args.output_dir) if args.push_to_hub: api.upload_folder( commit_message="End of training", folder_path=args.output_dir, repo_id=repo_id, repo_type="model", token=args.hub_token, ) all_results = {f"eval_{k}": v for k, v in eval_metric.items()} if args.with_tracking: all_results.update({"train_loss": total_loss.item() / len(train_dataloader)}) with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: # Convert all float64 & int64 type numbers to float & int for json serialization for key, value in all_results.items(): if isinstance(value, np.float64): all_results[key] = float(value) elif isinstance(value, np.int64): all_results[key] = int(value) json.dump(all_results, f) if __name__ == "__main__": main()
transformers/examples/pytorch/token-classification/run_ner_no_trainer.py/0
{ "file_path": "transformers/examples/pytorch/token-classification/run_ner_no_trainer.py", "repo_id": "transformers", "token_count": 15071 }
72
# Examples In this folder we showcase some examples to use code models for downstream tasks. ## Complexity prediction In this task we want to predict the complexity of Java programs in [CodeComplex](https://huggingface.co/datasets/codeparrot/codecomplex) dataset. Using Hugging Face `trainer`, we finetuned [multilingual CodeParrot](https://huggingface.co/codeparrot/codeparrot-small-multi) and [UniXcoder](https://huggingface.co/microsoft/unixcoder-base-nine) on it, and we used the latter to build this Java complexity prediction [space](https://huggingface.co/spaces/codeparrot/code-complexity-predictor) on Hugging Face hub. To fine-tune a model on this dataset you can use the following commands: ```python python train_complexity_predictor.py \ --model_ckpt microsoft/unixcoder-base-nine \ --num_epochs 60 \ --num_warmup_steps 10 \ --batch_size 8 \ --learning_rate 5e-4 ``` ## Code generation: text to python In this task we want to train a model to generate code from english text. We finetuned Codeparrot-small on [github-jupyter-text-to-code](https://huggingface.co/datasets/codeparrot/github-jupyter-text-to-code), a dataset where the samples are a succession of docstrings and their Python code, originally extracted from Jupyter notebooks parsed in this [dataset](https://huggingface.co/datasets/codeparrot/github-jupyter-parsed). To fine-tune a model on this dataset we use the same [script](https://github.com/huggingface/transformers/blob/main/examples/research_projects/codeparrot/scripts/codeparrot_training.py) as the pretraining of codeparrot: ```python accelerate launch scripts/codeparrot_training.py \ --model_ckpt codeparrot/codeparrot-small \ --dataset_name_train codeparrot/github-jupyter-text-to-code \ --dataset_name_valid codeparrot/github-jupyter-text-to-code \ --train_batch_size 12 \ --valid_batch_size 12 \ --learning_rate 5e-4 \ --num_warmup_steps 100 \ --gradient_accumulation 1 \ --gradient_checkpointing False \ --max_train_steps 3000 \ --save_checkpoint_steps 200 \ --save_dir jupyter-text-to-python ``` ## Code explanation: python to text In this task we want to train a model to explain python code. We finetuned Codeparrot-small on [github-jupyter-code-to-text](https://huggingface.co/datasets/codeparrot/github-jupyter-code-to-text), a dataset where the samples are a succession of Python code and its explanation as a docstring, we just inverted the order of text and code pairs in github-jupyter-code-to-text dataset and added the delimiters "Explanation:" and "End of explanation" inside the doctrings. To fine-tune a model on this dataset we use the same [script](https://github.com/huggingface/transformers/blob/main/examples/research_projects/codeparrot/scripts/codeparrot_training.py) as the pretraining of codeparrot: ```python accelerate launch scripts/codeparrot_training.py \ --model_ckpt codeparrot/codeparrot-small \ --dataset_name_train codeparrot/github-jupyter-code-to-text \ --dataset_name_valid codeparrot/github-jupyter-code-to-text \ --train_batch_size 12 \ --valid_batch_size 12 \ --learning_rate 5e-4 \ --num_warmup_steps 100 \ --gradient_accumulation 1 \ --gradient_checkpointing False \ --max_train_steps 3000 \ --save_checkpoint_steps 200 \ --save_dir jupyter-python-to-text ```
transformers/examples/research_projects/codeparrot/examples/README.md/0
{ "file_path": "transformers/examples/research_projects/codeparrot/examples/README.md", "repo_id": "transformers", "token_count": 1170 }
73
import gym import numpy as np import torch from mujoco_py import GlfwContext from transformers import DecisionTransformerModel GlfwContext(offscreen=True) # Create a window to init GLFW. def get_action(model, states, actions, rewards, returns_to_go, timesteps): # we don't care about the past rewards in this model states = states.reshape(1, -1, model.config.state_dim) actions = actions.reshape(1, -1, model.config.act_dim) returns_to_go = returns_to_go.reshape(1, -1, 1) timesteps = timesteps.reshape(1, -1) if model.config.max_length is not None: states = states[:, -model.config.max_length :] actions = actions[:, -model.config.max_length :] returns_to_go = returns_to_go[:, -model.config.max_length :] timesteps = timesteps[:, -model.config.max_length :] # pad all tokens to sequence length attention_mask = torch.cat( [torch.zeros(model.config.max_length - states.shape[1]), torch.ones(states.shape[1])] ) attention_mask = attention_mask.to(dtype=torch.long, device=states.device).reshape(1, -1) states = torch.cat( [ torch.zeros( (states.shape[0], model.config.max_length - states.shape[1], model.config.state_dim), device=states.device, ), states, ], dim=1, ).to(dtype=torch.float32) actions = torch.cat( [ torch.zeros( (actions.shape[0], model.config.max_length - actions.shape[1], model.config.act_dim), device=actions.device, ), actions, ], dim=1, ).to(dtype=torch.float32) returns_to_go = torch.cat( [ torch.zeros( (returns_to_go.shape[0], model.config.max_length - returns_to_go.shape[1], 1), device=returns_to_go.device, ), returns_to_go, ], dim=1, ).to(dtype=torch.float32) timesteps = torch.cat( [ torch.zeros( (timesteps.shape[0], model.config.max_length - timesteps.shape[1]), device=timesteps.device ), timesteps, ], dim=1, ).to(dtype=torch.long) else: attention_mask = None _, action_preds, _ = model( states=states, actions=actions, rewards=rewards, returns_to_go=returns_to_go, timesteps=timesteps, attention_mask=attention_mask, return_dict=False, ) return action_preds[0, -1] # build the environment env = gym.make("Hopper-v3") state_dim = env.observation_space.shape[0] act_dim = env.action_space.shape[0] max_ep_len = 1000 device = "cuda" scale = 1000.0 # normalization for rewards/returns TARGET_RETURN = 3600 / scale # evaluation conditioning targets, 3600 is reasonable from the paper LINK state_mean = np.array( [ 1.311279, -0.08469521, -0.5382719, -0.07201576, 0.04932366, 2.1066856, -0.15017354, 0.00878345, -0.2848186, -0.18540096, -0.28461286, ] ) state_std = np.array( [ 0.17790751, 0.05444621, 0.21297139, 0.14530419, 0.6124444, 0.85174465, 1.4515252, 0.6751696, 1.536239, 1.6160746, 5.6072536, ] ) state_mean = torch.from_numpy(state_mean).to(device=device) state_std = torch.from_numpy(state_std).to(device=device) # Create the decision transformer model model = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-medium") model = model.to(device) model.eval() for ep in range(10): episode_return, episode_length = 0, 0 state = env.reset() target_return = torch.tensor(TARGET_RETURN, device=device, dtype=torch.float32).reshape(1, 1) states = torch.from_numpy(state).reshape(1, state_dim).to(device=device, dtype=torch.float32) actions = torch.zeros((0, act_dim), device=device, dtype=torch.float32) rewards = torch.zeros(0, device=device, dtype=torch.float32) timesteps = torch.tensor(0, device=device, dtype=torch.long).reshape(1, 1) for t in range(max_ep_len): env.render() # add padding actions = torch.cat([actions, torch.zeros((1, act_dim), device=device)], dim=0) rewards = torch.cat([rewards, torch.zeros(1, device=device)]) action = get_action( model, (states.to(dtype=torch.float32) - state_mean) / state_std, actions.to(dtype=torch.float32), rewards.to(dtype=torch.float32), target_return.to(dtype=torch.float32), timesteps.to(dtype=torch.long), ) actions[-1] = action action = action.detach().cpu().numpy() state, reward, done, _ = env.step(action) cur_state = torch.from_numpy(state).to(device=device).reshape(1, state_dim) states = torch.cat([states, cur_state], dim=0) rewards[-1] = reward pred_return = target_return[0, -1] - (reward / scale) target_return = torch.cat([target_return, pred_return.reshape(1, 1)], dim=1) timesteps = torch.cat([timesteps, torch.ones((1, 1), device=device, dtype=torch.long) * (t + 1)], dim=1) episode_return += reward episode_length += 1 if done: break
transformers/examples/research_projects/decision_transformer/run_decision_transformer.py/0
{ "file_path": "transformers/examples/research_projects/decision_transformer/run_decision_transformer.py", "repo_id": "transformers", "token_count": 2763 }
74
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This is the exact same script as `examples/question-answering/run_squad.py` (as of 2020, January 8th) with an additional and optional step of distillation.""" import argparse import glob import logging import os import random import timeit import numpy as np import torch from torch import nn from torch.utils.data import DataLoader, RandomSampler, SequentialSampler from torch.utils.data.distributed import DistributedSampler from tqdm import tqdm, trange import transformers from transformers import ( WEIGHTS_NAME, AdamW, BertConfig, BertForQuestionAnswering, BertTokenizer, DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer, RobertaConfig, RobertaForQuestionAnswering, RobertaTokenizer, XLMConfig, XLMForQuestionAnswering, XLMTokenizer, XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer, get_linear_schedule_with_warmup, squad_convert_examples_to_features, ) from transformers.data.metrics.squad_metrics import ( compute_predictions_log_probs, compute_predictions_logits, squad_evaluate, ) from transformers.data.processors.squad import SquadResult, SquadV1Processor, SquadV2Processor from transformers.trainer_utils import is_main_process try: from torch.utils.tensorboard import SummaryWriter except ImportError: from tensorboardX import SummaryWriter logger = logging.getLogger(__name__) MODEL_CLASSES = { "bert": (BertConfig, BertForQuestionAnswering, BertTokenizer), "xlnet": (XLNetConfig, XLNetForQuestionAnswering, XLNetTokenizer), "xlm": (XLMConfig, XLMForQuestionAnswering, XLMTokenizer), "distilbert": (DistilBertConfig, DistilBertForQuestionAnswering, DistilBertTokenizer), "roberta": (RobertaConfig, RobertaForQuestionAnswering, RobertaTokenizer), } def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def to_list(tensor): return tensor.detach().cpu().tolist() def train(args, train_dataset, model, tokenizer, teacher=None): """Train the model""" if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) # Check if saved optimizer or scheduler states exist if os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile( os.path.join(args.model_name_or_path, "scheduler.pt") ): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 1 epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if os.path.exists(args.model_name_or_path): try: # set global_step to global_step of last saved checkpoint from model path checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0] global_step = int(checkpoint_suffix) epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) except ValueError: logger.info(" Starting fine-tuning.") tr_loss, logging_loss = 0.0, 0.0 model.zero_grad() train_iterator = trange( epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] ) # Added here for reproducibility set_seed(args) for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue model.train() if teacher is not None: teacher.eval() batch = tuple(t.to(args.device) for t in batch) inputs = { "input_ids": batch[0], "attention_mask": batch[1], "start_positions": batch[3], "end_positions": batch[4], } if args.model_type != "distilbert": inputs["token_type_ids"] = None if args.model_type == "xlm" else batch[2] if args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": batch[5], "p_mask": batch[6]}) if args.version_2_with_negative: inputs.update({"is_impossible": batch[7]}) outputs = model(**inputs) loss, start_logits_stu, end_logits_stu = outputs # Distillation loss if teacher is not None: if "token_type_ids" not in inputs: inputs["token_type_ids"] = None if args.teacher_type == "xlm" else batch[2] with torch.no_grad(): start_logits_tea, end_logits_tea = teacher( input_ids=inputs["input_ids"], token_type_ids=inputs["token_type_ids"], attention_mask=inputs["attention_mask"], ) assert start_logits_tea.size() == start_logits_stu.size() assert end_logits_tea.size() == end_logits_stu.size() loss_fct = nn.KLDivLoss(reduction="batchmean") loss_start = loss_fct( nn.functional.log_softmax(start_logits_stu / args.temperature, dim=-1), nn.functional.softmax(start_logits_tea / args.temperature, dim=-1), ) * (args.temperature**2) loss_end = loss_fct( nn.functional.log_softmax(end_logits_stu / args.temperature, dim=-1), nn.functional.softmax(end_logits_tea / args.temperature, dim=-1), ) * (args.temperature**2) loss_ce = (loss_start + loss_end) / 2.0 loss = args.alpha_ce * loss_ce + args.alpha_squad * loss if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel (not distributed) training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 # Log metrics if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Only evaluate when single GPU otherwise metrics may not average well if args.local_rank == -1 and args.evaluate_during_training: results = evaluate(args, model, tokenizer) for key, value in results.items(): tb_writer.add_scalar("eval_{}".format(key), value, global_step) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) logging_loss = tr_loss if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: # Save model checkpoint output_dir = os.path.join(args.output_dir, "checkpoint-{}".format(global_step)) if not os.path.exists(output_dir): os.makedirs(output_dir) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def evaluate(args, model, tokenizer, prefix=""): dataset, examples, features = load_and_cache_examples(args, tokenizer, evaluate=True, output_examples=True) if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: os.makedirs(args.output_dir) args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) # Note that DistributedSampler samples randomly eval_sampler = SequentialSampler(dataset) eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) # multi-gpu evaluate if args.n_gpu > 1 and not isinstance(model, nn.DataParallel): model = nn.DataParallel(model) # Eval! logger.info("***** Running evaluation {} *****".format(prefix)) logger.info(" Num examples = %d", len(dataset)) logger.info(" Batch size = %d", args.eval_batch_size) all_results = [] start_time = timeit.default_timer() for batch in tqdm(eval_dataloader, desc="Evaluating"): model.eval() batch = tuple(t.to(args.device) for t in batch) with torch.no_grad(): inputs = {"input_ids": batch[0], "attention_mask": batch[1]} if args.model_type != "distilbert": inputs["token_type_ids"] = None if args.model_type == "xlm" else batch[2] # XLM don't use segment_ids example_indices = batch[3] if args.model_type in ["xlnet", "xlm"]: inputs.update({"cls_index": batch[4], "p_mask": batch[5]}) outputs = model(**inputs) for i, example_index in enumerate(example_indices): eval_feature = features[example_index.item()] unique_id = int(eval_feature.unique_id) output = [to_list(output[i]) for output in outputs] # Some models (XLNet, XLM) use 5 arguments for their predictions, while the other "simpler" # models only use two. if len(output) >= 5: start_logits = output[0] start_top_index = output[1] end_logits = output[2] end_top_index = output[3] cls_logits = output[4] result = SquadResult( unique_id, start_logits, end_logits, start_top_index=start_top_index, end_top_index=end_top_index, cls_logits=cls_logits, ) else: start_logits, end_logits = output result = SquadResult(unique_id, start_logits, end_logits) all_results.append(result) evalTime = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(dataset)) # Compute predictions output_prediction_file = os.path.join(args.output_dir, "predictions_{}.json".format(prefix)) output_nbest_file = os.path.join(args.output_dir, "nbest_predictions_{}.json".format(prefix)) if args.version_2_with_negative: output_null_log_odds_file = os.path.join(args.output_dir, "null_odds_{}.json".format(prefix)) else: output_null_log_odds_file = None if args.model_type in ["xlnet", "xlm"]: # XLNet uses a more complex post-processing procedure predictions = compute_predictions_log_probs( examples, features, all_results, args.n_best_size, args.max_answer_length, output_prediction_file, output_nbest_file, output_null_log_odds_file, model.config.start_n_top, model.config.end_n_top, args.version_2_with_negative, tokenizer, args.verbose_logging, ) else: predictions = compute_predictions_logits( examples, features, all_results, args.n_best_size, args.max_answer_length, args.do_lower_case, output_prediction_file, output_nbest_file, output_null_log_odds_file, args.verbose_logging, args.version_2_with_negative, args.null_score_diff_threshold, tokenizer, ) # Compute the F1 and exact scores. results = squad_evaluate(examples, predictions) return results def load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False): if args.local_rank not in [-1, 0] and not evaluate: # Make sure only the first process in distributed training process the dataset, and the others will use the cache torch.distributed.barrier() # Load data features from cache or dataset file input_file = args.predict_file if evaluate else args.train_file cached_features_file = os.path.join( os.path.dirname(input_file), "cached_distillation_{}_{}_{}".format( "dev" if evaluate else "train", list(filter(None, args.model_name_or_path.split("/"))).pop(), str(args.max_seq_length), ), ) if os.path.exists(cached_features_file) and not args.overwrite_cache: logger.info("Loading features from cached file %s", cached_features_file) features_and_dataset = torch.load(cached_features_file) try: features, dataset, examples = ( features_and_dataset["features"], features_and_dataset["dataset"], features_and_dataset["examples"], ) except KeyError: raise DeprecationWarning( "You seem to be loading features from an older version of this script please delete the " "file %s in order for it to be created again" % cached_features_file ) else: logger.info("Creating features from dataset file at %s", input_file) processor = SquadV2Processor() if args.version_2_with_negative else SquadV1Processor() if evaluate: examples = processor.get_dev_examples(args.data_dir, filename=args.predict_file) else: examples = processor.get_train_examples(args.data_dir, filename=args.train_file) features, dataset = squad_convert_examples_to_features( examples=examples, tokenizer=tokenizer, max_seq_length=args.max_seq_length, doc_stride=args.doc_stride, max_query_length=args.max_query_length, is_training=not evaluate, return_dataset="pt", threads=args.threads, ) if args.local_rank in [-1, 0]: logger.info("Saving features into cached file %s", cached_features_file) torch.save({"features": features, "dataset": dataset, "examples": examples}, cached_features_file) if args.local_rank == 0 and not evaluate: # Make sure only the first process in distributed training process the dataset, and the others will use the cache torch.distributed.barrier() if output_examples: return dataset, examples, features return dataset def main(): parser = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_type", default=None, type=str, required=True, help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys()), ) parser.add_argument( "--model_name_or_path", default=None, type=str, required=True, help="Path to pretrained model or model identifier from huggingface.co/models", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Distillation parameters (optional) parser.add_argument( "--teacher_type", default=None, type=str, help=( "Teacher type. Teacher tokenizer and student (model) tokenizer must output the same tokenization. Only for" " distillation." ), ) parser.add_argument( "--teacher_name_or_path", default=None, type=str, help="Path to the already SQuAD fine-tuned teacher model. Only for distillation.", ) parser.add_argument( "--alpha_ce", default=0.5, type=float, help="Distillation loss linear weight. Only for distillation." ) parser.add_argument( "--alpha_squad", default=0.5, type=float, help="True SQuAD loss linear weight. Only for distillation." ) parser.add_argument( "--temperature", default=2.0, type=float, help="Distillation temperature. Only for distillation." ) # Other parameters parser.add_argument( "--data_dir", default=None, type=str, help="The input data dir. Should contain the .json files for the task." + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--train_file", default=None, type=str, help="The input training file. If a data dir is specified, will look for the file there" + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--predict_file", default=None, type=str, help="The input evaluation file. If a data dir is specified, will look for the file there" + "If no data dir or train/predict files are specified, will run with tensorflow_datasets.", ) parser.add_argument( "--config_name", default="", type=str, help="Pretrained config name or path if not the same as model_name" ) parser.add_argument( "--tokenizer_name", default="", type=str, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--cache_dir", default="", type=str, help="Where do you want to store the pre-trained models downloaded from huggingface.co", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument( "--max_query_length", default=64, type=int, help=( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ), ) parser.add_argument("--do_train", action="store_true", help="Whether to run training.") parser.add_argument("--do_eval", action="store_true", help="Whether to run eval on the dev set.") parser.add_argument( "--evaluate_during_training", action="store_true", help="Rul evaluation during training at each logging step." ) parser.add_argument( "--do_lower_case", action="store_true", help="Set this flag if you are using an uncased model." ) parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, help="Batch size per GPU/CPU for training.") parser.add_argument( "--per_gpu_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation." ) parser.add_argument("--learning_rate", default=5e-5, type=float, help="The initial learning rate for Adam.") parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument("--weight_decay", default=0.0, type=float, help="Weight decay if we apply some.") parser.add_argument("--adam_epsilon", default=1e-8, type=float, help="Epsilon for Adam optimizer.") parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") parser.add_argument( "--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform." ) parser.add_argument( "--max_steps", default=-1, type=int, help="If > 0: set total number of training steps to perform. Override num_train_epochs.", ) parser.add_argument("--warmup_steps", default=0, type=int, help="Linear warmup over warmup_steps.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument( "--verbose_logging", action="store_true", help=( "If true, all of the warnings related to data processing will be printed. " "A number of warnings are expected for a normal SQuAD evaluation." ), ) parser.add_argument("--logging_steps", type=int, default=50, help="Log every X updates steps.") parser.add_argument("--save_steps", type=int, default=50, help="Save checkpoint every X updates steps.") parser.add_argument( "--eval_all_checkpoints", action="store_true", help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number", ) parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available") parser.add_argument( "--overwrite_output_dir", action="store_true", help="Overwrite the content of the output directory" ) parser.add_argument( "--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets" ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit", ) parser.add_argument( "--fp16_opt_level", type=str, default="O1", help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ), ) parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.") parser.add_argument("--threads", type=int, default=1, help="multiple threads for converting example to features") args = parser.parse_args() if ( os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir ): raise ValueError( "Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format( args.output_dir ) ) # Setup distant debugging if needed if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("Waiting for debugger attach") ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) ptvsd.wait_for_attach() # Setup CUDA, GPU & distributed training if args.local_rank == -1 or args.no_cuda: device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count() else: # Initializes the distributed backend which will take care of synchronizing nodes/GPUs torch.cuda.set_device(args.local_rank) device = torch.device("cuda", args.local_rank) torch.distributed.init_process_group(backend="nccl") args.n_gpu = 1 args.device = device # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16, ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set seed set_seed(args) # Load pretrained model and tokenizer if args.local_rank not in [-1, 0]: # Make sure only the first process in distributed training will download model & vocab torch.distributed.barrier() args.model_type = args.model_type.lower() config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] config = config_class.from_pretrained( args.config_name if args.config_name else args.model_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None, ) tokenizer = tokenizer_class.from_pretrained( args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case, cache_dir=args.cache_dir if args.cache_dir else None, ) model = model_class.from_pretrained( args.model_name_or_path, from_tf=bool(".ckpt" in args.model_name_or_path), config=config, cache_dir=args.cache_dir if args.cache_dir else None, ) if args.teacher_type is not None: assert args.teacher_name_or_path is not None assert args.alpha_ce > 0.0 assert args.alpha_ce + args.alpha_squad > 0.0 assert args.teacher_type != "distilbert", "We constraint teachers not to be of type DistilBERT." teacher_config_class, teacher_model_class, _ = MODEL_CLASSES[args.teacher_type] teacher_config = teacher_config_class.from_pretrained( args.teacher_name_or_path, cache_dir=args.cache_dir if args.cache_dir else None ) teacher = teacher_model_class.from_pretrained( args.teacher_name_or_path, config=teacher_config, cache_dir=args.cache_dir if args.cache_dir else None ) teacher.to(args.device) else: teacher = None if args.local_rank == 0: # Make sure only the first process in distributed training will download model & vocab torch.distributed.barrier() model.to(args.device) logger.info("Training/evaluation parameters %s", args) # Before we do anything with models, we want to ensure that we get fp16 execution of torch.einsum if args.fp16 is set. # Otherwise it'll default to "promote" mode, and we'll get fp32 operations. Note that running `--fp16_opt_level="O2"` will # remove the need for this code, but it is still valid. if args.fp16: try: import apex apex.amp.register_half_function(torch, "einsum") except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") # Training if args.do_train: train_dataset = load_and_cache_examples(args, tokenizer, evaluate=False, output_examples=False) global_step, tr_loss = train(args, train_dataset, model, tokenizer, teacher=teacher) logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) # Save the trained model and the tokenizer if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): logger.info("Saving model checkpoint to %s", args.output_dir) # Save a trained model, configuration and tokenizer using `save_pretrained()`. # They can then be reloaded using `from_pretrained()` model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(args.output_dir) tokenizer.save_pretrained(args.output_dir) # Good practice: save your training arguments together with the trained model torch.save(args, os.path.join(args.output_dir, "training_args.bin")) # Load a trained model and vocabulary that you have fine-tuned model = model_class.from_pretrained(args.output_dir) tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) model.to(args.device) # Evaluation - we can ask to evaluate all the checkpoints (sub-directories) in a directory results = {} if args.do_eval and args.local_rank in [-1, 0]: if args.do_train: logger.info("Loading checkpoints saved during training for evaluation") checkpoints = [args.output_dir] if args.eval_all_checkpoints: checkpoints = [ os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + "/**/" + WEIGHTS_NAME, recursive=True)) ] logger.info("Evaluate the following checkpoints: %s", checkpoints) for checkpoint in checkpoints: # Reload the model global_step = checkpoint.split("-")[-1] if len(checkpoints) > 1 else "" model = model_class.from_pretrained(checkpoint) model.to(args.device) # Evaluate result = evaluate(args, model, tokenizer, prefix=global_step) result = {k + ("_{}".format(global_step) if global_step else ""): v for k, v in result.items()} results.update(result) logger.info("Results: {}".format(results)) return results if __name__ == "__main__": main()
transformers/examples/research_projects/distillation/run_squad_w_distillation.py/0
{ "file_path": "transformers/examples/research_projects/distillation/run_squad_w_distillation.py", "repo_id": "transformers", "token_count": 15430 }
75
from .model import FSNERModel from .tokenizer_utils import FSNERTokenizerUtils __all__ = ["FSNERModel", "FSNERTokenizerUtils"]
transformers/examples/research_projects/fsner/src/fsner/__init__.py/0
{ "file_path": "transformers/examples/research_projects/fsner/src/fsner/__init__.py", "repo_id": "transformers", "token_count": 44 }
76
