text
stringlengths 29
317k
| id
stringlengths 22
166
| metadata
dict | __index_level_0__
int64 0
231
|
---|---|---|---|
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# EETQ
The [EETQ](https://github.com/NetEase-FuXi/EETQ) library supports int8 per-channel weight-only quantization for NVIDIA GPUS. The high-performance GEMM and GEMV kernels are from FasterTransformer and TensorRT-LLM. It requires no calibration dataset and does not need to pre-quantize your model. Moreover, the accuracy degradation is negligible owing to the per-channel quantization.
Make sure you have eetq installed from the [release page](https://github.com/NetEase-FuXi/EETQ/releases)
```
pip install --no-cache-dir https://github.com/NetEase-FuXi/EETQ/releases/download/v1.0.0/EETQ-1.0.0+cu121+torch2.1.2-cp310-cp310-linux_x86_64.whl
```
or via the source code https://github.com/NetEase-FuXi/EETQ. EETQ requires CUDA capability <= 8.9 and >= 7.0
```
git clone https://github.com/NetEase-FuXi/EETQ.git
cd EETQ/
git submodule update --init --recursive
pip install .
```
An unquantized model can be quantized via "from_pretrained".
```py
from transformers import AutoModelForCausalLM, EetqConfig
path = "/path/to/model"
quantization_config = EetqConfig("int8")
model = AutoModelForCausalLM.from_pretrained(path, device_map="auto", quantization_config=quantization_config)
```
A quantized model can be saved via "saved_pretrained" and be reused again via the "from_pretrained".
```py
quant_path = "/path/to/save/quantized/model"
model.save_pretrained(quant_path)
model = AutoModelForCausalLM.from_pretrained(quant_path, device_map="auto")
```
|
transformers/docs/source/en/quantization/eetq.md/0
|
{
"file_path": "transformers/docs/source/en/quantization/eetq.md",
"repo_id": "transformers",
"token_count": 683
}
| 27 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Audio classification
[[open-in-colab]]
<Youtube id="KWwzcmG98Ds"/>
Audio classification - just like with text - assigns a class label as output from the input data. The only difference is instead of text inputs, you have raw audio waveforms. Some practical applications of audio classification include identifying speaker intent, language classification, and even animal species by their sounds.
This guide will show you how to:
1. Fine-tune [Wav2Vec2](https://huggingface.co/facebook/wav2vec2-base) on the [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14) dataset to classify speaker intent.
2. Use your fine-tuned model for inference.
<Tip>
To see all architectures and checkpoints compatible with this task, we recommend checking the [task-page](https://huggingface.co/tasks/audio-classification)
</Tip>
Before you begin, make sure you have all the necessary libraries installed:
```bash
pip install transformers datasets evaluate
```
We encourage you to login to your Hugging Face account so you can upload and share your model with the community. When prompted, enter your token to login:
```py
>>> from huggingface_hub import notebook_login
>>> notebook_login()
```
## Load MInDS-14 dataset
Start by loading the MInDS-14 dataset from the 🤗 Datasets library:
```py
>>> from datasets import load_dataset, Audio
>>> minds = load_dataset("PolyAI/minds14", name="en-US", split="train")
```
Split the dataset's `train` split into a smaller train and test set with the [`~datasets.Dataset.train_test_split`] method. This will give you a chance to experiment and make sure everything works before spending more time on the full dataset.
```py
>>> minds = minds.train_test_split(test_size=0.2)
```
Then take a look at the dataset:
```py
>>> minds
DatasetDict({
train: Dataset({
features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'],
num_rows: 450
})
test: Dataset({
features: ['path', 'audio', 'transcription', 'english_transcription', 'intent_class', 'lang_id'],
num_rows: 113
})
})
```
While the dataset contains a lot of useful information, like `lang_id` and `english_transcription`, you will focus on the `audio` and `intent_class` in this guide. Remove the other columns with the [`~datasets.Dataset.remove_columns`] method:
```py
>>> minds = minds.remove_columns(["path", "transcription", "english_transcription", "lang_id"])
```
Here's an example:
```py
>>> minds["train"][0]
{'audio': {'array': array([ 0. , 0. , 0. , ..., -0.00048828,
-0.00024414, -0.00024414], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602b9a5fbb1e6d0fbce91f52.wav',
'sampling_rate': 8000},
'intent_class': 2}
```
There are two fields:
- `audio`: a 1-dimensional `array` of the speech signal that must be called to load and resample the audio file.
- `intent_class`: represents the class id of the speaker's intent.
To make it easier for the model to get the label name from the label id, create a dictionary that maps the label name to an integer and vice versa:
```py
>>> labels = minds["train"].features["intent_class"].names
>>> label2id, id2label = dict(), dict()
>>> for i, label in enumerate(labels):
... label2id[label] = str(i)
... id2label[str(i)] = label
```
Now you can convert the label id to a label name:
```py
>>> id2label[str(2)]
'app_error'
```
## Preprocess
The next step is to load a Wav2Vec2 feature extractor to process the audio signal:
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
```
The MInDS-14 dataset has a sampling rate of 8kHz (you can find this information in its [dataset card](https://huggingface.co/datasets/PolyAI/minds14)), which means you'll need to resample the dataset to 16kHz to use the pretrained Wav2Vec2 model:
```py
>>> minds = minds.cast_column("audio", Audio(sampling_rate=16_000))
>>> minds["train"][0]
{'audio': {'array': array([ 2.2098757e-05, 4.6582241e-05, -2.2803260e-05, ...,
-2.8419291e-04, -2.3305941e-04, -1.1425107e-04], dtype=float32),
'path': '/root/.cache/huggingface/datasets/downloads/extracted/f14948e0e84be638dd7943ac36518a4cf3324e8b7aa331c5ab11541518e9368c/en-US~APP_ERROR/602b9a5fbb1e6d0fbce91f52.wav',
'sampling_rate': 16000},
'intent_class': 2}
```
Now create a preprocessing function that:
1. Calls the `audio` column to load, and if necessary, resample the audio file.
2. Checks if the sampling rate of the audio file matches the sampling rate of the audio data a model was pretrained with. You can find this information in the Wav2Vec2 [model card](https://huggingface.co/facebook/wav2vec2-base).
3. Set a maximum input length to batch longer inputs without truncating them.
```py
>>> def preprocess_function(examples):
... audio_arrays = [x["array"] for x in examples["audio"]]
... inputs = feature_extractor(
... audio_arrays, sampling_rate=feature_extractor.sampling_rate, max_length=16000, truncation=True
... )
... return inputs
```
To apply the preprocessing function over the entire dataset, use 🤗 Datasets [`~datasets.Dataset.map`] function. You can speed up `map` by setting `batched=True` to process multiple elements of the dataset at once. Remove unnecessary columns and rename `intent_class` to `label`, as required by the model:
```py
>>> encoded_minds = minds.map(preprocess_function, remove_columns="audio", batched=True)
>>> encoded_minds = encoded_minds.rename_column("intent_class", "label")
```
## Evaluate
Including a metric during training is often helpful for evaluating your model's performance. You can quickly load an evaluation method with the 🤗 [Evaluate](https://huggingface.co/docs/evaluate/index) library. For this task, load the [accuracy](https://huggingface.co/spaces/evaluate-metric/accuracy) metric (see the 🤗 Evaluate [quick tour](https://huggingface.co/docs/evaluate/a_quick_tour) to learn more about how to load and compute a metric):
```py
>>> import evaluate
>>> accuracy = evaluate.load("accuracy")
```
Then create a function that passes your predictions and labels to [`~evaluate.EvaluationModule.compute`] to calculate the accuracy:
```py
>>> import numpy as np
>>> def compute_metrics(eval_pred):
... predictions = np.argmax(eval_pred.predictions, axis=1)
... return accuracy.compute(predictions=predictions, references=eval_pred.label_ids)
```
Your `compute_metrics` function is ready to go now, and you'll return to it when you setup your training.
## Train
<frameworkcontent>
<pt>
<Tip>
If you aren't familiar with finetuning a model with the [`Trainer`], take a look at the basic tutorial [here](../training#train-with-pytorch-trainer)!
</Tip>
You're ready to start training your model now! Load Wav2Vec2 with [`AutoModelForAudioClassification`] along with the number of expected labels, and the label mappings:
```py
>>> from transformers import AutoModelForAudioClassification, TrainingArguments, Trainer
>>> num_labels = len(id2label)
>>> model = AutoModelForAudioClassification.from_pretrained(
... "facebook/wav2vec2-base", num_labels=num_labels, label2id=label2id, id2label=id2label
... )
```
At this point, only three steps remain:
1. Define your training hyperparameters in [`TrainingArguments`]. The only required parameter is `output_dir`, which specifies where to save your model. You'll push this model to the Hub by setting `push_to_hub=True` (you need to be signed in to Hugging Face to upload your model). At the end of each epoch, the [`Trainer`] will evaluate the accuracy and save the training checkpoint.
2. Pass the training arguments to [`Trainer`] along with the model, dataset, tokenizer, data collator, and `compute_metrics` function.
3. Call [`~Trainer.train`] to fine-tune your model.
```py
>>> training_args = TrainingArguments(
... output_dir="my_awesome_mind_model",
... eval_strategy="epoch",
... save_strategy="epoch",
... learning_rate=3e-5,
... per_device_train_batch_size=32,
... gradient_accumulation_steps=4,
... per_device_eval_batch_size=32,
... num_train_epochs=10,
... warmup_ratio=0.1,
... logging_steps=10,
... load_best_model_at_end=True,
... metric_for_best_model="accuracy",
... push_to_hub=True,
... )
>>> trainer = Trainer(
... model=model,
... args=training_args,
... train_dataset=encoded_minds["train"],
... eval_dataset=encoded_minds["test"],
... processing_class=feature_extractor,
... compute_metrics=compute_metrics,
... )
>>> trainer.train()
```
Once training is completed, share your model to the Hub with the [`~transformers.Trainer.push_to_hub`] method so everyone can use your model:
```py
>>> trainer.push_to_hub()
```
</pt>
</frameworkcontent>
<Tip>
For a more in-depth example of how to fine-tune a model for audio classification, take a look at the corresponding [PyTorch notebook](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/audio_classification.ipynb).
</Tip>
## Inference
Great, now that you've fine-tuned a model, you can use it for inference!
Load an audio file for inference. Remember to resample the sampling rate of the audio file to match the model's sampling rate, if necessary.
```py
>>> from datasets import load_dataset, Audio
>>> dataset = load_dataset("PolyAI/minds14", name="en-US", split="train")
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
>>> sampling_rate = dataset.features["audio"].sampling_rate
>>> audio_file = dataset[0]["audio"]["path"]
```
The simplest way to try out your fine-tuned model for inference is to use it in a [`pipeline`]. Instantiate a `pipeline` for audio classification with your model, and pass your audio file to it:
```py
>>> from transformers import pipeline
>>> classifier = pipeline("audio-classification", model="stevhliu/my_awesome_minds_model")
>>> classifier(audio_file)
[
{'score': 0.09766869246959686, 'label': 'cash_deposit'},
{'score': 0.07998877018690109, 'label': 'app_error'},
{'score': 0.0781070664525032, 'label': 'joint_account'},
{'score': 0.07667109370231628, 'label': 'pay_bill'},
{'score': 0.0755252093076706, 'label': 'balance'}
]
```
You can also manually replicate the results of the `pipeline` if you'd like:
<frameworkcontent>
<pt>
Load a feature extractor to preprocess the audio file and return the `input` as PyTorch tensors:
```py
>>> from transformers import AutoFeatureExtractor
>>> feature_extractor = AutoFeatureExtractor.from_pretrained("stevhliu/my_awesome_minds_model")
>>> inputs = feature_extractor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
```
Pass your inputs to the model and return the logits:
```py
>>> from transformers import AutoModelForAudioClassification
>>> model = AutoModelForAudioClassification.from_pretrained("stevhliu/my_awesome_minds_model")
>>> with torch.no_grad():
... logits = model(**inputs).logits
```
Get the class with the highest probability, and use the model's `id2label` mapping to convert it to a label:
```py
>>> import torch
>>> predicted_class_ids = torch.argmax(logits).item()
>>> predicted_label = model.config.id2label[predicted_class_ids]
>>> predicted_label
'cash_deposit'
```
</pt>
</frameworkcontent>
|
transformers/docs/source/en/tasks/audio_classification.md/0
|
{
"file_path": "transformers/docs/source/en/tasks/audio_classification.md",
"repo_id": "transformers",
"token_count": 4036
}
| 28 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# LLM prompting guide
[[open-in-colab]]
Large Language Models such as Falcon, LLaMA, etc. are pretrained transformer models initially trained to predict the
next token given some input text. They typically have billions of parameters and have been trained on trillions of
tokens for an extended period of time. As a result, these models become quite powerful and versatile, and you can use
them to solve multiple NLP tasks out of the box by instructing the models with natural language prompts.
Designing such prompts to ensure the optimal output is often called "prompt engineering". Prompt engineering is an
iterative process that requires a fair amount of experimentation. Natural languages are much more flexible and expressive
than programming languages, however, they can also introduce some ambiguity. At the same time, prompts in natural language
are quite sensitive to changes. Even minor modifications in prompts can lead to wildly different outputs.
While there is no exact recipe for creating prompts to match all cases, researchers have worked out a number of best
practices that help to achieve optimal results more consistently.
This guide covers the prompt engineering best practices to help you craft better LLM prompts and solve various NLP tasks.
You'll learn:
- [Basics of prompting](#basics-of-prompting)
- [Best practices of LLM prompting](#best-practices-of-llm-prompting)
- [Advanced prompting techniques: few-shot prompting and chain-of-thought](#advanced-prompting-techniques)
- [When to fine-tune instead of prompting](#prompting-vs-fine-tuning)
<Tip>
Prompt engineering is only a part of the LLM output optimization process. Another essential component is choosing the
optimal text generation strategy. You can customize how your LLM selects each of the subsequent tokens when generating
the text without modifying any of the trainable parameters. By tweaking the text generation parameters, you can reduce
repetition in the generated text and make it more coherent and human-sounding.
Text generation strategies and parameters are out of scope for this guide, but you can learn more about these topics in
the following guides:
* [Generation with LLMs](../llm_tutorial)
* [Text generation strategies](../generation_strategies)
</Tip>
## Basics of prompting
### Types of models
The majority of modern LLMs are decoder-only transformers. Some examples include: [LLaMA](../model_doc/llama),
[Llama2](../model_doc/llama2), [Falcon](../model_doc/falcon), [GPT2](../model_doc/gpt2). However, you may encounter
encoder-decoder transformer LLMs as well, for instance, [Flan-T5](../model_doc/flan-t5) and [BART](../model_doc/bart).
Encoder-decoder-style models are typically used in generative tasks where the output **heavily** relies on the input, for
example, in translation and summarization. The decoder-only models are used for all other types of generative tasks.
When using a pipeline to generate text with an LLM, it's important to know what type of LLM you are using, because
they use different pipelines.
Run inference with decoder-only models with the `text-generation` pipeline:
```python
>>> from transformers import pipeline
>>> import torch
>>> torch.manual_seed(0) # doctest: +IGNORE_RESULT
>>> generator = pipeline('text-generation', model = 'openai-community/gpt2')
>>> prompt = "Hello, I'm a language model"
>>> generator(prompt, max_length = 30)
[{'generated_text': "Hello, I'm a language model. Not a programming language at all: it's pretty simple.\n\nWhen I write a function, I mean"}]
```
To run inference with an encoder-decoder, use the `text2text-generation` pipeline:
```python
>>> text2text_generator = pipeline("text2text-generation", model = 'google/flan-t5-base')
>>> prompt = "Translate from English to French: I'm very happy to see you"
>>> text2text_generator(prompt)
[{'generated_text': 'Je suis très heureuse de vous rencontrer.'}]
```
### Base vs instruct/chat models
Most of the recent LLM checkpoints available on 🤗 Hub come in two versions: base and instruct (or chat). For example,
[`tiiuae/falcon-7b`](https://huggingface.co/tiiuae/falcon-7b) and [`tiiuae/falcon-7b-instruct`](https://huggingface.co/tiiuae/falcon-7b-instruct).
Base models are excellent at completing the text when given an initial prompt, however, they are not ideal for NLP tasks
where they need to follow instructions, or for conversational use. This is where the instruct (chat) versions come in.