command: - python3 - train.py method: random parameters: lr: values: [4e-5, 3e-5] warmup_steps: values: [20000, 15000, 10000, 5000] weight_decay: distribution: normal mu: 1e-2 sigma: 2e-3 metric: name: eval_loss goal: minimize
transformers/examples/research_projects/jax-projects/big_bird/sweep_flax.yaml/0
{ "file_path": "transformers/examples/research_projects/jax-projects/big_bird/sweep_flax.yaml", "repo_id": "transformers", "token_count": 222 }
77
#!/usr/bin/env python # coding=utf-8 # Copyright 2022 The HuggingFace Team All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Fine-tuning LayoutLMv3 for token classification on FUNSD or CORD. """ # You can also adapt this script on your own token classification task and datasets. Pointers for this are left as # comments. import logging import os import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np from datasets import ClassLabel, load_dataset, load_metric import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoProcessor, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.data.data_collator import default_data_collator from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.19.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/token-classification/requirements.txt") logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( default="microsoft/layoutlmv3-base", metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) processor_name: Optional[str] = field( default=None, metadata={"help": "Name or path to the processor files if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) use_auth_token: bool = field( default=False, metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) }, ) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. """ task_name: Optional[str] = field(default="ner", metadata={"help": "The name of the task (ner, pos...)."}) dataset_name: Optional[str] = field( default="nielsr/funsd-layoutlmv3", metadata={"help": "The name of the dataset to use (via the datasets library)."}, ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_file: Optional[str] = field( default=None, metadata={"help": "The input training data file (a csv or JSON file)."} ) validation_file: Optional[str] = field( default=None, metadata={"help": "An optional input evaluation data file to evaluate on (a csv or JSON file)."}, ) test_file: Optional[str] = field( default=None, metadata={"help": "An optional input test data file to predict on (a csv or JSON file)."}, ) text_column_name: Optional[str] = field( default=None, metadata={"help": "The column name of text to input in the file (a csv or JSON file)."} ) label_column_name: Optional[str] = field( default=None, metadata={"help": "The column name of label to input in the file (a csv or JSON file)."} ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_seq_length: int = field( default=512, metadata={ "help": ( "The maximum total input sequence length after tokenization. If set, sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) label_all_tokens: bool = field( default=False, metadata={ "help": ( "Whether to put the label for one word on all tokens of generated by that word or just on the " "one (in which case the other tokens will have a padding index)." ) }, ) return_entity_level_metrics: bool = field( default=False, metadata={"help": "Whether to return all the entity levels during evaluation or just the overall ones."}, ) def __post_init__(self): if self.dataset_name is None and self.train_file is None and self.validation_file is None: raise ValueError("Need either a dataset name or a training/validation file.") else: if self.train_file is not None: extension = self.train_file.split(".")[-1] assert extension in ["csv", "json"], "`train_file` should be a csv or a json file." if self.validation_file is not None: extension = self.validation_file.split(".")[-1] assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file." self.task_name = self.task_name.lower() def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) datasets.utils.logging.set_verbosity(log_level) transformers.utils.logging.set_verbosity(log_level) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" ) logger.info(f"Training/evaluation parameters {training_args}") # Detecting last checkpoint. last_checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: last_checkpoint = get_last_checkpoint(training_args.output_dir) if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed) # Get the datasets # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name == "funsd": # Downloading and loading a dataset from the hub. dataset = load_dataset( "nielsr/funsd-layoutlmv3", data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=True if model_args.use_auth_token else None, ) elif data_args.dataset_name == "cord": # Downloading and loading a dataset from the hub. dataset = load_dataset( "nielsr/cord-layoutlmv3", data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=True if model_args.use_auth_token else None, ) else: raise ValueError("This script only supports either FUNSD or CORD out-of-the-box.") if training_args.do_train: column_names = dataset["train"].column_names features = dataset["train"].features else: column_names = dataset["test"].column_names features = dataset["test"].features image_column_name = "image" text_column_name = "words" if "words" in column_names else "tokens" boxes_column_name = "bboxes" label_column_name = ( f"{data_args.task_name}_tags" if f"{data_args.task_name}_tags" in column_names else column_names[1] ) remove_columns = column_names # In the event the labels are not a `Sequence[ClassLabel]`, we will need to go through the dataset to get the # unique labels. def get_label_list(labels): unique_labels = set() for label in labels: unique_labels = unique_labels | set(label) label_list = list(unique_labels) label_list.sort() return label_list # If the labels are of type ClassLabel, they are already integers and we have the map stored somewhere. # Otherwise, we have to get the list of labels manually. if isinstance(features[label_column_name].feature, ClassLabel): label_list = features[label_column_name].feature.names # No need to convert the labels since they are already ints. id2label = dict(enumerate(label_list)) label2id = {v: k for k, v in enumerate(label_list)} else: label_list = get_label_list(datasets["train"][label_column_name]) id2label = dict(enumerate(label_list)) label2id = {v: k for k, v in enumerate(label_list)} num_labels = len(label_list) # Load pretrained model and processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. config = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=num_labels, finetuning_task=data_args.task_name, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=True if model_args.use_auth_token else None, ) processor = AutoProcessor.from_pretrained( model_args.processor_name if model_args.processor_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=True, revision=model_args.model_revision, token=True if model_args.use_auth_token else None, add_prefix_space=True, apply_ocr=False, ) model = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool(".ckpt" in model_args.model_name_or_path), config=config, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=True if model_args.use_auth_token else None, ) # Set the correspondences label/ID inside the model config model.config.label2id = label2id model.config.id2label = id2label # Preprocessing the dataset # The processor does everything for us (prepare the image using LayoutLMv3ImageProcessor # and prepare the words, boxes and word-level labels using LayoutLMv3TokenizerFast) def prepare_examples(examples): images = examples[image_column_name] words = examples[text_column_name] boxes = examples[boxes_column_name] word_labels = examples[label_column_name] encoding = processor( images, words, boxes=boxes, word_labels=word_labels, truncation=True, padding="max_length", max_length=data_args.max_seq_length, ) return encoding if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset") train_dataset = dataset["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.select(range(data_args.max_train_samples)) with training_args.main_process_first(desc="train dataset map pre-processing"): train_dataset = train_dataset.map( prepare_examples, batched=True, remove_columns=remove_columns, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_eval: validation_name = "test" if validation_name not in dataset: raise ValueError("--do_eval requires a validation dataset") eval_dataset = dataset[validation_name] if data_args.max_eval_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) with training_args.main_process_first(desc="validation dataset map pre-processing"): eval_dataset = eval_dataset.map( prepare_examples, batched=True, remove_columns=remove_columns, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) if training_args.do_predict: if "test" not in datasets: raise ValueError("--do_predict requires a test dataset") predict_dataset = datasets["test"] if data_args.max_predict_samples is not None: max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples) predict_dataset = predict_dataset.select(range(max_predict_samples)) with training_args.main_process_first(desc="prediction dataset map pre-processing"): predict_dataset = predict_dataset.map( prepare_examples, batched=True, remove_columns=remove_columns, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) # Metrics metric = load_metric("seqeval") def compute_metrics(p): predictions, labels = p predictions = np.argmax(predictions, axis=2) # Remove ignored index (special tokens) true_predictions = [ [label_list[p] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] true_labels = [ [label_list[l] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] results = metric.compute(predictions=true_predictions, references=true_labels) if data_args.return_entity_level_metrics: # Unpack nested dictionaries final_results = {} for key, value in results.items(): if isinstance(value, dict): for n, v in value.items(): final_results[f"{key}_{n}"] = v else: final_results[key] = value return final_results else: return { "precision": results["overall_precision"], "recall": results["overall_recall"], "f1": results["overall_f1"], "accuracy": results["overall_accuracy"], } # Initialize our Trainer trainer = Trainer( model=model, args=training_args, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, tokenizer=processor, data_collator=default_data_collator, compute_metrics=compute_metrics, ) # Training if training_args.do_train: checkpoint = None if training_args.resume_from_checkpoint is not None: checkpoint = training_args.resume_from_checkpoint elif last_checkpoint is not None: checkpoint = last_checkpoint train_result = trainer.train(resume_from_checkpoint=checkpoint) metrics = train_result.metrics trainer.save_model() # Saves the tokenizer too for easy upload max_train_samples = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset) ) metrics["train_samples"] = min(max_train_samples, len(train_dataset)) trainer.log_metrics("train", metrics) trainer.save_metrics("train", metrics) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***") metrics = trainer.evaluate() max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset) metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset)) trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Predict if training_args.do_predict: logger.info("*** Predict ***") predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict") predictions = np.argmax(predictions, axis=2) # Remove ignored index (special tokens) true_predictions = [ [label_list[p] for (p, l) in zip(prediction, label) if l != -100] for prediction, label in zip(predictions, labels) ] trainer.log_metrics("predict", metrics) trainer.save_metrics("predict", metrics) # Save predictions output_predictions_file = os.path.join(training_args.output_dir, "predictions.txt") if trainer.is_world_process_zero(): with open(output_predictions_file, "w") as writer: for prediction in true_predictions: writer.write(" ".join(prediction) + "\n") kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "token-classification"} if data_args.dataset_name is not None: kwargs["dataset_tags"] = data_args.dataset_name if data_args.dataset_config_name is not None: kwargs["dataset_args"] = data_args.dataset_config_name kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" else: kwargs["dataset"] = data_args.dataset_name if training_args.push_to_hub: trainer.push_to_hub(**kwargs) else: trainer.create_model_card(**kwargs) def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
transformers/examples/research_projects/layoutlmv3/run_funsd_cord.py/0
{ "file_path": "transformers/examples/research_projects/layoutlmv3/run_funsd_cord.py", "repo_id": "transformers", "token_count": 8703 }
78
<!--- Copyright 2020 The HuggingFace Team. All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> ## Whole Word Mask Language Model These scripts leverage the 🤗 Datasets library and the Trainer API. You can easily customize them to your needs if you need extra processing on your datasets. The following examples, will run on a datasets hosted on our [hub](https://huggingface.co/datasets) or with your own text files for training and validation. We give examples of both below. The BERT authors released a new version of BERT using Whole Word Masking in May 2019. Instead of masking randomly selected tokens (which may be part of words), they mask randomly selected words (masking all the tokens corresponding to that word). This technique has been refined for Chinese in [this paper](https://arxiv.org/abs/1906.08101). To fine-tune a model using whole word masking, use the following script: ```bash python run_mlm_wwm.py \ --model_name_or_path FacebookAI/roberta-base \ --dataset_name wikitext \ --dataset_config_name wikitext-2-raw-v1 \ --do_train \ --do_eval \ --output_dir /tmp/test-mlm-wwm ``` For Chinese models, we need to generate a reference files (which requires the ltp library), because it's tokenized at the character level. **Q :** Why a reference file? **A :** Suppose we have a Chinese sentence like: `我喜欢你` The original Chinese-BERT will tokenize it as `['我','喜','欢','你']` (character level). But `喜欢` is a whole word. For whole word masking proxy, we need a result like `['我','喜','##欢','你']`, so we need a reference file to tell the model which position of the BERT original token should be added `##`. **Q :** Why LTP ? **A :** Cause the best known Chinese WWM BERT is [Chinese-BERT-wwm](https://github.com/ymcui/Chinese-BERT-wwm) by HIT. It works well on so many Chines Task like CLUE (Chinese GLUE). They use LTP, so if we want to fine-tune their model, we need LTP. You could run the following: ```bash export TRAIN_FILE=/path/to/train/file export LTP_RESOURCE=/path/to/ltp/tokenizer export BERT_RESOURCE=/path/to/bert/tokenizer export SAVE_PATH=/path/to/data/ref.txt python run_chinese_ref.py \ --file_name=$TRAIN_FILE \ --ltp=$LTP_RESOURCE \ --bert=$BERT_RESOURCE \ --save_path=$SAVE_PATH ``` Then you can run the script like this: ```bash export TRAIN_FILE=/path/to/train/file export VALIDATION_FILE=/path/to/validation/file export TRAIN_REF_FILE=/path/to/train/chinese_ref/file export VALIDATION_REF_FILE=/path/to/validation/chinese_ref/file export OUTPUT_DIR=/tmp/test-mlm-wwm python run_mlm_wwm.py \ --model_name_or_path FacebookAI/roberta-base \ --train_file $TRAIN_FILE \ --validation_file $VALIDATION_FILE \ --train_ref_file $TRAIN_REF_FILE \ --validation_ref_file $VALIDATION_REF_FILE \ --do_train \ --do_eval \ --output_dir $OUTPUT_DIR ``` **Note1:** On TPU, you should the flag `--pad_to_max_length` to make sure all your batches have the same length. **Note2:** And if you have any questions or something goes wrong when running this code, don't hesitate to pin @wlhgtc.
transformers/examples/research_projects/mlm_wwm/README.md/0
{ "file_path": "transformers/examples/research_projects/mlm_wwm/README.md", "repo_id": "transformers", "token_count": 1192 }
79
# coding=utf-8 # Copyright 2020-present, the HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Masked Linear module: A fully connected layer that computes an adaptive binary mask on the fly. The mask (binary or not) is computed at each forward pass and multiplied against the weight matrix to prune a portion of the weights. The pruned weight matrix is then multiplied against the inputs (and if necessary, the bias is added). """ import math import torch from torch import nn from torch.nn import init from .binarizer import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer class MaskedLinear(nn.Linear): """ Fully Connected layer with on the fly adaptive mask. If needed, a score matrix is created to store the importance of each associated weight. """ def __init__( self, in_features: int, out_features: int, bias: bool = True, mask_init: str = "constant", mask_scale: float = 0.0, pruning_method: str = "topK", ): """ Args: in_features (`int`) Size of each input sample out_features (`int`) Size of each output sample bias (`bool`) If set to ``False``, the layer will not learn an additive bias. Default: ``True`` mask_init (`str`) The initialization method for the score matrix if a score matrix is needed. Choices: ["constant", "uniform", "kaiming"] Default: ``constant`` mask_scale (`float`) The initialization parameter for the chosen initialization method `mask_init`. Default: ``0.`` pruning_method (`str`) Method to compute the mask. Choices: ["topK", "threshold", "sigmoied_threshold", "magnitude", "l0"] Default: ``topK`` """ super(MaskedLinear, self).__init__(in_features=in_features, out_features=out_features, bias=bias) assert pruning_method in ["topK", "threshold", "sigmoied_threshold", "magnitude", "l0"] self.pruning_method = pruning_method if self.pruning_method in ["topK", "threshold", "sigmoied_threshold", "l0"]: self.mask_scale = mask_scale self.mask_init = mask_init self.mask_scores = nn.Parameter(torch.empty(self.weight.size())) self.init_mask() def init_mask(self): if self.mask_init == "constant": init.constant_(self.mask_scores, val=self.mask_scale) elif self.mask_init == "uniform": init.uniform_(self.mask_scores, a=-self.mask_scale, b=self.mask_scale) elif self.mask_init == "kaiming": init.kaiming_uniform_(self.mask_scores, a=math.sqrt(5)) def forward(self, input: torch.tensor, threshold: float): # Get the mask if self.pruning_method == "topK": mask = TopKBinarizer.apply(self.mask_scores, threshold) elif self.pruning_method in ["threshold", "sigmoied_threshold"]: sig = "sigmoied" in self.pruning_method mask = ThresholdBinarizer.apply(self.mask_scores, threshold, sig) elif self.pruning_method == "magnitude": mask = MagnitudeBinarizer.apply(self.weight, threshold) elif self.pruning_method == "l0": l, r, b = -0.1, 1.1, 2 / 3 if self.training: u = torch.zeros_like(self.mask_scores).uniform_().clamp(0.0001, 0.9999) s = torch.sigmoid((u.log() - (1 - u).log() + self.mask_scores) / b) else: s = torch.sigmoid(self.mask_scores) s_bar = s * (r - l) + l mask = s_bar.clamp(min=0.0, max=1.0) # Mask weights with computed mask weight_thresholded = mask * self.weight # Compute output (linear layer) with masked weights return nn.functional.linear(input, weight_thresholded, self.bias)
transformers/examples/research_projects/movement-pruning/emmental/modules/masked_nn.py/0
{ "file_path": "transformers/examples/research_projects/movement-pruning/emmental/modules/masked_nn.py", "repo_id": "transformers", "token_count": 1917 }
80
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex logger = logging.getLogger(__name__) class RayRetriever: def __init__(self): self.initialized = False def create_rag_retriever(self, config, question_encoder_tokenizer, generator_tokenizer, index): if not self.initialized: self.retriever = RagRetriever( config, question_encoder_tokenizer=question_encoder_tokenizer, generator_tokenizer=generator_tokenizer, index=index, init_retrieval=False, ) self.initialized = True def init_retrieval(self): self.retriever.index.init_index() def clear_object(self): # delete the old self.retriever object before assigning the new index del self.retriever self.initialized = False def retrieve(self, question_hidden_states, n_docs): doc_ids, retrieved_doc_embeds = self.retriever._main_retrieve(question_hidden_states, n_docs) doc_dicts = self.retriever.index.get_doc_dicts(doc_ids) return doc_ids, retrieved_doc_embeds, doc_dicts class RagRayDistributedRetriever(RagRetriever): """ A distributed retriever built on top of the ``Ray`` API, a library for building distributed applications (https://docs.ray.io/en/master/). package. During training, all training workers initialize their own instance of a `RagRayDistributedRetriever`, and each instance of this distributed retriever shares a common set of Retrieval Ray Actors (https://docs.ray.io/en/master/walkthrough.html#remote -classes-actors) that load the index on separate processes. Ray handles the communication between the `RagRayDistributedRetriever` instances and the remote Ray actors. If training is done in a non-distributed setup, the index will simply be loaded in the same process as the training worker and Ray will not be used. Args: config (:class:`~transformers.RagConfig`): The configuration of the RAG model this Retriever is used with. Contains parameters indicating which ``Index`` to build. question_encoder_tokenizer (:class:`~transformers.PreTrainedTokenizer`): The tokenizer that was used to tokenize the question. It is used to decode the question and then use the generator_tokenizer. generator_tokenizer (:class:`~transformers.PreTrainedTokenizer`): The tokenizer used for the generator part of the RagModel. retrieval_workers (:obj:`List[ray.ActorClass(RayRetriever)]`): A list of already initialized `RayRetriever` actors. These actor classes run on remote processes and are responsible for performing the index lookup. index (:class:`~transformers.retrieval_rag.Index`, optional, defaults to the one defined by the configuration): If specified, use this index instead of the one built using the configuration """ def __init__(self, config, question_encoder_tokenizer, generator_tokenizer, retrieval_workers, index=None): if index is not None and index.is_initialized() and len(retrieval_workers) > 0: raise ValueError( "When using Ray for distributed fine-tuning, " "you'll need to provide the paths instead, " "as the dataset and the index are loaded " "separately. More info in examples/rag/use_own_knowledge_dataset.py " ) super().__init__( config, question_encoder_tokenizer=question_encoder_tokenizer, generator_tokenizer=generator_tokenizer, index=index, init_retrieval=False, ) self.retrieval_workers = retrieval_workers self.question_encoder_tokenizer = question_encoder_tokenizer self.generator_tokenizer = generator_tokenizer if len(self.retrieval_workers) > 0: ray.get( [ worker.create_rag_retriever.remote(config, question_encoder_tokenizer, generator_tokenizer, index) for worker in self.retrieval_workers ] ) def init_retrieval(self): """ Retriever initialization function, needs to be called from the training process. This function triggers retrieval initialization for all retrieval actors if using distributed setting, or loads index into current process if training is not distributed. """ logger.info("initializing retrieval") if len(self.retrieval_workers) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers]) else: # Non-distributed training. Load index into this same process. self.index.init_index() def retrieve(self, question_hidden_states, n_docs): """ Retrieves documents for specified ``question_hidden_states``. If running training with multiple workers, a random retrieval actor is selected to perform the index lookup and return the result. Args: question_hidden_states (:obj:`np.ndarray` of shape :obj:`(batch_size, vector_size)`): A batch of query vectors to retrieve with. n_docs (:obj:`int`): The number of docs retrieved per query. Output: retrieved_doc_embeds (:obj:`np.ndarray` of shape :obj:`(batch_size, n_docs, dim)` The retrieval embeddings of the retrieved docs per query. doc_ids (:obj:`np.ndarray` of shape :obj:`batch_size, n_docs`) The ids of the documents in the index doc_dicts (:obj:`List[dict]`): The retrieved_doc_embeds examples per query. """ if len(self.retrieval_workers) > 0: # Select a random retrieval actor. random_worker = self.retrieval_workers[random.randint(0, len(self.retrieval_workers) - 1)] doc_ids, retrieved_doc_embeds, doc_dicts = ray.get( random_worker.retrieve.remote(question_hidden_states, n_docs) ) else: doc_ids, retrieved_doc_embeds = self._main_retrieve(question_hidden_states, n_docs) doc_dicts = self.index.get_doc_dicts(doc_ids) return retrieved_doc_embeds, doc_ids, doc_dicts @classmethod def get_tokenizers(cls, retriever_name_or_path, indexed_dataset=None, **kwargs): return super(RagRayDistributedRetriever, cls).get_tokenizers(retriever_name_or_path, indexed_dataset, **kwargs) @classmethod def from_pretrained(cls, retriever_name_or_path, actor_handles, indexed_dataset=None, **kwargs): config = kwargs.pop("config", None) or RagConfig.from_pretrained(retriever_name_or_path, **kwargs) rag_tokenizer = RagTokenizer.from_pretrained(retriever_name_or_path, config=config) question_encoder_tokenizer = rag_tokenizer.question_encoder generator_tokenizer = rag_tokenizer.generator if indexed_dataset is not None: config.index_name = "custom" index = CustomHFIndex(config.retrieval_vector_size, indexed_dataset) else: index = cls._build_index(config) return cls( config, question_encoder_tokenizer=question_encoder_tokenizer, generator_tokenizer=generator_tokenizer, retrieval_workers=actor_handles, index=index, ) def re_load(self): logger.info("re-loading the new dataset with embeddings") # access from the training loop ray.get([worker.clear_object.remote() for worker in self.retrieval_workers]) # build the index object again index = self._build_index(self.config) ray.get( [ worker.create_rag_retriever.remote( self.config, self.question_encoder_tokenizer, self.generator_tokenizer, index ) for worker in self.retrieval_workers ] )
transformers/examples/research_projects/rag-end2end-retriever/distributed_ray_retriever.py/0
{ "file_path": "transformers/examples/research_projects/rag-end2end-retriever/distributed_ray_retriever.py", "repo_id": "transformers", "token_count": 3358 }
81
import logging import os from dataclasses import dataclass, field from functools import partial from pathlib import Path from tempfile import TemporaryDirectory from typing import List, Optional import faiss import torch from datasets import Features, Sequence, Value, load_dataset from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser logger = logging.getLogger(__name__) torch.set_grad_enabled(False) device = "cuda" if torch.cuda.is_available() else "cpu" def split_text(text: str, n=100, character=" ") -> List[str]: """Split the text every ``n``-th occurrence of ``character``""" text = text.split(character) return [character.join(text[i : i + n]).strip() for i in range(0, len(text), n)] def split_documents(documents: dict) -> dict: """Split documents into passages""" titles, texts = [], [] for title, text in zip(documents["title"], documents["text"]): if text is not None: for passage in split_text(text): titles.append(title if title is not None else "") texts.append(passage) return {"title": titles, "text": texts} def embed(documents: dict, ctx_encoder: DPRContextEncoder, ctx_tokenizer: DPRContextEncoderTokenizerFast) -> dict: """Compute the DPR embeddings of document passages""" input_ids = ctx_tokenizer( documents["title"], documents["text"], truncation=True, padding="longest", return_tensors="pt" )["input_ids"] embeddings = ctx_encoder(input_ids.to(device=device), return_dict=True).pooler_output return {"embeddings": embeddings.detach().cpu().numpy()} def main( rag_example_args: "RagExampleArguments", processing_args: "ProcessingArguments", index_hnsw_args: "IndexHnswArguments", ): ###################################### logger.info("Step 1 - Create the dataset") ###################################### # The dataset needed for RAG must have three columns: # - title (string): title of the document # - text (string): text of a passage of the document # - embeddings (array of dimension d): DPR representation of the passage # Let's say you have documents in tab-separated csv files with columns "title" and "text" assert os.path.isfile(rag_example_args.csv_path), "Please provide a valid path to a csv file" # You can load a Dataset object this way dataset = load_dataset( "csv", data_files=[rag_example_args.csv_path], split="train", delimiter="\t", column_names=["title", "text"] ) # More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets?highlight=csv#csv-files # Then split the documents into passages of 100 words dataset = dataset.map(split_documents, batched=True, num_proc=processing_args.num_proc) # And compute the embeddings ctx_encoder = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name).to(device=device) ctx_tokenizer = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name) new_features = Features( {"text": Value("string"), "title": Value("string"), "embeddings": Sequence(Value("float32"))} ) # optional, save as float32 instead of float64 to save space dataset = dataset.map( partial(embed, ctx_encoder=ctx_encoder, ctx_tokenizer=ctx_tokenizer), batched=True, batch_size=processing_args.batch_size, features=new_features, ) # And finally save your dataset passages_path = os.path.join(rag_example_args.output_dir, "my_knowledge_dataset") dataset.save_to_disk(passages_path) # from datasets import load_from_disk # dataset = load_from_disk(passages_path) # to reload the dataset ###################################### logger.info("Step 2 - Index the dataset") ###################################### # Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search index = faiss.IndexHNSWFlat(index_hnsw_args.d, index_hnsw_args.m, faiss.METRIC_INNER_PRODUCT) dataset.add_faiss_index("embeddings", custom_index=index) # And save the index index_path = os.path.join(rag_example_args.output_dir, "my_knowledge_dataset_hnsw_index.faiss") dataset.get_index("embeddings").save(index_path) # dataset.load_faiss_index("embeddings", index_path) # to reload the index @dataclass class RagExampleArguments: csv_path: str = field( default=str(Path(__file__).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv"), metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"}, ) question: Optional[str] = field( default=None, metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."}, ) rag_model_name: str = field( default="facebook/rag-sequence-nq", metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"}, ) dpr_ctx_encoder_model_name: str = field( default="facebook/dpr-ctx_encoder-multiset-base", metadata={ "help": ( "The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or" " 'facebook/dpr-ctx_encoder-multiset-base'" ) }, ) output_dir: Optional[str] = field( default=str(Path(__file__).parent / "test_run" / "dummy-kb"), metadata={"help": "Path to a directory where the dataset passages and the index will be saved"}, ) @dataclass class ProcessingArguments: num_proc: Optional[int] = field( default=None, metadata={ "help": "The number of processes to use to split the documents into passages. Default is single process." }, ) batch_size: int = field( default=16, metadata={ "help": "The batch size to use when computing the passages embeddings using the DPR context encoder." }, ) @dataclass class IndexHnswArguments: d: int = field( default=768, metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."}, ) m: int = field( default=128, metadata={ "help": ( "The number of bi-directional links created for every new element during the HNSW index construction." ) }, ) if __name__ == "__main__": logging.basicConfig(level=logging.WARNING) logger.setLevel(logging.INFO) parser = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments)) rag_example_args, processing_args, index_hnsw_args = parser.parse_args_into_dataclasses() with TemporaryDirectory() as tmp_dir: rag_example_args.output_dir = rag_example_args.output_dir or tmp_dir main(rag_example_args, processing_args, index_hnsw_args)
transformers/examples/research_projects/rag-end2end-retriever/use_own_knowledge_dataset.py/0
{ "file_path": "transformers/examples/research_projects/rag-end2end-retriever/use_own_knowledge_dataset.py", "repo_id": "transformers", "token_count": 2578 }
82
import argparse import logging import os import sys import tempfile from pathlib import Path import lightning_base import pytest import pytorch_lightning as pl import torch from convert_pl_checkpoint_to_hf import convert_pl_to_hf from distillation import distill_main from finetune import SummarizationModule, main from huggingface_hub import list_models from parameterized import parameterized from run_eval import generate_summaries_or_translations from torch import nn from transformers import AutoConfig, AutoModelForSeq2SeqLM from transformers.testing_utils import CaptureStderr, CaptureStdout, TestCasePlus, require_torch_gpu, slow from utils import label_smoothed_nll_loss, lmap, load_json logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger() CUDA_AVAILABLE = torch.cuda.is_available() CHEAP_ARGS = { "max_tokens_per_batch": None, "supervise_forward": True, "normalize_hidden": True, "label_smoothing": 0.2, "eval_max_gen_length": None, "eval_beams": 1, "val_metric": "loss", "save_top_k": 1, "adafactor": True, "early_stopping_patience": 2, "logger_name": "default", "length_penalty": 0.5, "cache_dir": "", "task": "summarization", "num_workers": 2, "alpha_hid": 0, "freeze_embeds": True, "enc_only": False, "tgt_suffix": "", "resume_from_checkpoint": None, "sortish_sampler": True, "student_decoder_layers": 1, "val_check_interval": 1.0, "output_dir": "", "fp16": False, # TODO(SS): set this to CUDA_AVAILABLE if ci installs apex or start using native amp "no_teacher": False, "fp16_opt_level": "O1", "gpus": 1 if CUDA_AVAILABLE else 0, "n_tpu_cores": 0, "max_grad_norm": 1.0, "do_train": True, "do_predict": True, "accumulate_grad_batches": 1, "server_ip": "", "server_port": "", "seed": 42, "model_name_or_path": "sshleifer/bart-tiny-random", "config_name": "", "tokenizer_name": "facebook/bart-large", "do_lower_case": False, "learning_rate": 0.3, "lr_scheduler": "linear", "weight_decay": 0.0, "adam_epsilon": 1e-08, "warmup_steps": 0, "max_epochs": 1, "train_batch_size": 2, "eval_batch_size": 2, "max_source_length": 12, "max_target_length": 12, "val_max_target_length": 12, "test_max_target_length": 12, "fast_dev_run": False, "no_cache": False, "n_train": -1, "n_val": -1, "n_test": -1, "student_encoder_layers": 1, "freeze_encoder": False, "auto_scale_batch_size": False, "overwrite_output_dir": False, "student": None, } def _dump_articles(path: Path, articles: list): content = "\n".join(articles) Path(path).open("w").writelines(content) ARTICLES = [" Sam ate lunch today.", "Sams lunch ingredients."] SUMMARIES = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] T5_TINY = "patrickvonplaten/t5-tiny-random" T5_TINIER = "sshleifer/t5-tinier-random" BART_TINY = "sshleifer/bart-tiny-random" MBART_TINY = "sshleifer/tiny-mbart" MARIAN_TINY = "sshleifer/tiny-marian-en-de" FSMT_TINY = "stas/tiny-wmt19-en-de" stream_handler = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks def make_test_data_dir(tmp_dir): for split in ["train", "val", "test"]: _dump_articles(os.path.join(tmp_dir, f"{split}.source"), ARTICLES) _dump_articles(os.path.join(tmp_dir, f"{split}.target"), SUMMARIES) return tmp_dir class TestSummarizationDistiller(TestCasePlus): @classmethod def setUpClass(cls): logging.disable(logging.CRITICAL) # remove noisy download output from tracebacks return cls @slow @require_torch_gpu def test_hub_configs(self): """I put require_torch_gpu cause I only want this to run with self-scheduled.""" model_list = list_models() org = "sshleifer" model_ids = [x.modelId for x in model_list if x.modelId.startswith(org)] allowed_to_be_broken = ["sshleifer/blenderbot-3B", "sshleifer/blenderbot-90M"] failures = [] for m in model_ids: if m in allowed_to_be_broken: continue try: AutoConfig.from_pretrained(m) except Exception: failures.append(m) assert not failures, f"The following models could not be loaded through AutoConfig: {failures}" def test_distill_no_teacher(self): updates = {"student_encoder_layers": 2, "student_decoder_layers": 1, "no_teacher": True} self._test_distiller_cli(updates) def test_distill_checkpointing_with_teacher(self): updates = { "student_encoder_layers": 2, "student_decoder_layers": 1, "max_epochs": 4, "val_check_interval": 0.25, "alpha_hid": 2.0, "model_name_or_path": "IGNORE_THIS_IT_DOESNT_GET_USED", } model = self._test_distiller_cli(updates, check_contents=False) ckpts = list(Path(model.output_dir).glob("*.ckpt")) self.assertEqual(1, len(ckpts)) transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin")) self.assertEqual(len(transformer_ckpts), 2) examples = lmap(str.strip, Path(model.hparams.data_dir).joinpath("test.source").open().readlines()) out_path = tempfile.mktemp() # XXX: not being cleaned up generate_summaries_or_translations(examples, out_path, str(model.output_dir / "best_tfmr")) self.assertTrue(Path(out_path).exists()) out_path_new = self.get_auto_remove_tmp_dir() convert_pl_to_hf(ckpts[0], transformer_ckpts[0].parent, out_path_new) assert os.path.exists(os.path.join(out_path_new, "pytorch_model.bin")) def test_loss_fn(self): model = AutoModelForSeq2SeqLM.from_pretrained(BART_TINY) input_ids, mask = model.dummy_inputs["input_ids"], model.dummy_inputs["attention_mask"] target_ids = torch.tensor([[0, 4, 8, 2], [0, 8, 2, 1]], dtype=torch.long, device=model.device) decoder_input_ids = target_ids[:, :-1].contiguous() # Why this line? lm_labels = target_ids[:, 1:].clone() # why clone? model_computed_loss = model( input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, labels=lm_labels, use_cache=False ).loss logits = model(input_ids, attention_mask=mask, decoder_input_ids=decoder_input_ids, use_cache=False).logits lprobs = nn.functional.log_softmax(logits, dim=-1) smoothed_loss, nll_loss = label_smoothed_nll_loss( lprobs, lm_labels, 0.1, ignore_index=model.config.pad_token_id ) with self.assertRaises(AssertionError): # TODO: understand why this breaks self.assertEqual(nll_loss, model_computed_loss) def test_distill_mbart(self): updates = { "student_encoder_layers": 2, "student_decoder_layers": 1, "num_train_epochs": 4, "val_check_interval": 0.25, "alpha_hid": 2.0, "task": "translation", "model_name_or_path": "IGNORE_THIS_IT_DOESNT_GET_USED", "tokenizer_name": MBART_TINY, "teacher": MBART_TINY, "src_lang": "en_XX", "tgt_lang": "ro_RO", } model = self._test_distiller_cli(updates, check_contents=False) assert model.model.config.model_type == "mbart" ckpts = list(Path(model.output_dir).glob("*.ckpt")) self.assertEqual(1, len(ckpts)) transformer_ckpts = list(Path(model.output_dir).glob("**/*.bin")) all_files = list(Path(model.output_dir).glob("best_tfmr/*")) assert len(all_files) > 2 self.assertEqual(len(transformer_ckpts), 2) def test_distill_t5(self): updates = { "student_encoder_layers": 1, "student_decoder_layers": 1, "alpha_hid": 2.0, "teacher": T5_TINY, "model_name_or_path": T5_TINY, "tokenizer_name": T5_TINY, } self._test_distiller_cli(updates) def test_distill_different_base_models(self): updates = { "teacher": T5_TINY, "student": T5_TINIER, "model_name_or_path": T5_TINIER, "tokenizer_name": T5_TINIER, } self._test_distiller_cli(updates) def _test_distiller_cli(self, updates, check_contents=True): default_updates = { "label_smoothing": 0.0, "early_stopping_patience": -1, "train_batch_size": 1, "eval_batch_size": 2, "max_epochs": 2, "alpha_mlm": 0.2, "alpha_ce": 0.8, "do_predict": True, "model_name_or_path": "sshleifer/tinier_bart", "teacher": CHEAP_ARGS["model_name_or_path"], "val_check_interval": 0.5, } default_updates.update(updates) args_d: dict = CHEAP_ARGS.copy() tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) output_dir = self.get_auto_remove_tmp_dir() args_d.update(data_dir=tmp_dir, output_dir=output_dir, **default_updates) model = distill_main(argparse.Namespace(**args_d)) if not check_contents: return model contents = os.listdir(output_dir) contents = {os.path.basename(p) for p in contents} ckpt_files = [p for p in contents if p.endswith("ckpt")] assert len(ckpt_files) > 0 self.assertIn("test_generations.txt", contents) self.assertIn("test_results.txt", contents) metrics = load_json(model.metrics_save_path) last_step_stats = metrics["val"][-1] self.assertGreaterEqual(last_step_stats["val_avg_gen_time"], 0.01) self.assertGreaterEqual(1.0, last_step_stats["val_avg_gen_time"]) self.assertIsInstance(last_step_stats[f"val_avg_{model.val_metric}"], float) desired_n_evals = int(args_d["max_epochs"] * (1 / args_d["val_check_interval"]) + 1) self.assertEqual(len(metrics["val"]), desired_n_evals) self.assertEqual(len(metrics["test"]), 1) return model class TestTheRest(TestCasePlus): @parameterized.expand( [T5_TINY, BART_TINY, MBART_TINY, MARIAN_TINY, FSMT_TINY], ) def test_finetune(self, model): args_d: dict = CHEAP_ARGS.copy() task = "translation" if model in [MBART_TINY, MARIAN_TINY, FSMT_TINY] else "summarization" args_d["label_smoothing"] = 0.1 if task == "translation" else 0 tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) output_dir = self.get_auto_remove_tmp_dir() args_d.update( data_dir=tmp_dir, model_name_or_path=model, tokenizer_name=None, train_batch_size=2, eval_batch_size=2, output_dir=output_dir, do_predict=True, task=task, src_lang="en_XX", tgt_lang="ro_RO", freeze_encoder=True, freeze_embeds=True, ) assert "n_train" in args_d args = argparse.Namespace(**args_d) module = main(args) input_embeds = module.model.get_input_embeddings() assert not input_embeds.weight.requires_grad if model == T5_TINY: lm_head = module.model.lm_head assert not lm_head.weight.requires_grad assert (lm_head.weight == input_embeds.weight).all().item() elif model == FSMT_TINY: fsmt = module.model.model embed_pos = fsmt.decoder.embed_positions assert not embed_pos.weight.requires_grad assert not fsmt.decoder.embed_tokens.weight.requires_grad # check that embeds are not the same assert fsmt.decoder.embed_tokens != fsmt.encoder.embed_tokens else: bart = module.model.model embed_pos = bart.decoder.embed_positions assert not embed_pos.weight.requires_grad assert not bart.shared.weight.requires_grad # check that embeds are the same assert bart.decoder.embed_tokens == bart.encoder.embed_tokens assert bart.decoder.embed_tokens == bart.shared example_batch = load_json(module.output_dir / "text_batch.json") assert isinstance(example_batch, dict) assert len(example_batch) >= 4 def test_finetune_extra_model_args(self): args_d: dict = CHEAP_ARGS.copy() task = "summarization" tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) args_d.update( data_dir=tmp_dir, tokenizer_name=None, train_batch_size=2, eval_batch_size=2, do_predict=False, task=task, src_lang="en_XX", tgt_lang="ro_RO", freeze_encoder=True, freeze_embeds=True, ) # test models whose config includes the extra_model_args model = BART_TINY output_dir = self.get_auto_remove_tmp_dir() args_d1 = args_d.copy() args_d1.update( model_name_or_path=model, output_dir=output_dir, ) extra_model_params = ("encoder_layerdrop", "decoder_layerdrop", "dropout", "attention_dropout") for p in extra_model_params: args_d1[p] = 0.5 args = argparse.Namespace(**args_d1) model = main(args) for p in extra_model_params: assert getattr(model.config, p) == 0.5, f"failed to override the model config for param {p}" # test models whose config doesn't include the extra_model_args model = T5_TINY output_dir = self.get_auto_remove_tmp_dir() args_d2 = args_d.copy() args_d2.update( model_name_or_path=model, output_dir=output_dir, ) unsupported_param = "encoder_layerdrop" args_d2[unsupported_param] = 0.5 args = argparse.Namespace(**args_d2) with pytest.raises(Exception) as excinfo: model = main(args) assert str(excinfo.value) == f"model config doesn't have a `{unsupported_param}` attribute" def test_finetune_lr_schedulers(self): args_d: dict = CHEAP_ARGS.copy() task = "summarization" tmp_dir = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) model = BART_TINY output_dir = self.get_auto_remove_tmp_dir() args_d.update( data_dir=tmp_dir, model_name_or_path=model, output_dir=output_dir, tokenizer_name=None, train_batch_size=2, eval_batch_size=2, do_predict=False, task=task, src_lang="en_XX", tgt_lang="ro_RO", freeze_encoder=True, freeze_embeds=True, ) # emulate finetune.py parser = argparse.ArgumentParser() parser = pl.Trainer.add_argparse_args(parser) parser = SummarizationModule.add_model_specific_args(parser, os.getcwd()) args = {"--help": True} # --help test with pytest.raises(SystemExit) as excinfo: with CaptureStdout() as cs: args = parser.parse_args(args) assert False, "--help is expected to sys.exit" assert excinfo.type is SystemExit expected = lightning_base.arg_to_scheduler_metavar assert expected in cs.out, "--help is expected to list the supported schedulers" # --lr_scheduler=non_existing_scheduler test unsupported_param = "non_existing_scheduler" args = {f"--lr_scheduler={unsupported_param}"} with pytest.raises(SystemExit) as excinfo: with CaptureStderr() as cs: args = parser.parse_args(args) assert False, "invalid argument is expected to sys.exit" assert excinfo.type is SystemExit expected = f"invalid choice: '{unsupported_param}'" assert expected in cs.err, f"should have bailed on invalid choice of scheduler {unsupported_param}" # --lr_scheduler=existing_scheduler test supported_param = "cosine" args_d1 = args_d.copy() args_d1["lr_scheduler"] = supported_param args = argparse.Namespace(**args_d1) model = main(args) assert ( getattr(model.hparams, "lr_scheduler") == supported_param ), f"lr_scheduler={supported_param} shouldn't fail"
transformers/examples/research_projects/seq2seq-distillation/_test_seq2seq_examples.py/0
{ "file_path": "transformers/examples/research_projects/seq2seq-distillation/_test_seq2seq_examples.py", "repo_id": "transformers", "token_count": 7908 }
83
# coding=utf-8 # Copyright 2022 The Microsoft, The Google and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import enum import functools import math import re # The following script is adapted from the script of TaPas. # Original: https://github.com/google-research/tapas/master/wikisql_utils.py from typing import Any, List EMPTY_ANSWER = "none" EMPTY_ANSWER_AGG = "none" def _split_thousands(delimiter, value): split = value.split(delimiter) return len(split) > 1 and any((len(x) == 3 for x in split)) def convert_to_float(value): """Converts value to a float using a series of increasingly complex heuristics. Args: value: object that needs to be converted. Allowed types include float/int/strings. Returns: A float interpretation of value. Raises: ValueError if the float conversion of value fails. """ if isinstance(value, float): return value if isinstance(value, int): return float(value) if not isinstance(value, str): raise TypeError("Argument value is not a string. Can't parse it as float") sanitized = value try: # Example: 1,000.7 if "." in sanitized and "," in sanitized: return float(sanitized.replace(",", "")) # 1,000 if "," in sanitized and _split_thousands(",", sanitized): return float(sanitized.replace(",", "")) # 5,5556 if "," in sanitized and sanitized.count(",") == 1 and not _split_thousands(",", sanitized): return float(sanitized.replace(",", ".")) # 0.0.0.1 if sanitized.count(".") > 1: return float(sanitized.replace(".", "")) # 0,0,0,1 if sanitized.count(",") > 1: return float(sanitized.replace(",", "")) return float(sanitized) except ValueError: # Avoid adding the sanitized value in the error message. raise ValueError("Unable to convert value to float") def _normalize_float(answer): if answer is None: return None try: value = convert_to_float(answer) if isinstance(value, float) and math.isnan(value): return None return value except ValueError: return answer.lower() _TYPE_CONVERTER = { "text": lambda x: x, "real": convert_to_float, } class _Aggregation(enum.Enum): """Aggregations as defined by WikiSQL. Indexes match the data.""" NONE = 0 MAX = 1 MIN = 2 COUNT = 3 SUM = 4 AVERAGE = 5 class _Operator(enum.Enum): """The boolean operators used by WikiSQL. Indexes match the data.""" EQUALS = 0 GREATER = 1 LESSER = 2 @dataclasses.dataclass class _Condition: """Represents an SQL where clauses (e.g A = "a" or B > 5).""" column: str operator: _Operator cmp_value: Any _TOKENIZER = re.compile(r"\w+|[^\w\s]+", re.UNICODE | re.MULTILINE | re.DOTALL) def _normalize_for_match(x): return list(_TOKENIZER.findall(x.lower())) def _compare(operator, src, tgt): if operator == _Operator.EQUALS: return src == tgt elif operator == _Operator.GREATER: return src > tgt elif operator == _Operator.LESSER: return src < tgt raise ValueError(f"Unknown operator: {operator}") def _parse_value(table, column, cell_value): """Convert numeric values to floats and keeps everything else as string.""" types = table["types"] return _TYPE_CONVERTER[types[column]](cell_value) def _is_string(x): return isinstance(x, str) def _respect_conditions(table, row, conditions): """True if 'row' satisfies all 'conditions'.""" for cond in conditions: table_value = row[cond.column] cmp_value = _parse_value(table, cond.column, cond.cmp_value) if _is_string(table_value) and _is_string(cmp_value): table_value = _normalize_for_match(table_value) cmp_value = _normalize_for_match(cmp_value) if not isinstance(table_value, type(cmp_value)): raise TypeError("Type difference {} != {}".format(type(table_value), type(cmp_value))) if not _compare(cond.operator, table_value, cmp_value): return False return True def _get_float_answer(table, answer_coordinates, aggregation_op): """Applies operation to produce reference float answer.""" if not answer_coordinates: if aggregation_op == _Aggregation.COUNT: return 0.0 else: return EMPTY_ANSWER_AGG # Count can support non numeric answers. if aggregation_op == _Aggregation.COUNT: return float(len(answer_coordinates)) # If we have just one answer, if float returns it or try a conversion. values = [table["rows"][i][j] for (i, j) in answer_coordinates] if len(answer_coordinates) == 1: try: return convert_to_float(values[0]) except ValueError as e: if aggregation_op != _Aggregation.NONE: raise e if aggregation_op == _Aggregation.NONE: return None # Other aggregation only support numeric values. Bail out if we have strings. if not all((isinstance(v, (int, float)) for v in values)): return None if aggregation_op == _Aggregation.SUM: return float(sum(values)) elif aggregation_op == _Aggregation.AVERAGE: return sum(values) / len(answer_coordinates) else: raise ValueError(f"Unknown aggregation: {aggregation_op}") def _get_answer_coordinates(table, sql_query): """Retrieves references coordinates by executing SQL.""" # MAX and MIN are automatically supported by the model. aggregation_op_index = sql_query["agg"] if aggregation_op_index >= 3: aggregation_op = _Aggregation(aggregation_op_index) else: aggregation_op = _Aggregation.NONE target_column = sql_query["sel"] conditions = [ _Condition(column, _Operator(operator), cmp_value) for column, operator, cmp_value in zip( sql_query["conds"]["column_index"], sql_query["conds"]["operator_index"], sql_query["conds"]["condition"] ) ] indices = [] for row in range(len(table["rows"])): if _respect_conditions(table, table["rows"][row], conditions): indices.append((row, target_column)) if not indices: return [], aggregation_op if len(indices) == 1: return indices, aggregation_op # Parsing of MIN/MAX. if aggregation_op_index in (1, 2): operators = {2: min, 1: max} values = [(table["rows"][i][j], index) for index, (i, j) in enumerate(indices)] reduced = functools.reduce(operators[sql_query["agg"]], values) ret = [indices[reduced[1]]] return ret, _Aggregation.NONE return indices, aggregation_op def _get_answer_text(table, answer_coordinates, float_answer): if float_answer is not None: return [str(float_answer)] return [str(table["real_rows"][r][c]) for r, c in answer_coordinates] def retrieve_wikisql_query_answer_tapas(table, example) -> List: answer_coordinates, aggregation_op = _get_answer_coordinates(table, example) float_answer = _get_float_answer(table, answer_coordinates, aggregation_op) answer_text = _get_answer_text(table, answer_coordinates, float_answer) # keep the original data the same with TaPas if len(answer_text) == 0: answer_text = [EMPTY_ANSWER] return answer_text
transformers/examples/research_projects/tapex/wikisql_utils.py/0
{ "file_path": "transformers/examples/research_projects/tapex/wikisql_utils.py", "repo_id": "transformers", "token_count": 3098 }
84
from datetime import datetime import matplotlib.pyplot as plt import torch def freeze_module(module): for param in module.parameters(): param.requires_grad = False def get_device(): device = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): device = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def show_pil(img): fig = plt.imshow(img) fig.axes.get_xaxis().set_visible(False) fig.axes.get_yaxis().set_visible(False) plt.show() def get_timestamp(): current_time = datetime.now() timestamp = current_time.strftime("%H:%M:%S") return timestamp
transformers/examples/research_projects/vqgan-clip/utils.py/0
{ "file_path": "transformers/examples/research_projects/vqgan-clip/utils.py", "repo_id": "transformers", "token_count": 379 }
85
#!/usr/bin/env python3 import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, Wav2Vec2Config, Wav2Vec2FeatureExtractor, Wav2Vec2ForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wav2vec2.modeling_wav2vec2 import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"): _is_native_amp_available = True from torch.cuda.amp import autocast logger = logging.getLogger(__name__) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) freeze_feature_extractor: Optional[bool] = field( default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) verbose_logging: Optional[bool] = field( default=False, metadata={"help": "Whether to log verbose messages or not."}, ) max_gumbel_temperature: Optional[float] = field( default=2.0, metadata={"help": "Maximum temperature for gumbel softmax."} ) min_gumbel_temperature: Optional[float] = field( default=0.5, metadata={"help": "Minimum temperature for gumbel softmax."} ) gumbel_temperature_decay: Optional[float] = field( default=0.999995, metadata={"help": "Decay of gumbel temperature during training."} ) def configure_logger(model_args: ModelArguments, training_args: TrainingArguments): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) logging_level = logging.WARNING if model_args.verbose_logging: logging_level = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank): logging_level = logging.INFO logger.setLevel(logging_level) @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ dataset_name: str = field( default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_split_name: Optional[str] = field( default="train", metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" }, ) validation_split_name: Optional[str] = field( default="validation", metadata={ "help": ( "The name of the validation data set split to use (via the datasets library). Defaults to 'validation'" ) }, ) speech_file_column: Optional[str] = field( default="file", metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"}, ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) validation_split_percentage: Optional[int] = field( default=1, metadata={ "help": "The percentage of the train set used as validation set in case there's no validation split" }, ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_duration_in_seconds: Optional[float] = field( default=20.0, metadata={"help": "Filter audio files that are longer than `max_duration_in_seconds` seconds"} ) @dataclass class DataCollatorForWav2Vec2Pretraining: """ Data collator that will dynamically pad the inputs received and prepare masked indices for self-supervised pretraining. Args: model (:class:`~transformers.Wav2Vec2ForPreTraining`): The Wav2Vec2 model used for pretraining. The data collator needs to have access to config and ``_get_feat_extract_output_lengths`` function for correct padding. feature_extractor (:class:`~transformers.Wav2Vec2FeatureExtractor`): The processor used for proccessing the data. padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`): Select a strategy to pad the returned sequences (according to the model's padding side and padding index) among: * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the maximum acceptable input length for the model if that argument is not provided. * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). max_length (:obj:`int`, `optional`): Maximum length of the ``input_values`` of the returned list and optionally padding length (see above). pad_to_multiple_of (:obj:`int`, `optional`): If set will pad the sequence to a multiple of the provided value. This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >= 7.5 (Volta). """ model: Wav2Vec2ForPreTraining feature_extractor: Wav2Vec2FeatureExtractor padding: Union[bool, str] = "longest" pad_to_multiple_of: Optional[int] = None max_length: Optional[int] = None def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: # reformat list to dict and set to pytorch format batch = self.feature_extractor.pad( features, max_length=self.max_length, padding=self.padding, pad_to_multiple_of=self.pad_to_multiple_of, return_tensors="pt", ) mask_indices_seq_length = self.model._get_feat_extract_output_lengths(batch["input_values"].shape[-1]) batch_size = batch["input_values"].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula output_lengths = self.model._get_feat_extract_output_lengths(batch["attention_mask"].sum(-1)).to( torch.long ) attention_mask = torch.zeros( (batch_size, mask_indices_seq_length), dtype=torch.long, device=batch["input_values"].device ) # these two operations makes sure that all values # before the output lengths indices are attended to attention_mask[ (torch.arange(attention_mask.shape[0], device=batch["input_values"].device), output_lengths - 1) ] = 1 attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool() # sample randomly masked indices batch["mask_time_indices"] = _compute_mask_indices( (batch_size, mask_indices_seq_length), self.model.config.mask_time_prob, self.model.config.mask_time_length, attention_mask=attention_mask, min_masks=2, ) return batch class Wav2Vec2PreTrainer(Trainer): """ Subclassed :class:`~transformers.Trainer` for Wav2Vec2-like pretraining. Trainer can decay gumbel softmax temperature during training. """ def __init__(self, *args, max_gumbel_temp=1, min_gumbel_temp=0, gumbel_temp_decay=1.0, **kwargs): super().__init__(*args, **kwargs) self.num_update_step = 0 self.max_gumbel_temp = max_gumbel_temp self.min_gumbel_temp = min_gumbel_temp self.gumbel_temp_decay = gumbel_temp_decay def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor: """ Perform a training step on a batch of inputs. Subclass and override to inject custom behavior. Args: model (:obj:`nn.Module`): The model to train. inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`): The inputs and targets of the model. The dictionary will be unpacked before being fed to the model. Most models expect the targets under the argument :obj:`labels`. Check your model's documentation for all accepted arguments. Return: :obj:`torch.Tensor`: The tensor with training loss on this batch. """ model.train() inputs = self._prepare_inputs(inputs) if self.use_amp: with autocast(): loss = self.compute_loss(model, inputs) else: loss = self.compute_loss(model, inputs) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": loss = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": loss = loss.sum() / (inputs["mask_time_indices"]).sum() else: raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']") if self.args.gradient_accumulation_steps > 1: loss = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(loss).backward() elif self.use_apex: with amp.scale_loss(loss, self.optimizer) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(loss) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step, self.min_gumbel_temp) ) return loss.detach() def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() configure_logger(model_args, training_args) # Downloading and loading a dataset from the hub. datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" datasets = DatasetDict() datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"{data_args.train_split_name}[:{data_args.validation_split_percentage}%]", cache_dir=model_args.cache_dir, ) datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"{data_args.train_split_name}[{data_args.validation_split_percentage}%:]", cache_dir=model_args.cache_dir, ) else: # make sure only "validation" and "train" keys remain" datasets = DatasetDict() datasets["validation"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split="validation", cache_dir=model_args.cache_dir, ) datasets["train"] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=f"{data_args.train_split_name}", cache_dir=model_args.cache_dir, ) # only normalized-inputs-training is supported feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, do_normalize=True ) def prepare_dataset(batch): # check that all files have the correct sampling rate batch["speech"], _ = librosa.load(batch[data_args.speech_file_column], sr=feature_extractor.sampling_rate) return batch # load audio files into numpy arrays vectorized_datasets = datasets.map( prepare_dataset, num_proc=data_args.preprocessing_num_workers, remove_columns=datasets["train"].column_names ) # filter audio files that are too long vectorized_datasets = vectorized_datasets.filter( lambda data: len(data["speech"]) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate) ) def normalize(batch): return feature_extractor(batch["speech"], sampling_rate=feature_extractor.sampling_rate) # normalize and transform to `BatchFeatures` vectorized_datasets = vectorized_datasets.map( normalize, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, remove_columns=vectorized_datasets["train"].column_names, ) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 config = Wav2Vec2Config.from_pretrained( model_args.model_name_or_path, cache_dir=model_args.cache_dir, gradient_checkpointing=training_args.gradient_checkpointing, ) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( "PreTraining is only supported for ``config.do_stable_layer_norm=True`` and" " ``config.feat_extract_norm='layer'" ) model = Wav2Vec2ForPreTraining(config) data_collator = DataCollatorForWav2Vec2Pretraining(model=model, feature_extractor=feature_extractor) trainer = Wav2Vec2PreTrainer( model=model, data_collator=data_collator, args=training_args, train_dataset=vectorized_datasets["train"], eval_dataset=vectorized_datasets["validation"], tokenizer=feature_extractor, max_gumbel_temp=model_args.max_gumbel_temperature, min_gumbel_temp=model_args.min_gumbel_temperature, gumbel_temp_decay=model_args.gumbel_temperature_decay, ) trainer.train() if __name__ == "__main__": main()