These checkpoints are the result of further fine-tuning of the pre-trained base versions on instructions and conversational data.
This additional fine-tuning makes them a better choice for many NLP tasks.
Let's illustrate some simple prompts that you can use with [`tiiuae/falcon-7b-instruct`](https://huggingface.co/tiiuae/falcon-7b-instruct)
to solve some common NLP tasks.
### NLP tasks
First, let's set up the environment:
```bash
pip install -q transformers accelerate
```
Next, let's load the model with the appropriate pipeline (`"text-generation"`):
```python
>>> from transformers import pipeline, AutoTokenizer
>>> import torch
>>> torch.manual_seed(0) # doctest: +IGNORE_RESULT
>>> model = "tiiuae/falcon-7b-instruct"
>>> tokenizer = AutoTokenizer.from_pretrained(model)
>>> pipe = pipeline(
... "text-generation",
... model=model,
... tokenizer=tokenizer,
... torch_dtype=torch.bfloat16,
... device_map="auto",
... )
```
<Tip>
Note that Falcon models were trained using the `bfloat16` datatype, so we recommend you use the same. This requires a recent
version of CUDA and works best on modern cards.
</Tip>
Now that we have the model loaded via the pipeline, let's explore how you can use prompts to solve NLP tasks.
#### Text classification
One of the most common forms of text classification is sentiment analysis, which assigns a label like "positive", "negative",
or "neutral" to a sequence of text. Let's write a prompt that instructs the model to classify a given text (a movie review).
We'll start by giving the instruction, and then specifying the text to classify. Note that instead of leaving it at that, we're
also adding the beginning of the response - `"Sentiment: "`:
```python
>>> torch.manual_seed(0) # doctest: +IGNORE_RESULT
>>> prompt = """Classify the text into neutral, negative or positive.
... Text: This movie is definitely one of my favorite movies of its kind. The interaction between respectable and morally strong characters is an ode to chivalry and the honor code amongst thieves and policemen.
... Sentiment:
... """
>>> sequences = pipe(
... prompt,
... max_new_tokens=10,
... )
>>> for seq in sequences:
... print(f"Result: {seq['generated_text']}")
Result: Classify the text into neutral, negative or positive.
Text: This movie is definitely one of my favorite movies of its kind. The interaction between respectable and morally strong characters is an ode to chivalry and the honor code amongst thieves and policemen.
Sentiment:
Positive
```
As a result, the output contains a classification label from the list we have provided in the instructions, and it is a correct one!
<Tip>
You may notice that in addition to the prompt, we pass a `max_new_tokens` parameter. It controls the number of tokens the
model shall generate, and it is one of the many text generation parameters that you can learn about
in [Text generation strategies](../generation_strategies) guide.
</Tip>
#### Named Entity Recognition
Named Entity Recognition (NER) is a task of finding named entities in a piece of text, such as a person, location, or organization.
Let's modify the instructions in the prompt to make the LLM perform this task. Here, let's also set `return_full_text = False`
so that output doesn't contain the prompt:
```python
>>> torch.manual_seed(1) # doctest: +IGNORE_RESULT
>>> prompt = """Return a list of named entities in the text.
... Text: The Golden State Warriors are an American professional basketball team based in San Francisco.
... Named entities:
... """
>>> sequences = pipe(
... prompt,
... max_new_tokens=15,
... return_full_text = False,
... )
>>> for seq in sequences:
... print(f"{seq['generated_text']}")
- Golden State Warriors
- San Francisco
```
As you can see, the model correctly identified two named entities from the given text.
#### Translation
Another task LLMs can perform is translation. You can choose to use encoder-decoder models for this task, however, here,
for the simplicity of the examples, we'll keep using Falcon-7b-instruct, which does a decent job. Once again, here's how
you can write a basic prompt to instruct a model to translate a piece of text from English to Italian:
```python
>>> torch.manual_seed(2) # doctest: +IGNORE_RESULT
>>> prompt = """Translate the English text to Italian.
... Text: Sometimes, I've believed as many as six impossible things before breakfast.
... Translation:
... """
>>> sequences = pipe(
... prompt,
... max_new_tokens=20,
... do_sample=True,
... top_k=10,
... return_full_text = False,
... )
>>> for seq in sequences:
... print(f"{seq['generated_text']}")
A volte, ho creduto a sei impossibili cose prima di colazione.
```
Here we've added a `do_sample=True` and `top_k=10` to allow the model to be a bit more flexible when generating output.
#### Text summarization
Similar to the translation, text summarization is another generative task where the output **heavily** relies on the input,
and encoder-decoder models can be a better choice. However, decoder-style models can be used for this task as well.
Previously, we have placed the instructions at the very beginning of the prompt. However, the very end of the prompt can
also be a suitable location for instructions. Typically, it's better to place the instruction on one of the extreme ends.
```python
>>> torch.manual_seed(3) # doctest: +IGNORE_RESULT
>>> prompt = """Permaculture is a design process mimicking the diversity, functionality and resilience of natural ecosystems. The principles and practices are drawn from traditional ecological knowledge of indigenous cultures combined with modern scientific understanding and technological innovations. Permaculture design provides a framework helping individuals and communities develop innovative, creative and effective strategies for meeting basic needs while preparing for and mitigating the projected impacts of climate change.
... Write a summary of the above text.
... Summary:
... """
>>> sequences = pipe(
... prompt,
... max_new_tokens=30,
... do_sample=True,
... top_k=10,
... return_full_text = False,
... )
>>> for seq in sequences:
... print(f"{seq['generated_text']}")
"Permaculture is an ecological design method that mimics natural ecosystems' diversity, functionality, and resilience using modern technology and indigenous knowledge. It aims to help"
```
#### Question answering
For question answering task we can structure the prompt into the following logical components: instructions, context, question, and
the leading word or phrase (`"Answer:"`) to nudge the model to start generating the answer:
```python
>>> torch.manual_seed(4) # doctest: +IGNORE_RESULT
>>> prompt = """Answer the question using the context below.
... Context: Gazpacho is a cold soup and drink made of raw, blended vegetables. Most gazpacho includes stale bread, tomato, cucumbers, onion, bell peppers, garlic, olive oil, wine vinegar, water, and salt. Northern recipes often include cumin and/or pimentón (smoked sweet paprika). Traditionally, gazpacho was made by pounding the vegetables in a mortar with a pestle; this more laborious method is still sometimes used as it helps keep the gazpacho cool and avoids the foam and silky consistency of smoothie versions made in blenders or food processors.
... Question: What modern tool is used to make gazpacho?
... Answer:
... """
>>> sequences = pipe(
... prompt,
... max_new_tokens=10,
... do_sample=True,
... top_k=10,
... return_full_text = False,
... )
>>> for seq in sequences:
... print(f"Result: {seq['generated_text']}")
"Result: Modern tools are used, such as immersion blenders"
```
#### Reasoning
Reasoning is one of the most difficult tasks for LLMs, and achieving good results often requires applying advanced prompting techniques, like
[Chain-of-thought](#chain-of-thought).
Let's try if we can make a model reason about a simple arithmetics task with a basic prompt:
```python
>>> torch.manual_seed(5) # doctest: +IGNORE_RESULT
>>> prompt = """There are 5 groups of students in the class. Each group has 4 students. How many students are there in the class?"""
>>> sequences = pipe(
... prompt,
... max_new_tokens=30,
... do_sample=True,
... top_k=10,
... return_full_text = False,
... )
>>> for seq in sequences:
... print(f"Result: {seq['generated_text']}")
Result:
There are a total of 50 students in the class (5 groups x 4 students per group = 20 groups, and
```
Correct! Let's increase the complexity a little and see if we can still get away with a basic prompt:
```python
>>> torch.manual_seed(6) # doctest: +IGNORE_RESULT
>>> prompt = """I baked 15 muffins. I ate 2 muffins and gave 5 muffins to a neighbor. My partner then bought 6 more muffins and ate 2. How many muffins do we now have?"""
>>> sequences = pipe(
... prompt,
... max_new_tokens=10,
... do_sample=True,
... top_k=10,
... return_full_text = False,
... )
>>> for seq in sequences:
... print(f"Result: {seq['generated_text']}")
Result:
The total number of muffins now is 21
```
This is a wrong answer, it should be 12. In this case, this can be due to the prompt being too basic, or due to the choice
of model, after all we've picked the smallest version of Falcon. Reasoning is difficult for models of all sizes, but larger
models are likely to perform better.
## Best practices of LLM prompting
In this section of the guide we have compiled a list of best practices that tend to improve the prompt results:
* When choosing the model to work with, the latest and most capable models are likely to perform better.
* Start with a simple and short prompt, and iterate from there.
* Put the instructions at the beginning of the prompt, or at the very end. When working with large context, models apply various optimizations to prevent Attention complexity from scaling quadratically. This may make a model more attentive to the beginning or end of a prompt than the middle.
* Clearly separate instructions from the text they apply to - more on this in the next section.
* Be specific and descriptive about the task and the desired outcome - its format, length, style, language, etc.
* Avoid ambiguous descriptions and instructions.
* Favor instructions that say "what to do" instead of those that say "what not to do".
* "Lead" the output in the right direction by writing the first word (or even begin the first sentence for the model).
* Use advanced techniques like [Few-shot prompting](#few-shot-prompting) and [Chain-of-thought](#chain-of-thought)
* Test your prompts with different models to assess their robustness.
* Version and track the performance of your prompts.
## Advanced prompting techniques
### Few-shot prompting
The basic prompts in the sections above are the examples of "zero-shot" prompts, meaning, the model has been given
instructions and context, but no examples with solutions. LLMs that have been fine-tuned on instruction datasets, generally
perform well on such "zero-shot" tasks. However, you may find that your task has more complexity or nuance, and, perhaps,
you have some requirements for the output that the model doesn't catch on just from the instructions. In this case, you can
try the technique called few-shot prompting.
In few-shot prompting, we provide examples in the prompt giving the model more context to improve the performance.
The examples condition the model to generate the output following the patterns in the examples.
Here's an example:
```python
>>> torch.manual_seed(0) # doctest: +IGNORE_RESULT
>>> prompt = """Text: The first human went into space and orbited the Earth on April 12, 1961.
... Date: 04/12/1961
... Text: The first-ever televised presidential debate in the United States took place on September 28, 1960, between presidential candidates John F. Kennedy and Richard Nixon.
... Date:"""
>>> sequences = pipe(
... prompt,
... max_new_tokens=8,
... do_sample=True,
... top_k=10,
... )
>>> for seq in sequences:
... print(f"Result: {seq['generated_text']}")
Result: Text: The first human went into space and orbited the Earth on April 12, 1961.
Date: 04/12/1961
Text: The first-ever televised presidential debate in the United States took place on September 28, 1960, between presidential candidates John F. Kennedy and Richard Nixon.
Date: 09/28/1960
```
In the above code snippet we used a single example to demonstrate the desired output to the model, so this can be called a
"one-shot" prompting. However, depending on the task complexity you may need to use more than one example.
Limitations of the few-shot prompting technique:
- While LLMs can pick up on the patterns in the examples, these technique doesn't work well on complex reasoning tasks
- Few-shot prompting requires creating lengthy prompts. Prompts with large number of tokens can increase computation and latency. There's also a limit to the length of the prompts.
- Sometimes when given a number of examples, models can learn patterns that you didn't intend them to learn, e.g. that the third movie review is always negative.
### Chain-of-thought
Chain-of-thought (CoT) prompting is a technique that nudges a model to produce intermediate reasoning steps thus improving
the results on complex reasoning tasks.
There are two ways of steering a model to producing the reasoning steps:
- few-shot prompting by illustrating examples with detailed answers to questions, showing the model how to work through a problem.
- by instructing the model to reason by adding phrases like "Let's think step by step" or "Take a deep breath and work through the problem step by step."
If we apply the CoT technique to the muffins example from the [reasoning section](#reasoning) and use a larger model,
such as (`tiiuae/falcon-180B-chat`) which you can play with in the [HuggingChat](https://huggingface.co/chat/),
we'll get a significant improvement on the reasoning result:
```text
Let's go through this step-by-step:
1. You start with 15 muffins.
2. You eat 2 muffins, leaving you with 13 muffins.
3. You give 5 muffins to your neighbor, leaving you with 8 muffins.
4. Your partner buys 6 more muffins, bringing the total number of muffins to 14.
5. Your partner eats 2 muffins, leaving you with 12 muffins.
Therefore, you now have 12 muffins.
```
## Prompting vs fine-tuning
You can achieve great results by optimizing your prompts, however, you may still ponder whether fine-tuning a model
would work better for your case. Here are some scenarios when fine-tuning a smaller model may be a preferred option:
- Your domain is wildly different from what LLMs were pre-trained on and extensive prompt optimization did not yield sufficient results.
- You need your model to work well in a low-resource language.
- You need the model to be trained on sensitive data that is under strict regulations.
- You have to use a small model due to cost, privacy, infrastructure or other limitations.
In all of the above examples, you will need to make sure that you either already have or can easily obtain a large enough
domain-specific dataset at a reasonable cost to fine-tune a model. You will also need to have enough time and resources
to fine-tune a model.
If the above examples are not the case for you, optimizing prompts can prove to be more beneficial.
|
transformers/docs/source/en/tasks/prompting.md/0
|
{
"file_path": "transformers/docs/source/en/tasks/prompting.md",
"repo_id": "transformers",
"token_count": 5582
}
| 29 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Export to TFLite
[TensorFlow Lite](https://www.tensorflow.org/lite/guide) is a lightweight framework for deploying machine learning models
on resource-constrained devices, such as mobile phones, embedded systems, and Internet of Things (IoT) devices.
TFLite is designed to optimize and run models efficiently on these devices with limited computational power, memory, and
power consumption.
A TensorFlow Lite model is represented in a special efficient portable format identified by the `.tflite` file extension.
🤗 Optimum offers functionality to export 🤗 Transformers models to TFLite through the `exporters.tflite` module.
For the list of supported model architectures, please refer to [🤗 Optimum documentation](https://huggingface.co/docs/optimum/exporters/tflite/overview).
To export a model to TFLite, install the required dependencies:
```bash
pip install optimum[exporters-tf]
```
To check out all available arguments, refer to the [🤗 Optimum docs](https://huggingface.co/docs/optimum/main/en/exporters/tflite/usage_guides/export_a_model),
or view help in command line:
```bash
optimum-cli export tflite --help
```
To export a model's checkpoint from the 🤗 Hub, for example, `google-bert/bert-base-uncased`, run the following command:
```bash
optimum-cli export tflite --model google-bert/bert-base-uncased --sequence_length 128 bert_tflite/
```
You should see the logs indicating progress and showing where the resulting `model.tflite` is saved, like this:
```bash
Validating TFLite model...
-[✓] TFLite model output names match reference model (logits)
- Validating TFLite Model output "logits":
-[✓] (1, 128, 30522) matches (1, 128, 30522)
-[x] values not close enough, max diff: 5.817413330078125e-05 (atol: 1e-05)
The TensorFlow Lite export succeeded with the warning: The maximum absolute difference between the output of the reference model and the TFLite exported model is not within the set tolerance 1e-05:
- logits: max diff = 5.817413330078125e-05.
The exported model was saved at: bert_tflite
```
The example above illustrates exporting a checkpoint from 🤗 Hub. When exporting a local model, first make sure that you
saved both the model's weights and tokenizer files in the same directory (`local_path`). When using CLI, pass the
`local_path` to the `model` argument instead of the checkpoint name on 🤗 Hub.
|
transformers/docs/source/en/tflite.md/0
|
{
"file_path": "transformers/docs/source/en/tflite.md",
"repo_id": "transformers",
"token_count": 878
}
| 30 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Convertir checkpoints de Tensorflow
Te proporcionamos una interfaz de línea de comando (`CLI`, por sus siglas en inglés) para convertir puntos de control (_checkpoints_) originales de Bert/GPT/GPT-2/Transformer-XL/XLNet/XLM en modelos que se puedan cargar utilizando los métodos `from_pretrained` de la biblioteca.
<Tip>
Desde 2.3.0, el script para convertir es parte de la CLI de transformers (**transformers-cli**) disponible en cualquier instalación de transformers >= 2.3.0.
La siguiente documentación refleja el formato para el comando **transformers-cli convert**.