transformers/examples/research_projects/wav2vec2/run_pretrain.py/0
{ "file_path": "transformers/examples/research_projects/wav2vec2/run_pretrain.py", "repo_id": "transformers", "token_count": 6513 }
86
#!/usr/bin/env python # coding=utf-8 # Copyright 2022 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and """ Fine-tuning a 🤗 Transformers model for image classification. Here is the full list of checkpoints on the hub that can be fine-tuned by this script: https://huggingface.co/models?filter=image-classification """ import json import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import tensorflow as tf from datasets import load_dataset from PIL import Image import transformers from transformers import ( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, DefaultDataCollator, HfArgumentParser, PushToHubCallback, TFAutoModelForImageClassification, TFTrainingArguments, create_optimizer, set_seed, ) from transformers.keras_callbacks import KerasMetricCallback from transformers.modeling_tf_utils import keras from transformers.trainer_utils import get_last_checkpoint, is_main_process from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version logger = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.49.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-classification/requirements.txt") MODEL_CONFIG_CLASSES = list(TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def pil_loader(path: str): with open(path, "rb") as f: im = Image.open(f) return im.convert("RGB") @dataclass class DataTrainingArguments: """ Arguments pertaining to what data we are going to input our model for training and eval. Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. """ dataset_name: Optional[str] = field( default=None, metadata={ "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)." }, ) dataset_config_name: Optional[str] = field( default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) train_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the training data."}) validation_dir: Optional[str] = field(default=None, metadata={"help": "A folder containing the validation data."}) train_val_split: Optional[float] = field( default=0.15, metadata={"help": "Percent to split off of train for validation."} ) overwrite_cache: bool = field( default=False, metadata={"help": "Overwrite the cached training and evaluation sets"} ) preprocessing_num_workers: Optional[int] = field( default=None, metadata={"help": "The number of processes to use for the preprocessing."}, ) max_train_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) }, ) max_eval_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) }, ) max_predict_samples: Optional[int] = field( default=None, metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) }, ) def __post_init__(self): if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( "You must specify either a dataset name from the hub or a train and/or validation directory." ) @dataclass class ModelArguments: """ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. """ model_name_or_path: str = field( default="google/vit-base-patch16-224-in21k", metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}, ) model_type: Optional[str] = field( default=None, metadata={"help": "If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES)}, ) config_name: Optional[str] = field( default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."}) token: str = field( default=None, metadata={ "help": ( "The token to use as HTTP bearer authorization for remote files. If not specified, will use the token " "generated when running `huggingface-cli login` (stored in `~/.huggingface`)." ) }, ) trust_remote_code: bool = field( default=False, metadata={ "help": ( "Whether to trust the execution of code from datasets/models defined on the Hub." " This option should only be set to `True` for repositories you trust and in which you have read the" " code, as it will execute code present on the Hub on your local machine." ) }, ) ignore_mismatched_sizes: bool = field( default=False, metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."}, ) def center_crop(image, size): size = (size, size) if isinstance(size, int) else size orig_height, orig_width, _ = image.shape crop_height, crop_width = size top = (orig_height - orig_width) // 2 left = (orig_width - crop_width) // 2 image = tf.image.crop_to_bounding_box(image, top, left, crop_height, crop_width) return image # Numpy and TensorFlow compatible version of PyTorch RandomResizedCrop. Code adapted from: # https://pytorch.org/vision/main/_modules/torchvision/transforms/transforms.html#RandomResizedCrop def random_crop(image, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0)): height, width, _ = image.shape area = height * width log_ratio = np.log(ratio) for _ in range(10): target_area = np.random.uniform(*scale) * area aspect_ratio = np.exp(np.random.uniform(*log_ratio)) w = int(round(np.sqrt(target_area * aspect_ratio))) h = int(round(np.sqrt(target_area / aspect_ratio))) if 0 < w <= width and 0 < h <= height: i = np.random.randint(0, height - h + 1) j = np.random.randint(0, width - w + 1) return image[i : i + h, j : j + w, :] # Fallback to central crop in_ratio = float(width) / float(height) w = width if in_ratio < min(ratio) else int(round(height * max(ratio))) h = height if in_ratio > max(ratio) else int(round(width / min(ratio))) i = (height - h) // 2 j = (width - w) // 2 return image[i : i + h, j : j + w, :] def random_resized_crop(image, size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0)): size = (size, size) if isinstance(size, int) else size image = random_crop(image, scale, ratio) image = tf.image.resize(image, size) return image def main(): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments)) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) else: model_args, data_args, training_args = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/TensorFlow versions. send_example_telemetry("run_image_classification", model_args, data_args, framework="tensorflow") # Checkpoints. Find the checkpoint the use when loading the model. checkpoint = None if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: checkpoint = get_last_checkpoint(training_args.output_dir) if checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f"Checkpoint detected, resuming training at {checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", handlers=[logging.StreamHandler(sys.stdout)], ) log_level = training_args.get_process_log_level() logger.setLevel(log_level) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info(f"Training/evaluation parameters {training_args}") # region Dataset and labels # Set seed before initializing model. set_seed(training_args.seed) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: dataset = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) else: data_files = {} if data_args.train_dir is not None: data_files["train"] = os.path.join(data_args.train_dir, "**") if data_args.validation_dir is not None: data_files["validation"] = os.path.join(data_args.validation_dir, "**") dataset = load_dataset( "imagefolder", data_files=data_files, cache_dir=model_args.cache_dir, ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets. # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. labels = dataset["train"].features["labels"].names label2id, id2label = {}, {} for i, label in enumerate(labels): label2id[label] = str(i) id2label[str(i)] = label # Load model image processor and configuration config = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(labels), label2id=label2id, id2label=id2label, finetuning_task="image-classification", cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) image_processor = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path, cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ) # If we don't have a validation split, split off a percentage of train as validation. data_args.train_val_split = None if "validation" in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0: split = dataset["train"].train_test_split(data_args.train_val_split) dataset["train"] = split["train"] dataset["validation"] = split["test"] # Define our data preprocessing function. It takes an image file path as input and returns # Write a note describing the resizing behaviour. if "shortest_edge" in image_processor.size: # We instead set the target size as (shortest_edge, shortest_edge) to here to ensure all images are batchable. image_size = (image_processor.size["shortest_edge"], image_processor.size["shortest_edge"]) else: image_size = (image_processor.size["height"], image_processor.size["width"]) def _train_transforms(image): img_size = image_size image = keras.utils.img_to_array(image) image = random_resized_crop(image, size=img_size) image = tf.image.random_flip_left_right(image) image /= 255.0 image = (image - image_processor.image_mean) / image_processor.image_std image = tf.transpose(image, perm=[2, 0, 1]) return image def _val_transforms(image): image = keras.utils.img_to_array(image) image = tf.image.resize(image, size=image_size) # image = np.array(image) # FIXME - use tf.image function image = center_crop(image, size=image_size) image /= 255.0 image = (image - image_processor.image_mean) / image_processor.image_std image = tf.transpose(image, perm=[2, 0, 1]) return image def train_transforms(example_batch): """Apply _train_transforms across a batch.""" example_batch["pixel_values"] = [ _train_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"] ] return example_batch def val_transforms(example_batch): """Apply _val_transforms across a batch.""" example_batch["pixel_values"] = [_val_transforms(pil_img.convert("RGB")) for pil_img in example_batch["image"]] return example_batch train_dataset = None if training_args.do_train: if "train" not in dataset: raise ValueError("--do_train requires a train dataset") train_dataset = dataset["train"] if data_args.max_train_samples is not None: train_dataset = train_dataset.shuffle(seed=training_args.seed).select(range(data_args.max_train_samples)) train_dataset = train_dataset.map( train_transforms, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) eval_dataset = None if training_args.do_eval: if "validation" not in dataset: raise ValueError("--do_eval requires a validation dataset") eval_dataset = dataset["validation"] if data_args.max_eval_samples is not None: eval_dataset = eval_dataset.select(range(data_args.max_eval_samples)) # Set the validation transforms eval_dataset = eval_dataset.map( val_transforms, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) predict_dataset = None if training_args.do_predict: if "test" not in dataset: raise ValueError("--do_predict requires a test dataset") predict_dataset = dataset["test"] if data_args.max_predict_samples is not None: predict_dataset = predict_dataset.select(range(data_args.max_predict_samples)) # Set the test transforms predict_dataset = predict_dataset.map( val_transforms, batched=True, num_proc=data_args.preprocessing_num_workers, load_from_cache_file=not data_args.overwrite_cache, ) collate_fn = DefaultDataCollator(return_tensors="np") # Load the accuracy metric from the datasets package metric = evaluate.load("accuracy", cache_dir=model_args.cache_dir) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(p): """Computes accuracy on a batch of predictions""" logits, label_ids = p predictions = np.argmax(logits, axis=-1) metrics = metric.compute(predictions=predictions, references=label_ids) return metrics with training_args.strategy.scope(): if checkpoint is None: model_path = model_args.model_name_or_path else: model_path = checkpoint model = TFAutoModelForImageClassification.from_pretrained( model_path, config=config, from_pt=bool(".bin" in model_path), cache_dir=model_args.cache_dir, revision=model_args.model_revision, token=model_args.token, trust_remote_code=model_args.trust_remote_code, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) num_replicas = training_args.strategy.num_replicas_in_sync total_train_batch_size = training_args.per_device_train_batch_size * num_replicas total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas dataset_options = tf.data.Options() dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF if training_args.do_train: num_train_steps = int(len(train_dataset) * training_args.num_train_epochs) if training_args.warmup_steps > 0: num_warmpup_steps = int(training_args.warmup_steps) elif training_args.warmup_ratio > 0: num_warmpup_steps = int(training_args.warmup_ratio * num_train_steps) else: num_warmpup_steps = 0 optimizer, _ = create_optimizer( init_lr=training_args.learning_rate, num_train_steps=num_train_steps, num_warmup_steps=num_warmpup_steps, adam_beta1=training_args.adam_beta1, adam_beta2=training_args.adam_beta2, adam_epsilon=training_args.adam_epsilon, weight_decay_rate=training_args.weight_decay, adam_global_clipnorm=training_args.max_grad_norm, ) # model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in # training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also # use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names # yourself if you use this method, whereas they are automatically inferred from the model input names when # using model.prepare_tf_dataset() # For more info see the docs: # https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset # https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset train_dataset = model.prepare_tf_dataset( train_dataset, shuffle=True, batch_size=total_train_batch_size, collate_fn=collate_fn, ).with_options(dataset_options) else: optimizer = "sgd" # Just write anything because we won't be using it if training_args.do_eval: eval_dataset = model.prepare_tf_dataset( eval_dataset, shuffle=False, batch_size=total_eval_batch_size, collate_fn=collate_fn, ).with_options(dataset_options) if training_args.do_predict: predict_dataset = model.prepare_tf_dataset( predict_dataset, shuffle=False, batch_size=total_eval_batch_size, collate_fn=collate_fn, ).with_options(dataset_options) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=optimizer, jit_compile=training_args.xla, metrics=["accuracy"]) push_to_hub_model_id = training_args.push_to_hub_model_id if not push_to_hub_model_id: model_name = model_args.model_name_or_path.split("/")[-1] push_to_hub_model_id = f"{model_name}-finetuned-image-classification" model_card_kwargs = { "finetuned_from": model_args.model_name_or_path, "tasks": "image-classification", "dataset": data_args.dataset_name, "tags": ["image-classification", "tensorflow", "vision"], } callbacks = [] if eval_dataset is not None: callbacks.append(KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=eval_dataset)) if training_args.push_to_hub: callbacks.append( PushToHubCallback( output_dir=training_args.output_dir, hub_model_id=push_to_hub_model_id, hub_token=training_args.push_to_hub_token, tokenizer=image_processor, **model_card_kwargs, ) ) if training_args.do_train: model.fit( train_dataset, validation_data=eval_dataset, epochs=int(training_args.num_train_epochs), callbacks=callbacks, ) if training_args.do_eval: n_eval_batches = len(eval_dataset) eval_predictions = model.predict(eval_dataset, steps=n_eval_batches) eval_labels = dataset["validation"]["labels"][: n_eval_batches * total_eval_batch_size] eval_metrics = compute_metrics((eval_predictions.logits, eval_labels)) logging.info("Eval metrics:") for metric_name, value in eval_metrics.items(): logging.info(f"{metric_name}: {value:.3f}") if training_args.output_dir is not None: os.makedirs(training_args.output_dir, exist_ok=True) with open(os.path.join(training_args.output_dir, "all_results.json"), "w") as f: f.write(json.dumps(eval_metrics)) if training_args.do_predict: n_predict_batches = len(predict_dataset) test_predictions = model.predict(predict_dataset, steps=n_predict_batches) test_labels = dataset["validation"]["labels"][: n_predict_batches * total_eval_batch_size] test_metrics = compute_metrics((test_predictions.logits, test_labels)) logging.info("Test metrics:") for metric_name, value in test_metrics.items(): logging.info(f"{metric_name}: {value:.3f}") if training_args.output_dir is not None and not training_args.push_to_hub: # If we're not pushing to hub, at least save a local copy when we're done model.save_pretrained(training_args.output_dir) if __name__ == "__main__": main()
transformers/examples/tensorflow/image-classification/run_image_classification.py/0
{ "file_path": "transformers/examples/tensorflow/image-classification/run_image_classification.py", "repo_id": "transformers", "token_count": 10399 }
87
[tool.coverage.run] source = ["transformers"] omit = [ "*/convert_*", "*/__main__.py" ] [tool.coverage.report] exclude_lines = [ "pragma: no cover", "raise", "except", "register_parameter" ] [tool.ruff] line-length = 119 [tool.ruff.lint] # Never enforce `E501` (line length violations). ignore = ["C901", "E501", "E741", "F402", "F823" ] select = ["C", "E", "F", "I", "W"] # Ignore import violations in all `__init__.py` files. [tool.ruff.lint.per-file-ignores] "__init__.py" = ["E402", "F401", "F403", "F811"] "src/transformers/file_utils.py" = ["F401"] "src/transformers/utils/dummy_*.py" = ["F401"] [tool.ruff.lint.isort] lines-after-imports = 2 known-first-party = ["transformers"] [tool.ruff.format] # Like Black, use double quotes for strings. quote-style = "double" # Like Black, indent with spaces, rather than tabs. indent-style = "space" # Like Black, respect magic trailing commas. skip-magic-trailing-comma = false # Like Black, automatically detect the appropriate line ending. line-ending = "auto" [tool.pytest.ini_options] addopts = "--doctest-glob='**/*.md'" doctest_optionflags="NUMBER NORMALIZE_WHITESPACE ELLIPSIS" markers = [ "flash_attn_test: marks tests related to flash attention (deselect with '-m \"not flash_attn_test\"')", "bitsandbytes: select (or deselect with `not`) bitsandbytes integration tests", "generate: marks tests that use the GenerationTesterMixin" ]
transformers/pyproject.toml/0
{ "file_path": "transformers/pyproject.toml", "repo_id": "transformers", "token_count": 550 }
88
# this is the process of uploading the updated models to s3. As I can't upload them directly to the correct orgs, this script shows how this is done # Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. 1. upload updated models to my account transformers-cli upload -y wmt19-ru-en transformers-cli upload -y wmt19-en-ru transformers-cli upload -y wmt19-de-en transformers-cli upload -y wmt19-en-de transformers-cli upload -y wmt19-de-en-6-6-base transformers-cli upload -y wmt19-de-en-6-6-big transformers-cli upload -y wmt16-en-de-dist-12-1 transformers-cli upload -y wmt16-en-de-dist-6-1 transformers-cli upload -y wmt16-en-de-12-1 2. ask someone to move them to: * to facebook: "wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en" * to allenai: "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big" export b="s3://models.huggingface.co/bert" stas_to_fb () { src=$1 shift aws s3 sync $b/stas/$src $b/facebook/$src $@ } stas_to_allenai () { src=$1 shift aws s3 sync $b/stas/$src $b/allenai/$src $@ } stas_to_fb wmt19-en-ru stas_to_fb wmt19-ru-en stas_to_fb wmt19-en-de stas_to_fb wmt19-de-en stas_to_allenai wmt16-en-de-dist-12-1 stas_to_allenai wmt16-en-de-dist-6-1 stas_to_allenai wmt16-en-de-6-1 stas_to_allenai wmt16-en-de-12-1 stas_to_allenai wmt19-de-en-6-6-base stas_to_allenai wmt19-de-en-6-6-big 3. and then remove all these model files from my account transformers-cli s3 rm wmt16-en-de-12-1/config.json transformers-cli s3 rm wmt16-en-de-12-1/merges.txt transformers-cli s3 rm wmt16-en-de-12-1/pytorch_model.bin transformers-cli s3 rm wmt16-en-de-12-1/tokenizer_config.json transformers-cli s3 rm wmt16-en-de-12-1/vocab-src.json transformers-cli s3 rm wmt16-en-de-12-1/vocab-tgt.json transformers-cli s3 rm wmt16-en-de-dist-12-1/config.json transformers-cli s3 rm wmt16-en-de-dist-12-1/merges.txt transformers-cli s3 rm wmt16-en-de-dist-12-1/pytorch_model.bin transformers-cli s3 rm wmt16-en-de-dist-12-1/tokenizer_config.json transformers-cli s3 rm wmt16-en-de-dist-12-1/vocab-src.json transformers-cli s3 rm wmt16-en-de-dist-12-1/vocab-tgt.json transformers-cli s3 rm wmt16-en-de-dist-6-1/config.json transformers-cli s3 rm wmt16-en-de-dist-6-1/merges.txt transformers-cli s3 rm wmt16-en-de-dist-6-1/pytorch_model.bin transformers-cli s3 rm wmt16-en-de-dist-6-1/tokenizer_config.json transformers-cli s3 rm wmt16-en-de-dist-6-1/vocab-src.json transformers-cli s3 rm wmt16-en-de-dist-6-1/vocab-tgt.json transformers-cli s3 rm wmt19-de-en-6-6-base/config.json transformers-cli s3 rm wmt19-de-en-6-6-base/merges.txt transformers-cli s3 rm wmt19-de-en-6-6-base/pytorch_model.bin transformers-cli s3 rm wmt19-de-en-6-6-base/tokenizer_config.json transformers-cli s3 rm wmt19-de-en-6-6-base/vocab-src.json transformers-cli s3 rm wmt19-de-en-6-6-base/vocab-tgt.json transformers-cli s3 rm wmt19-de-en-6-6-big/config.json transformers-cli s3 rm wmt19-de-en-6-6-big/merges.txt transformers-cli s3 rm wmt19-de-en-6-6-big/pytorch_model.bin transformers-cli s3 rm wmt19-de-en-6-6-big/tokenizer_config.json transformers-cli s3 rm wmt19-de-en-6-6-big/vocab-src.json transformers-cli s3 rm wmt19-de-en-6-6-big/vocab-tgt.json transformers-cli s3 rm wmt19-de-en/config.json transformers-cli s3 rm wmt19-de-en/merges.txt transformers-cli s3 rm wmt19-de-en/pytorch_model.bin transformers-cli s3 rm wmt19-de-en/tokenizer_config.json transformers-cli s3 rm wmt19-de-en/vocab-src.json transformers-cli s3 rm wmt19-de-en/vocab-tgt.json transformers-cli s3 rm wmt19-en-de/config.json transformers-cli s3 rm wmt19-en-de/merges.txt transformers-cli s3 rm wmt19-en-de/pytorch_model.bin transformers-cli s3 rm wmt19-en-de/tokenizer_config.json transformers-cli s3 rm wmt19-en-de/vocab-src.json transformers-cli s3 rm wmt19-en-de/vocab-tgt.json transformers-cli s3 rm wmt19-en-ru/config.json transformers-cli s3 rm wmt19-en-ru/merges.txt transformers-cli s3 rm wmt19-en-ru/pytorch_model.bin transformers-cli s3 rm wmt19-en-ru/tokenizer_config.json transformers-cli s3 rm wmt19-en-ru/vocab-src.json transformers-cli s3 rm wmt19-en-ru/vocab-tgt.json transformers-cli s3 rm wmt19-ru-en/config.json transformers-cli s3 rm wmt19-ru-en/merges.txt transformers-cli s3 rm wmt19-ru-en/pytorch_model.bin transformers-cli s3 rm wmt19-ru-en/tokenizer_config.json transformers-cli s3 rm wmt19-ru-en/vocab-src.json transformers-cli s3 rm wmt19-ru-en/vocab-tgt.json
transformers/scripts/fsmt/s3-move.sh/0
{ "file_path": "transformers/scripts/fsmt/s3-move.sh", "repo_id": "transformers", "token_count": 2133 }
89
#!/usr/bin/env python # coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from PIL import Image from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .tools import PipelineTool class ImageQuestionAnsweringTool(PipelineTool): default_checkpoint = "dandelin/vilt-b32-finetuned-vqa" description = ( "This is a tool that answers a question about an image. It " "returns a text that is the answer to the question." ) name = "image_qa" pre_processor_class = AutoProcessor model_class = AutoModelForVisualQuestionAnswering inputs = { "image": { "type": "image", "description": "The image containing the information. Can be a PIL Image or a string path to the image.", }, "question": {"type": "string", "description": "The question in English"}, } output_type = "string" def __init__(self, *args, **kwargs): requires_backends(self, ["vision"]) super().__init__(*args, **kwargs) def encode(self, image: "Image", question: str): return self.pre_processor(image, question, return_tensors="pt") def forward(self, inputs): with torch.no_grad(): return self.model(**inputs).logits def decode(self, outputs): idx = outputs.argmax(-1).item() return self.model.config.id2label[idx]
transformers/src/transformers/agents/image_question_answering.py/0
{ "file_path": "transformers/src/transformers/agents/image_question_answering.py", "repo_id": "transformers", "token_count": 688 }
90
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from . import BaseTransformersCLICommand def download_command_factory(args): return DownloadCommand(args.model, args.cache_dir, args.force, args.trust_remote_code) class DownloadCommand(BaseTransformersCLICommand): @staticmethod def register_subcommand(parser: ArgumentParser): download_parser = parser.add_parser("download") download_parser.add_argument( "--cache-dir", type=str, default=None, help="Path to location to store the models" ) download_parser.add_argument( "--force", action="store_true", help="Force the model to be download even if already in cache-dir" ) download_parser.add_argument( "--trust-remote-code", action="store_true", help="Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you've reviewed the code as it will execute on your local machine", ) download_parser.add_argument("model", type=str, help="Name of the model to download") download_parser.set_defaults(func=download_command_factory) def __init__(self, model: str, cache: str, force: bool, trust_remote_code: bool): self._model = model self._cache = cache self._force = force self._trust_remote_code = trust_remote_code def run(self): from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model, cache_dir=self._cache, force_download=self._force, trust_remote_code=self._trust_remote_code )
transformers/src/transformers/commands/download.py/0
{ "file_path": "transformers/src/transformers/commands/download.py", "repo_id": "transformers", "token_count": 828 }
91