</Tip>
## BERT
Puedes convertir cualquier checkpoint de TensorFlow para BERT (en particular, [los modelos pre-entrenados y publicados por Google](https://github.com/google-research/bert#pre-trained-models)) en un archivo de PyTorch mediante el script [convert_bert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/main/src/transformers/models/bert/convert_bert_original_tf_checkpoint_to_pytorch.py).
Esta CLI toma como entrada un checkpoint de TensorFlow (tres archivos que comienzan con `bert_model.ckpt`) y el archivo de configuración asociado (`bert_config.json`), y crea un modelo PyTorch para esta configuración, carga los pesos del checkpoint de TensorFlow en el modelo de PyTorch y guarda el modelo resultante en un archivo estándar de PyTorch que se puede importar usando `from_pretrained()` (ve el ejemplo en [Tour rápido](quicktour), [run_glue.py](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification/run_glue.py)).
Solo necesitas ejecutar este script **una vez** para convertir un modelo a PyTorch. Después, puedes ignorar el checkpoint de TensorFlow (los tres archivos que comienzan con `bert_model.ckpt`), pero asegúrate de conservar el archivo de configuración (`bert_config.json`) y el archivo de vocabulario (`vocab.txt`) ya que estos también son necesarios para el modelo en PyTorch.
Para ejecutar este script deberás tener instalado TensorFlow y PyTorch (`pip install tensorflow`). El resto del repositorio solo requiere PyTorch.
Aquí hay un ejemplo del proceso para convertir un modelo `BERT-Base Uncased` pre-entrenado:
```bash
export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12
transformers-cli convert --model_type bert \
--tf_checkpoint $BERT_BASE_DIR/bert_model.ckpt \
--config $BERT_BASE_DIR/bert_config.json \
--pytorch_dump_output $BERT_BASE_DIR/pytorch_model.bin
```
Puedes descargar los modelos pre-entrenados de Google para la conversión [aquí](https://github.com/google-research/bert#pre-trained-models).
## ALBERT
Convierte los checkpoints del modelo ALBERT de TensorFlow a PyTorch usando el script [convert_albert_original_tf_checkpoint_to_pytorch.py](https://github.com/huggingface/transformers/tree/main/src/transformers/models/albert/convert_albert_original_tf_checkpoint_to_pytorch.py).
La CLI toma como entrada un checkpoint de TensorFlow (tres archivos que comienzan con `model.ckpt-best`) y el archivo de configuración adjunto (`albert_config.json`), luego crea y guarda un modelo de PyTorch. Para ejecutar esta conversión deberás tener instalados TensorFlow y PyTorch.
Aquí hay un ejemplo del proceso para convertir un modelo `ALBERT Base` pre-entrenado:
```bash
export ALBERT_BASE_DIR=/path/to/albert/albert_base
transformers-cli convert --model_type albert \
--tf_checkpoint $ALBERT_BASE_DIR/model.ckpt-best \
--config $ALBERT_BASE_DIR/albert_config.json \
--pytorch_dump_output $ALBERT_BASE_DIR/pytorch_model.bin
```
Puedes descargar los modelos pre-entrenados de Google para la conversión [aquí](https://github.com/google-research/albert#pre-trained-models).
## OpenAI GPT
Este es un ejemplo del proceso para convertir un modelo OpenAI GPT pre-entrenado, asumiendo que tu checkpoint de NumPy se guarda con el mismo formato que el modelo pre-entrenado de OpenAI (más información [aquí](https://github.com/openai/finetune-transformer-lm)):
```bash
export OPENAI_GPT_CHECKPOINT_FOLDER_PATH=/path/to/openai/pretrained/numpy/weights
transformers-cli convert --model_type gpt \
--tf_checkpoint $OPENAI_GPT_CHECKPOINT_FOLDER_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config OPENAI_GPT_CONFIG] \
[--finetuning_task_name OPENAI_GPT_FINETUNED_TASK] \
```
## OpenAI GPT-2
Aquí hay un ejemplo del proceso para convertir un modelo OpenAI GPT-2 pre-entrenado (más información [aquí](https://github.com/openai/gpt-2)):
```bash
export OPENAI_GPT2_CHECKPOINT_PATH=/path/to/openai-community/gpt2/pretrained/weights
transformers-cli convert --model_type gpt2 \
--tf_checkpoint $OPENAI_GPT2_CHECKPOINT_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--config OPENAI_GPT2_CONFIG] \
[--finetuning_task_name OPENAI_GPT2_FINETUNED_TASK]
```
## XLNet
Aquí hay un ejemplo del proceso para convertir un modelo XLNet pre-entrenado:
```bash
export TRANSFO_XL_CHECKPOINT_PATH=/path/to/xlnet/checkpoint
export TRANSFO_XL_CONFIG_PATH=/path/to/xlnet/config
transformers-cli convert --model_type xlnet \
--tf_checkpoint $TRANSFO_XL_CHECKPOINT_PATH \
--config $TRANSFO_XL_CONFIG_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT \
[--finetuning_task_name XLNET_FINETUNED_TASK] \
```
## XLM
Aquí hay un ejemplo del proceso para convertir un modelo XLM pre-entrenado:
```bash
export XLM_CHECKPOINT_PATH=/path/to/xlm/checkpoint
transformers-cli convert --model_type xlm \
--tf_checkpoint $XLM_CHECKPOINT_PATH \
--pytorch_dump_output $PYTORCH_DUMP_OUTPUT
[--config XML_CONFIG] \
[--finetuning_task_name XML_FINETUNED_TASK]
```
## T5
Aquí hay un ejemplo del proceso para convertir un modelo T5 pre-entrenado:
```bash
export T5=/path/to/t5/uncased_L-12_H-768_A-12
transformers-cli convert --model_type t5 \
--tf_checkpoint $T5/t5_model.ckpt \
--config $T5/t5_config.json \
--pytorch_dump_output $T5/pytorch_model.bin
```
|
transformers/docs/source/es/converting_tensorflow_models.md/0
|
{
"file_path": "transformers/docs/source/es/converting_tensorflow_models.md",
"repo_id": "transformers",
"token_count": 2424
}
| 31 |
<!--⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Uso de un flujo de trabajo para un servidor web
<Tip>
Crear un motor de inferencia es un tema complejo, y la "mejor" solución probablemente dependerá de tu caso de uso. ¿Estás en CPU o en GPU? ¿Quieres la latencia más baja, el rendimiento más alto, soporte para muchos modelos o simplemente optimizar altamente un modelo específico? Hay muchas formas de abordar este tema, así que lo que vamos a presentar es un buen valor predeterminado para comenzar, que no necesariamente será la solución más óptima para ti.
</Tip>
Lo fundamental para entender es que podemos usar un iterador, tal como [en un conjunto de datos](pipeline_tutorial#uso-de-pipelines-en-un-conjunto-de-datos), ya que un servidor web es básicamente un sistema que espera solicitudes y las trata a medida que llegan.
Por lo general, los servidores web están multiplexados (multihilo, asíncrono, etc.) para manejar varias solicitudes simultáneamente. Por otro lado, los flujos de trabajo (y principalmente los modelos subyacentes) no son realmente ideales para el paralelismo; consumen mucha RAM, por lo que es mejor darles todos los recursos disponibles cuando se están ejecutando o es un trabajo intensivo en cómputo.
Vamos a resolver esto haciendo que el servidor web maneje la carga ligera de recibir y enviar solicitudes, y que un único hilo maneje el trabajo real. Este ejemplo va a utilizar `starlette`. El marco de trabajo no es realmente importante, pero es posible que debas ajustar o cambiar el código si estás utilizando otro para lograr el mismo efecto.
Crear `server.py`:
```py
from starlette.applications import Starlette
from starlette.responses import JSONResponse
from starlette.routing import Route
from transformers import pipeline
import asyncio
async def homepage(request):
payload = await request.body()
string = payload.decode("utf-8")
response_q = asyncio.Queue()
await request.app.model_queue.put((string, response_q))
output = await response_q.get()
return JSONResponse(output)
async def server_loop(q):
pipe = pipeline(model="google-bert/bert-base-uncased")
while True:
(string, response_q) = await q.get()
out = pipe(string)
await response_q.put(out)
app = Starlette(
routes=[
Route("/", homepage, methods=["POST"]),
],
)
@app.on_event("startup")
async def startup_event():
q = asyncio.Queue()
app.model_queue = q
asyncio.create_task(server_loop(q))
```
Ahora puedes empezar con:
```bash
uvicorn server:app
```
Y puedes consultarlo con:
```bash
curl -X POST -d "test [MASK]" http://localhost:8000/
#[{"score":0.7742936015129089,"token":1012,"token_str":".","sequence":"test."},...]
```
¡Y listo, ahora tienes una buena idea de cómo crear un servidor web!
Lo realmente importante es cargar el modelo solo **una vez**, de modo que no haya copias del modelo en el servidor web. De esta manera, no se utiliza RAM innecesariamente. Luego, el mecanismo de queuing (colas) te permite hacer cosas sofisticadas como acumular algunos elementos antes de inferir para usar el agrupamiento dinámico:
<Tip warning={true}>
El ejemplo de código a continuación está escrito intencionalmente como pseudocódigo para facilitar la lectura.
¡No lo ejecutes sin verificar si tiene sentido para los recursos de tu sistema!
</Tip>
```py
(string, rq) = await q.get()
strings = []
queues = []
while True:
try:
(string, rq) = await asyncio.wait_for(q.get(), timeout=0.001) # 1ms
except asyncio.exceptions.TimeoutError:
break
strings.append(string)
queues.append(rq)
strings
outs = pipe(strings, batch_size=len(strings))
for rq, out in zip(queues, outs):
await rq.put(out)
```
Nuevamente, el código propuesto está optimizado para la legibilidad, no para ser el mejor código.
En primer lugar, no hay límite de tamaño de lote, lo cual generalmente no es una buena idea. Luego, el tiempo de espera se restablece en cada obtención de la cola, lo que significa que podrías esperar mucho más de 1ms antes de ejecutar la inferencia (retrasando la primera solicitud en esa cantidad).
Sería mejor tener un único plazo de 1ms.
Esto siempre esperará 1ms incluso si la cola está vacía, lo que podría no ser lo mejor ya que probablemente quieras comenzar a hacer inferencias si no hay nada en la cola. Pero tal vez tenga sentido si el agrupamiento es realmente crucial para tu caso de uso. Nuevamente, no hay una solución única y mejor.
## Algunas cosas que podrías considerar
### Comprobación de errores
Hay muchas cosas que pueden salir mal en producción: falta de memoria, falta de espacio, cargar el modelo podría fallar, la consulta podría ser incorrecta, la consulta podría ser correcta pero aún así fallar debido a una mala configuración del modelo, y así sucesivamente.
Generalmente, es bueno que el servidor muestre los errores al usuario, por lo que agregar muchos bloques `try..except` para mostrar esos errores es una buena idea. Pero ten en cuenta que también puede ser un riesgo de seguridad revelar todos esos errores dependiendo de tu contexto de seguridad.
### Interrupción de circuito
Los servidores web suelen verse mejor cuando hacen interrupciones de circuitos. Significa que devuelven errores adecuados cuando están sobrecargados en lugar de simplemente esperar la consulta indefinidamente. Devolver un error 503 en lugar de esperar un tiempo muy largo o un error 504 después de mucho tiempo.
Esto es relativamente fácil de implementar en el código propuesto ya que hay una sola cola. Mirar el tamaño de la cola es una forma básica de empezar a devolver errores antes de que tu servidor web falle bajo carga.
### Bloqueo del hilo principal
Actualmente, PyTorch no es consciente de la asincronía, y el cálculo bloqueará el hilo principal mientras se ejecuta. Esto significa que sería mejor si PyTorch se viera obligado a ejecutarse en su propio hilo/proceso. Esto no se hizo aquí porque el código es mucho más complejo (principalmente porque los hilos, la asincronía y las colas no se llevan bien juntos). Pero en última instancia, hace lo mismo.
Esto sería importante si la inferencia de elementos individuales fuera larga (> 1s) porque en este caso, significa que cada consulta durante la inferencia tendría que esperar 1s antes de recibir incluso un error.
### Procesamiento por lotes dinámico
En general, el procesamiento por lotes no es necesariamente una mejora respecto a pasar 1 elemento a la vez (ver [procesamiento por lotes](https://huggingface.co/docs/transformers/main_classes/pipelines#pipeline-batching) para más información). Pero puede ser muy efectivo cuando se usa en el entorno correcto. En la API, no hay procesamiento por lotes dinámico por defecto (demasiada oportunidad para una desaceleración). Pero para la inferencia de BLOOM - que es un modelo muy grande - el procesamiento por lotes dinámico es **esencial** para proporcionar una experiencia decente para todos.
|
transformers/docs/source/es/pipeline_webserver.md/0
|
{
"file_path": "transformers/docs/source/es/pipeline_webserver.md",
"repo_id": "transformers",
"token_count": 2575
}
| 32 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# वितरित प्रशिक्षण के साथ 🤗 Accelerate
जैसे-जैसे मॉडल बड़े होते हैं, समानांतरता सीमित हार्डवेयर पर बड़े मॉडल को प्रशिक्षित करने और प्रशिक्षण की गति को कई आदेशों के आकार में तेज करने के लिए एक रणनीति के रूप में उभरी है। हगिंग फेस में, हमने उपयोगकर्ताओं को किसी भी प्रकार के वितरित सेटअप पर 🤗 ट्रांसफार्मर्स मॉडल को आसानी से प्रशिक्षित करने में मदद करने के लिए [🤗 Accelerate](https://huggingface.co/docs/accelerate) पुस्तकालय बनाया है, चाहे वह एक मशीन पर कई GPU हों या कई मशीनों में कई GPU। इस ट्यूटोरियल में, जानें कि अपने मूल PyTorch प्रशिक्षण लूप को कैसे अनुकूलित किया जाए ताकि वितरित वातावरण में प्रशिक्षण सक्षम हो सके।
## सेटअप
🤗 Accelerate स्थापित करके शुरू करें:
```bash
pip install accelerate
```
फिर एक [`~accelerate.Accelerator`] ऑब्जेक्ट आयात करें और बनाएं। [`~accelerate.Accelerator`] स्वचालित रूप से आपके वितरित सेटअप के प्रकार का पता लगाएगा और प्रशिक्षण के लिए सभी आवश्यक घटकों को प्रारंभ करेगा। आपको अपने मॉडल को किसी डिवाइस पर स्पष्ट रूप से रखने की आवश्यकता नहीं है।
```py
>>> from accelerate import Accelerator
>>> accelerator = Accelerator()
```
## तेजी लाने की तैयारी
अगला कदम सभी प्रासंगिक प्रशिक्षण वस्तुओं को [`~accelerate.Accelerator.prepare`] विधि में पास करना है। इसमें आपके प्रशिक्षण और मूल्यांकन DataLoaders, एक मॉडल और एक ऑप्टिमाइज़र शामिल हैं:
```py
>>> train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
... train_dataloader, eval_dataloader, model, optimizer
... )
```
## बैकवर्ड
अंतिम जोड़ यह है कि आपके प्रशिक्षण लूप में सामान्य `loss.backward()` को 🤗 Accelerate के [`~accelerate.Accelerator.backward`] विधि से बदलें:
```py
>>> for epoch in range(num_epochs):
... for batch in train_dataloader:
... outputs = model(**batch)
... loss = outputs.loss
... accelerator.backward(loss)
... optimizer.step()
... lr_scheduler.step()
... optimizer.zero_grad()
... progress_bar.update(1)
```
जैसा कि आप निम्नलिखित कोड में देख सकते हैं, आपको वितरित प्रशिक्षण सक्षम करने के लिए अपने प्रशिक्षण लूप में केवल चार अतिरिक्त कोड की पंक्तियाँ जोड़ने की आवश्यकता है!