# coding=utf-8 # Copyright 2021 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Feature extraction saving/loading class for common feature extractors. """ import copy import json import os import warnings from collections import UserDict from typing import TYPE_CHECKING, Any, Dict, Optional, Tuple, Union import numpy as np from .dynamic_module_utils import custom_object_save from .utils import ( FEATURE_EXTRACTOR_NAME, PushToHubMixin, TensorType, add_model_info_to_auto_map, add_model_info_to_custom_pipelines, cached_file, copy_func, download_url, is_flax_available, is_jax_tensor, is_numpy_array, is_offline_mode, is_remote_url, is_tf_available, is_torch_available, is_torch_device, is_torch_dtype, logging, requires_backends, ) if TYPE_CHECKING: if is_torch_available(): import torch # noqa logger = logging.get_logger(__name__) PreTrainedFeatureExtractor = Union["SequenceFeatureExtractor"] # noqa: F821 class BatchFeature(UserDict): r""" Holds the output of the [`~SequenceFeatureExtractor.pad`] and feature extractor specific `__call__` methods. This class is derived from a python dictionary and can be used as a dictionary. Args: data (`dict`, *optional*): Dictionary of lists/arrays/tensors returned by the __call__/pad methods ('input_values', 'attention_mask', etc.). tensor_type (`Union[None, str, TensorType]`, *optional*): You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at initialization. """ def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None): super().__init__(data) self.convert_to_tensors(tensor_type=tensor_type) def __getitem__(self, item: str) -> Union[Any]: """ If the key is a string, returns the value of the dict associated to `key` ('input_values', 'attention_mask', etc.). """ if isinstance(item, str): return self.data[item] else: raise KeyError("Indexing with integers is not available when using Python based feature extractors") def __getattr__(self, item: str): try: return self.data[item] except KeyError: raise AttributeError def __getstate__(self): return {"data": self.data} def __setstate__(self, state): if "data" in state: self.data = state["data"] # Copied from transformers.tokenization_utils_base.BatchEncoding.keys def keys(self): return self.data.keys() # Copied from transformers.tokenization_utils_base.BatchEncoding.values def values(self): return self.data.values() # Copied from transformers.tokenization_utils_base.BatchEncoding.items def items(self): return self.data.items() def _get_is_as_tensor_fns(self, tensor_type: Optional[Union[str, TensorType]] = None): if tensor_type is None: return None, None # Convert to TensorType if not isinstance(tensor_type, TensorType): tensor_type = TensorType(tensor_type) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( "Unable to convert output to TensorFlow tensors format, TensorFlow is not installed." ) import tensorflow as tf as_tensor = tf.constant is_tensor = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("Unable to convert output to PyTorch tensors format, PyTorch is not installed.") import torch # noqa def as_tensor(value): if isinstance(value, (list, tuple)) and len(value) > 0: if isinstance(value[0], np.ndarray): value = np.array(value) elif ( isinstance(value[0], (list, tuple)) and len(value[0]) > 0 and isinstance(value[0][0], np.ndarray) ): value = np.array(value) if isinstance(value, np.ndarray): return torch.from_numpy(value) else: return torch.tensor(value) is_tensor = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("Unable to convert output to JAX tensors format, JAX is not installed.") import jax.numpy as jnp # noqa: F811 as_tensor = jnp.array is_tensor = is_jax_tensor else: def as_tensor(value, dtype=None): if isinstance(value, (list, tuple)) and isinstance(value[0], (list, tuple, np.ndarray)): value_lens = [len(val) for val in value] if len(set(value_lens)) > 1 and dtype is None: # we have a ragged list so handle explicitly value = as_tensor([np.asarray(val) for val in value], dtype=object) return np.asarray(value, dtype=dtype) is_tensor = is_numpy_array return is_tensor, as_tensor def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None): """ Convert the inner content to tensors. Args: tensor_type (`str` or [`~utils.TensorType`], *optional*): The type of tensors to use. If `str`, should be one of the values of the enum [`~utils.TensorType`]. If `None`, no modification is done. """ if tensor_type is None: return self is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type) # Do the tensor conversion in batch for key, value in self.items(): try: if not is_tensor(value): tensor = as_tensor(value) self[key] = tensor except: # noqa E722 if key == "overflowing_values": raise ValueError("Unable to create tensor returning overflowing values of different lengths. ") raise ValueError( "Unable to create tensor, you should probably activate padding " "with 'padding=True' to have batched tensors with the same length." ) return self def to(self, *args, **kwargs) -> "BatchFeature": """ Send all values to device by calling `v.to(*args, **kwargs)` (PyTorch only). This should support casting in different `dtypes` and sending the `BatchFeature` to a different `device`. Args: args (`Tuple`): Will be passed to the `to(...)` function of the tensors. kwargs (`Dict`, *optional*): Will be passed to the `to(...)` function of the tensors. To enable asynchronous data transfer, set the `non_blocking` flag in `kwargs` (defaults to `False`). Returns: [`BatchFeature`]: The same instance after modification. """ requires_backends(self, ["torch"]) import torch # noqa new_data = {} device = kwargs.get("device") non_blocking = kwargs.get("non_blocking", False) # Check if the args are a device or a dtype if device is None and len(args) > 0: # device should be always the first argument arg = args[0] if is_torch_dtype(arg): # The first argument is a dtype pass elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int): device = arg else: # it's something else raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.") # We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor` for k, v in self.items(): # check if v is a floating point if isinstance(v, torch.Tensor) and torch.is_floating_point(v): # cast and send to device new_data[k] = v.to(*args, **kwargs) elif isinstance(v, torch.Tensor) and device is not None: new_data[k] = v.to(device=device, non_blocking=non_blocking) else: new_data[k] = v self.data = new_data return self class FeatureExtractionMixin(PushToHubMixin): """ This is a feature extraction mixin used to provide saving/loading functionality for sequential and image feature extractors. """ _auto_class = None def __init__(self, **kwargs): """Set elements of `kwargs` as attributes.""" # Pop "processor_class" as it should be saved as private attribute self._processor_class = kwargs.pop("processor_class", None) # Additional attributes without default values for key, value in kwargs.items(): try: setattr(self, key, value) except AttributeError as err: logger.error(f"Can't set {key} with value {value} for {self}") raise err def _set_processor_class(self, processor_class: str): """Sets processor class as an attribute.""" self._processor_class = processor_class @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Union[str, os.PathLike], cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, local_files_only: bool = False, token: Optional[Union[str, bool]] = None, revision: str = "main", **kwargs, ): r""" Instantiate a type of [`~feature_extraction_utils.FeatureExtractionMixin`] from a feature extractor, *e.g.* a derived class of [`SequenceFeatureExtractor`]. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained feature_extractor hosted inside a model repo on huggingface.co. - a path to a *directory* containing a feature extractor file saved using the [`~feature_extraction_utils.FeatureExtractionMixin.save_pretrained`] method, e.g., `./my_model_directory/`. - a path or url to a saved feature extractor JSON *file*, e.g., `./my_model_directory/preprocessor_config.json`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model feature extractor should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the feature extractor files and override the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or `bool`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use the token generated when running `huggingface-cli login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. <Tip> To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>"`. </Tip> return_unused_kwargs (`bool`, *optional*, defaults to `False`): If `False`, then this function returns just the final feature extractor object. If `True`, then this functions returns a `Tuple(feature_extractor, unused_kwargs)` where *unused_kwargs* is a dictionary consisting of the key/value pairs whose keys are not feature extractor attributes: i.e., the part of `kwargs` which has not been used to update `feature_extractor` and is otherwise ignored. kwargs (`Dict[str, Any]`, *optional*): The values in kwargs of any keys which are feature extractor attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are *not* feature extractor attributes is controlled by the `return_unused_kwargs` keyword parameter. Returns: A feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`]. Examples: ```python # We can't instantiate directly the base class *FeatureExtractionMixin* nor *SequenceFeatureExtractor* so let's show the examples on a # derived class: *Wav2Vec2FeatureExtractor* feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( "facebook/wav2vec2-base-960h" ) # Download feature_extraction_config from huggingface.co and cache. feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( "./test/saved_model/" ) # E.g. feature_extractor (or model) was saved using *save_pretrained('./test/saved_model/')* feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("./test/saved_model/preprocessor_config.json") feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained( "facebook/wav2vec2-base-960h", return_attention_mask=False, foo=False ) assert feature_extractor.return_attention_mask is False feature_extractor, unused_kwargs = Wav2Vec2FeatureExtractor.from_pretrained( "facebook/wav2vec2-base-960h", return_attention_mask=False, foo=False, return_unused_kwargs=True ) assert feature_extractor.return_attention_mask is False assert unused_kwargs == {"foo": False} ```""" kwargs["cache_dir"] = cache_dir kwargs["force_download"] = force_download kwargs["local_files_only"] = local_files_only kwargs["revision"] = revision use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token if token is not None: kwargs["token"] = token feature_extractor_dict, kwargs = cls.get_feature_extractor_dict(pretrained_model_name_or_path, **kwargs) return cls.from_dict(feature_extractor_dict, **kwargs) def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs): """ Save a feature_extractor object to the directory `save_directory`, so that it can be re-loaded using the [`~feature_extraction_utils.FeatureExtractionMixin.from_pretrained`] class method. Args: save_directory (`str` or `os.PathLike`): Directory where the feature extractor JSON file will be saved (will be created if it does not exist). push_to_hub (`bool`, *optional*, defaults to `False`): Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the repository you want to push to with `repo_id` (will default to the name of `save_directory` in your namespace). kwargs (`Dict[str, Any]`, *optional*): Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. """ use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token if os.path.isfile(save_directory): raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(save_directory, exist_ok=True) if push_to_hub: commit_message = kwargs.pop("commit_message", None) repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) repo_id = self._create_repo(repo_id, **kwargs) files_timestamps = self._get_files_timestamps(save_directory) # If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be # loaded from the Hub. if self._auto_class is not None: custom_object_save(self, save_directory, config=self) # If we save using the predefined names, we can load using `from_pretrained` output_feature_extractor_file = os.path.join(save_directory, FEATURE_EXTRACTOR_NAME) self.to_json_file(output_feature_extractor_file) logger.info(f"Feature extractor saved in {output_feature_extractor_file}") if push_to_hub: self._upload_modified_files( save_directory, repo_id, files_timestamps, commit_message=commit_message, token=kwargs.get("token"), ) return [output_feature_extractor_file] @classmethod def get_feature_extractor_dict( cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs ) -> Tuple[Dict[str, Any], Dict[str, Any]]: """ From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`] using `from_dict`. Parameters: pretrained_model_name_or_path (`str` or `os.PathLike`): The identifier of the pre-trained checkpoint from which we want the dictionary of parameters. Returns: `Tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the feature extractor object. """ cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", None) proxies = kwargs.pop("proxies", None) subfolder = kwargs.pop("subfolder", None) token = kwargs.pop("token", None) use_auth_token = kwargs.pop("use_auth_token", None) local_files_only = kwargs.pop("local_files_only", False) revision = kwargs.pop("revision", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token from_pipeline = kwargs.pop("_from_pipeline", None) from_auto_class = kwargs.pop("_from_auto", False) user_agent = {"file_type": "feature extractor", "from_auto_class": from_auto_class} if from_pipeline is not None: user_agent["using_pipeline"] = from_pipeline if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True pretrained_model_name_or_path = str(pretrained_model_name_or_path) is_local = os.path.isdir(pretrained_model_name_or_path) if os.path.isdir(pretrained_model_name_or_path): feature_extractor_file = os.path.join(pretrained_model_name_or_path, FEATURE_EXTRACTOR_NAME) if os.path.isfile(pretrained_model_name_or_path): resolved_feature_extractor_file = pretrained_model_name_or_path is_local = True elif is_remote_url(pretrained_model_name_or_path): feature_extractor_file = pretrained_model_name_or_path resolved_feature_extractor_file = download_url(pretrained_model_name_or_path) else: feature_extractor_file = FEATURE_EXTRACTOR_NAME try: # Load from local folder or from cache or download from model Hub and cache resolved_feature_extractor_file = cached_file( pretrained_model_name_or_path, feature_extractor_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, subfolder=subfolder, token=token, user_agent=user_agent, revision=revision, ) except EnvironmentError: # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to # the original exception. raise except Exception: # For any other exception, we throw a generic error. raise EnvironmentError( f"Can't load feature extractor for '{pretrained_model_name_or_path}'. If you were trying to load" " it from 'https://huggingface.co/models', make sure you don't have a local directory with the" f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" f" directory containing a {FEATURE_EXTRACTOR_NAME} file" ) try: # Load feature_extractor dict with open(resolved_feature_extractor_file, "r", encoding="utf-8") as reader: text = reader.read() feature_extractor_dict = json.loads(text) except json.JSONDecodeError: raise EnvironmentError( f"It looks like the config file at '{resolved_feature_extractor_file}' is not a valid JSON file." ) if is_local: logger.info(f"loading configuration file {resolved_feature_extractor_file}") else: logger.info( f"loading configuration file {feature_extractor_file} from cache at {resolved_feature_extractor_file}" ) if not is_local: if "auto_map" in feature_extractor_dict: feature_extractor_dict["auto_map"] = add_model_info_to_auto_map( feature_extractor_dict["auto_map"], pretrained_model_name_or_path ) if "custom_pipelines" in feature_extractor_dict: feature_extractor_dict["custom_pipelines"] = add_model_info_to_custom_pipelines( feature_extractor_dict["custom_pipelines"], pretrained_model_name_or_path ) return feature_extractor_dict, kwargs @classmethod def from_dict(cls, feature_extractor_dict: Dict[str, Any], **kwargs) -> PreTrainedFeatureExtractor: """ Instantiates a type of [`~feature_extraction_utils.FeatureExtractionMixin`] from a Python dictionary of parameters. Args: feature_extractor_dict (`Dict[str, Any]`): Dictionary that will be used to instantiate the feature extractor object. Such a dictionary can be retrieved from a pretrained checkpoint by leveraging the [`~feature_extraction_utils.FeatureExtractionMixin.to_dict`] method. kwargs (`Dict[str, Any]`): Additional parameters from which to initialize the feature extractor object. Returns: [`~feature_extraction_utils.FeatureExtractionMixin`]: The feature extractor object instantiated from those parameters. """ return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) # Update feature_extractor with kwargs if needed to_remove = [] for key, value in kwargs.items(): if key in feature_extractor_dict: feature_extractor_dict[key] = value to_remove.append(key) for key in to_remove: kwargs.pop(key, None) feature_extractor = cls(**feature_extractor_dict) logger.info(f"Feature extractor {feature_extractor}") if return_unused_kwargs: return feature_extractor, kwargs else: return feature_extractor def to_dict(self) -> Dict[str, Any]: """ Serializes this instance to a Python dictionary. Returns: `Dict[str, Any]`: Dictionary of all the attributes that make up this configuration instance. """ output = copy.deepcopy(self.__dict__) output["feature_extractor_type"] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "window" in output: del output["window"] return output @classmethod def from_json_file(cls, json_file: Union[str, os.PathLike]) -> PreTrainedFeatureExtractor: """ Instantiates a feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`] from the path to a JSON file of parameters. Args: json_file (`str` or `os.PathLike`): Path to the JSON file containing the parameters. Returns: A feature extractor of type [`~feature_extraction_utils.FeatureExtractionMixin`]: The feature_extractor object instantiated from that JSON file. """ with open(json_file, "r", encoding="utf-8") as reader: text = reader.read() feature_extractor_dict = json.loads(text) return cls(**feature_extractor_dict) def to_json_string(self) -> str: """ Serializes this instance to a JSON string. Returns: `str`: String containing all the attributes that make up this feature_extractor instance in JSON format. """ dictionary = self.to_dict() for key, value in dictionary.items(): if isinstance(value, np.ndarray): dictionary[key] = value.tolist() # make sure private name "_processor_class" is correctly # saved as "processor_class" _processor_class = dictionary.pop("_processor_class", None) if _processor_class is not None: dictionary["processor_class"] = _processor_class return json.dumps(dictionary, indent=2, sort_keys=True) + "\n" def to_json_file(self, json_file_path: Union[str, os.PathLike]): """ Save this instance to a JSON file. Args: json_file_path (`str` or `os.PathLike`): Path to the JSON file in which this feature_extractor instance's parameters will be saved. """ with open(json_file_path, "w", encoding="utf-8") as writer: writer.write(self.to_json_string()) def __repr__(self): return f"{self.__class__.__name__} {self.to_json_string()}" @classmethod def register_for_auto_class(cls, auto_class="AutoFeatureExtractor"): """ Register this class with a given auto class. This should only be used for custom feature extractors as the ones in the library are already mapped with `AutoFeatureExtractor`. <Tip warning={true}> This API is experimental and may have some slight breaking changes in the next releases. </Tip> Args: auto_class (`str` or `type`, *optional*, defaults to `"AutoFeatureExtractor"`): The auto class to register this new feature extractor with. """ if not isinstance(auto_class, str): auto_class = auto_class.__name__ import transformers.models.auto as auto_module if not hasattr(auto_module, auto_class): raise ValueError(f"{auto_class} is not a valid auto class.") cls._auto_class = auto_class FeatureExtractionMixin.push_to_hub = copy_func(FeatureExtractionMixin.push_to_hub) if FeatureExtractionMixin.push_to_hub.__doc__ is not None: FeatureExtractionMixin.push_to_hub.__doc__ = FeatureExtractionMixin.push_to_hub.__doc__.format( object="feature extractor", object_class="AutoFeatureExtractor", object_files="feature extractor file" )
transformers/src/transformers/feature_extraction_utils.py/0
{ "file_path": "transformers/src/transformers/feature_extraction_utils.py", "repo_id": "transformers", "token_count": 13316 }
92
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import json import os import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml DataClass = NewType("DataClass", Any) DataClassType = NewType("DataClassType", Any) # From https://stackoverflow.com/questions/15008758/parsing-boolean-values-with-argparse def string_to_bool(v): if isinstance(v, bool): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( f"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)." ) def make_choice_type_function(choices: list) -> Callable[[str], Any]: """ Creates a mapping function from each choices string representation to the actual value. Used to support multiple value types for a single argument. Args: choices (list): List of choices. Returns: Callable[[str], Any]: Mapping function from string representation to actual value for each choice. """ str_to_choice = {str(choice): choice for choice in choices} return lambda arg: str_to_choice.get(arg, arg) def HfArg( *, aliases: Union[str, List[str]] = None, help: str = None, default: Any = dataclasses.MISSING, default_factory: Callable[[], Any] = dataclasses.MISSING, metadata: dict = None, **kwargs, ) -> dataclasses.Field: """Argument helper enabling a concise syntax to create dataclass fields for parsing with `HfArgumentParser`. Example comparing the use of `HfArg` and `dataclasses.field`: ``` @dataclass class Args: regular_arg: str = dataclasses.field(default="Huggingface", metadata={"aliases": ["--example", "-e"], "help": "This syntax could be better!"}) hf_arg: str = HfArg(default="Huggingface", aliases=["--example", "-e"], help="What a nice syntax!") ``` Args: aliases (Union[str, List[str]], optional): Single string or list of strings of aliases to pass on to argparse, e.g. `aliases=["--example", "-e"]`. Defaults to None. help (str, optional): Help string to pass on to argparse that can be displayed with --help. Defaults to None. default (Any, optional): Default value for the argument. If not default or default_factory is specified, the argument is required. Defaults to dataclasses.MISSING. default_factory (Callable[[], Any], optional): The default_factory is a 0-argument function called to initialize a field's value. It is useful to provide default values for mutable types, e.g. lists: `default_factory=list`. Mutually exclusive with `default=`. Defaults to dataclasses.MISSING. metadata (dict, optional): Further metadata to pass on to `dataclasses.field`. Defaults to None. Returns: Field: A `dataclasses.Field` with the desired properties. """ if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls metadata = {} if aliases is not None: metadata["aliases"] = aliases if help is not None: metadata["help"] = help return dataclasses.field(metadata=metadata, default=default, default_factory=default_factory, **kwargs) class HfArgumentParser(ArgumentParser): """ This subclass of `argparse.ArgumentParser` uses type hints on dataclasses to generate arguments. The class is designed to play well with the native argparse. In particular, you can add more (non-dataclass backed) arguments to the parser after initialization and you'll get the output back after parsing as an additional namespace. Optional: To create sub argument groups use the `_argument_group_name` attribute in the dataclass. Args: dataclass_types (`DataClassType` or `Iterable[DataClassType]`, *optional*): Dataclass type, or list of dataclass types for which we will "fill" instances with the parsed args. kwargs (`Dict[str, Any]`, *optional*): Passed to `argparse.ArgumentParser()` in the regular way. """ dataclass_types: Iterable[DataClassType] def __init__(self, dataclass_types: Optional[Union[DataClassType, Iterable[DataClassType]]] = None, **kwargs): # Make sure dataclass_types is an iterable if dataclass_types is None: dataclass_types = [] elif not isinstance(dataclass_types, Iterable): dataclass_types = [dataclass_types] # To make the default appear when using --help if "formatter_class" not in kwargs: kwargs["formatter_class"] = ArgumentDefaultsHelpFormatter super().__init__(**kwargs) if dataclasses.is_dataclass(dataclass_types): dataclass_types = [dataclass_types] self.dataclass_types = list(dataclass_types) for dtype in self.dataclass_types: self._add_dataclass_arguments(dtype) @staticmethod def _parse_dataclass_field(parser: ArgumentParser, field: dataclasses.Field): # Long-option strings are conventionlly separated by hyphens rather # than underscores, e.g., "--long-format" rather than "--long_format". # Argparse converts hyphens to underscores so that the destination # string is a valid attribute name. Hf_argparser should do the same. long_options = [f"--{field.name}"] if "_" in field.name: long_options.append(f"--{field.name.replace('_', '-')}") kwargs = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type, str): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) aliases = kwargs.pop("aliases", []) if isinstance(aliases, str): aliases = [aliases] origin_type = getattr(field.type, "__origin__", field.type) if origin_type is Union or (hasattr(types, "UnionType") and isinstance(origin_type, types.UnionType)): if str not in field.type.__args__ and ( len(field.type.__args__) != 2 or type(None) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." f" Problem encountered in field '{field.name}'." ) if type(None) not in field.type.__args__: # filter `str` in Union field.type = field.type.__args__[0] if field.type.__args__[1] is str else field.type.__args__[1] origin_type = getattr(field.type, "__origin__", field.type) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) field.type = ( field.type.__args__[0] if isinstance(None, field.type.__args__[1]) else field.type.__args__[1] ) origin_type = getattr(field.type, "__origin__", field.type) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) bool_kwargs = {} if origin_type is Literal or (isinstance(field.type, type) and issubclass(field.type, Enum)): if origin_type is Literal: kwargs["choices"] = field.type.__args__ else: kwargs["choices"] = [x.value for x in field.type] kwargs["type"] = make_choice_type_function(kwargs["choices"]) if field.default is not dataclasses.MISSING: kwargs["default"] = field.default else: kwargs["required"] = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument bool_kwargs = copy(kwargs) # Hack because type=bool in argparse does not behave as we want. kwargs["type"] = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. default = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --{field.name} in any way kwargs["default"] = default # This tells argparse we accept 0 or 1 value after --{field.name} kwargs["nargs"] = "?" # This is the value that will get picked if we do --{field.name} (without value) kwargs["const"] = True elif isclass(origin_type) and issubclass(origin_type, list): kwargs["type"] = field.type.__args__[0] kwargs["nargs"] = "+" if field.default_factory is not dataclasses.MISSING: kwargs["default"] = field.default_factory() elif field.default is dataclasses.MISSING: kwargs["required"] = True else: kwargs["type"] = field.type if field.default is not dataclasses.MISSING: kwargs["default"] = field.default elif field.default_factory is not dataclasses.MISSING: kwargs["default"] = field.default_factory() else: kwargs["required"] = True parser.add_argument(*long_options, *aliases, **kwargs) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): bool_kwargs["default"] = False parser.add_argument( f"--no_{field.name}", f"--no-{field.name.replace('_', '-')}", action="store_false", dest=field.name, **bool_kwargs, ) def _add_dataclass_arguments(self, dtype: DataClassType): if hasattr(dtype, "_argument_group_name"): parser = self.add_argument_group(dtype._argument_group_name) else: parser = self try: type_hints: Dict[str, type] = get_type_hints(dtype) except NameError: raise RuntimeError( f"Type resolution failed for {dtype}. Try declaring the class in global scope or " "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(ex): python_version = ".".join(map(str, sys.version_info[:3])) raise RuntimeError( f"Type resolution failed for {dtype} on Python {python_version}. Try removing " "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(dtype): if not field.init: continue field.type = type_hints[field.name] self._parse_dataclass_field(parser, field) def parse_args_into_dataclasses( self, args=None, return_remaining_strings=False, look_for_args_file=True, args_filename=None, args_file_flag=None, ) -> Tuple[DataClass, ...]: """ Parse command-line args into instances of the specified dataclass types. This relies on argparse's `ArgumentParser.parse_known_args`. See the doc at: docs.python.org/3.7/library/argparse.html#argparse.ArgumentParser.parse_args Args: args: List of strings to parse. The default is taken from sys.argv. (same as argparse.ArgumentParser) return_remaining_strings: If true, also return a list of remaining argument strings. look_for_args_file: If true, will look for a ".args" file with the same base name as the entry point script for this process, and will append its potential content to the command line args. args_filename: If not None, will uses this file instead of the ".args" file specified in the previous argument. args_file_flag: If not None, will look for a file in the command-line args specified with this flag. The flag can be specified multiple times and precedence is determined by the order (last one wins). Returns: Tuple consisting of: - the dataclass instances in the same order as they were passed to the initializer.abspath - if applicable, an additional namespace for more (non-dataclass backed) arguments added to the parser after initialization. - The potential list of remaining argument strings. (same as argparse.ArgumentParser.parse_known_args) """ if args_file_flag or args_filename or (look_for_args_file and len(sys.argv)): args_files = [] if args_filename: args_files.append(Path(args_filename)) elif look_for_args_file and len(sys.argv): args_files.append(Path(sys.argv[0]).with_suffix(".args")) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values args_file_parser = ArgumentParser() args_file_parser.add_argument(args_file_flag, type=str, action="append") # Use only remaining args for further parsing (remove the args_file_flag) cfg, args = args_file_parser.parse_known_args(args=args) cmd_args_file_paths = vars(cfg).get(args_file_flag.lstrip("-"), None) if cmd_args_file_paths: args_files.extend([Path(p) for p in cmd_args_file_paths]) file_args = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last args = file_args + args if args is not None else file_args + sys.argv[1:] namespace, remaining_args = self.parse_known_args(args=args) outputs = [] for dtype in self.dataclass_types: keys = {f.name for f in dataclasses.fields(dtype) if f.init} inputs = {k: v for k, v in vars(namespace).items() if k in keys} for k in keys: delattr(namespace, k) obj = dtype(**inputs) outputs.append(obj) if len(namespace.__dict__) > 0: # additional namespace. outputs.append(namespace) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(f"Some specified arguments are not used by the HfArgumentParser: {remaining_args}") return (*outputs,) def parse_dict(self, args: Dict[str, Any], allow_extra_keys: bool = False) -> Tuple[DataClass, ...]: """ Alternative helper method that does not use `argparse` at all, instead uses a dict and populating the dataclass types. Args: args (`dict`): dict containing config values allow_extra_keys (`bool`, *optional*, defaults to `False`): Defaults to False. If False, will raise an exception if the dict contains keys that are not parsed. Returns: Tuple consisting of: - the dataclass instances in the same order as they were passed to the initializer. """ unused_keys = set(args.keys()) outputs = [] for dtype in self.dataclass_types: keys = {f.name for f in dataclasses.fields(dtype) if f.init} inputs = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys()) obj = dtype(**inputs) outputs.append(obj) if not allow_extra_keys and unused_keys: raise ValueError(f"Some keys are not used by the HfArgumentParser: {sorted(unused_keys)}") return tuple(outputs) def parse_json_file( self, json_file: Union[str, os.PathLike], allow_extra_keys: bool = False ) -> Tuple[DataClass, ...]: """ Alternative helper method that does not use `argparse` at all, instead loading a json file and populating the dataclass types. Args: json_file (`str` or `os.PathLike`): File name of the json file to parse allow_extra_keys (`bool`, *optional*, defaults to `False`): Defaults to False. If False, will raise an exception if the json file contains keys that are not parsed. Returns: Tuple consisting of: - the dataclass instances in the same order as they were passed to the initializer. """ with open(Path(json_file), encoding="utf-8") as open_json_file: data = json.loads(open_json_file.read()) outputs = self.parse_dict(data, allow_extra_keys=allow_extra_keys) return tuple(outputs) def parse_yaml_file( self, yaml_file: Union[str, os.PathLike], allow_extra_keys: bool = False ) -> Tuple[DataClass, ...]: """ Alternative helper method that does not use `argparse` at all, instead loading a yaml file and populating the dataclass types. Args: yaml_file (`str` or `os.PathLike`): File name of the yaml file to parse allow_extra_keys (`bool`, *optional*, defaults to `False`): Defaults to False. If False, will raise an exception if the json file contains keys that are not parsed. Returns: Tuple consisting of: - the dataclass instances in the same order as they were passed to the initializer. """ outputs = self.parse_dict(yaml.safe_load(Path(yaml_file).read_text()), allow_extra_keys=allow_extra_keys) return tuple(outputs)