```diff
+ from accelerate import Accelerator
from transformers import AdamW, AutoModelForSequenceClassification, get_scheduler
+ accelerator = Accelerator()
model = AutoModelForSequenceClassification.from_pretrained(checkpoint, num_labels=2)
optimizer = AdamW(model.parameters(), lr=3e-5)
- device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
- model.to(device)
+ train_dataloader, eval_dataloader, model, optimizer = accelerator.prepare(
+ train_dataloader, eval_dataloader, model, optimizer
+ )
num_epochs = 3
num_training_steps = num_epochs * len(train_dataloader)
lr_scheduler = get_scheduler(
"linear",
optimizer=optimizer,
num_warmup_steps=0,
num_training_steps=num_training_steps
)
progress_bar = tqdm(range(num_training_steps))
model.train()
for epoch in range(num_epochs):
for batch in train_dataloader:
- batch = {k: v.to(device) for k, v in batch.items()}
outputs = model(**batch)
loss = outputs.loss
- loss.backward()
+ accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
progress_bar.update(1)
```
## प्रशिक्षण
एक बार जब आपने प्रासंगिक कोड की पंक्तियाँ जोड़ दी हैं, तो अपने प्रशिक्षण को स्क्रिप्ट या कोलैबोरेटरी जैसे नोटबुक में लॉन्च करें।
### स्क्रिप्ट के साथ प्रशिक्षण
यदि आप स्क्रिप्ट से अपना प्रशिक्षण चला रहे हैं, तो एक कॉन्फ़िगरेशन फ़ाइल बनाने और सहेजने के लिए निम्नलिखित कमांड चलाएँ:
```bash
accelerate config
```
फिर अपने प्रशिक्षण को इस तरह लॉन्च करें:
```bash
accelerate launch train.py
```
### नोटबुक के साथ प्रशिक्षण
🤗 Accelerate एक नोटबुक में भी चल सकता है यदि आप Colaboratory के TPU का उपयोग करने की योजना बना रहे हैं। प्रशिक्षण के लिए जिम्मेदार सभी कोड को एक फ़ंक्शन में लपेटें, और इसे [`~accelerate.notebook_launcher`] में पास करें:
```py
>>> from accelerate import notebook_launcher
>>> notebook_launcher(training_function)
```
🤗 Accelerate और इसकी समृद्ध सुविधाओं के बारे में अधिक जानकारी के लिए, [दस्तावेज़ीकरण](https://huggingface.co/docs/accelerate) देखें।
|
transformers/docs/source/hi/accelerate.md/0
|
{
"file_path": "transformers/docs/source/hi/accelerate.md",
"repo_id": "transformers",
"token_count": 3992
}
| 33 |
<!---
Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Installazione
Installa 🤗 Transformers per qualsiasi libreria di deep learning con cui stai lavorando, imposta la tua cache, e opzionalmente configura 🤗 Transformers per l'esecuzione offline.
🤗 Transformers è testato su Python 3.6+, PyTorch 1.1.0+, TensorFlow 2.0+, e Flax. Segui le istruzioni di installazione seguenti per la libreria di deep learning che stai utilizzando:
* [PyTorch](https://pytorch.org/get-started/locally/) istruzioni di installazione.
* [TensorFlow 2.0](https://www.tensorflow.org/install/pip) istruzioni di installazione.
* [Flax](https://flax.readthedocs.io/en/latest/) istruzioni di installazione.
## Installazione con pip
Puoi installare 🤗 Transformers in un [ambiente virtuale](https://docs.python.org/3/library/venv.html). Se non sei familiare con gli ambienti virtuali in Python, dai un'occhiata a questa [guida](https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/). Un ambiente virtuale rende più semplice la gestione di progetti differenti, evitando problemi di compatibilità tra dipendenze.
Inizia creando un ambiente virtuale nella directory del tuo progetto:
```bash
python -m venv .env
```
Attiva l'ambiente virtuale:
```bash
source .env/bin/activate
```
Ora puoi procedere con l'installazione di 🤗 Transformers eseguendo il comando seguente:
```bash
pip install transformers
```
Per il solo supporto della CPU, puoi installare facilmente 🤗 Transformers e una libreria di deep learning in solo una riga. Ad esempio, installiamo 🤗 Transformers e PyTorch con:
```bash
pip install transformers[torch]
```
🤗 Transformers e TensorFlow 2.0:
```bash
pip install transformers[tf-cpu]
```
🤗 Transformers e Flax:
```bash
pip install transformers[flax]
```
Infine, verifica se 🤗 Transformers è stato installato in modo appropriato eseguendo il seguente comando. Questo scaricherà un modello pre-allenato:
```bash
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('we love you'))"
```
Dopodiché stampa l'etichetta e il punteggio:
```bash
[{'label': 'POSITIVE', 'score': 0.9998704791069031}]
```
## Installazione dalla fonte
Installa 🤗 Transformers dalla fonte con il seguente comando:
```bash
pip install git+https://github.com/huggingface/transformers
```
Questo comando installa la versione `main` più attuale invece dell'ultima versione stabile. Questo è utile per stare al passo con gli ultimi sviluppi. Ad esempio, se un bug è stato sistemato da quando è uscita l'ultima versione ufficiale ma non è stata ancora rilasciata una nuova versione. Tuttavia, questo significa che questa versione `main` può non essere sempre stabile. Ci sforziamo per mantenere la versione `main` operativa, e la maggior parte dei problemi viene risolta in poche ore o in un giorno. Se riscontri un problema, per favore apri una [Issue](https://github.com/huggingface/transformers/issues) così possiamo sistemarlo ancora più velocemente!
Controlla se 🤗 Transformers è stata installata in modo appropriato con il seguente comando:
```bash
python -c "from transformers import pipeline; print(pipeline('sentiment-analysis')('I love you'))"
```
## Installazione modificabile
Hai bisogno di un'installazione modificabile se vuoi:
* Usare la versione `main` del codice dalla fonte.
* Contribuire a 🤗 Transformers e hai bisogno di testare i cambiamenti nel codice.
Clona il repository e installa 🤗 Transformers con i seguenti comandi:
```bash
git clone https://github.com/huggingface/transformers.git
cd transformers
pip install -e .
```
Questi comandi collegheranno la cartella in cui è stato clonato il repository e i path delle librerie Python. Python guarderà ora all'interno della cartella clonata, oltre ai normali path delle librerie. Per esempio, se i tuoi pacchetti Python sono installati tipicamente in `~/anaconda3/envs/main/lib/python3.7/site-packages/`, Python cercherà anche nella cartella clonata: `~/transformers/`.
<Tip warning={true}>
Devi tenere la cartella `transformers` se vuoi continuare ad utilizzare la libreria.
</Tip>
Ora puoi facilmente aggiornare il tuo clone all'ultima versione di 🤗 Transformers con il seguente comando:
```bash
cd ~/transformers/
git pull
```
Il tuo ambiente Python troverà la versione `main` di 🤗 Transformers alla prossima esecuzione.
## Installazione con conda
Installazione dal canale conda `conda-forge`:
```bash
conda install conda-forge::transformers
```
## Impostazione della cache
I modelli pre-allenati sono scaricati e memorizzati localmente nella cache in: `~/.cache/huggingface/transformers/`. Questa è la directory di default data dalla variabile d'ambiente della shell `TRANSFORMERS_CACHE`. Su Windows, la directory di default è data da `C:\Users\username\.cache\huggingface\transformers`. Puoi cambiare le variabili d'ambiente della shell indicate in seguito, in ordine di priorità, per specificare una directory differente per la cache:
1. Variabile d'ambiente della shell (default): `TRANSFORMERS_CACHE`.
2. Variabile d'ambiente della shell: `HF_HOME` + `transformers/`.
3. Variabile d'ambiente della shell: `XDG_CACHE_HOME` + `/huggingface/transformers`.
<Tip>
🤗 Transformers utilizzerà le variabili d'ambiente della shell `PYTORCH_TRANSFORMERS_CACHE` o `PYTORCH_PRETRAINED_BERT_CACHE` se si proviene da un'iterazione precedente di questa libreria e sono state impostate queste variabili d'ambiente, a meno che non si specifichi la variabile d'ambiente della shell `TRANSFORMERS_CACHE`.
</Tip>
## Modalità Offline
🤗 Transformers può essere eseguita in un ambiente firewalled o offline utilizzando solo file locali. Imposta la variabile d'ambiente `HF_HUB_OFFLINE=1` per abilitare questo comportamento.
<Tip>
Aggiungi [🤗 Datasets](https://huggingface.co/docs/datasets/) al tuo flusso di lavoro offline di training impostando la variabile d'ambiente `HF_DATASETS_OFFLINE=1`.
</Tip>
Ad esempio, in genere si esegue un programma su una rete normale, protetta da firewall per le istanze esterne, con il seguente comando:
```bash
python examples/pytorch/translation/run_translation.py --model_name_or_path google-t5/t5-small --dataset_name wmt16 --dataset_config ro-en ...
```
Esegui lo stesso programma in un'istanza offline con:
```bash
HF_DATASETS_OFFLINE=1 HF_HUB_OFFLINE=1 \
python examples/pytorch/translation/run_translation.py --model_name_or_path google-t5/t5-small --dataset_name wmt16 --dataset_config ro-en ...
```
Lo script viene ora eseguito senza bloccarsi o attendere il timeout, perché sa di dover cercare solo file locali.
### Ottenere modelli e tokenizer per l'uso offline
Un'altra opzione per utilizzare offline 🤗 Transformers è scaricare i file in anticipo, e poi puntare al loro path locale quando hai la necessità di utilizzarli offline. Ci sono tre modi per fare questo:
* Scarica un file tramite l'interfaccia utente sul [Model Hub](https://huggingface.co/models) premendo sull'icona ↓.

* Utilizza il flusso [`PreTrainedModel.from_pretrained`] e [`PreTrainedModel.save_pretrained`]:
1. Scarica i tuoi file in anticipo con [`PreTrainedModel.from_pretrained`]:
```py
>>> from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/T0_3B")
>>> model = AutoModelForSeq2SeqLM.from_pretrained("bigscience/T0_3B")
```
2. Salva i tuoi file in una directory specificata con [`PreTrainedModel.save_pretrained`]:
```py
>>> tokenizer.save_pretrained("./il/tuo/path/bigscience_t0")
>>> model.save_pretrained("./il/tuo/path/bigscience_t0")
```
3. Ora quando sei offline, carica i tuoi file con [`PreTrainedModel.from_pretrained`] dalla directory specificata:
```py
>>> tokenizer = AutoTokenizer.from_pretrained("./il/tuo/path/bigscience_t0")
>>> model = AutoModel.from_pretrained("./il/tuo/path/bigscience_t0")
```
* Scarica in maniera programmatica i file con la libreria [huggingface_hub](https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub):
1. Installa la libreria `huggingface_hub` nel tuo ambiente virtuale:
```bash
python -m pip install huggingface_hub
```
2. Utilizza la funzione [`hf_hub_download`](https://huggingface.co/docs/hub/adding-a-library#download-files-from-the-hub) per scaricare un file in un path specifico. Per esempio, il seguente comando scarica il file `config.json` dal modello [T0](https://huggingface.co/bigscience/T0_3B) nel path che desideri:
```py
>>> from huggingface_hub import hf_hub_download
>>> hf_hub_download(repo_id="bigscience/T0_3B", filename="config.json", cache_dir="./il/tuo/path/bigscience_t0")
```
Una volta che il tuo file è scaricato e salvato in cache localmente, specifica il suo path locale per caricarlo e utilizzarlo:
```py
>>> from transformers import AutoConfig
>>> config = AutoConfig.from_pretrained("./il/tuo/path/bigscience_t0/config.json")
```
<Tip>
Fai riferimento alla sezione [How to download files from the Hub](https://huggingface.co/docs/hub/how-to-downstream) per avere maggiori dettagli su come scaricare modelli presenti sull Hub.
</Tip>
|
transformers/docs/source/it/installation.md/0
|
{
"file_path": "transformers/docs/source/it/installation.md",
"repo_id": "transformers",
"token_count": 3586
}
| 34 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Quick tour
[[open-in-colab]]
Entra in azione con 🤗 Transformers! Inizia utilizzando [`pipeline`] per un'inferenza veloce, carica un modello pre-allenato e un tokenizer con una [AutoClass](./model_doc/auto) per risolvere i tuoi compiti legati a testo, immagini o audio.
<Tip>
Tutti gli esempi di codice presenti in questa documentazione hanno un pulsante in alto a sinistra che permette di selezionare tra PyTorch e TensorFlow. Se
questo non è presente, ci si aspetta che il codice funzioni per entrambi i backend senza alcun cambiamento.
</Tip>
## Pipeline
[`pipeline`] è il modo più semplice per utilizzare un modello pre-allenato per un dato compito.
<Youtube id="tiZFewofSLM"/>
La [`pipeline`] supporta molti compiti comuni:
**Testo**:
* Analisi del Sentimento (Sentiment Analysis, in inglese): classifica la polarità di un testo dato.
* Generazione del Testo (Text Generation, in inglese): genera del testo a partire da un dato input.
* Riconoscimento di Entità (Name Entity Recognition o NER, in inglese): etichetta ogni parola con l'entità che questa rappresenta (persona, data, luogo, ecc.).
* Rispondere a Domande (Question answering, in inglese): estrae la risposta da un contesto, dato del contesto e una domanda.
* Riempimento di Maschere (Fill-mask, in inglese): riempie gli spazi mancanti in un testo che ha parole mascherate.
* Riassumere (Summarization, in inglese): genera una sintesi di una lunga sequenza di testo o di un documento.
* Traduzione (Translation, in inglese): traduce un testo in un'altra lingua.
* Estrazione di Caratteristiche (Feature Extraction, in inglese): crea un tensore che rappresenta un testo.
**Immagini**:
* Classificazione di Immagini (Image Classification, in inglese): classifica un'immagine.
* Segmentazione di Immagini (Image Segmentation, in inglese): classifica ogni pixel di un'immagine.
* Rilevazione di Oggetti (Object Detection, in inglese): rileva oggetti all'interno di un'immagine.
**Audio**:
* Classificazione di Audio (Audio Classification, in inglese): assegna un'etichetta ad un segmento di audio dato.
* Riconoscimento Vocale Automatico (Automatic Speech Recognition o ASR, in inglese): trascrive il contenuto di un audio dato in un testo.
<Tip>
Per maggiori dettagli legati alla [`pipeline`] e ai compiti ad essa associati, fai riferimento alla documentazione [qui](./main_classes/pipelines).
</Tip>
### Utilizzo della Pipeline
Nel seguente esempio, utilizzerai la [`pipeline`] per l'analisi del sentimento.
Installa le seguenti dipendenze se non lo hai già fatto:
<frameworkcontent>
<pt>
```bash
pip install torch
```
</pt>
<tf>
```bash
pip install tensorflow
```
</tf>
</frameworkcontent>
Importa [`pipeline`] e specifica il compito che vuoi completare:
```py
>>> from transformers import pipeline
>>> classificatore = pipeline("sentiment-analysis", model="MilaNLProc/feel-it-italian-sentiment")
```
La pipeline scarica e salva il [modello pre-allenato](https://huggingface.co/MilaNLProc/feel-it-italian-sentiment) e il tokenizer per l'analisi del sentimento. Se non avessimo scelto un modello, la pipeline ne avrebbe scelto uno di default. Ora puoi utilizzare il `classifier` sul tuo testo obiettivo:
```py
>>> classificatore("Siamo molto felici di mostrarti la libreria 🤗 Transformers.")
[{'label': 'positive', 'score': 0.9997}]
```
Per più di una frase, passa una lista di frasi alla [`pipeline`] la quale restituirà una lista di dizionari:
```py
>>> risultati = classificatore(
... ["Siamo molto felici di mostrarti la libreria 🤗 Transformers.", "Speriamo te non la odierai."]
... )
>>> for risultato in risultati:
... print(f"etichetta: {risultato['label']}, con punteggio: {round(risultato['score'], 4)}")
etichetta: positive, con punteggio: 0.9998
etichetta: negative, con punteggio: 0.9998
```
La [`pipeline`] può anche iterare su un dataset intero. Inizia installando la libreria [🤗 Datasets](https://huggingface.co/docs/datasets/):
```bash
pip install datasets
```
Crea una [`pipeline`] con il compito che vuoi risolvere e con il modello che vuoi utilizzare.
```py
>>> import torch
>>> from transformers import pipeline
>>> riconoscitore_vocale = pipeline(
... "automatic-speech-recognition", model="radiogroup-crits/wav2vec2-xls-r-1b-italian-doc4lm-5gram"
... )
```
Poi, carica un dataset (vedi 🤗 Datasets [Quick Start](https://huggingface.co/docs/datasets/quickstart) per maggiori dettagli) sul quale vuoi iterare. Per esempio, carichiamo il dataset [MInDS-14](https://huggingface.co/datasets/PolyAI/minds14):
```py
>>> from datasets import load_dataset, Audio
>>> dataset = load_dataset("PolyAI/minds14", name="it-IT", split="train") # doctest: +IGNORE_RESULT
```
Dobbiamo assicurarci che la frequenza di campionamento del set di dati corrisponda alla frequenza di campionamento con cui è stato addestrato `radiogroup-crits/wav2vec2-xls-r-1b-italian-doc4lm-5gram`.
```py
>>> dataset = dataset.cast_column("audio", Audio(sampling_rate=riconoscitore_vocale.feature_extractor.sampling_rate))
```
I file audio vengono caricati automaticamente e ri-campionati quando chiamiamo la colonna "audio".
Estraiamo i vettori delle forme d'onda grezze delle prime 4 osservazioni e passiamoli come lista alla pipeline:
```py
>>> risultato = riconoscitore_vocale(dataset[:4]["audio"])
>>> print([d["text"] for d in risultato])
['dovrei caricare dei soldi sul mio conto corrente', 'buongiorno e senza vorrei depositare denaro sul mio conto corrente come devo fare per cortesia', 'sì salve vorrei depositare del denaro sul mio conto', 'e buon pomeriggio vorrei depositare dei soldi sul mio conto bancario volleo sapere come posso fare se e posso farlo online ed un altro conto o andandoo tramite bancomut']
```
Per un dataset più grande dove gli input sono di dimensione maggiore (come nel parlato/audio o nella visione), dovrai passare un generatore al posto di una lista che carica tutti gli input in memoria. Guarda la [documentazione della pipeline](./main_classes/pipelines) per maggiori informazioni.
### Utilizzare un altro modello e tokenizer nella pipeline
La [`pipeline`] può ospitare qualsiasi modello del [Model Hub](https://huggingface.co/models), rendendo semplice l'adattamento della [`pipeline`] per altri casi d'uso. Per esempio, se si vuole un modello capace di trattare testo in francese, usa i tag presenti nel Model Hub in modo da filtrare per ottenere un modello appropriato. Il miglior risultato filtrato restituisce un modello multi-lingua [BERT model](https://huggingface.co/nlptown/bert-base-multilingual-uncased-sentiment) fine-tuned per l'analisi del sentimento. Ottimo, utilizziamo questo modello!
```py
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
```
<frameworkcontent>
<pt>
Usa [`AutoModelForSequenceClassification`] e [`AutoTokenizer`] per caricare il modello pre-allenato e il suo tokenizer associato (maggiori informazioni su una `AutoClass` in seguito):
```py
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
>>> model = AutoModelForSequenceClassification.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
</pt>
<tf>
Usa [`TFAutoModelForSequenceClassification`] e [`AutoTokenizer`] per caricare il modello pre-allenato e il suo tokenizer associato (maggiori informazioni su una `TFAutoClass` in seguito):
```py
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
>>> model = TFAutoModelForSequenceClassification.from_pretrained(model_name)
>>> tokenizer = AutoTokenizer.from_pretrained(model_name)
```
</tf>
</frameworkcontent>
Poi puoi specificare il modello e il tokenizer nella [`pipeline`], e applicare il `classifier` sul tuo testo obiettivo:
```py
>>> classifier = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer)
>>> classifier("Nous sommes très heureux de vous présenter la bibliothèque 🤗 Transformers.")
[{'label': '5 stars', 'score': 0.7273}]
```
Se non riesci a trovare un modello per il tuo caso d'uso, dovrai fare fine-tuning di un modello pre-allenato sui tuoi dati. Dai un'occhiata al nostro tutorial [fine-tuning tutorial](./training) per imparare come. Infine, dopo che hai completato il fine-tuning del tuo modello pre-allenato, considera per favore di condividerlo (vedi il tutorial [qui](./model_sharing)) con la comunità sul Model Hub per democratizzare l'NLP! 🤗
## AutoClass
<Youtube id="AhChOFRegn4"/>
Al suo interno, le classi [`AutoModelForSequenceClassification`] e [`AutoTokenizer`] lavorano assieme per dare potere alla [`pipeline`]. Una [AutoClass](./model_doc/auto) è una scorciatoia che automaticamente recupera l'architettura di un modello pre-allenato a partire dal suo nome o path. Hai solo bisogno di selezionare la `AutoClass` appropriata per il tuo compito e il suo tokenizer associato con [`AutoTokenizer`].
Ritorniamo al nostro esempio e vediamo come puoi utilizzare la `AutoClass` per replicare i risultati della [`pipeline`].
### AutoTokenizer
Un tokenizer è responsabile dell'elaborazione del testo in modo da trasformarlo in un formato comprensibile dal modello. Per prima cosa, il tokenizer dividerà il testo in parole chiamate *token*. Ci sono diverse regole che governano il processo di tokenizzazione, tra cui come dividere una parola e a quale livello (impara di più sulla tokenizzazione [qui](./tokenizer_summary)). La cosa più importante da ricordare comunque è che hai bisogno di inizializzare il tokenizer con lo stesso nome del modello in modo da assicurarti che stai utilizzando le stesse regole di tokenizzazione con cui il modello è stato pre-allenato.
Carica un tokenizer con [`AutoTokenizer`]:
```py
>>> from transformers import AutoTokenizer
>>> nome_del_modello = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> tokenizer = AutoTokenizer.from_pretrained(nome_del_modello)
```
Dopodiché, il tokenizer converte i token in numeri in modo da costruire un tensore come input del modello. Questo è conosciuto come il *vocabolario* del modello.
Passa il tuo testo al tokenizer:
```py
>>> encoding = tokenizer("Siamo molto felici di mostrarti la libreria 🤗 Transformers.")
>>> print(encoding)
{'input_ids': [101, 56821, 10132, 14407, 13019, 13007, 10120, 47201, 10330, 10106, 91686, 100, 58263, 119, 102],
'token_type_ids': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
'attention_mask': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}
```
Il tokenizer restituirà un dizionario contenente:
* [input_ids](./glossary#input-ids): rappresentazioni numeriche dei tuoi token.
* [attention_mask](.glossary#attention-mask): indica quali token devono essere presi in considerazione.
Come con la [`pipeline`], il tokenizer accetterà una lista di input. In più, il tokenizer può anche completare (pad, in inglese) e troncare il testo in modo da restituire un lotto (batch, in inglese) di lunghezza uniforme:
<frameworkcontent>
<pt>
```py
>>> pt_batch = tokenizer(
... ["Siamo molto felici di mostrarti la libreria 🤗 Transformers.", "Speriamo te non la odierai."],
... padding=True,
... truncation=True,
... max_length=512,
... return_tensors="pt",
... )
```
</pt>
<tf>
```py
>>> tf_batch = tokenizer(
... ["Siamo molto felici di mostrarti la libreria 🤗 Transformers.", "Speriamo te non la odierai."],
... padding=True,
... truncation=True,
... max_length=512,
... return_tensors="tf",
... )
```
</tf>
</frameworkcontent>
Leggi il tutorial sul [preprocessing](./preprocessing) per maggiori dettagli sulla tokenizzazione.
### AutoModel
<frameworkcontent>
<pt>
🤗 Transformers fornisce un metodo semplice e unificato per caricare istanze pre-allenate. Questo significa che puoi caricare un [`AutoModel`] come caricheresti un [`AutoTokenizer`]. L'unica differenza è selezionare l'[`AutoModel`] corretto per il compito di interesse. Dato che stai facendo classificazione di testi, o sequenze, carica [`AutoModelForSequenceClassification`]:
```py
>>> from transformers import AutoModelForSequenceClassification
>>> model_name = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(model_name)
```
<Tip>
Guarda il [task summary](./task_summary) per sapere quale classe di [`AutoModel`] utilizzare per quale compito.
</Tip>
Ora puoi passare il tuo lotto di input pre-processati direttamente al modello. Devi solo spacchettare il dizionario aggiungendo `**`:
```py
>>> pt_outputs = pt_model(**pt_batch)
```
Il modello produrrà le attivazioni finali nell'attributo `logits`. Applica la funzione softmax a `logits` per ottenere le probabilità:
```py
>>> from torch import nn
>>> pt_predictions = nn.functional.softmax(pt_outputs.logits, dim=-1)
>>> print(pt_predictions)
tensor([[0.0041, 0.0037, 0.0203, 0.2005, 0.7713],
[0.3766, 0.3292, 0.1832, 0.0558, 0.0552]], grad_fn=<SoftmaxBackward0>)
```
</pt>
<tf>
🤗 Transformers fornisce un metodo semplice e unificato per caricare istanze pre-allenate. Questo significa che puoi caricare un [`TFAutoModel`] come caricheresti un [`AutoTokenizer`]. L'unica differenza è selezionare il [`TFAutoModel`] corretto per il compito di interesse. Dato che stai facendo classificazione di testi, o sequenze, carica [`TFAutoModelForSequenceClassification`]:
```py
>>> from transformers import TFAutoModelForSequenceClassification
>>> nome_del_modello = "nlptown/bert-base-multilingual-uncased-sentiment"
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(nome_del_modello)
```
<Tip>
Guarda il [task summary](./task_summary) per sapere quale classe di [`AutoModel`] utilizzare per quale compito.
</Tip>
Ora puoi passare il tuo lotto di input pre-processati direttamente al modello passando le chiavi del dizionario al tensore:
```py
>>> tf_outputs = tf_model(tf_batch)
```
Il modello produrrà le attivazioni finali nell'attributo `logits`. Applica la funzione softmax a `logits` per ottenere le probabilità:
```py
>>> import tensorflow as tf
>>> tf_predictions = tf.nn.softmax(tf_outputs.logits, axis=-1)
>>> tf_predictions # doctest: +IGNORE_RESULT
```
</tf>
</frameworkcontent>
<Tip>
Tutti i modelli di 🤗 Transformers (PyTorch e TensorFlow) restituiscono i tensori *prima* della funzione finale
di attivazione (come la softmax) perché la funzione di attivazione finale viene spesso unita a quella di perdita.
</Tip>
I modelli sono [`torch.nn.Module`](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) o [`tf.keras.Model`](https://www.tensorflow.org/api_docs/python/tf/keras/Model) standard così puoi utilizzarli all'interno del tuo training loop usuale. Tuttavia, per rendere le cose più semplici, 🤗 Transformers fornisce una classe [`Trainer`] per PyTorch che aggiunge delle funzionalità per l'allenamento distribuito, precisione mista, e altro ancora. Per TensorFlow, puoi utilizzare il metodo `fit` di [Keras](https://keras.io/). Fai riferimento al [tutorial per il training](./training) per maggiori dettagli.
<Tip>
Gli output del modello di 🤗 Transformers sono delle dataclasses speciali in modo che i loro attributi vengano auto-completati all'interno di un IDE.
Gli output del modello si comportano anche come una tupla o un dizionario (ad esempio, puoi indicizzare con un intero, una slice o una stringa) nel qual caso gli attributi che sono `None` vengono ignorati.
</Tip>
### Salva un modello
<frameworkcontent>
<pt>
Una volta completato il fine-tuning del tuo modello, puoi salvarlo con il suo tokenizer utilizzando [`PreTrainedModel.save_pretrained`]:
```py
>>> pt_save_directory = "./pt_save_pretrained"
>>> tokenizer.save_pretrained(pt_save_directory) # doctest: +IGNORE_RESULT
>>> pt_model.save_pretrained(pt_save_directory)
```
Quando desideri utilizzare il tuo modello nuovamente, puoi ri-caricarlo con [`PreTrainedModel.from_pretrained`]:
```py
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("./pt_save_pretrained")
```
</pt>
<tf>
Una volta completato il fine-tuning del tuo modello, puoi salvarlo con il suo tokenizer utilizzando [`TFPreTrainedModel.save_pretrained`]:
```py
>>> tf_save_directory = "./tf_save_pretrained"
>>> tokenizer.save_pretrained(tf_save_directory) # doctest: +IGNORE_RESULT
>>> tf_model.save_pretrained(tf_save_directory)
```
Quando desideri utilizzare il tuo modello nuovamente, puoi ri-caricarlo con [`TFPreTrainedModel.from_pretrained`]:
```py
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("./tf_save_pretrained")
```
</tf>
</frameworkcontent>
Una caratteristica particolarmente interessante di 🤗 Transformers è la sua abilità di salvare un modello e ri-caricarlo sia come modello di PyTorch che di TensorFlow. I parametri `from_pt` o `from_tf` possono convertire un modello da un framework all'altro:
<frameworkcontent>
<pt>
```py
>>> from transformers import AutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(pt_save_directory)
>>> pt_model = AutoModelForSequenceClassification.from_pretrained(pt_save_directory, from_pt=True)
```
</pt>
<tf>
```py
>>> from transformers import TFAutoModel
>>> tokenizer = AutoTokenizer.from_pretrained(tf_save_directory)
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained(tf_save_directory, from_tf=True)
```
</tf>
</frameworkcontent>
|
transformers/docs/source/it/quicktour.md/0
|
{
"file_path": "transformers/docs/source/it/quicktour.md",
"repo_id": "transformers",
"token_count": 6489
}
| 35 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Use tokenizers from 🤗 Tokenizers
[`PreTrainedTokenizerFast`]は[🤗 Tokenizers](https://huggingface.co/docs/tokenizers)ライブラリに依存しています。🤗 Tokenizersライブラリから取得したトークナイザーは、非常に簡単に🤗 Transformersにロードできます。
具体的な内容に入る前に、まずはいくつかの行でダミーのトークナイザーを作成することから始めましょう:
```python
>>> from tokenizers import Tokenizer
>>> from tokenizers.models import BPE
>>> from tokenizers.trainers import BpeTrainer
>>> from tokenizers.pre_tokenizers import Whitespace
>>> tokenizer = Tokenizer(BPE(unk_token="[UNK]"))
>>> trainer = BpeTrainer(special_tokens=["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]"])
>>> tokenizer.pre_tokenizer = Whitespace()
>>> files = [...]