transformers/src/transformers/hf_argparser.py/0
{ "file_path": "transformers/src/transformers/hf_argparser.py", "repo_id": "transformers", "token_count": 8609 }
93
from typing import Optional, Tuple import torch from ..modeling_flash_attention_utils import _flash_attention_forward from ..utils import is_flash_attn_greater_or_equal_2_10 _use_top_left_mask = not is_flash_attn_greater_or_equal_2_10() def flash_attention_forward( module: torch.nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], dropout: float = 0.0, scaling: Optional[float] = None, sliding_window: Optional[int] = None, softcap: Optional[float] = None, **kwargs, ) -> Tuple[torch.Tensor, None]: # This is before the transpose seq_len = query.shape[2] # FA2 uses non-transposed inputs query = query.transpose(1, 2) key = key.transpose(1, 2) value = value.transpose(1, 2) # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. (usually our RMSNorm modules handle it correctly) target_dtype = None if query.dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = torch.get_autocast_gpu_dtype() # Handle the case where the model is quantized elif hasattr(module.config, "_pre_quantization_dtype"): target_dtype = module.config._pre_quantization_dtype else: target_dtype = next(layer for layer in module.modules() if isinstance(layer, torch.nn.Linear)).weight.dtype # FA2 always relies on the value set in the module, so remove it if present in kwargs to avoid passing it twice kwargs.pop("is_causal", None) attn_output = _flash_attention_forward( query, key, value, attention_mask, query_length=seq_len, is_causal=module.is_causal, dropout=dropout, softmax_scale=scaling, sliding_window=sliding_window, softcap=softcap, use_top_left_mask=_use_top_left_mask, target_dtype=target_dtype, **kwargs, ) return attn_output, None
transformers/src/transformers/integrations/flash_attention.py/0
{ "file_path": "transformers/src/transformers/integrations/flash_attention.py", "repo_id": "transformers", "token_count": 901 }
94
# coding=utf-8 # Copyright 2024 Tri Dao, Albert Gu, Technological Innovation Institute and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Original code from: https://github.com/state-spaces/mamba/blob/main/mamba_ssm/ops/selective_scan_interface.py import torch import torch.nn.functional as F from einops import rearrange, repeat from torch.cuda.amp import custom_bwd, custom_fwd try: import causal_conv1d_cuda except ImportError: causal_conv1d_cuda = None import mamba_ssm import selective_scan_cuda # For BC for old mamba-ssm versions: https://github.com/huggingface/transformers/pull/33195#discussion_r1736401127 if hasattr(mamba_ssm.ops.triton, "layernorm"): from mamba_ssm.ops.triton.layernorm import _layer_norm_fwd else: from mamba_ssm.ops.triton.layer_norm import _layer_norm_fwd class SelectiveScanFn(torch.autograd.Function): @staticmethod def forward( ctx, u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, return_last_state=False ): if u.stride(-1) != 1: u = u.contiguous() if delta.stride(-1) != 1: delta = delta.contiguous() if D is not None: D = D.contiguous() if B.stride(-1) != 1: B = B.contiguous() if C.stride(-1) != 1: C = C.contiguous() if z is not None and z.stride(-1) != 1: z = z.contiguous() if B.dim() == 3: B = rearrange(B, "b dstate l -> b 1 dstate l") ctx.squeeze_B = True if C.dim() == 3: C = rearrange(C, "b dstate l -> b 1 dstate l") ctx.squeeze_C = True out, x, *rest = selective_scan_cuda.fwd(u, delta, A, B, C, D, z, delta_bias, delta_softplus) ctx.delta_softplus = delta_softplus ctx.has_z = z is not None last_state = x[:, :, -1, 1::2] # (batch, dim, dstate) if not ctx.has_z: ctx.save_for_backward(u, delta, A, B, C, D, delta_bias, x) return out if not return_last_state else (out, last_state) else: ctx.save_for_backward(u, delta, A, B, C, D, z, delta_bias, x, out) out_z = rest[0] return out_z if not return_last_state else (out_z, last_state) @staticmethod def backward(ctx, dout, *args): if not ctx.has_z: u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors z = None out = None else: u, delta, A, B, C, D, z, delta_bias, x, out = ctx.saved_tensors if dout.stride(-1) != 1: dout = dout.contiguous() # The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the # backward of selective_scan_cuda with the backward of chunk). # Here we just pass in None and dz will be allocated in the C++ code. du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = selective_scan_cuda.bwd( u, delta, A, B, C, D, z, delta_bias, dout, x, out, None, ctx.delta_softplus, False, # option to recompute out_z, not used here ) dz = rest[0] if ctx.has_z else None dB = dB.squeeze(1) if getattr(ctx, "squeeze_B", False) else dB dC = dC.squeeze(1) if getattr(ctx, "squeeze_C", False) else dC return ( du, ddelta, dA, dB, dC, dD if D is not None else None, dz, ddelta_bias if delta_bias is not None else None, None, None, ) def rms_norm_forward( x, weight, bias, eps=1e-6, is_rms_norm=True, ): # x (b l) d if x.stride(-1) != 1: x = x.contiguous() weight = weight.contiguous() if bias is not None: bias = bias.contiguous() y = _layer_norm_fwd(x, weight, bias, eps, None, residual_dtype=None, is_rms_norm=is_rms_norm)[0] # y (b l) d return y def selective_scan_fn( u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, return_last_state=False ): """if return_last_state is True, returns (out, last_state) last_state has shape (batch, dim, dstate). Note that the gradient of the last state is not considered in the backward pass. """ return SelectiveScanFn.apply(u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state) def selective_scan_ref( u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False, return_last_state=False ): """ u: r(B D L) delta: r(B D L) A: c(D N) or r(D N) B: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L) C: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L) D: r(D) z: r(B D L) delta_bias: r(D), fp32 out: r(B D L) last_state (optional): r(B D dstate) or c(B D dstate) """ dtype_in = u.dtype u = u.float() delta = delta.float() if delta_bias is not None: delta = delta + delta_bias[..., None].float() if delta_softplus: delta = F.softplus(delta) batch, dim, dstate = u.shape[0], A.shape[0], A.shape[1] is_variable_B = B.dim() >= 3 is_variable_C = C.dim() >= 3 if A.is_complex(): if is_variable_B: B = torch.view_as_complex(rearrange(B.float(), "... (L two) -> ... L two", two=2)) if is_variable_C: C = torch.view_as_complex(rearrange(C.float(), "... (L two) -> ... L two", two=2)) else: B = B.float() C = C.float() x = A.new_zeros((batch, dim, dstate)) ys = [] deltaA = torch.exp(torch.einsum("bdl,dn->bdln", delta, A)) if not is_variable_B: deltaB_u = torch.einsum("bdl,dn,bdl->bdln", delta, B, u) else: if B.dim() == 3: deltaB_u = torch.einsum("bdl,bnl,bdl->bdln", delta, B, u) else: B = repeat(B, "B G N L -> B (G H) N L", H=dim // B.shape[1]) deltaB_u = torch.einsum("bdl,bdnl,bdl->bdln", delta, B, u) if is_variable_C and C.dim() == 4: C = repeat(C, "B G N L -> B (G H) N L", H=dim // C.shape[1]) last_state = None for i in range(u.shape[2]): x = deltaA[:, :, i] * x + deltaB_u[:, :, i] if not is_variable_C: y = torch.einsum("bdn,dn->bd", x, C) else: if C.dim() == 3: y = torch.einsum("bdn,bn->bd", x, C[:, :, i]) else: y = torch.einsum("bdn,bdn->bd", x, C[:, :, :, i]) if i == u.shape[2] - 1: last_state = x if y.is_complex(): y = y.real * 2 ys.append(y) y = torch.stack(ys, dim=2) # (batch dim L) out = y if D is None else y + u * rearrange(D, "d -> d 1") if z is not None: out = out * F.silu(z) out = out.to(dtype=dtype_in) return out if not return_last_state else (out, last_state) class MambaInnerFn(torch.autograd.Function): @staticmethod @custom_fwd def forward( ctx, xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight, out_proj_weight, out_proj_bias, A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None, C_proj_bias=None, delta_softplus=True, checkpoint_lvl=1, b_rms_weight=None, c_rms_weight=None, dt_rms_weight=None, b_c_dt_rms_eps=1e-6, ): """ xz: (batch, dim, seqlen) """ assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d." assert checkpoint_lvl in [0, 1] L = xz.shape[-1] delta_rank = delta_proj_weight.shape[1] d_state = A.shape[-1] * (1 if not A.is_complex() else 2) if torch.is_autocast_enabled(): x_proj_weight = x_proj_weight.to(dtype=torch.get_autocast_gpu_dtype()) delta_proj_weight = delta_proj_weight.to(dtype=torch.get_autocast_gpu_dtype()) out_proj_weight = out_proj_weight.to(dtype=torch.get_autocast_gpu_dtype()) out_proj_bias = ( out_proj_bias.to(dtype=torch.get_autocast_gpu_dtype()) if out_proj_bias is not None else None ) if xz.stride(-1) != 1: xz = xz.contiguous() conv1d_weight = rearrange(conv1d_weight, "d 1 w -> d w") x, z = xz.chunk(2, dim=1) conv1d_bias = conv1d_bias.contiguous() if conv1d_bias is not None else None conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, None, None, None, True) # We're being very careful here about the layout, to avoid extra transposes. # We want delta to have d as the slowest moving dimension # and L as the fastest moving dimension, since those are what the ssm_scan kernel expects. x_dbl = F.linear(rearrange(conv1d_out, "b d l -> (b l) d"), x_proj_weight) # (bl d) delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l=L) ctx.is_variable_B = B is None ctx.is_variable_C = C is None ctx.B_proj_bias_is_None = B_proj_bias is None ctx.C_proj_bias_is_None = C_proj_bias is None if B is None: # variable B B = x_dbl[:, delta_rank : delta_rank + d_state] # (bl dstate) if B_proj_bias is not None: B = B + B_proj_bias.to(dtype=B.dtype) if not A.is_complex(): # B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous() B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous() else: B = rearrange(B, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous() else: if B.stride(-1) != 1: B = B.contiguous() if C is None: # variable C C = x_dbl[:, -d_state:] # (bl dstate) if C_proj_bias is not None: C = C + C_proj_bias.to(dtype=C.dtype) if not A.is_complex(): # C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous() C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous() else: C = rearrange(C, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous() else: if C.stride(-1) != 1: C = C.contiguous() if D is not None: D = D.contiguous() if b_rms_weight is not None: B = rearrange(B, "b 1 dstate l -> (b l) dstate", l=L).contiguous() B = rms_norm_forward(B, b_rms_weight, bias=None, eps=b_c_dt_rms_eps) B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous() if c_rms_weight is not None: C = rearrange(C, "b 1 dstate l -> (b l) dstate", l=L).contiguous() C = rms_norm_forward(C, c_rms_weight, bias=None, eps=b_c_dt_rms_eps) C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous() if dt_rms_weight is not None: delta = rearrange(delta, "b d l -> (b l) d", l=L).contiguous() delta = rms_norm_forward(delta, dt_rms_weight, bias=None, eps=b_c_dt_rms_eps) delta = rearrange(delta, "(b l) d -> b d l", l=L).contiguous() out, scan_intermediates, out_z = selective_scan_cuda.fwd( conv1d_out, delta, A, B, C, D, z, delta_bias, delta_softplus ) ctx.delta_softplus = delta_softplus ctx.out_proj_bias_is_None = out_proj_bias is None ctx.checkpoint_lvl = checkpoint_lvl ctx.b_rms_weight = b_rms_weight ctx.c_rms_weight = c_rms_weight ctx.dt_rms_weight = dt_rms_weight ctx.b_c_dt_rms_eps = b_c_dt_rms_eps if checkpoint_lvl >= 1: # Will recompute conv1d_out and delta in the backward pass conv1d_out, delta = None, None ctx.save_for_backward( xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, delta_proj_weight, out_proj_weight, conv1d_out, delta, A, B, C, D, delta_bias, scan_intermediates, b_rms_weight, c_rms_weight, dt_rms_weight, out, ) return F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias) @staticmethod @custom_bwd def backward(ctx, dout): # dout: (batch, seqlen, dim) assert causal_conv1d_cuda is not None, "causal_conv1d_cuda is not available. Please install causal-conv1d." ( xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, delta_proj_weight, out_proj_weight, conv1d_out, delta, A, B, C, D, delta_bias, scan_intermediates, b_rms_weight, c_rms_weight, dt_rms_weight, out, ) = ctx.saved_tensors L = xz.shape[-1] delta_rank = delta_proj_weight.shape[1] d_state = A.shape[-1] * (1 if not A.is_complex() else 2) x, z = xz.chunk(2, dim=1) if dout.stride(-1) != 1: dout = dout.contiguous() if ctx.checkpoint_lvl == 1: conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, None, None, None, True) delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l=L) if dt_rms_weight is not None: delta = rearrange(delta, "b d l -> (b l) d", l=L).contiguous() delta = rms_norm_forward(delta, ctx.dt_rms_weight, None, ctx.b_c_dt_rms_eps) delta = rearrange(delta, "(b l) d -> b d l", l=L).contiguous() if b_rms_weight is not None: # Recompute & RMSNorm B B = rearrange(B, "b 1 dstate l -> (b l) dstate", l=L).contiguous() B = rms_norm_forward(B, ctx.b_rms_weight, None, ctx.b_c_dt_rms_eps) B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous() if c_rms_weight is not None: # Recompute & RMSNorm C C = rearrange(C, "b 1 dstate l -> (b l) dstate", l=L).contiguous() C = rms_norm_forward(C, ctx.c_rms_weight, None, ctx.b_c_dt_rms_eps) C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous() # The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the # backward of selective_scan_cuda with the backward of chunk). dxz = torch.empty_like(xz) # (batch, dim, seqlen) dx, dz = dxz.chunk(2, dim=1) dout = rearrange(dout, "b l e -> e (b l)") dout_y = rearrange(out_proj_weight.t() @ dout, "d (b l) -> b d l", l=L) dconv1d_out, ddelta, dA, dB, dC, dD, ddelta_bias, dz, out_z = selective_scan_cuda.bwd( conv1d_out, delta, A, B, C, D, z, delta_bias, dout_y, scan_intermediates, out, dz, ctx.delta_softplus, True, # option to recompute out_z ) dout_proj_weight = torch.einsum("eB,dB->ed", dout, rearrange(out_z, "b d l -> d (b l)")) dout_proj_bias = dout.sum(dim=(0, 1)) if not ctx.out_proj_bias_is_None else None dD = dD if D is not None else None dx_dbl = torch.empty_like(x_dbl) dB_proj_bias = None if ctx.is_variable_B: if not A.is_complex(): dB = rearrange(dB, "b 1 dstate l -> (b l) dstate").contiguous() else: dB = rearrange(dB, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous() dB_proj_bias = dB.sum(0) if not ctx.B_proj_bias_is_None else None dx_dbl[:, delta_rank : delta_rank + d_state] = dB # (bl d) dB = None dC_proj_bias = None if ctx.is_variable_C: if not A.is_complex(): dC = rearrange(dC, "b 1 dstate l -> (b l) dstate").contiguous() else: dC = rearrange(dC, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous() dC_proj_bias = dC.sum(0) if not ctx.C_proj_bias_is_None else None dx_dbl[:, -d_state:] = dC # (bl d) dC = None ddelta = rearrange(ddelta, "b d l -> d (b l)") ddelta_proj_weight = torch.einsum("dB,Br->dr", ddelta, x_dbl[:, :delta_rank]) dx_dbl[:, :delta_rank] = torch.einsum("dB,dr->Br", ddelta, delta_proj_weight) dconv1d_out = rearrange(dconv1d_out, "b d l -> d (b l)") dx_proj_weight = torch.einsum("Br,Bd->rd", dx_dbl, rearrange(conv1d_out, "b d l -> (b l) d")) dconv1d_out = torch.addmm(dconv1d_out, x_proj_weight.t(), dx_dbl.t(), out=dconv1d_out) dconv1d_out = rearrange(dconv1d_out, "d (b l) -> b d l", b=x.shape[0], l=x.shape[-1]) # The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the # backward of conv1d with the backward of chunk). dx, dconv1d_weight, dconv1d_bias, *_ = causal_conv1d_cuda.causal_conv1d_bwd( x, conv1d_weight, conv1d_bias, dconv1d_out, None, None, None, dx, False, True ) dconv1d_bias = dconv1d_bias if conv1d_bias is not None else None dconv1d_weight = rearrange(dconv1d_weight, "d w -> d 1 w") return ( dxz, dconv1d_weight, dconv1d_bias, dx_proj_weight, ddelta_proj_weight, dout_proj_weight, dout_proj_bias, dA, dB, dC, dD, ddelta_bias if delta_bias is not None else None, # 6-None are delta_softplus, checkpoint_lvl, b_rms_weight, c_rms_weight, dt_rms_weight, b_c_dt_rms_eps dB_proj_bias, dC_proj_bias, None, None, None, None, None, None, ) def mamba_inner_fn( xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight, out_proj_weight, out_proj_bias, A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None, C_proj_bias=None, delta_softplus=True, checkpoint_lvl=1, b_rms_weight=None, c_rms_weight=None, dt_rms_weight=None, b_c_dt_rms_eps=1e-6, ): return MambaInnerFn.apply( xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight, out_proj_weight, out_proj_bias, A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, delta_softplus, checkpoint_lvl, b_rms_weight, c_rms_weight, dt_rms_weight, b_c_dt_rms_eps, )
transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py/0
{ "file_path": "transformers/src/transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py", "repo_id": "transformers", "token_count": 10691 }
95
#include <torch/extension.h> #include <ATen/ATen.h> #include "fast_lsh_cumulation.h" #include "common_cuda.h" #include <vector> std::vector<at::Tensor> fast_hash( at::Tensor query_mask, at::Tensor query_vector, at::Tensor key_mask, at::Tensor key_vector, int num_hash_f, int hash_code_len, bool use_cuda, int version ) { return fast_hash_ver1_kernel( query_mask, query_vector, key_mask, key_vector, num_hash_f, hash_code_len, use_cuda ); } at::Tensor lsh_cumulation( at::Tensor query_mask, // [batch_size, num_query] at::Tensor query_hash_code, // [batch_size, num_query, num_hash_f] at::Tensor key_mask, // [batch_size, num_key] at::Tensor key_hash_code, // [batch_size, num_key, num_hash_f] at::Tensor value, // [batch_size, num_key, value_dim] int hashtable_capacity, bool use_cuda, int version ) { return lsh_cumulation_ver1_kernel( query_mask, query_hash_code, key_mask, key_hash_code, value, hashtable_capacity, use_cuda ); } at::Tensor lsh_weighted_cumulation( at::Tensor query_mask, // [batch_size, num_query] at::Tensor query_hash_code, // [batch_size, num_query, num_hash_f] at::Tensor query_weight, // [batch_size, num_query, weight_dim] at::Tensor key_mask, // [batch_size, num_key] at::Tensor key_hash_code, // [batch_size, num_key, num_hash_f] at::Tensor key_weight, // [batch_size, num_key, weight_dim] at::Tensor value, // [batch_size, num_key, value_dim] int hashtable_capacity, bool use_cuda, int version ) { if (version == 1) { return lsh_weighted_cumulation_ver1_kernel( query_mask, query_hash_code, query_weight, key_mask, key_hash_code, key_weight, value, hashtable_capacity, use_cuda ); } else if (version == 2) { return lsh_weighted_cumulation_ver2_kernel( query_mask, query_hash_code, query_weight, key_mask, key_hash_code, key_weight, value, hashtable_capacity, use_cuda ); } else if (version == 3) { return lsh_weighted_cumulation_ver3_kernel( query_mask, query_hash_code, query_weight, key_mask, key_hash_code, key_weight, value, hashtable_capacity, use_cuda ); } else if (version == 4) { return lsh_weighted_cumulation_ver4_kernel( query_mask, query_hash_code, query_weight, key_mask, key_hash_code, key_weight, value, hashtable_capacity, use_cuda ); } else { return lsh_weighted_cumulation_ver3_kernel( query_mask, query_hash_code, query_weight, key_mask, key_hash_code, key_weight, value, hashtable_capacity, use_cuda ); } } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("fast_hash", &fast_hash, "Fast Hash (CUDA)"); m.def("lsh_cumulation", &lsh_cumulation, "LSH Cumulation (CUDA)"); m.def("lsh_weighted_cumulation", &lsh_weighted_cumulation, "LSH Weighted Cumulation (CUDA)"); }
transformers/src/transformers/kernels/yoso/fast_lsh_cumulation_torch.cpp/0
{ "file_path": "transformers/src/transformers/kernels/yoso/fast_lsh_cumulation_torch.cpp", "repo_id": "transformers", "token_count": 1498 }
96
# coding=utf-8 # Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch - TF 2.0 general utilities.""" import os import re import numpy from .utils import ( ExplicitEnum, expand_dims, is_numpy_array, is_safetensors_available, is_torch_tensor, logging, reshape, squeeze, tensor_size, ) from .utils import transpose as transpose_func if is_safetensors_available(): from safetensors import safe_open logger = logging.get_logger(__name__) class TransposeType(ExplicitEnum): """ Possible ... """ NO = "no" SIMPLE = "simple" CONV1D = "conv1d" CONV2D = "conv2d" def convert_tf_weight_name_to_pt_weight_name( tf_name, start_prefix_to_remove="", tf_weight_shape=None, name_scope=None ): """ Convert a TF 2.0 model variable name in a pytorch model weight name. Conventions for TF2.0 scopes -> PyTorch attribute names conversions: - '$1___$2' is replaced by $2 (can be used to duplicate or remove layers in TF2.0 vs PyTorch) - '_._' is replaced by a new level separation (can be used to convert TF2.0 lists in PyTorch nn.ModulesList) return tuple with: - pytorch model weight name - transpose: `TransposeType` member indicating whether and how TF2.0 and PyTorch weights matrices should be transposed with regards to each other """ if name_scope is not None: if not tf_name.startswith(name_scope) and "final_logits_bias" not in tf_name: raise ValueError( f"Weight name {tf_name} does not start with name_scope {name_scope}. This is an internal error " "in Transformers, so (unless you were doing something really evil) please open an issue to report it!" ) tf_name = tf_name[len(name_scope) :] tf_name = tf_name.lstrip("/") tf_name = tf_name.replace(":0", "") # device ids tf_name = re.sub( r"/[^/]*___([^/]*)/", r"/\1/", tf_name ) # '$1___$2' is replaced by $2 (can be used to duplicate or remove layers in TF2.0 vs PyTorch) tf_name = tf_name.replace( "_._", "/" ) # '_._' is replaced by a level separation (can be used to convert TF2.0 lists in PyTorch nn.ModulesList) tf_name = re.sub(r"//+", "/", tf_name) # Remove empty levels at the end tf_name = tf_name.split("/") # Convert from TF2.0 '/' separators to PyTorch '.' separators # Some weights have a single name without "/" such as final_logits_bias in BART if len(tf_name) > 1: tf_name = tf_name[1:] # Remove level zero tf_weight_shape = list(tf_weight_shape) # When should we transpose the weights if tf_name[-1] == "kernel" and tf_weight_shape is not None and len(tf_weight_shape) == 4: transpose = TransposeType.CONV2D elif tf_name[-1] == "kernel" and tf_weight_shape is not None and len(tf_weight_shape) == 3: transpose = TransposeType.CONV1D elif bool( tf_name[-1] in ["kernel", "pointwise_kernel", "depthwise_kernel"] or "emb_projs" in tf_name or "out_projs" in tf_name ): transpose = TransposeType.SIMPLE else: transpose = TransposeType.NO # Convert standard TF2.0 names in PyTorch names if tf_name[-1] == "kernel" or tf_name[-1] == "embeddings" or tf_name[-1] == "gamma": tf_name[-1] = "weight" if tf_name[-1] == "beta": tf_name[-1] = "bias" # The SeparableConv1D TF layer contains two weights that are translated to PyTorch Conv1D here if tf_name[-1] == "pointwise_kernel" or tf_name[-1] == "depthwise_kernel": tf_name[-1] = tf_name[-1].replace("_kernel", ".weight") # Remove prefix if needed tf_name = ".".join(tf_name) if start_prefix_to_remove: tf_name = tf_name.replace(start_prefix_to_remove, "", 1) return tf_name, transpose def apply_transpose(transpose: TransposeType, weight, match_shape=None, pt_to_tf=True): """ Apply a transpose to some weight then tries to reshape the weight to the same shape as a given shape, all in a framework agnostic way. """ if transpose is TransposeType.CONV2D: # Conv2D weight: # PT: (num_out_channel, num_in_channel, kernel[0], kernel[1]) # -> TF: (kernel[0], kernel[1], num_in_channel, num_out_channel) axes = (2, 3, 1, 0) if pt_to_tf else (3, 2, 0, 1) weight = transpose_func(weight, axes=axes) elif transpose is TransposeType.CONV1D: # Conv1D weight: # PT: (num_out_channel, num_in_channel, kernel) # -> TF: (kernel, num_in_channel, num_out_channel) weight = transpose_func(weight, axes=(2, 1, 0)) elif transpose is TransposeType.SIMPLE: weight = transpose_func(weight) if match_shape is None: return weight if len(match_shape) < len(weight.shape): weight = squeeze(weight) elif len(match_shape) > len(weight.shape): weight = expand_dims(weight, axis=0) if list(match_shape) != list(weight.shape): try: weight = reshape(weight, match_shape) except AssertionError as e: e.args += (match_shape, match_shape) raise e return weight ##################### # PyTorch => TF 2.0 # ##################### def load_pytorch_checkpoint_in_tf2_model( tf_model, pytorch_checkpoint_path, tf_inputs=None, allow_missing_keys=False, output_loading_info=False, _prefix=None, tf_to_pt_weight_rename=None, ): """Load pytorch checkpoints in a TF 2.0 model""" try: import tensorflow as tf # noqa: F401 import torch # noqa: F401 from safetensors.torch import load_file as safe_load_file # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in TensorFlow, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise # Treats a single file as a collection of shards with 1 shard. if isinstance(pytorch_checkpoint_path, str): pytorch_checkpoint_path = [pytorch_checkpoint_path] # Loads all shards into a single state dictionary pt_state_dict = {} for path in pytorch_checkpoint_path: pt_path = os.path.abspath(path) logger.info(f"Loading PyTorch weights from {pt_path}") if pt_path.endswith(".safetensors"): state_dict = safe_load_file(pt_path) else: weights_only_kwarg = {"weights_only": True} state_dict = torch.load(pt_path, map_location="cpu", **weights_only_kwarg) pt_state_dict.update(state_dict) logger.info(f"PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values()):,} parameters") return load_pytorch_weights_in_tf2_model( tf_model, pt_state_dict, tf_inputs=tf_inputs, allow_missing_keys=allow_missing_keys, output_loading_info=output_loading_info, _prefix=_prefix, tf_to_pt_weight_rename=tf_to_pt_weight_rename, ) def load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=None, allow_missing_keys=False): """Load pytorch checkpoints in a TF 2.0 model""" pt_state_dict = pt_model.state_dict() return load_pytorch_weights_in_tf2_model( tf_model, pt_state_dict, tf_inputs=tf_inputs, allow_missing_keys=allow_missing_keys ) def load_pytorch_weights_in_tf2_model( tf_model, pt_state_dict, tf_inputs=None, allow_missing_keys=False, output_loading_info=False, _prefix=None, tf_to_pt_weight_rename=None, ): """Load pytorch state_dict in a TF 2.0 model.""" try: import tensorflow as tf # noqa: F401 import torch # noqa: F401 except ImportError: logger.error( "Loading a PyTorch model in TensorFlow, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise # Numpy doesn't understand bfloat16, so upcast to a dtype that doesn't lose precision pt_state_dict = { k: v.numpy() if v.dtype != torch.bfloat16 else v.float().numpy() for k, v in pt_state_dict.items() } return load_pytorch_state_dict_in_tf2_model( tf_model, pt_state_dict, tf_inputs=tf_inputs, allow_missing_keys=allow_missing_keys, output_loading_info=output_loading_info, _prefix=_prefix, tf_to_pt_weight_rename=tf_to_pt_weight_rename, ) def _log_key_warnings(missing_keys, unexpected_keys, mismatched_keys, class_name): if len(unexpected_keys) > 0: logger.warning( "Some weights of the PyTorch model were not used when initializing the TF 2.0 model" f" {class_name}: {unexpected_keys}\n- This IS expected if you are initializing" f" {class_name} from a PyTorch model trained on another task or with another architecture" " (e.g. initializing a TFBertForSequenceClassification model from a BertForPreTraining model).\n- This IS" f" NOT expected if you are initializing {class_name} from a PyTorch model that you expect" " to be exactly identical (e.g. initializing a TFBertForSequenceClassification model from a" " BertForSequenceClassification model)." ) else: logger.warning(f"All PyTorch model weights were used when initializing {class_name}.\n") if len(missing_keys) > 0: logger.warning( f"Some weights or buffers of the TF 2.0 model {class_name} were not initialized from the" f" PyTorch model and are newly initialized: {missing_keys}\nYou should probably TRAIN this model on a" " down-stream task to be able to use it for predictions and inference." ) else: logger.warning( f"All the weights of {class_name} were initialized from the PyTorch model.