>>> tokenizer.train(files, trainer)
```
私たちは今、定義したファイルにトレーニングされたトークナイザーを持っています。これをランタイムで引き続き使用するか、
将来の再利用のためにJSONファイルに保存することができます。
## Loading directly from the tokenizer object
🤗 Transformersライブラリでこのトークナイザーオブジェクトをどのように活用できるかを見てみましょう。[`PreTrainedTokenizerFast`]クラスは、
*tokenizer*オブジェクトを引数として受け入れ、簡単にインスタンス化できるようにします。
```python
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer)
```
このオブジェクトは、🤗 Transformers トークナイザーが共有するすべてのメソッドと一緒に使用できます!詳細については、[トークナイザーページ](main_classes/tokenizer)をご覧ください。
## Loading from a JSON file
JSONファイルからトークナイザーを読み込むには、まずトークナイザーを保存することから始めましょう:
```python
>>> tokenizer.save("tokenizer.json")
```
このファイルを保存したパスは、`PreTrainedTokenizerFast` の初期化メソッドに `tokenizer_file` パラメータを使用して渡すことができます:
```python
>>> from transformers import PreTrainedTokenizerFast
>>> fast_tokenizer = PreTrainedTokenizerFast(tokenizer_file="tokenizer.json")
```
このオブジェクトは、🤗 Transformers トークナイザーが共有するすべてのメソッドと一緒に使用できるようになりました!詳細については、[トークナイザーページ](main_classes/tokenizer)をご覧ください。
|
transformers/docs/source/ja/fast_tokenizers.md/0
|
{
"file_path": "transformers/docs/source/ja/fast_tokenizers.md",
"repo_id": "transformers",
"token_count": 1187
}
| 36 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# BERT
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/models?filter=bert">
<img alt="Models" src="https://img.shields.io/badge/All_model_pages-bert-blueviolet">
</a>
<a href="https://huggingface.co/spaces/docs-demos/bert-base-uncased">
<img alt="Spaces" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue">
</a>
</div>
## Overview
BERT モデルは、Jacob Devlin、Ming-Wei Chang、Kenton Lee、Kristina Toutanova によって [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) で提案されました。それは
マスクされた言語モデリング目標と次の文の組み合わせを使用して事前トレーニングされた双方向トランスフォーマー
Toronto Book Corpus と Wikipedia からなる大規模なコーパスでの予測。
論文の要約は次のとおりです。
*BERT と呼ばれる新しい言語表現モデルを導入します。これは Bidirectional Encoder Representations の略です
トランスフォーマーより。最近の言語表現モデルとは異なり、BERT は深い双方向性を事前にトレーニングするように設計されています。
すべてのレイヤーの左と右の両方のコンテキストを共同で条件付けすることにより、ラベルのないテキストから表現します。結果として、
事前トレーニングされた BERT モデルは、出力層を 1 つ追加するだけで微調整して、最先端のモデルを作成できます。
実質的なタスク固有のものを必要とせず、質問応答や言語推論などの幅広いタスクに対応
アーキテクチャの変更。*
*BERT は概念的にはシンプルですが、経験的に強力です。 11 の自然な要素に関する新しい最先端の結果が得られます。
言語処理タスク(GLUE スコアを 80.5% に押し上げる(7.7% ポイントの絶対改善)、MultiNLI を含む)
精度は 86.7% (絶対値 4.6% 向上)、SQuAD v1.1 質問応答テスト F1 は 93.2 (絶対値 1.5 ポイント)
改善) および SQuAD v2.0 テスト F1 から 83.1 (5.1 ポイントの絶対改善)。*
## Usage tips
- BERT は絶対位置埋め込みを備えたモデルであるため、通常は入力を右側にパディングすることをお勧めします。
左。
- BERT は、マスク言語モデリング (MLM) および次の文予測 (NSP) の目標を使用してトレーニングされました。それは
マスクされたトークンの予測や NLU では一般に効率的ですが、テキスト生成には最適ではありません。
- ランダム マスキングを使用して入力を破壊します。より正確には、事前トレーニング中に、トークンの指定された割合 (通常は 15%) が次によってマスクされます。
* 確率0.8の特別なマスクトークン
* 確率 0.1 でマスクされたトークンとは異なるランダムなトークン
* 確率 0.1 の同じトークン
- モデルは元の文を予測する必要がありますが、2 番目の目的があります。入力は 2 つの文 A と B (間に分離トークンあり) です。確率 50% では、文はコーパス内で連続していますが、残りの 50% では関連性がありません。モデルは、文が連続しているかどうかを予測する必要があります。
このモデルは [thomwolf](https://huggingface.co/thomwolf) によって提供されました。元のコードは [こちら](https://github.com/google-research/bert) にあります。
## Resources
BERT を始めるのに役立つ公式 Hugging Face およびコミュニティ (🌎 で示される) リソースのリスト。ここに含めるリソースの送信に興味がある場合は、お気軽にプル リクエストを開いてください。審査させていただきます。リソースは、既存のリソースを複製するのではなく、何か新しいものを示すことが理想的です。
<PipelineTag pipeline="text-classification"/>
- に関するブログ投稿 [別の言語での BERT テキスト分類](https://www.philschmid.de/bert-text-classification-in-a-different-language)。
- [マルチラベル テキスト分類のための BERT (およびその友人) の微調整](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/BERT/Fine_tuning_BERT_(and_friends)_for_multi_label_text_classification.ipynb) のノートブック.
- 方法に関するノートブック [PyTorch を使用したマルチラベル分類のための BERT の微調整](https://colab.research.google.com/github/abhmishra91/transformers-tutorials/blob/master/transformers_multi_label_classification.ipynb)。
- 方法に関するノートブック [要約のために BERT を使用して EncoderDecoder モデルをウォームスタートする](https://colab.research.google.com/github/patrickvonplaten/notebooks/blob/master/BERT2BERT_for_CNN_Dailymail.ipynb)。
- [`BertForSequenceClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)。
- [`TFBertForSequenceClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb)。
- [`FlaxBertForSequenceClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/flax/text-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification_flax.ipynb)。
- [テキスト分類タスクガイド](../tasks/sequence_classification)
<PipelineTag pipeline="token-classification"/>
- [Hugging Face Transformers with Keras: Fine-tune a non-English BERT for Named Entity Recognition](https://www.philschmid.de/huggingface-transformers-keras-tf) の使用方法に関するブログ投稿。
- 各単語の最初の単語部分のみを使用した [固有表現認識のための BERT の微調整](https://colab.research.google.com/github/NielsRogge/Transformers-Tutorials/blob/master/Custom_Named_Entity_Recognition_with_BERT_only_first_wordpiece.ipynb) のノートブックトークン化中の単語ラベル内。単語のラベルをすべての単語部分に伝播するには、代わりにノートブックのこの [バージョン](https://github.com/NielsRogge/Transformers-Tutorials/blob/master/BERT/Custom_Named_Entity_Recognition_with_BERT.ipynb) を参照してください。
- [`BertForTokenClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)。
- [`TFBertForTokenClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb)。
- [`FlaxBertForTokenClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/flax/token-classification) によってサポートされています。
- [トークン分類](https://huggingface.co/course/chapter7/2?fw=pt) 🤗 ハグフェイスコースの章。
- [トークン分類タスクガイド](../tasks/token_classification)
<PipelineTag pipeline="fill-mask"/>
- [`BertForMaskedLM`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling) でサポートされており、 [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)。
- [`TFBertForMaskedLM`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/lang-modeling#run_mlmpy) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb)。
- [`FlaxBertForMaskedLM`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/flax/language-modeling#masked-language-modeling) および [ノートブック]( https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/masked_language_modeling_flax.ipynb)。
- [マスクされた言語モデリング](https://huggingface.co/course/chapter7/3?fw=pt) 🤗 顔ハグ コースの章。
- [マスクされた言語モデリング タスク ガイド](../tasks/masked_lang_modeling)
<PipelineTag pipeline="question-answering"/>
- [`BertForQuestionAnswering`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)。
- [`TFBertForQuestionAnswering`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb)。
- [`FlaxBertForQuestionAnswering`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/flax/question-answering) でサポートされています。
- [質問回答](https://huggingface.co/course/chapter7/7?fw=pt) 🤗 ハグフェイスコースの章。
- [質問回答タスク ガイド](../tasks/question_answering)
**複数の選択肢**
- [`BertForMultipleChoice`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/multiple-choice) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice.ipynb)。
- [`TFBertForMultipleChoice`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/multiple-choice) および [ノートブック](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/multiple_choice-tf.ipynb)。
- [多肢選択タスク ガイド](../tasks/multiple_choice)
⚡️ **推論**
- 方法に関するブログ投稿 [Hugging Face Transformers と AWS Inferentia を使用して BERT 推論を高速化する](https://huggingface.co/blog/bert-inferentia-sagemaker)。
- 方法に関するブログ投稿 [GPU 上の DeepSpeed-Inference を使用して BERT 推論を高速化する](https://www.philschmid.de/bert-deepspeed-inference)。
⚙️ **事前トレーニング**
- [Hugging Face Transformers と Habana Gaudi を使用した BERT の事前トレーニング に関するブログ投稿](https://www.philschmid.de/pre-training-bert-habana)。
🚀 **デプロイ**
- 方法に関するブログ投稿 [ハグフェイス最適化でトランスフォーマーを ONNX に変換する](https://www.philschmid.de/convert-transformers-to-onnx)。
- 方法に関するブログ投稿 [AWS 上の Habana Gaudi を使用したハグ顔トランスフォーマーのための深層学習環境のセットアップ](https://www.philschmid.de/getting-started-habana-gaudi#conclusion)。
- に関するブログ投稿 [Hugging Face Transformers、Amazon SageMaker、および Terraform モジュールを使用した自動スケーリング BERT](https://www.philschmid.de/terraform-huggingface-amazon-sagemaker-advanced)。
- に関するブログ投稿 [HuggingFace、AWS Lambda、Docker を使用したサーバーレス BERT](https://www.philschmid.de/serverless-bert-with-huggingface-aws-lambda-docker)。
- に関するブログ投稿 [Amazon SageMaker と Training Compiler を使用した Hugging Face Transformers BERT 微調整](https://www.philschmid.de/huggingface-amazon-sagemaker-training-compiler)。
- に関するブログ投稿 [Transformers と Amazon SageMaker を使用した BERT のタスク固有の知識の蒸留](https://www.philschmid.de/knowledge-distillation-bert-transformers)
## BertConfig
[[autodoc]] BertConfig
- all
## BertTokenizer
[[autodoc]] BertTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
<frameworkcontent>
<pt>
## BertTokenizerFast
[[autodoc]] BertTokenizerFast
</pt>
<tf>
## TFBertTokenizer
[[autodoc]] TFBertTokenizer
</tf>
</frameworkcontent>
## Bert specific outputs
[[autodoc]] models.bert.modeling_bert.BertForPreTrainingOutput
[[autodoc]] models.bert.modeling_tf_bert.TFBertForPreTrainingOutput
[[autodoc]] models.bert.modeling_flax_bert.FlaxBertForPreTrainingOutput
<frameworkcontent>
<pt>
## BertModel
[[autodoc]] BertModel
- forward
## BertForPreTraining
[[autodoc]] BertForPreTraining
- forward
## BertLMHeadModel
[[autodoc]] BertLMHeadModel
- forward
## BertForMaskedLM
[[autodoc]] BertForMaskedLM
- forward
## BertForNextSentencePrediction
[[autodoc]] BertForNextSentencePrediction
- forward
## BertForSequenceClassification
[[autodoc]] BertForSequenceClassification
- forward
## BertForMultipleChoice
[[autodoc]] BertForMultipleChoice
- forward
## BertForTokenClassification
[[autodoc]] BertForTokenClassification
- forward
## BertForQuestionAnswering
[[autodoc]] BertForQuestionAnswering
- forward
</pt>
<tf>
## TFBertModel
[[autodoc]] TFBertModel
- call
## TFBertForPreTraining
[[autodoc]] TFBertForPreTraining
- call
## TFBertModelLMHeadModel
[[autodoc]] TFBertLMHeadModel
- call
## TFBertForMaskedLM
[[autodoc]] TFBertForMaskedLM
- call
## TFBertForNextSentencePrediction
[[autodoc]] TFBertForNextSentencePrediction
- call
## TFBertForSequenceClassification
[[autodoc]] TFBertForSequenceClassification
- call
## TFBertForMultipleChoice
[[autodoc]] TFBertForMultipleChoice
- call
## TFBertForTokenClassification
[[autodoc]] TFBertForTokenClassification
- call
## TFBertForQuestionAnswering
[[autodoc]] TFBertForQuestionAnswering
- call
</tf>
<jax>
## FlaxBertModel
[[autodoc]] FlaxBertModel
- __call__
## FlaxBertForPreTraining
[[autodoc]] FlaxBertForPreTraining
- __call__
## FlaxBertForCausalLM
[[autodoc]] FlaxBertForCausalLM
- __call__
## FlaxBertForMaskedLM
[[autodoc]] FlaxBertForMaskedLM
- __call__
## FlaxBertForNextSentencePrediction
[[autodoc]] FlaxBertForNextSentencePrediction
- __call__
## FlaxBertForSequenceClassification
[[autodoc]] FlaxBertForSequenceClassification
- __call__
## FlaxBertForMultipleChoice
[[autodoc]] FlaxBertForMultipleChoice
- __call__
## FlaxBertForTokenClassification
[[autodoc]] FlaxBertForTokenClassification
- __call__
## FlaxBertForQuestionAnswering
[[autodoc]] FlaxBertForQuestionAnswering
- __call__
</jax>
</frameworkcontent>
|
transformers/docs/source/ja/model_doc/bert.md/0
|
{
"file_path": "transformers/docs/source/ja/model_doc/bert.md",
"repo_id": "transformers",
"token_count": 6595
}
| 37 |
<!--Copyright 2021 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# CANINE
## Overview
CANINE モデルは、[CANINE: Pre-training an Efficient Tokenization-Free Encoder for Language
Representation](https://arxiv.org/abs/2103.06874)、Jonathan H. Clark、Dan Garrette、Iulia Turc、John Wieting 著。その
明示的なトークン化ステップ (バイト ペアなど) を使用せずに Transformer をトレーニングする最初の論文の 1 つ
エンコーディング (BPE、WordPiece または SentencePiece)。代わりに、モデルは Unicode 文字レベルで直接トレーニングされます。
キャラクターレベルでのトレーニングでは必然的にシーケンスの長さが長くなりますが、CANINE はこれを効率的な方法で解決します。
ディープ Transformer エンコーダを適用する前に、ダウンサンプリング戦略を実行します。
論文の要約は次のとおりです。
*パイプライン NLP システムは、エンドツーエンドのニューラル モデリングに大部分が取って代わられていますが、一般的に使用されているほぼすべてのモデルは
依然として明示的なトークン化手順が必要です。最近のトークン化アプローチはデータ由来のサブワードに基づいていますが、
レキシコンは手動で作成されたトークナイザーよりも脆弱ではありませんが、これらの技術はすべての言語に等しく適しているわけではありません。
言語や固定語彙の使用により、モデルの適応能力が制限される可能性があります。この論文では、CANINE を紹介します。
明示的なトークン化や語彙を使用せずに、文字シーケンスを直接操作するニューラル エンコーダーと、
文字に直接作用するか、オプションでサブワードをソフト誘導バイアスとして使用する事前トレーニング戦略。
よりきめの細かい入力を効果的かつ効率的に使用するために、CANINE はダウンサンプリングを組み合わせて、入力を削減します。
コンテキストをエンコードするディープトランスフォーマースタックを備えたシーケンスの長さ。 CANINE は、同等の mBERT モデルよりも次の点で優れています。
TyDi QA の 2.8 F1 は、モデル パラメータが 28% 少ないにもかかわらず、困難な多言語ベンチマークです。*
このモデルは、[nielsr](https://huggingface.co/nielsr) によって提供されました。元のコードは [ここ](https://github.com/google-research/language/tree/master/language/canine) にあります。
## Usage tips
- CANINE は内部で少なくとも 3 つの Transformer エンコーダーを使用します: 2 つの「浅い」エンコーダー (単一のエンコーダーのみで構成)
レイヤー) と 1 つの「ディープ」エンコーダー (通常の BERT エンコーダー)。まず、「浅い」エンコーダを使用してコンテキストを設定します。
ローカル アテンションを使用した文字の埋め込み。次に、ダウンサンプリングの後、「ディープ」エンコーダーが適用されます。ついに、
アップサンプリング後、「浅い」エンコーダを使用して最終的な文字埋め込みが作成されます。アップと
ダウンサンプリングについては論文に記載されています。
- CANINE は、デフォルトで 2048 文字の最大シーケンス長を使用します。 [`CanineTokenizer`] を使用できます
モデル用のテキストを準備します。
- 特別な [CLS] トークンの最終的な非表示状態の上に線形レイヤーを配置することで分類を行うことができます。
(事前定義された Unicode コード ポイントがあります)。ただし、トークン分類タスクの場合は、ダウンサンプリングされたシーケンス
トークンは、元の文字シーケンスの長さ (2048) と一致するように再度アップサンプリングする必要があります。の
詳細については、論文を参照してください。
モデルのチェックポイント:
- [google/canine-c](https://huggingface.co/google/canine-c): 自己回帰文字損失で事前トレーニング済み、
12 レイヤー、768 隠し、12 ヘッド、121M パラメーター (サイズ ~500 MB)。
- [google/canine-s](https://huggingface.co/google/canine-s): サブワード損失で事前トレーニング済み、12 層、
768 個の非表示、12 ヘッド、121M パラメーター (サイズ ~500 MB)。
## Usage example
CANINE は生の文字で動作するため、**トークナイザーなし**で使用できます。
```python
>>> from transformers import CanineModel
>>> import torch
>>> model = CanineModel.from_pretrained("google/canine-c") # model pre-trained with autoregressive character loss
>>> text = "hello world"
>>> # use Python's built-in ord() function to turn each character into its unicode code point id
>>> input_ids = torch.tensor([[ord(char) for char in text]])
>>> outputs = model(input_ids) # forward pass
>>> pooled_output = outputs.pooler_output
>>> sequence_output = outputs.last_hidden_state
```
ただし、バッチ推論とトレーニングの場合は、トークナイザーを使用することをお勧めします(すべてをパディング/切り詰めるため)
シーケンスを同じ長さにします):
```python
>>> from transformers import CanineTokenizer, CanineModel
>>> model = CanineModel.from_pretrained("google/canine-c")
>>> tokenizer = CanineTokenizer.from_pretrained("google/canine-c")
>>> inputs = ["Life is like a box of chocolates.", "You never know what you gonna get."]