\n" "If your task is similar to the task the model of the checkpoint was trained on, " f"you can already use {class_name} for predictions without further training." ) if len(mismatched_keys) > 0: mismatched_warning = "\n".join( [ f"- {key}: found shape {shape1} in the checkpoint and {shape2} in the model instantiated" for key, shape1, shape2 in mismatched_keys ] ) logger.warning( f"Some weights of {class_name} were not initialized from the model checkpoint" f" are newly initialized because the shapes did not" f" match:\n{mismatched_warning}\nYou should probably TRAIN this model on a down-stream task to be able" " to use it for predictions and inference." ) def load_pytorch_state_dict_in_tf2_model( tf_model, pt_state_dict, tf_inputs=None, allow_missing_keys=False, output_loading_info=False, _prefix=None, tf_to_pt_weight_rename=None, ignore_mismatched_sizes=False, skip_logger_warnings=False, ): """Load a pytorch state_dict in a TF 2.0 model. pt_state_dict can be either an actual dict or a lazy-loading safetensors archive created with the safe_open() function.""" import tensorflow as tf if tf_inputs is None: tf_inputs = tf_model.dummy_inputs if _prefix is None: _prefix = "" if tf_inputs: with tf.name_scope(_prefix): tf_model(tf_inputs, training=False) # Make sure model is built # Convert old format to new format if needed from a PyTorch state_dict tf_keys_to_pt_keys = {} for key in pt_state_dict.keys(): new_key = None if "gamma" in key: new_key = key.replace("gamma", "weight") if "beta" in key: new_key = key.replace("beta", "bias") if "running_var" in key: new_key = key.replace("running_var", "moving_variance") if "running_mean" in key: new_key = key.replace("running_mean", "moving_mean") # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 key_components = key.split(".") name = None if key_components[-3::2] == ["parametrizations", "original0"]: name = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: name = key_components[-2] + "_v" if name is not None: key_components = key_components[:-3] + [name] new_key = ".".join(key_components) if new_key is None: new_key = key tf_keys_to_pt_keys[new_key] = key # Matt: All TF models store the actual model stem in a MainLayer class, including the base model. # In PT, the derived models (with heads) use the base model class as the stem instead, # and there is no MainLayer class. This means that TF base classes have one # extra layer in their weight names, corresponding to the MainLayer class. This code block compensates for that. start_prefix_to_remove = "" if not any(s.startswith(tf_model.base_model_prefix) for s in tf_keys_to_pt_keys.keys()): start_prefix_to_remove = tf_model.base_model_prefix + "." symbolic_weights = tf_model.trainable_weights + tf_model.non_trainable_weights tf_loaded_numel = 0 all_pytorch_weights = set(tf_keys_to_pt_keys.keys()) missing_keys = [] mismatched_keys = [] is_safetensor_archive = hasattr(pt_state_dict, "get_tensor") for symbolic_weight in symbolic_weights: sw_name = symbolic_weight.name name, transpose = convert_tf_weight_name_to_pt_weight_name( sw_name, start_prefix_to_remove=start_prefix_to_remove, tf_weight_shape=symbolic_weight.shape, name_scope=_prefix, ) if tf_to_pt_weight_rename is not None: aliases = tf_to_pt_weight_rename(name) # Is a tuple to account for possible name aliasing for alias in aliases: # The aliases are in priority order, take the first one that matches if alias in tf_keys_to_pt_keys: name = alias break else: # If none of the aliases match, just use the first one (it'll be reported as missing) name = aliases[0] # Find associated numpy array in pytorch model state dict if name not in tf_keys_to_pt_keys: if allow_missing_keys: missing_keys.append(name) continue elif tf_model._keys_to_ignore_on_load_missing is not None: # authorized missing keys don't have to be loaded if any(re.search(pat, name) is not None for pat in tf_model._keys_to_ignore_on_load_missing): continue raise AttributeError(f"{name} not found in PyTorch model") state_dict_name = tf_keys_to_pt_keys[name] if is_safetensor_archive: array = pt_state_dict.get_tensor(state_dict_name) else: array = pt_state_dict[state_dict_name] try: array = apply_transpose(transpose, array, symbolic_weight.shape) except tf.errors.InvalidArgumentError as e: if not ignore_mismatched_sizes: error_msg = str(e) error_msg += ( "\n\tYou may consider adding `ignore_mismatched_sizes=True` in the model `from_pretrained` method." ) raise tf.errors.InvalidArgumentError(error_msg) else: mismatched_keys.append((name, array.shape, symbolic_weight.shape)) continue tf_loaded_numel += tensor_size(array) symbolic_weight.assign(tf.cast(array, symbolic_weight.dtype)) del array # Immediately free memory to keep peak usage as low as possible all_pytorch_weights.discard(name) logger.info(f"Loaded {tf_loaded_numel:,} parameters in the TF 2.0 model.") unexpected_keys = list(all_pytorch_weights) if tf_model._keys_to_ignore_on_load_missing is not None: for pat in tf_model._keys_to_ignore_on_load_missing: missing_keys = [k for k in missing_keys if re.search(pat, k) is None] if tf_model._keys_to_ignore_on_load_unexpected is not None: for pat in tf_model._keys_to_ignore_on_load_unexpected: unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] if not skip_logger_warnings: _log_key_warnings(missing_keys, unexpected_keys, mismatched_keys, class_name=tf_model.__class__.__name__) if output_loading_info: loading_info = { "missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "mismatched_keys": mismatched_keys, } return tf_model, loading_info return tf_model def load_sharded_pytorch_safetensors_in_tf2_model( tf_model, safetensors_shards, tf_inputs=None, allow_missing_keys=False, output_loading_info=False, _prefix=None, tf_to_pt_weight_rename=None, ignore_mismatched_sizes=False, ): all_loading_infos = [] for shard in safetensors_shards: with safe_open(shard, framework="tf") as safetensors_archive: tf_model, loading_info = load_pytorch_state_dict_in_tf2_model( tf_model, safetensors_archive, tf_inputs=tf_inputs, allow_missing_keys=allow_missing_keys, output_loading_info=True, _prefix=_prefix, tf_to_pt_weight_rename=tf_to_pt_weight_rename, ignore_mismatched_sizes=ignore_mismatched_sizes, skip_logger_warnings=True, # We will emit merged warnings at the end ) all_loading_infos.append(loading_info) # Now we just need to merge the loading info # Keys are missing only if they're missing in *every* shard missing_keys = sorted(set.intersection(*[set(info["missing_keys"]) for info in all_loading_infos])) # Keys are unexpected/mismatched if they're unexpected/mismatched in *any* shard unexpected_keys = sum([info["unexpected_keys"] for info in all_loading_infos], []) mismatched_keys = sum([info["mismatched_keys"] for info in all_loading_infos], []) _log_key_warnings(missing_keys, unexpected_keys, mismatched_keys, class_name=tf_model.__class__.__name__) if output_loading_info: loading_info = { "missing_keys": missing_keys, "unexpected_keys": unexpected_keys, "mismatched_keys": mismatched_keys, } return tf_model, loading_info return tf_model ##################### # TF 2.0 => PyTorch # ##################### def load_tf2_checkpoint_in_pytorch_model( pt_model, tf_checkpoint_path, tf_inputs=None, allow_missing_keys=False, output_loading_info=False ): """ Load TF 2.0 HDF5 checkpoint in a PyTorch model We use HDF5 to easily do transfer learning (see https://github.com/tensorflow/tensorflow/blob/ee16fcac960ae660e0e4496658a366e2f745e1f0/tensorflow/python/keras/engine/network.py#L1352-L1357). """ try: import tensorflow as tf # noqa: F401 import torch # noqa: F401 except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise import transformers from .modeling_tf_utils import load_tf_weights logger.info(f"Loading TensorFlow weights from {tf_checkpoint_path}") # Instantiate and load the associated TF 2.0 model tf_model_class_name = "TF" + pt_model.__class__.__name__ # Add "TF" at the beginning tf_model_class = getattr(transformers, tf_model_class_name) tf_model = tf_model_class(pt_model.config) if tf_inputs is None: tf_inputs = tf_model.dummy_inputs if tf_inputs is not None: tf_model(tf_inputs, training=False) # Make sure model is built load_tf_weights(tf_model, tf_checkpoint_path) return load_tf2_model_in_pytorch_model( pt_model, tf_model, allow_missing_keys=allow_missing_keys, output_loading_info=output_loading_info ) def load_tf2_model_in_pytorch_model(pt_model, tf_model, allow_missing_keys=False, output_loading_info=False): """Load TF 2.0 model in a pytorch model""" weights = tf_model.weights return load_tf2_weights_in_pytorch_model( pt_model, weights, allow_missing_keys=allow_missing_keys, output_loading_info=output_loading_info ) def load_tf2_weights_in_pytorch_model(pt_model, tf_weights, allow_missing_keys=False, output_loading_info=False): """Load TF2.0 symbolic weights in a PyTorch model""" try: import tensorflow as tf # noqa: F401 import torch # noqa: F401 except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires both PyTorch and TensorFlow to be installed. Please see " "https://pytorch.org/ and https://www.tensorflow.org/install/ for installation instructions." ) raise tf_state_dict = {tf_weight.name: tf_weight.numpy() for tf_weight in tf_weights} return load_tf2_state_dict_in_pytorch_model( pt_model, tf_state_dict, allow_missing_keys=allow_missing_keys, output_loading_info=output_loading_info ) def load_tf2_state_dict_in_pytorch_model(pt_model, tf_state_dict, allow_missing_keys=False, output_loading_info=False): import torch new_pt_params_dict = {} current_pt_params_dict = dict(pt_model.named_parameters()) # Make sure we are able to load PyTorch base models as well as derived models (with heads) # TF models always have a prefix, some of PyTorch models (base ones) don't start_prefix_to_remove = "" if not any(s.startswith(pt_model.base_model_prefix) for s in current_pt_params_dict.keys()): start_prefix_to_remove = pt_model.base_model_prefix + "." # Build a map from potential PyTorch weight names to TF 2.0 Variables tf_weights_map = {} for name, tf_weight in tf_state_dict.items(): pt_name, transpose = convert_tf_weight_name_to_pt_weight_name( name, start_prefix_to_remove=start_prefix_to_remove, tf_weight_shape=tf_weight.shape ) tf_weights_map[pt_name] = (tf_weight, transpose) all_tf_weights = set(tf_weights_map.keys()) loaded_pt_weights_data_ptr = {} missing_keys_pt = [] for pt_weight_name, pt_weight in current_pt_params_dict.items(): # Handle PyTorch shared weight ()not duplicated in TF 2.0 if pt_weight.data_ptr() in loaded_pt_weights_data_ptr: new_pt_params_dict[pt_weight_name] = loaded_pt_weights_data_ptr[pt_weight.data_ptr()] continue pt_weight_name_to_check = pt_weight_name # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 key_components = pt_weight_name.split(".") name = None if key_components[-3::2] == ["parametrizations", "original0"]: name = key_components[-2] + "_g" elif key_components[-3::2] == ["parametrizations", "original1"]: name = key_components[-2] + "_v" if name is not None: key_components = key_components[:-3] + [name] pt_weight_name_to_check = ".".join(key_components) # Find associated numpy array in pytorch model state dict if pt_weight_name_to_check not in tf_weights_map: if allow_missing_keys: missing_keys_pt.append(pt_weight_name) continue raise AttributeError(f"{pt_weight_name} not found in TF 2.0 model") array, transpose = tf_weights_map[pt_weight_name_to_check] array = apply_transpose(transpose, array, pt_weight.shape, pt_to_tf=False) if numpy.isscalar(array): array = numpy.array(array) if not is_torch_tensor(array) and not is_numpy_array(array): array = array.numpy() if is_numpy_array(array): # Convert to torch tensor array = torch.from_numpy(array) new_pt_params_dict[pt_weight_name] = array loaded_pt_weights_data_ptr[pt_weight.data_ptr()] = array all_tf_weights.discard(pt_weight_name) missing_keys, unexpected_keys = pt_model.load_state_dict(new_pt_params_dict, strict=False) missing_keys += missing_keys_pt # Some models may have keys that are not in the state by design, removing them before needlessly warning # the user. if pt_model._keys_to_ignore_on_load_missing is not None: for pat in pt_model._keys_to_ignore_on_load_missing: missing_keys = [k for k in missing_keys if re.search(pat, k) is None] if pt_model._keys_to_ignore_on_load_unexpected is not None: for pat in pt_model._keys_to_ignore_on_load_unexpected: unexpected_keys = [k for k in unexpected_keys if re.search(pat, k) is None] if len(unexpected_keys) > 0: logger.warning( "Some weights of the TF 2.0 model were not used when initializing the PyTorch model" f" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing" f" {pt_model.__class__.__name__} from a TF 2.0 model trained on another task or with another architecture" " (e.g. initializing a BertForSequenceClassification model from a TFBertForPreTraining model).\n- This IS" f" NOT expected if you are initializing {pt_model.__class__.__name__} from a TF 2.0 model that you expect" " to be exactly identical (e.g. initializing a BertForSequenceClassification model from a" " TFBertForSequenceClassification model)." ) else: logger.warning(f"All TF 2.0 model weights were used when initializing {pt_model.__class__.__name__}.\n") if len(missing_keys) > 0: logger.warning( f"Some weights of {pt_model.__class__.__name__} were not initialized from the TF 2.0 model and are newly" f" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to" " use it for predictions and inference." ) else: logger.warning( f"All the weights of {pt_model.__class__.__name__} were initialized from the TF 2.0 model.\n" "If your task is similar to the task the model of the checkpoint was trained on, " f"you can already use {pt_model.__class__.__name__} for predictions without further training." ) logger.info(f"Weights or buffers not loaded from TF 2.0 model: {all_tf_weights}") if output_loading_info: loading_info = {"missing_keys": missing_keys, "unexpected_keys": unexpected_keys} return pt_model, loading_info return pt_model
transformers/src/transformers/modeling_tf_pytorch_utils.py/0
{ "file_path": "transformers/src/transformers/modeling_tf_pytorch_utils.py", "repo_id": "transformers", "token_count": 11602 }
97
# coding=utf-8 # Copyright 2023 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Image/Text processor class for ALIGN """ from typing import List, Union from ...image_utils import ImageInput from ...processing_utils import ProcessingKwargs, ProcessorMixin, Unpack, _validate_images_text_input_order from ...tokenization_utils_base import BatchEncoding, PreTokenizedInput, TextInput class AlignProcessorKwargs(ProcessingKwargs, total=False): # see processing_utils.ProcessingKwargs documentation for usage. _defaults = { "text_kwargs": { "padding": "max_length", "max_length": 64, }, } class AlignProcessor(ProcessorMixin): r""" Constructs an ALIGN processor which wraps [`EfficientNetImageProcessor`] and [`BertTokenizer`]/[`BertTokenizerFast`] into a single processor that interits both the image processor and tokenizer functionalities. See the [`~AlignProcessor.__call__`] and [`~OwlViTProcessor.decode`] for more information. The preferred way of passing kwargs is as a dictionary per modality, see usage example below. ```python from transformers import AlignProcessor from PIL import Image model_id = "kakaobrain/align-base" processor = AlignProcessor.from_pretrained(model_id) processor( images=your_pil_image, text=["What is that?"], images_kwargs = {"crop_size": {"height": 224, "width": 224}}, text_kwargs = {"padding": "do_not_pad"}, common_kwargs = {"return_tensors": "pt"}, ) ``` Args: image_processor ([`EfficientNetImageProcessor`]): The image processor is a required input. tokenizer ([`BertTokenizer`, `BertTokenizerFast`]): The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "EfficientNetImageProcessor" tokenizer_class = ("BertTokenizer", "BertTokenizerFast") def __init__(self, image_processor, tokenizer): super().__init__(image_processor, tokenizer) def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, audio=None, videos=None, **kwargs: Unpack[AlignProcessorKwargs], ) -> BatchEncoding: """ Main method to prepare text(s) and image(s) to be fed as input to the model. This method forwards the `text` arguments to BertTokenizerFast's [`~BertTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` arguments to EfficientNetImageProcessor's [`~EfficientNetImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring of the above two methods for more information. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. text (`str`, `List[str]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ if text is None and images is None: raise ValueError("You must specify either text or images.") # check if images and text inputs are reversed for BC images, text = _validate_images_text_input_order(images, text) output_kwargs = self._merge_kwargs( AlignProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) # then, we can pass correct kwargs to each processor if text is not None: encoding = self.tokenizer(text, **output_kwargs["text_kwargs"]) if images is not None: image_features = self.image_processor(images, **output_kwargs["images_kwargs"]) # BC for explicit return_tensors if "return_tensors" in output_kwargs["common_kwargs"]: return_tensors = output_kwargs["common_kwargs"].pop("return_tensors", None) if text is not None and images is not None: encoding["pixel_values"] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to BertTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) __all__ = ["AlignProcessor"]
transformers/src/transformers/models/align/processing_align.py/0
{ "file_path": "transformers/src/transformers/models/align/processing_align.py", "repo_id": "transformers", "token_count": 2868 }
98
# coding=utf-8 # Copyright 2022 MIT and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Audio Spectrogram Transformer (AST) model.""" import math from typing import Dict, List, Optional, Set, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, SequenceClassifierOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_audio_spectrogram_transformer import ASTConfig logger = logging.get_logger(__name__) # General docstring _CONFIG_FOR_DOC = "ASTConfig" # Base docstring _CHECKPOINT_FOR_DOC = "MIT/ast-finetuned-audioset-10-10-0.4593" _EXPECTED_OUTPUT_SHAPE = [1, 1214, 768] # Audio classification docstring _SEQ_CLASS_CHECKPOINT = "MIT/ast-finetuned-audioset-10-10-0.4593" _SEQ_CLASS_EXPECTED_OUTPUT = "'Speech'" _SEQ_CLASS_EXPECTED_LOSS = 0.17 class ASTEmbeddings(nn.Module): """ Construct the CLS token, position and patch embeddings. """ def __init__(self, config: ASTConfig) -> None: super().__init__() self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.distillation_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) self.patch_embeddings = ASTPatchEmbeddings(config) frequency_out_dimension, time_out_dimension = self.get_shape(config) num_patches = frequency_out_dimension * time_out_dimension self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 2, config.hidden_size)) self.dropout = nn.Dropout(config.hidden_dropout_prob) self.config = config def get_shape(self, config): # see Karpathy's cs231n blog on how to calculate the output dimensions # https://cs231n.github.io/convolutional-networks/#conv frequency_out_dimension = (config.num_mel_bins - config.patch_size) // config.frequency_stride + 1 time_out_dimension = (config.max_length - config.patch_size) // config.time_stride + 1 return frequency_out_dimension, time_out_dimension def forward(self, input_values: torch.Tensor) -> torch.Tensor: batch_size = input_values.shape[0] embeddings = self.patch_embeddings(input_values) cls_tokens = self.cls_token.expand(batch_size, -1, -1) distillation_tokens = self.distillation_token.expand(batch_size, -1, -1) embeddings = torch.cat((cls_tokens, distillation_tokens, embeddings), dim=1) embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings class ASTPatchEmbeddings(nn.Module): """ This class turns `input_values` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config): super().__init__() patch_size = config.patch_size frequency_stride = config.frequency_stride time_stride = config.time_stride self.projection = nn.Conv2d( 1, config.hidden_size, kernel_size=(patch_size, patch_size), stride=(frequency_stride, time_stride) ) def forward(self, input_values: torch.Tensor) -> torch.Tensor: input_values = input_values.unsqueeze(1) input_values = input_values.transpose(2, 3) embeddings = self.projection(input_values).flatten(2).transpose(1, 2) return embeddings # Copied from transformers.models.vit.modeling_vit.ViTSelfAttention with ViT->AST class ASTSelfAttention(nn.Module): def __init__(self, config: ASTConfig) -> None: super().__init__() if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size {config.hidden_size,} is not a multiple of the number of attention " f"heads {config.num_attention_heads}." ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.key = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.value = nn.Linear(config.hidden_size, self.all_head_size, bias=config.qkv_bias) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor: new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) x = x.view(new_x_shape) return x.permute(0, 2, 1, 3) def forward( self, hidden_states, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) attention_scores = attention_scores / math.sqrt(self.attention_head_size) # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs, value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) return outputs # Copied from transformers.models.vit.modeling_vit.ViTSdpaSelfAttention with ViT->AST class ASTSdpaSelfAttention(ASTSelfAttention): def __init__(self, config: ASTConfig) -> None: super().__init__(config) self.attention_probs_dropout_prob = config.attention_probs_dropout_prob def forward( self, hidden_states: torch.FloatTensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: if output_attentions or head_mask is not None: logger.warning_once( "`ASTSdpaAttention` is used but `torch.nn.functional.scaled_dot_product_attention` does not support " "`output_attentions=True` or `head_mask`. Falling back to the manual attention implementation, but " "specifying the manual implementation will be required from Transformers version v5.0.0 onwards. " 'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states=hidden_states, head_mask=head_mask, output_attentions=output_attentions, ) mixed_query_layer = self.query(hidden_states) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) query_layer = self.transpose_for_scores(mixed_query_layer) context_layer = torch.nn.functional.scaled_dot_product_attention( query_layer, key_layer, value_layer, head_mask, self.attention_probs_dropout_prob if self.training else 0.0, is_causal=False, scale=None, ) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) return context_layer, None # Copied from transformers.models.vit.modeling_vit.ViTSelfOutput with ViT->AST class ASTSelfOutput(nn.Module): """ The residual connection is defined in ASTLayer instead of here (as is the case with other models), due to the layernorm applied before each block. """ def __init__(self, config: ASTConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTAttention with ViT->AST class ASTAttention(nn.Module): def __init__(self, config: ASTConfig) -> None: super().__init__() self.attention = ASTSelfAttention(config) self.output = ASTSelfOutput(config) self.pruned_heads = set() def prune_heads(self, heads: Set[int]) -> None: if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.attention.num_attention_heads, self.attention.attention_head_size, self.pruned_heads ) # Prune linear layers self.attention.query = prune_linear_layer(self.attention.query, index) self.attention.key = prune_linear_layer(self.attention.key, index) self.attention.value = prune_linear_layer(self.attention.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.attention.num_attention_heads = self.attention.num_attention_heads - len(heads) self.attention.all_head_size = self.attention.attention_head_size * self.attention.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_outputs = self.attention(hidden_states, head_mask, output_attentions) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs # Copied from transformers.models.vit.modeling_vit.ViTSdpaAttention with ViT->AST class ASTSdpaAttention(ASTAttention): def __init__(self, config: ASTConfig) -> None: super().__init__(config) self.attention = ASTSdpaSelfAttention(config) # Copied from transformers.models.vit.modeling_vit.ViTIntermediate with ViT->AST class ASTIntermediate(nn.Module): def __init__(self, config: ASTConfig) -> None: super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) if isinstance(config.hidden_act, str): self.intermediate_act_fn = ACT2FN[config.hidden_act] else: self.intermediate_act_fn = config.hidden_act def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.intermediate_act_fn(hidden_states) return hidden_states # Copied from transformers.models.vit.modeling_vit.ViTOutput with ViT->AST class ASTOutput(nn.Module): def __init__(self, config: ASTConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states AST_ATTENTION_CLASSES = { "eager": ASTAttention, "sdpa": ASTSdpaAttention, } # Copied from transformers.models.vit.modeling_vit.ViTLayer with ViT->AST,VIT->AST class ASTLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: ASTConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = AST_ATTENTION_CLASSES[config._attn_implementation](config) self.intermediate = ASTIntermediate(config) self.output = ASTOutput(config) self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: self_attention_outputs = self.attention( self.layernorm_before(hidden_states), # in AST, layernorm is applied before self-attention head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # first residual connection hidden_states = attention_output + hidden_states # in AST, layernorm is also applied after self-attention layer_output = self.layernorm_after(hidden_states) layer_output = self.intermediate(layer_output) # second residual connection is done here layer_output = self.output(layer_output, hidden_states) outputs = (layer_output,) + outputs return outputs # Copied from transformers.models.vit.modeling_vit.ViTEncoder with ViT->AST class ASTEncoder(nn.Module): def __init__(self, config: ASTConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([ASTLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class ASTPreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. """ config_class = ASTConfig base_model_prefix = "audio_spectrogram_transformer" main_input_name = "input_values" supports_gradient_checkpointing = True _supports_sdpa = True # Copied from transformers.models.deit.modeling_deit.DeiTPreTrainedModel._init_weights def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid # `trunc_normal_cpu` not implemented in `half` issues module.weight.data = nn.init.trunc_normal_( module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range ).to(module.weight.dtype) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) AUDIO_SPECTROGRAM_TRANSFORMER_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ASTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ AUDIO_SPECTROGRAM_TRANSFORMER_INPUTS_DOCSTRING = r""" Args: input_values (`torch.FloatTensor` of shape `(batch_size, max_length, num_mel_bins)`): Float values mel features extracted from the raw audio waveform. Raw audio waveform can be obtained by loading a `.flac` or `.wav` audio file into an array of type `List[float]` or a `numpy.ndarray`, *e.g.* via the soundfile library (`pip install soundfile`). To prepare the array into `input_features`, the [`AutoFeatureExtractor`] should be used for extracting the mel features, padding and conversion into a tensor of type `torch.FloatTensor`. See [`~ASTFeatureExtractor.__call__`] head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare AST Model transformer outputting raw hidden-states without any specific head on top.", AUDIO_SPECTROGRAM_TRANSFORMER_START_DOCSTRING, ) class ASTModel(ASTPreTrainedModel): def __init__(self, config: ASTConfig) -> None: super().__init__(config) self.config = config self.embeddings = ASTEmbeddings(config) self.encoder = ASTEncoder(config) self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> ASTPatchEmbeddings: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @add_start_docstrings_to_model_forward(AUDIO_SPECTROGRAM_TRANSFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC, output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_EXPECTED_OUTPUT_SHAPE, ) def forward( self, input_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_values is None: raise ValueError("You have to specify input_values") # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings(input_values) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) pooled_output = (sequence_output[:, 0] + sequence_output[:, 1]) / 2 if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) class ASTMLPHead(nn.Module): def __init__(self, config: ASTConfig): super().__init__() self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dense = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() def forward(self, hidden_state): hidden_state = self.layernorm(hidden_state) hidden_state = self.dense(hidden_state) return hidden_state @add_start_docstrings( """ Audio Spectrogram Transformer model with an audio classification head on top (a linear layer on top of the pooled output) e.g. for datasets like AudioSet, Speech Commands v2. """, AUDIO_SPECTROGRAM_TRANSFORMER_START_DOCSTRING, ) class ASTForAudioClassification(ASTPreTrainedModel): def __init__(self, config: ASTConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.audio_spectrogram_transformer = ASTModel(config) # Classifier head self.classifier = ASTMLPHead(config) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(AUDIO_SPECTROGRAM_TRANSFORMER_INPUTS_DOCSTRING) @add_code_sample_docstrings( checkpoint=_SEQ_CLASS_CHECKPOINT, output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC, modality="audio", expected_output=_SEQ_CLASS_EXPECTED_OUTPUT, expected_loss=_SEQ_CLASS_EXPECTED_LOSS, ) def forward( self, input_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, SequenceClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the audio classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.audio_spectrogram_transformer( input_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) pooled_output = outputs[1] logits = self.classifier(pooled_output) loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = ["ASTForAudioClassification", "ASTModel", "ASTPreTrainedModel"]
transformers/src/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py/0
{ "file_path": "transformers/src/transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py", "repo_id": "transformers", "token_count": 11719 }
99
# coding=utf-8 # Copyright 2024 IBM and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This script can be used to convert checkpoints provided in the `mamba_ssm` library into the format provided in HuggingFace `transformers`. It depends on the `mamba2_ssm` package to be installed.""" import argparse import json import os import re from os import path from typing import Dict, Union import torch from huggingface_hub import split_torch_state_dict_into_shards from safetensors.torch import save_file from transformers import AutoTokenizer from transformers.utils import SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME from .configuration_bamba import BambaConfig def convert_state_dict_from_mamba_ssm(original_sd: Dict) -> Dict[str, torch.Tensor]: state_dict = {} for orig_k, param in original_sd.items(): k = orig_k.replace("backbone", "model") # for embeddings k = k.replace("embedding", "embed_tokens") # for mixer k = k.replace("mixer", "mamba") # for final layernorm k = k.replace("norm_f", "final_layernorm") # for block layernorm k = re.sub(r"(\d+)\.norm\.", r"\1.input_layernorm.", k) k = re.sub(r"(\d+)\.norm2\.", r"\1.pre_ff_layernorm.", k) # for mlp k = k.replace("mlp.fc2", "feed_forward.down_proj") if "mlp.fc1" in k: param, param2 = torch.chunk(param, 2, dim=0) k2 = k.replace("mlp.fc1", "feed_forward.gate_proj") state_dict[k2] = param2 k = k.replace("mlp.fc1", "feed_forward.up_proj") if ("in_proj" in k and orig_k.replace("in_proj", "conv1d") in original_sd) or ( "out_proj" in k and orig_k.replace("out_proj", "conv1d") in original_sd ): # then this must be a mamba pass else: # for attn # - because mixer was replaced to mamba above k = k.replace("mamba.out_proj", "self_attn.o_proj") if "mamba.in_proj" in k: m, n = param.shape d = (m - n) // 2 param, param2, param3 = torch.split(param, [n, d, d], dim=0) k2 = k.replace("mamba.in_proj", "self_attn.k_proj") state_dict[k2] = param2 k2 = k.replace("mamba.in_proj", "self_attn.v_proj") state_dict[k2] = param3 k = k.replace("mamba.in_proj", "self_attn.q_proj") state_dict[k] = param return state_dict # Adapted from transformers.models.mamba.convert_mamba_ssm_checkpoint_to_pytorch.py def convert_ssm_config_to_hf_config( config_ssm: Dict, **kwargs, ) -> BambaConfig: """Convert a config from mamba_ssm to a BambaConfig from here.""" hf_config: BambaConfig = BambaConfig(**kwargs) hf_config.architectures = ["BambaForCausalLM"] # Set important values from config and recalculate other resulting entries hf_config.hidden_size = config_ssm["d_model"] hf_config.intermediate_size = config_ssm["d_intermediate"] hf_config.mamba_n_heads = (hf_config.hidden_size * hf_config.mamba_expand) // hf_config.mamba_d_head hf_config.num_hidden_layers = config_ssm["n_layer"] hf_config.tie_word_embeddings = config_ssm["tie_embeddings"] # currently this script assumes config_ssm belongs to v2 if config_ssm["ssm_cfg"].get("layer") != "Mamba2": raise ValueError("Conversion script only supports Mamba2") # Set attention values attn_cfg = config_ssm.get("attn_cfg") if attn_cfg: assert attn_cfg["causal"], "Only support non-causal attention." assert not attn_cfg["qkv_proj_bias"], "Only support no qkv bias." assert not attn_cfg["out_proj_bias"], "Only support no out bias." hf_config.attn_rotary_emb = attn_cfg["rotary_emb_dim"] hf_config.num_attention_heads = attn_cfg["num_heads"] hf_config.num_key_value_heads = attn_cfg["num_heads_kv"] attention_layer_indices = config_ssm.get("attn_layer_idx") if attention_layer_indices: hf_config.attn_layer_indices = attention_layer_indices # Padded vocab size, mostly of 16 but 32 is also very common in different models vocab_size = config_ssm["vocab_size"] pad_vocab_size_multiple = config_ssm["pad_vocab_size_multiple"] if (vocab_size % pad_vocab_size_multiple) != 0: vocab_size += pad_vocab_size_multiple - (vocab_size % pad_vocab_size_multiple) hf_config.vocab_size = vocab_size return hf_config def save_single_safetensor( state_dict: Dict, save_directory: str, metadata: Dict, ): save_file( state_dict, os.path.join(save_directory, SAFE_WEIGHTS_NAME), metadata, ) def save_sharded_safetensors( state_dict: Dict, save_directory: str, metadata: Dict, max_shard_size: Union[int, str] = "5GB", ): filename_pattern = SAFE_WEIGHTS_NAME.replace(".bin", "{suffix}.bin").replace( ".safetensors", "{suffix}.safetensors" ) state_dict_split = split_torch_state_dict_into_shards( state_dict, filename_pattern=filename_pattern, max_shard_size=max_shard_size ) index = { "metadata": state_dict_split.metadata, "weight_map": state_dict_split.tensor_to_filename, } # Save the index with open(os.path.join(save_directory, SAFE_WEIGHTS_INDEX_NAME), "w", encoding="utf-8") as f: content = json.dumps(index, indent=2, sort_keys=True) + "\n" f.write(content) filename_to_tensors = state_dict_split.filename_to_tensors.items() for shard_file, tensors in filename_to_tensors: shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors} save_file(shard, os.path.join(save_directory, shard_file), metadata=metadata) # Adapted from transformers.models.mamba.convert_mamba_ssm_checkpoint_to_pytorch.py def convert_mamba_ssm_checkpoint_file_to_huggingface_model_file( mamba_ssm_checkpoint_path: str, precision: str, output_dir: str, tokenizer_path: str = None, save_model: Union[bool, str] = True, ) -> None: # load tokenizer if provided, this will be used to set the # token_ids in the config file token_ids = {} if tokenizer_path: tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) for key in [ "bos_token_id", "eos_token_id", "pad_token_id", ]: id = getattr(tokenizer, key, None) if id: token_ids[key] = id # there are some configs unsettable by mamba_ssn config, so # if there are changes from the defaults, have to pass them into # the function unsettables = { "mamba_d_head": 64, "mamba_d_state": 128, "mamba_n_groups": 1, "rms_norm_eps": 1e-5, } # Load and save config based on name config_path = path.join(mamba_ssm_checkpoint_path, "config.json") with open(config_path, "r", encoding="utf-8") as json_file: config = json.load(json_file) # convert the config hf_config = convert_ssm_config_to_hf_config( config_ssm=config, **token_ids, **unsettables, ) hf_config.save_pretrained(output_dir) # Load state dict of the original model and transfer to hf model state_dict = torch.load( path.join(mamba_ssm_checkpoint_path, "pytorch_model.bin"), map_location="cpu", weights_only=True, ) # FIXME: allow other parameters to pass in state_dict = convert_state_dict_from_mamba_ssm(state_dict) # Save new model to pytorch_dump_path dtype = torch.float32 if precision == "fp32" else (torch.bfloat16 if precision == "bf16" else torch.float16) save_file_fn = None if isinstance(save_model, bool) and save_model: save_file_fn = save_single_safetensor elif isinstance(save_model, str) and save_model == "sharded": save_file_fn = save_sharded_safetensors if save_file_fn: save_file_fn({k: v.to(dtype) for k, v in state_dict.items()}, output_dir, metadata={"format": "pt"}) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "-i", "--mamba_ssm_checkpoint_directory", type=str, required=True, help="Path to a directory containing the `pytorch_model.bin` mamba_ssm checkpoint file to be converted.", ) parser.add_argument( "-p", "--precision", type=str, default="fp16", const="fp16", required=True, choices=("fp32", "fp16", "bf16"), help="The precision the model will be saved in. Select from fp32, fp16 or bf16.", ) parser.add_argument( "-o", "--output_dir", type=str, required=True, help="Path to directory to save the converted output model to." ) parser.add_argument( "-t", "--tokenizer_model_path", type=str, default=None, required=False, help="Path to a the tokenizer file.", ) args = parser.parse_args() convert_mamba_ssm_checkpoint_file_to_huggingface_model_file( args.mamba2_checkpoint_directory, args.precision, args.output_dir, )
transformers/src/transformers/models/bamba/convert_mamba_ssm_checkpoint.py/0
{ "file_path": "transformers/src/transformers/models/bamba/convert_mamba_ssm_checkpoint.py", "repo_id": "transformers", "token_count": 4209 }
100
# coding=utf-8 # Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team. # Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for BERTweet""" import html import os import re from shutil import copyfile from typing import List, Optional, Tuple import regex from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.txt", "merges_file": "bpe.codes", } def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char pairs = set(pairs) return pairs class BertweetTokenizer(PreTrainedTokenizer): """ Constructs a BERTweet tokenizer, using Byte-Pair-Encoding. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Path to the merges file. normalization (`bool`, *optional*, defaults to `False`): Whether or not to apply a normalization preprocess. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. cls_token (`str`, *optional*, defaults to `"<s>"`): The classifier token which is used when doing sequence classification (classification of the whole sequence instead of per-token classification). It is the first token of the sequence when built with special tokens. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. mask_token (`str`, *optional*, defaults to `"<mask>"`): The token used for masking values. This is the token used when training this model with masked language modeling. This is the token which the model will try to predict. """ vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, merges_file, normalization=False, bos_token="<s>", eos_token="</s>", sep_token="</s>", cls_token="<s>", unk_token="<unk>", pad_token="<pad>", mask_token="<mask>", **kwargs, ): try: from emoji import demojize self.demojizer = demojize except ImportError: logger.warning( "emoji is not installed, thus not converting emoticons or emojis into text. Install emoji: pip3" " install emoji==0.6.0" ) self.demojizer = None self.vocab_file = vocab_file self.merges_file = merges_file self.encoder = {} self.encoder[str(bos_token)] = 0 self.encoder[str(pad_token)] = 1 self.encoder[str(eos_token)] = 2 self.encoder[str(unk_token)] = 3 self.add_from_file(vocab_file) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[:-1] merges = [tuple(merge.split()[:-1]) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} self.normalization = normalization self.tweetPreprocessor = TweetTokenizer() self.special_puncts = {"’": "'", "…": "..."} super().__init__( normalization=normalization, bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, cls_token=cls_token, unk_token=unk_token, pad_token=pad_token, mask_token=mask_token, **kwargs, ) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERTweet sequence has the following format: - single sequence: `<s> X </s>` - pair of sequences: `<s> A </s></s> B </s>` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] cls = [self.cls_token_id] sep = [self.sep_token_id] return cls + token_ids_0 + sep + sep + token_ids_1 + sep def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. BERTweet does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ sep = [self.sep_token_id] cls = [self.cls_token_id] if token_ids_1 is None: return len(cls + token_ids_0 + sep) * [0] return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] @property def vocab_size(self): return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token) word = tuple(list(word[:-1]) + [word[-1] + "</w>"]) pairs = get_pairs(word) if not pairs: return token while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = "@@ ".join(word) word = word[:-4] self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" if self.normalization: # Perform Tweet normalization before performing BPE text = self.normalizeTweet(text) split_tokens = [] words = re.findall(r"\S+\n?", text) for token in words: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens def normalizeTweet(self, tweet): """ Normalize a raw Tweet """ for punct in self.special_puncts: tweet = tweet.replace(punct, self.special_puncts[punct]) tokens = self.tweetPreprocessor.tokenize(tweet) normTweet = " ".join([self.normalizeToken(token) for token in tokens]) normTweet = ( normTweet.replace("cannot ", "can not ") .replace("n't ", " n't ") .replace("n 't ", " n't ") .replace("ca n't", "can't") .replace("ai n't", "ain't") ) normTweet = ( normTweet.replace("'m ", " 'm ") .replace("'re ", " 're ") .replace("'s ", " 's ") .replace("'ll ", " 'll ") .replace("'d ", " 'd ") .replace("'ve ", " 've ") ) normTweet = ( normTweet.replace(" p . m .", " p.m.") .replace(" p . m ", " p.m ") .replace(" a . m .", " a.m.") .replace(" a . m ", " a.m ") ) return " ".join(normTweet.split()) def normalizeToken(self, token): """ Normalize tokens in a Tweet """ lowercased_token = token.lower() if token.startswith("@"): return "@USER" elif lowercased_token.startswith("http") or lowercased_token.startswith("www"): return "HTTPURL" elif len(token) == 1: if token in self.special_puncts: return self.special_puncts[token] if self.demojizer is not None: return self.demojizer(token) else: return token else: return token def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" out_string = " ".join(tokens).replace("@@ ", "").strip() return out_string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return out_vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) out_merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file, out_vocab_file) elif not os.path.isfile(self.vocab_file): with open(out_vocab_file, "wb") as fi: content_spiece_model = self.sp_model.serialized_model_proto() fi.write(content_spiece_model) if os.path.abspath(self.merges_file) != os.path.abspath(out_merge_file): copyfile(self.merges_file, out_merge_file) return out_vocab_file, out_merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far) def add_from_file(self, f): """ Loads a pre-existing dictionary from a text file and adds its symbols to this instance. """ if isinstance(f, str): try: with open(f, "r", encoding="utf-8") as fd: self.add_from_file(fd) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f"Incorrect encoding detected in {f}, please rebuild the dataset") return lines = f.readlines() for lineTmp in lines: line = lineTmp.strip() idx = line.rfind(" ") if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'") word = line[:idx] self.encoder[word] = len(self.encoder) # Natural Language Toolkit: Twitter Tokenizer # # Copyright (C) 2001-2020 NLTK Project # Author: Christopher Potts <cgpotts@stanford.edu> # Ewan Klein <ewan@inf.ed.ac.uk> (modifications) # Pierpaolo Pantone <> (modifications) # URL: http://nltk.org/ # For license information, see LICENSE.TXT # """ Twitter-aware tokenizer, designed to be flexible and easy to adapt to new domains and tasks. The basic logic is this: 1. The tuple regex_strings defines a list of regular expression strings. 2. The regex_strings strings are put, in order, into a compiled regular expression object called word_re. 3. The tokenization is done by word_re.findall(s), where s is the user-supplied string, inside the tokenize() method of the class Tokenizer. 4. When instantiating Tokenizer objects, there is a single option: preserve_case. By default, it is set to True. If it is set to False, then the tokenizer will lowercase everything except for emoticons. """ ###################################################################### # # import regex # https://github.com/nltk/nltk/issues/2409 # import html # ###################################################################### # The following strings are components in the regular expression # that is used for tokenizing. It's important that phone_number # appears first in the final regex (since it can contain whitespace). # It also could matter that tags comes after emoticons, due to the # possibility of having text like # # <:| and some text >:) # # Most importantly, the final element should always be last, since it # does a last ditch whitespace-based tokenization of whatever is left. # ToDo: Update with http://en.wikipedia.org/wiki/List_of_emoticons ? # This particular element is used in a couple ways, so we define it # with a name: # docstyle-ignore EMOTICONS = r""" (?: [<>]? [:;=8] # eyes [\-o\*\']? # optional nose [\)\]\(\[dDpP/\:\}\{@\|\\] # mouth | [\)\]\(\[dDpP/\:\}\{@\|\\] # mouth [\-o\*\']? # optional nose [:;=8] # eyes [<>]? | <3 # heart )""" # URL pattern due to John Gruber, modified by Tom Winzig. See # https://gist.github.com/winzig/8894715 # docstyle-ignore URLS = r""" # Capture 1: entire matched URL (?: https?: # URL protocol and colon (?: /{1,3} # 1-3 slashes | # or [a-z0-9%] # Single letter or digit or '%' # (Trying not to match e.g. "URI::Escape") ) | # or # looks like domain name followed by a slash: [a-z0-9.\-]+[.] (?:[a-z]{2,13}) / ) (?: # One or more: [^\s()<>{}\[\]]+ # Run of non-space, non-()<>{}[] | # or \([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...) | \([^\s]+?\) # balanced parens, non-recursive: (...) )+ (?: # End with: \([^\s()]*?\([^\s()]+\)[^\s()]*?\) # balanced parens, one level deep: (...(...)...) | \([^\s]+?\) # balanced parens, non-recursive: (...) | # or [^\s`!()\[\]{};:'".,<>?«»“”‘’] # not a space or one of these punct chars ) | # OR, the following to match naked domains: (?: (?<!@) # not preceded by a @, avoid matching foo@_gmail.com_ [a-z0-9]+ (?:[.\-][a-z0-9]+)* [.] (?:[a-z]{2,13}) \b /? (?!@) # not succeeded by a @, # avoid matching "foo.na" in "foo.na@example.com" ) """ # docstyle-ignore # The components of the tokenizer: REGEXPS = ( URLS, # Phone numbers: r""" (?: (?: # (international) \+?[01] [ *\-.\)]* )? (?: # (area code) [\(]? \d{3} [ *\-.\)]* )? \d{3} # exchange [ *\-.\)]* \d{4} # base )""", # ASCII Emoticons EMOTICONS, # HTML tags: r"""<[^>\s]+>""", # ASCII Arrows r"""[\-]+>|<[\-]+""", # Twitter username: r"""(?:@[\w_]+)""", # Twitter hashtags: r"""(?:\#+[\w_]+[\w\'_\-]*[\w_]+)""", # email addresses r"""[\w.+-]+@[\w-]+\.(?:[\w-]\.?)+[\w-]""", # docstyle-ignore # Remaining word types: r""" (?:[^\W\d_](?:[^\W\d_]|['\-_])+[^\W\d_]) # Words with apostrophes or dashes. | (?:[+\-]?\d+[,/.:-]\d+[+\-]?) # Numbers, including fractions, decimals. | (?:[\w_]+) # Words without apostrophes or dashes. | (?:\.(?:\s*\.){1,}) # Ellipsis dots. | (?:\S) # Everything else that isn't whitespace. """, ) ###################################################################### # This is the core tokenizing regex: WORD_RE = regex.compile(r"""(%s)""" % "|".join(REGEXPS), regex.VERBOSE | regex.I | regex.UNICODE) # WORD_RE performs poorly on these patterns: HANG_RE = regex.compile(r"([^a-zA-Z0-9])\1{3,}") # The emoticon string gets its own regex so that we can preserve case for # them as needed: EMOTICON_RE = regex.compile(EMOTICONS, regex.VERBOSE | regex.I | regex.UNICODE) # These are for regularizing HTML entities to Unicode: ENT_RE = regex.compile(r"&(#?(x?))([^&;\s]+);") ###################################################################### # Functions for converting html entities ###################################################################### def _str_to_unicode(text, encoding=None, errors="strict"): if encoding is None: encoding = "utf-8" if isinstance(text, bytes): return text.decode(encoding, errors) return text def _replace_html_entities(text, keep=(), remove_illegal=True, encoding="utf-8"): """ Remove entities from text by converting them to their corresponding unicode character. Args: text: A unicode string or a byte string encoded in the given *encoding* (which defaults to 'utf-8'). keep (list): List of entity names which should not be replaced. This supports both numeric entities (`&#nnnn;` and `&#hhhh;`) and named entities (such as `&nbsp;` or `&gt;`). remove_illegal (bool): If `True`, entities that can't be converted are removed. Otherwise, entities that can't be converted are kept "as is". Returns: A unicode string with the entities removed. See https://github.com/scrapy/w3lib/blob/master/w3lib/html.py Examples: ```python >>> from nltk.tokenize.casual import _replace_html_entities >>> _replace_html_entities(b"Price: &pound;100") 'Price: \\xa3100' >>> print(_replace_html_entities(b"Price: &pound;100")) Price: £100 ```""" def _convert_entity(match): entity_body = match.group(3) if match.group(1): try: if match.group(2): number = int(entity_body, 16) else: number = int(entity_body, 10) # Numeric character references in the 80-9F range are typically # interpreted by browsers as representing the characters mapped # to bytes 80-9F in the Windows-1252 encoding. For more info # see: https://en.wikipedia.org/wiki/ISO/IEC_8859-1#Similar_character_sets if 0x80 <= number <= 0x9F: return bytes((number,)).decode("cp1252") except ValueError: number = None else: if entity_body in keep: return match.group(0) else: number = html.entities.name2codepoint.get(entity_body) if number is not None: try: return chr(number) except (ValueError, OverflowError): pass return "" if remove_illegal else match.group(0) return ENT_RE.sub(_convert_entity, _str_to_unicode(text, encoding)) ###################################################################### class TweetTokenizer: r""" Examples: ```python >>> # Tokenizer for tweets. >>> from nltk.tokenize import TweetTokenizer >>> tknzr = TweetTokenizer() >>> s0 = "This is a cooool #dummysmiley: :-) :-P <3 and some arrows < > -> <--" >>> tknzr.tokenize(s0) ['This', 'is', 'a', 'cooool', '#dummysmiley', ':', ':-)', ':-P', '<3', 'and', 'some', 'arrows', '<', '>', '->', '<--'] >>> # Examples using *strip_handles* and *reduce_len parameters*: >>> tknzr = TweetTokenizer(strip_handles=True, reduce_len=True) >>> s1 = "@remy: This is waaaaayyyy too much for you!!!!!!" >>> tknzr.tokenize(s1) [':', 'This', 'is', 'waaayyy', 'too', 'much', 'for', 'you', '!', '!', '!'] ```""" def __init__(self, preserve_case=True, reduce_len=False, strip_handles=False): self.preserve_case = preserve_case self.reduce_len = reduce_len self.strip_handles = strip_handles def tokenize(self, text): """ Args: text: str Returns: list(str) A tokenized list of strings; concatenating this list returns the original string if `preserve_case=False` """ # Fix HTML character entities: text = _replace_html_entities(text) # Remove username handles if self.strip_handles: text = remove_handles(text) # Normalize word lengthening if self.reduce_len: text = reduce_lengthening(text) # Shorten problematic sequences of characters safe_text = HANG_RE.sub(r"\1\1\1", text) # Tokenize: words = WORD_RE.findall(safe_text) # Possibly alter the case, but avoid changing emoticons like :D into :d: if not self.preserve_case: words = [x if EMOTICON_RE.search(x) else x.lower() for x in words] return words ###################################################################### # Normalization Functions ###################################################################### def reduce_lengthening(text): """ Replace repeated character sequences of length 3 or greater with sequences of length 3. """ pattern = regex.compile(r"(.)\1{2,}") return pattern.sub(r"\1\1\1", text) def remove_handles(text): """ Remove Twitter username handles from text. """ pattern = regex.compile( r"(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){20}(?!@))|(?<![A-Za-z0-9_!@#\$%&*])@(([A-Za-z0-9_]){1,19})(?![A-Za-z0-9_]*@)" ) # Substitute handles with ' ' to ensure that text on either side of removed handles are tokenized correctly return pattern.sub(" ", text) ###################################################################### # Tokenization Function ###################################################################### def casual_tokenize(text, preserve_case=True, reduce_len=False, strip_handles=False): """ Convenience function for wrapping the tokenizer. """ return TweetTokenizer(preserve_case=preserve_case, reduce_len=reduce_len, strip_handles=strip_handles).tokenize( text ) ############################################################################### __all__ = ["BertweetTokenizer"]
transformers/src/transformers/models/bertweet/tokenization_bertweet.py/0
{ "file_path": "transformers/src/transformers/models/bertweet/tokenization_bertweet.py", "repo_id": "transformers", "token_count": 12056 }
101
# coding=utf-8 # Copyright 2022 The HuggingFace Team and Microsoft Research AI4Science. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization classes for BioGPT.""" import json import os from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } def get_pairs(word): """ Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length strings) """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs class BioGptTokenizer(PreTrainedTokenizer): """ Construct an FAIRSEQ Transformer tokenizer. Moses tokenization followed by Byte-Pair Encoding. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): Path to the vocabulary file. merges_file (`str`): Merges file. unk_token (`str`, *optional*, defaults to `"<unk>"`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. bos_token (`str`, *optional*, defaults to `"<s>"`): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. <Tip> When building a sequence using special tokens, this is not the token that is used for the beginning of sequence. The token used is the `cls_token`. </Tip> eos_token (`str`, *optional*, defaults to `"</s>"`): The end of sequence token. <Tip> When building a sequence using special tokens, this is not the token that is used for the end of sequence. The token used is the `sep_token`. </Tip> sep_token (`str`, *optional*, defaults to `"</s>"`): The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for sequence classification or for a text and a question for question answering. It is also used as the last token of a sequence built with special tokens. pad_token (`str`, *optional*, defaults to `"<pad>"`): The token used for padding, for example when batching sequences of different lengths. """ vocab_files_names = VOCAB_FILES_NAMES model_input_names = ["input_ids", "attention_mask"] def __init__( self, vocab_file, merges_file, unk_token="<unk>", bos_token="<s>", eos_token="</s>", sep_token="</s>", pad_token="<pad>", **kwargs, ): try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use BioGptTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.lang = "en" self.sm = sacremoses # cache of sm.MosesTokenizer instance self.cache_moses_tokenizer = {} self.cache_moses_detokenizer = {} """ Initialisation""" with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: merges = merges_handle.read().split("\n")[:-1] merges = [tuple(merge.split()[:2]) for merge in merges] self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {} super().__init__( bos_token=bos_token, eos_token=eos_token, sep_token=sep_token, unk_token=unk_token, pad_token=pad_token, **kwargs, ) @property def vocab_size(self): """Returns vocab size""" return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def moses_tokenize(self, text, lang): if lang not in self.cache_moses_tokenizer: moses_tokenizer = self.sm.MosesTokenizer(lang=lang) self.cache_moses_tokenizer[lang] = moses_tokenizer return self.cache_moses_tokenizer[lang].tokenize( text, aggressive_dash_splits=True, return_str=False, escape=True ) def moses_detokenize(self, tokens, lang): if lang not in self.cache_moses_detokenizer: moses_detokenizer = self.sm.MosesDetokenizer(lang=lang) self.cache_moses_detokenizer[lang] = moses_detokenizer return self.cache_moses_detokenizer[lang].detokenize(tokens) def bpe(self, token): word = tuple(token[:-1]) + (token[-1] + "</w>",) if token in self.cache: return self.cache[token] pairs = get_pairs(word) if not pairs: return token + "</w>" while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) if word == "\n </w>": word = "\n</w>" self.cache[token] = word return word def _tokenize(self, text, bypass_tokenizer=False): """Returns a tokenized string.""" if bypass_tokenizer: text = text.split() else: text = self.moses_tokenize(text, self.lang) split_tokens = [] for token in text: if token: split_tokens.extend(list(self.bpe(token).split(" "))) return split_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index, self.unk_token) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" # remove BPE tokens = [t.replace(" ", "").replace("</w>", " ") for t in tokens] tokens = "".join(tokens).split() # detokenize text = self.moses_detokenize(tokens, self.lang) return text def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BioGPT sequence has the following format: - single sequence: `</s> X ` - pair of sequences: `</s> A </s> B ` Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ if token_ids_1 is None: return [self.sep_token_id] + token_ids_0 sep = [self.sep_token_id] return sep + token_ids_0 + sep + token_ids_1 def get_special_tokens_mask( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False ) -> List[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) # no bos used in fairseq if token_ids_1 is not None: return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) return [1] + ([0] * len(token_ids_0)) def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. A FAIRSEQ Transformer sequence pair mask has the following format: ``` 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | ``` If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s). Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s). """ sep = [self.sep_token_id] # no bos used in fairseq if token_ids_1 is None: return len(token_ids_0 + sep) * [0] return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: if not os.path.isdir(save_directory): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) merge_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(vocab_file, "w", encoding="utf-8") as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n") index = 0 with open(merge_file, "w", encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) index = token_index writer.write(" ".join(bpe_tokens) + "\n") index += 1 return vocab_file, merge_file def __getstate__(self): state = self.__dict__.copy() state["sm"] = None return state def __setstate__(self, d): self.__dict__ = d try: import sacremoses except ImportError: raise ImportError( "You need to install sacremoses to use XLMTokenizer. " "See https://pypi.org/project/sacremoses/ for installation." ) self.sm = sacremoses __all__ = ["BioGptTokenizer"]
transformers/src/transformers/models/biogpt/tokenization_biogpt.py/0
{ "file_path": "transformers/src/transformers/models/biogpt/tokenization_biogpt.py", "repo_id": "transformers", "token_count": 6040 }
102