>>> encoding = tokenizer(inputs, padding="longest", truncation=True, return_tensors="pt")
>>> outputs = model(**encoding) # forward pass
>>> pooled_output = outputs.pooler_output
>>> sequence_output = outputs.last_hidden_state
```
## Resources
- [テキスト分類タスクガイド](../tasks/sequence_classification)
- [トークン分類タスクガイド](../tasks/token_classification)
- [質問回答タスク ガイド](../tasks/question_answering)
- [多肢選択タスク ガイド](../tasks/multiple_choice)
## CanineConfig
[[autodoc]] CanineConfig
## CanineTokenizer
[[autodoc]] CanineTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
## CANINE specific outputs
[[autodoc]] models.canine.modeling_canine.CanineModelOutputWithPooling
## CanineModel
[[autodoc]] CanineModel
- forward
## CanineForSequenceClassification
[[autodoc]] CanineForSequenceClassification
- forward
## CanineForMultipleChoice
[[autodoc]] CanineForMultipleChoice
- forward
## CanineForTokenClassification
[[autodoc]] CanineForTokenClassification
- forward
## CanineForQuestionAnswering
[[autodoc]] CanineForQuestionAnswering
- forward
|
transformers/docs/source/ja/model_doc/canine.md/0
|
{
"file_path": "transformers/docs/source/ja/model_doc/canine.md",
"repo_id": "transformers",
"token_count": 3007
}
| 38 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Data2Vec
## Overview
Data2Vec モデルは、[data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language](https://arxiv.org/pdf/2202.03555) で Alexei Baevski、Wei-Ning Hsu、Qiantong Xu、バArun Babu, Jiatao Gu and Michael Auli.
Data2Vec は、テキスト、音声、画像などのさまざまなデータ モダリティにわたる自己教師あり学習のための統一フレームワークを提案します。
重要なのは、事前トレーニングの予測ターゲットは、モダリティ固有のコンテキストに依存しないターゲットではなく、入力のコンテキスト化された潜在表現であることです。
論文の要約は次のとおりです。
*自己教師あり学習の一般的な考え方はどのモダリティでも同じですが、実際のアルゴリズムと
単一のモダリティを念頭に置いて開発されたため、目的は大きく異なります。一般に近づけるために
自己教師あり学習では、どちらの音声に対しても同じ学習方法を使用するフレームワークである data2vec を紹介します。
NLP またはコンピューター ビジョン。中心となるアイデアは、完全な入力データの潜在的な表現を、
標準の Transformer アーキテクチャを使用した自己蒸留セットアップの入力のマスクされたビュー。
単語、視覚的トークン、人間の音声単位などのモダリティ固有のターゲットを予測するのではなく、
本質的にローカルであるため、data2vec は、からの情報を含む文脈化された潜在表現を予測します。
入力全体。音声認識、画像分類、および
自然言語理解は、新しい最先端技術や、主流のアプローチに匹敵するパフォーマンスを実証します。
モデルとコードは、www.github.com/pytorch/fairseq/tree/master/examples/data2vec.* で入手できます。
このモデルは、[edugp](https://huggingface.co/edugp) および [patrickvonplaten](https://huggingface.co/patrickvonplaten) によって提供されました。
[sayakpaul](https://github.com/sayakpaul) と [Rocketknight1](https://github.com/Rocketknight1) は、TensorFlow のビジョンに Data2Vec を提供しました。
元のコード (NLP および音声用) は、[こちら](https://github.com/pytorch/fairseq/tree/main/examples/data2vec) にあります。
ビジョンの元のコードは [こちら](https://github.com/facebookresearch/data2vec_vision/tree/main/beit) にあります。
## Usage tips
- Data2VecAudio、Data2VecText、および Data2VecVision はすべて、同じ自己教師あり学習方法を使用してトレーニングされています。
- Data2VecAudio の場合、前処理は特徴抽出を含めて [`Wav2Vec2Model`] と同じです。
- Data2VecText の場合、前処理はトークン化を含めて [`RobertaModel`] と同じです。
- Data2VecVision の場合、前処理は特徴抽出を含めて [`BeitModel`] と同じです。
## Resources
Data2Vec の使用を開始するのに役立つ公式 Hugging Face およびコミュニティ (🌎 で示される) リソースのリスト。
<PipelineTag pipeline="image-classification"/>
- [`Data2VecVisionForImageClassification`] は、この [サンプル スクリプト](https://github.com/huggingface/transformers/tree/main/examples/pytorch/image-classification) および [ノートブック](https://cola.research.google.com/github/huggingface/notebooks/blob/main/examples/image_classification.ipynb)。
- カスタム データセットで [`TFData2VecVisionForImageClassification`] を微調整するには、[このノートブック](https://colab.research.google.com/github/sayakpaul/TF-2.0-Hacks/blob/master/data2vec_vision_image_classification.ipynb) を参照してください。 )。
**Data2VecText ドキュメント リソース**
- [テキスト分類タスクガイド](../tasks/sequence_classification)
- [トークン分類タスクガイド](../tasks/token_classification)
- [質問回答タスク ガイド](../tasks/question_answering)
- [因果言語モデリング タスク ガイド](../tasks/language_modeling)
- [マスク言語モデリング タスク ガイド](../tasks/masked_language_modeling)
- [多肢選択タスク ガイド](../tasks/multiple_choice)
**Data2VecAudio ドキュメント リソース**
- [音声分類タスクガイド](../tasks/audio_classification)
- [自動音声認識タスクガイド](../tasks/asr)
**Data2VecVision ドキュメント リソース**
- [画像分類](../tasks/image_classification)
- [セマンティック セグメンテーション](../tasks/semantic_segmentation)
ここに含めるリソースの送信に興味がある場合は、お気軽にプル リクエストを開いてください。審査させていただきます。リソースは、既存のリソースを複製するのではなく、何か新しいものを示すことが理想的です。
## Data2VecTextConfig
[[autodoc]] Data2VecTextConfig
## Data2VecAudioConfig
[[autodoc]] Data2VecAudioConfig
## Data2VecVisionConfig
[[autodoc]] Data2VecVisionConfig
<frameworkcontent>
<pt>
## Data2VecAudioModel
[[autodoc]] Data2VecAudioModel
- forward
## Data2VecAudioForAudioFrameClassification
[[autodoc]] Data2VecAudioForAudioFrameClassification
- forward
## Data2VecAudioForCTC
[[autodoc]] Data2VecAudioForCTC
- forward
## Data2VecAudioForSequenceClassification
[[autodoc]] Data2VecAudioForSequenceClassification
- forward
## Data2VecAudioForXVector
[[autodoc]] Data2VecAudioForXVector
- forward
## Data2VecTextModel
[[autodoc]] Data2VecTextModel
- forward
## Data2VecTextForCausalLM
[[autodoc]] Data2VecTextForCausalLM
- forward
## Data2VecTextForMaskedLM
[[autodoc]] Data2VecTextForMaskedLM
- forward
## Data2VecTextForSequenceClassification
[[autodoc]] Data2VecTextForSequenceClassification
- forward
## Data2VecTextForMultipleChoice
[[autodoc]] Data2VecTextForMultipleChoice
- forward
## Data2VecTextForTokenClassification
[[autodoc]] Data2VecTextForTokenClassification
- forward
## Data2VecTextForQuestionAnswering
[[autodoc]] Data2VecTextForQuestionAnswering
- forward
## Data2VecVisionModel
[[autodoc]] Data2VecVisionModel
- forward
## Data2VecVisionForImageClassification
[[autodoc]] Data2VecVisionForImageClassification
- forward
## Data2VecVisionForSemanticSegmentation
[[autodoc]] Data2VecVisionForSemanticSegmentation
- forward
</pt>
<tf>
## TFData2VecVisionModel
[[autodoc]] TFData2VecVisionModel
- call
## TFData2VecVisionForImageClassification
[[autodoc]] TFData2VecVisionForImageClassification
- call
## TFData2VecVisionForSemanticSegmentation
[[autodoc]] TFData2VecVisionForSemanticSegmentation
- call
</tf>
</frameworkcontent>
|
transformers/docs/source/ja/model_doc/data2vec.md/0
|
{
"file_path": "transformers/docs/source/ja/model_doc/data2vec.md",
"repo_id": "transformers",
"token_count": 3072
}
| 39 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Load adapters with 🤗 PEFT
[[open-in-colab]]
[Parameter-Efficient Fine Tuning (PEFT)](https://huggingface.co/blog/peft) メソッドは、事前学習済みモデルのパラメータをファインチューニング中に凍結し、その上にわずかな訓練可能なパラメータ(アダプター)を追加するアプローチです。アダプターは、タスク固有の情報を学習するために訓練されます。このアプローチは、メモリ使用量が少なく、完全にファインチューニングされたモデルと比較して計算リソースを低く抑えつつ、同等の結果を生成することが示されています。
PEFTで訓練されたアダプターは通常、完全なモデルのサイズよりも1桁小さく、共有、保存、読み込むのが便利です。
<div class="flex flex-col justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/PEFT-hub-screenshot.png"/>
<figcaption class="text-center">Hubに格納されているOPTForCausalLMモデルのアダプター重みは、モデルの全体サイズの約6MBで、モデル重みの全サイズは約700MBです。</figcaption>
</div>
🤗 PEFTライブラリについて詳しく知りたい場合は、[ドキュメンテーション](https://huggingface.co/docs/peft/index)をご覧ください。
## Setup
🤗 PEFTをインストールして始めましょう:
```bash
pip install peft
```
新機能を試してみたい場合、ソースからライブラリをインストールすることに興味があるかもしれません:
```bash
pip install git+https://github.com/huggingface/peft.git
```
## Supported PEFT models
🤗 Transformersは、いくつかのPEFT(Parameter Efficient Fine-Tuning)メソッドをネイティブにサポートしており、ローカルまたはHubに格納されたアダプターウェイトを簡単に読み込んで実行またはトレーニングできます。以下のメソッドがサポートされています:
- [Low Rank Adapters](https://huggingface.co/docs/peft/conceptual_guides/lora)
- [IA3](https://huggingface.co/docs/peft/conceptual_guides/ia3)
- [AdaLoRA](https://arxiv.org/abs/2303.10512)
他のPEFTメソッドを使用したい場合、プロンプト学習やプロンプト調整などについて詳しく知りたい場合、または🤗 PEFTライブラリ全般については、[ドキュメンテーション](https://huggingface.co/docs/peft/index)を参照してください。
## Load a PEFT adapter
🤗 TransformersからPEFTアダプターモデルを読み込んで使用するには、Hubリポジトリまたはローカルディレクトリに `adapter_config.json` ファイルとアダプターウェイトが含まれていることを確認してください。次に、`AutoModelFor` クラスを使用してPEFTアダプターモデルを読み込むことができます。たとえば、因果言語モデリング用のPEFTアダプターモデルを読み込むには:
1. PEFTモデルのIDを指定します。
2. それを[`AutoModelForCausalLM`] クラスに渡します。
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id)
```
<Tip>
PEFTアダプターを`AutoModelFor`クラスまたは基本モデルクラス(`OPTForCausalLM`または`LlamaForCausalLM`など)で読み込むことができます。
</Tip>
また、`load_adapter`メソッドを呼び出すことで、PEFTアダプターを読み込むこともできます:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "facebook/opt-350m"
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(model_id)
model.load_adapter(peft_model_id)
```
## Load in 8bit or 4bit
`bitsandbytes` 統合は、8ビットおよび4ビットの精度データ型をサポートしており、大規模なモデルを読み込む際にメモリを節約するのに役立ちます(詳細については `bitsandbytes` 統合の[ガイド](./quantization#bitsandbytes-integration)を参照してください)。[`~PreTrainedModel.from_pretrained`] に `load_in_8bit` または `load_in_4bit` パラメータを追加し、`device_map="auto"` を設定してモデルを効果的にハードウェアに分散配置できます:
```py
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
peft_model_id = "ybelkada/opt-350m-lora"
model = AutoModelForCausalLM.from_pretrained(peft_model_id, quantization_config=BitsAndBytesConfig(load_in_8bit=True))
```
## Add a new adapter
既存のアダプターを持つモデルに新しいアダプターを追加するために [`~peft.PeftModel.add_adapter`] を使用できます。ただし、新しいアダプターは現在のアダプターと同じタイプである限り、これを行うことができます。たとえば、モデルに既存の LoRA アダプターがアタッチされている場合:
```py
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import PeftConfig
model_id = "facebook/opt-350m"
model = AutoModelForCausalLM.from_pretrained(model_id)
lora_config = LoraConfig(
target_modules=["q_proj", "k_proj"],
init_lora_weights=False
)
model.add_adapter(lora_config, adapter_name="adapter_1")
```
新しいアダプタを追加するには:
```py
# attach new adapter with same config
model.add_adapter(lora_config, adapter_name="adapter_2")
```
[`~peft.PeftModel.set_adapter`] を使用して、どのアダプターを使用するかを設定できます:
```py
# use adapter_1
model.set_adapter("adapter_1")
output = model.generate(**inputs)
print(tokenizer.decode(output_disabled[0], skip_special_tokens=True))
# use adapter_2
model.set_adapter("adapter_2")
output_enabled = model.generate(**inputs)
print(tokenizer.decode(output_enabled[0], skip_special_tokens=True))
```
## Enable and disable adapters
モデルにアダプターを追加したら、アダプターモジュールを有効または無効にすることができます。アダプターモジュールを有効にするには、次の手順を実行します:
```py
from transformers import AutoModelForCausalLM, OPTForCausalLM, AutoTokenizer
from peft import PeftConfig
model_id = "facebook/opt-350m"
adapter_model_id = "ybelkada/opt-350m-lora"
tokenizer = AutoTokenizer.from_pretrained(model_id)
text = "Hello"
inputs = tokenizer(text, return_tensors="pt")
model = AutoModelForCausalLM.from_pretrained(model_id)
peft_config = PeftConfig.from_pretrained(adapter_model_id)
# to initiate with random weights
peft_config.init_lora_weights = False
model.add_adapter(peft_config)
model.enable_adapters()
output = model.generate(**inputs)
```
アダプターモジュールを無効にするには:
```py
model.disable_adapters()
output = model.generate(**inputs)
```
## Train a PEFT adapter
PEFTアダプターは[`Trainer`]クラスでサポートされており、特定のユースケースに対してアダプターをトレーニングすることができます。数行のコードを追加するだけで済みます。たとえば、LoRAアダプターをトレーニングする場合:
<Tip>
[`Trainer`]を使用したモデルの微調整に慣れていない場合は、[事前トレーニング済みモデルの微調整](training)チュートリアルをご覧ください。
</Tip>
1. タスクタイプとハイパーパラメータに対するアダプターの構成を定義します(ハイパーパラメータの詳細については[`~peft.LoraConfig`]を参照してください)。
```py
from peft import LoraConfig
peft_config = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=64,
bias="none",
task_type="CAUSAL_LM",
)
```
2. モデルにアダプターを追加する。
```py
model.add_adapter(peft_config)
```
3. これで、モデルを [`Trainer`] に渡すことができます!
```py
trainer = Trainer(model=model, ...)
trainer.train()
```
保存するトレーニング済みアダプタとそれを読み込むための手順:
|
transformers/docs/source/ja/peft.md/0
|
{
"file_path": "transformers/docs/source/ja/peft.md",
"repo_id": "transformers",
"token_count": 3664
}
| 40 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Knowledge Distillation for Computer Vision
[[open-in-colab]]
知識の蒸留は、より大規模で複雑なモデル (教師) からより小規模で単純なモデル (生徒) に知識を伝達するために使用される手法です。あるモデルから別のモデルに知識を抽出するには、特定のタスク (この場合は画像分類) でトレーニングされた事前トレーニング済み教師モデルを取得し、画像分類でトレーニングされる生徒モデルをランダムに初期化します。次に、学生モデルをトレーニングして、その出力と教師の出力の差を最小限に抑え、動作を模倣します。これは [Distilling the Knowledge in a Neural Network by Hinton et al](https://arxiv.org/abs/1503.02531) で最初に導入されました。このガイドでは、タスク固有の知識の蒸留を行います。これには [Beans データセット](https://huggingface.co/datasets/beans) を使用します。
このガイドでは、[微調整された ViT モデル](https://huggingface.co/merve/vit-mobilenet-beans-224) (教師モデル) を抽出して [MobileNet](https://huggingface.co/google/mobilenet_v2_1.4_224) (学生モデル) 🤗 Transformers の [Trainer API](https://huggingface.co/docs/transformers/en/main_classes/trainer#trainer) を使用します。
蒸留とプロセスの評価に必要なライブラリをインストールしましょう。
```bash
pip install transformers datasets accelerate tensorboard evaluate --upgrade
```
この例では、教師モデルとして`merve/beans-vit-224`モデルを使用しています。これは、Bean データセットに基づいて微調整された`google/vit-base-patch16-224-in21k`に基づく画像分類モデルです。このモデルをランダムに初期化された MobileNetV2 に抽出します。
次に、データセットをロードします。
```python
from datasets import load_dataset
dataset = load_dataset("beans")
```
この場合、同じ解像度で同じ出力が返されるため、どちらのモデルの画像プロセッサも使用できます。 `dataset`の`map()`メソッドを使用して、データセットのすべての分割に前処理を適用します。
```python
from transformers import AutoImageProcessor
teacher_processor = AutoImageProcessor.from_pretrained("merve/beans-vit-224")
def process(examples):
processed_inputs = teacher_processor(examples["image"])
return processed_inputs
processed_datasets = dataset.map(process, batched=True)
```
基本的に、我々は生徒モデル(ランダムに初期化されたMobileNet)が教師モデル(微調整されたビジョン変換器)を模倣することを望む。これを実現するために、まず教師と生徒からロジット出力を得る。次に、それぞれのソフトターゲットの重要度を制御するパラメータ`temperature`で分割する。`lambda`と呼ばれるパラメータは蒸留ロスの重要度を量る。この例では、`temperature=5`、`lambda=0.5`とする。生徒と教師の間の発散を計算するために、Kullback-Leibler発散損失を使用します。2つのデータPとQが与えられたとき、KLダイバージェンスはQを使ってPを表現するためにどれだけの余分な情報が必要かを説明します。もし2つが同じであれば、QからPを説明するために必要な他の情報はないので、それらのKLダイバージェンスはゼロになります。
```python
from transformers import TrainingArguments, Trainer
import torch
import torch.nn as nn
import torch.nn.functional as F
class ImageDistilTrainer(Trainer):
def __init__(self, *args, teacher_model=None, **kwargs):
super().__init__(*args, **kwargs)
self.teacher = teacher_model
self.student = student_model
self.loss_function = nn.KLDivLoss(reduction="batchmean")
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.teacher.to(device)
self.teacher.eval()
self.temperature = temperature
self.lambda_param = lambda_param
def compute_loss(self, student, inputs, return_outputs=False):
student_output = self.student(**inputs)
with torch.no_grad():
teacher_output = self.teacher(**inputs)
# Compute soft targets for teacher and student
soft_teacher = F.softmax(teacher_output.logits / self.temperature, dim=-1)
soft_student = F.log_softmax(student_output.logits / self.temperature, dim=-1)
# Compute the loss
distillation_loss = self.loss_function(soft_student, soft_teacher) * (self.temperature ** 2)
# Compute the true label loss
student_target_loss = student_output.loss
# Calculate final loss
loss = (1. - self.lambda_param) * student_target_loss + self.lambda_param * distillation_loss
return (loss, student_output) if return_outputs else loss
```
次に、Hugging Face Hub にログインして、`trainer`を通じてモデルを Hugging Face Hub にプッシュできるようにします。
```python
from huggingface_hub import notebook_login
notebook_login()
```
教師モデルと生徒モデルである`TrainingArguments`を設定しましょう。
```python
from transformers import AutoModelForImageClassification, MobileNetV2Config, MobileNetV2ForImageClassification
training_args = TrainingArguments(
output_dir="my-awesome-model",
num_train_epochs=30,
fp16=True,
logging_dir=f"{repo_name}/logs",
logging_strategy="epoch",
eval_strategy="epoch",
save_strategy="epoch",
load_best_model_at_end=True,
metric_for_best_model="accuracy",
report_to="tensorboard",
push_to_hub=True,
hub_strategy="every_save",
hub_model_id=repo_name,
)
num_labels = len(processed_datasets["train"].features["labels"].names)
# initialize models
teacher_model = AutoModelForImageClassification.from_pretrained(
"merve/beans-vit-224",
num_labels=num_labels,
ignore_mismatched_sizes=True
)
# training MobileNetV2 from scratch
student_config = MobileNetV2Config()
student_config.num_labels = num_labels
student_model = MobileNetV2ForImageClassification(student_config)
```
`compute_metrics` 関数を使用して、テスト セットでモデルを評価できます。この関数は、トレーニング プロセス中にモデルの`accuracy`と`f1`を計算するために使用されます。
```python
import evaluate
import numpy as np
accuracy = evaluate.load("accuracy")
def compute_metrics(eval_pred):
predictions, labels = eval_pred
acc = accuracy.compute(references=labels, predictions=np.argmax(predictions, axis=1))
return {"accuracy": acc["accuracy"]}
```
定義したトレーニング引数を使用して`Trainer`を初期化しましょう。データ照合装置も初期化します。
```python
from transformers import DefaultDataCollator
data_collator = DefaultDataCollator()
trainer = ImageDistilTrainer(
student_model=student_model,
teacher_model=teacher_model,
training_args=training_args,
train_dataset=processed_datasets["train"],
eval_dataset=processed_datasets["validation"],
data_collator=data_collator,
processing_class=teacher_extractor,
compute_metrics=compute_metrics,
temperature=5,
lambda_param=0.5
)
```
これでモデルをトレーニングできるようになりました。
```python
trainer.train()
```
テスト セットでモデルを評価できます。
```python
trainer.evaluate(processed_datasets["test"])
```
テスト セットでは、モデルの精度は 72% に達します。蒸留効率の健全性チェックを行うために、同じハイパーパラメータを使用して Bean データセットで MobileNet を最初からトレーニングし、テスト セットで 63% の精度を観察しました。読者の皆様には、さまざまな事前トレーニング済み教師モデル、学生アーキテクチャ、蒸留パラメータを試していただき、その結果を報告していただくようお勧めします。抽出されたモデルのトレーニング ログとチェックポイントは [このリポジトリ](https://huggingface.co/merve/vit-mobilenet-beans-224) にあり、最初からトレーニングされた MobileNetV2 はこの [リポジトリ](https://huggingface.co/merve/resnet-mobilenet-beans-5)。
|
transformers/docs/source/ja/tasks/knowledge_distillation_for_image_classification.md/0
|
{
"file_path": "transformers/docs/source/ja/tasks/knowledge_distillation_for_image_classification.md",
"repo_id": "transformers",
"token_count": 3678
}
| 41 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Zero-shot image classification
[[open-in-colab]]
ゼロショット画像分類は、次のモデルを使用して画像をさまざまなカテゴリに分類するタスクです。
これらの特定のカテゴリのラベル付きの例を含むデータに対して明示的にトレーニングされていない。
従来、画像分類には、ラベル付き画像の特定のセットでモデルをトレーニングする必要があり、このモデルは次のことを学習します。
特定の画像の特徴をラベルに「マッピング」します。分類タスクにそのようなモデルを使用する必要がある場合、
新しいラベルのセットでは、モデルを "再調整" するために微調整が必要です。
対照的に、ゼロショットまたはオープン語彙画像分類モデルは、通常、大規模なシステムでトレーニングされたマルチモーダル モデルです。
画像と関連する説明のデータセット。これらのモデルは、ゼロショット画像分類を含む多くの下流タスクに使用できる、調整された視覚言語表現を学習します。
これは、画像分類に対するより柔軟なアプローチであり、モデルを新しいまだ見たことのないカテゴリに一般化できるようになります。
追加のトレーニング データを必要とせず、ユーザーはターゲット オブジェクトの自由形式のテキスト説明を含む画像をクエリできるようになります。
このガイドでは、次の方法を学びます。
* ゼロショット画像分類パイプラインを作成する
* 手動でゼロショット画像分類推論を実行します
始める前に、必要なライブラリがすべてインストールされていることを確認してください。
```bash
pip install -q transformers
```
## Zero-shot image classification pipeline
ゼロショット画像分類をサポートするモデルで推論を試す最も簡単な方法は、対応する [`パイプライン`] を使用することです。
[Hugging Face Hub のチェックポイント](https://huggingface.co/models?pipeline_tag=zero-shot-image-classification&sort=downloads) からパイプラインをインスタンス化します。
```python
>>> from transformers import pipeline
>>> checkpoint = "openai/clip-vit-large-patch14"
>>> detector = pipeline(model=checkpoint, task="zero-shot-image-classification")
```
次に、分類したい画像を選択します。
```py
>>> from PIL import Image
>>> import requests
>>> url = "https://unsplash.com/photos/g8oS8-82DxI/download?ixid=MnwxMjA3fDB8MXx0b3BpY3x8SnBnNktpZGwtSGt8fHx8fDJ8fDE2NzgxMDYwODc&force=true&w=640"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/owl.jpg" alt="Photo of an owl"/>
</div>
画像と候補オブジェクトのラベルをパイプラインに渡します。ここでは画像を直接渡します。他の適切なオプション
画像へのローカル パスまたは画像 URL を含めます。
候補ラベルは、この例のように単純な単語にすることも、より説明的な単語にすることもできます。
```py
>>> predictions = detector(image, candidate_labels=["fox", "bear", "seagull", "owl"])
>>> predictions
[{'score': 0.9996670484542847, 'label': 'owl'},
{'score': 0.000199399160919711, 'label': 'seagull'},
{'score': 7.392891711788252e-05, 'label': 'fox'},
{'score': 5.96074532950297e-05, 'label': 'bear'}]
```
## Zero-shot image classification by hand
ゼロショット画像分類パイプラインの使用方法を理解したところで、ゼロショットを実行する方法を見てみましょう。
画像を手動で分類します。
まず、[Hugging Face Hub のチェックポイント](https://huggingface.co/models?pipeline_tag=zero-shot-image-classification&sort=downloads) からモデルと関連プロセッサをロードします。
ここでは、前と同じチェックポイントを使用します。
```py
>>> from transformers import AutoProcessor, AutoModelForZeroShotImageClassification
>>> model = AutoModelForZeroShotImageClassification.from_pretrained(checkpoint)
>>> processor = AutoProcessor.from_pretrained(checkpoint)
```
気分を変えて、別の画像を撮ってみましょう。
```py
>>> from PIL import Image
>>> import requests
>>> url = "https://unsplash.com/photos/xBRQfR2bqNI/download?ixid=MnwxMjA3fDB8MXxhbGx8fHx8fHx8fHwxNjc4Mzg4ODEx&force=true&w=640"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image
```
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/car.jpg" alt="Photo of a car"/>
</div>
プロセッサを使用してモデルの入力を準備します。プロセッサーは、
サイズ変更と正規化によるモデルの画像、およびテキスト入力を処理するトークナイザー。
```py
>>> candidate_labels = ["tree", "car", "bike", "cat"]
>>> inputs = processor(images=image, text=candidate_labels, return_tensors="pt", padding=True)
```
入力をモデルに渡し、結果を後処理します。
```py
>>> import torch
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> logits = outputs.logits_per_image[0]
>>> probs = logits.softmax(dim=-1).numpy()
>>> scores = probs.tolist()
>>> result = [
... {"score": score, "label": candidate_label}
... for score, candidate_label in sorted(zip(probs, candidate_labels), key=lambda x: -x[0])
... ]
>>> result
[{'score': 0.998572, 'label': 'car'},
{'score': 0.0010570387, 'label': 'bike'},
{'score': 0.0003393686, 'label': 'tree'},
{'score': 3.1572064e-05, 'label': 'cat'}]
```
|
transformers/docs/source/ja/tasks/zero_shot_image_classification.md/0
|
{
"file_path": "transformers/docs/source/ja/tasks/zero_shot_image_classification.md",
"repo_id": "transformers",
"token_count": 2709
}
| 42 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 어텐션 메커니즘[[attention_mechanisms]]
대부분의 트랜스포머 모델은 정방행렬인 전체 어텐션을 사용합니다.
하지만 이는 긴 텍스트를 다룰 때는 큰 계산 병목 현상을 유발할 수 있습니다.
`Longformer`와 `Reformer`는 훈련 속도를 높이기 위해 어텐션 행렬의 희소 버전을 사용하여 효율을 높이려는 모델입니다.
## LSH 어텐션[[lsh_attention]]
[Reformer](model_doc/reformer)는 LSH(Locality Sensitive Hashing) 어텐션을 사용합니다. softmax(QK^t)에서는 행렬 QK^t의 (softmax 차원에서) 가장 큰 요소들만 유용한 기여를 할 것입니다.
따라서 각각의 쿼리 q에 대해, q와 가까운 키 k만 고려할 수 있습니다. 해시 함수는 q와 k가 가까운지 여부를 결정하는 데 사용됩니다.
어텐션 마스크는 현재 토큰을 마스킹하여 변경됩니다. 이 때 첫 번째 위치의 토큰은 제외합니다. 왜냐하면 쿼리와 키가 동일한 값을 갖게 되기 때문입니다(서로 매우 유사함).
해시는 약간의 무작위성을 가질 수 있으므로, 실제로는 여러 개의 해시 함수가 사용되고 (`n_rounds` 매개변수에 의해 결정됨) 그 후에 평균값을 취하게 됩니다.
## 지역 어텐션[[local_attention]]
[Longformer](model_doc/longformer)는 지역 어텐션을 사용합니다. 종종 특정 토큰에 대해 지역 컨텍스트(예: 왼쪽과 오른쪽에 있는 두 개의 토큰은 무엇인가요?)만으로도 작업을 수행하는데 충분합니다.
또한 작은 창(window)을 가진 어텐션 레이어를 쌓음으로써 마지막 레이어는 창 내의 토큰뿐만 아니라 더 많은 수의 토큰에 대한 수용 영역(receptive field)을 갖게 되어 전체 문장의 표현을 구축할 수 있습니다.
사전에 선택된 일부 입력 토큰들은 전역 어텐션을 받습니다. 이 몇 개의 토큰에 대해서는 어텐션 행렬이 모든 토큰에 접근할 수 있으며, 이 과정은 대칭적으로 이루어집니다.
다른 모든 토큰들은 로컬 창 내의 토큰들에 더해 해당 특정 토큰들에도 접근할 수 있습니다. 이는 논문의 Figure 2d에서 나타나며, 아래에 샘플 어텐션 마스크가 제시되어 있습니다:
<div class="flex justify-center">
<img scale="50 %" align="center" src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/local_attention_mask.png"/>
</div>
적은 파라미터의 어텐션 행렬을 사용하면 모델이 더 큰 시퀀스 입력 길이를 가질 수 있습니다.
## 다른 방법들[[other_tricks]]
### 축별 위치 인코딩[[axial_positional_encodings]]
[Reformer](model_doc/reformer)는 축별 위치 인코딩(axial positional encodings)을 사용합니다. 기존의 트랜스포머 모델에서는 위치 인코딩 행렬 E는 크기가 \\(l \times d\\)인 행렬이며,
여기서 \\(l\\)은 시퀀스 길이(sequence length)이고 \\(d\\)는 숨겨진 상태(hidden state)의 차원입니다. 매우 긴 텍스트의 경우, 이 행렬은 매우 크며 GPU 상에서 공간을 많이 차지할 수 있습니다.
이를 완화하기 위해, 축별 위치 인코딩은 큰 행렬 E를 두 개의 작은 행렬 E1과 E2로 분해합니다. 이때 E1의 크기는 \\(l_{1} \times d_{1}\\)이고, E2의 크기는 \\(l_{2} \times d_{2}\\)입니다.
이때 \\(l_{1} \times l_{2} = l\\)이고 \\(d_{1} + d_{2} = d\\)(길이에 대한 곱셈 연산을 사용하면 훨씬 작아집니다). E의 시간 단계 j에 대한 임베딩은 E1에서 시간 단계 \\(j \% l1\\)의 임베딩과 E2에서 시간 단계 \\(j // l1\\)의 임베딩을 연결하여 얻습니다.
|
transformers/docs/source/ko/attention.md/0
|
{
"file_path": "transformers/docs/source/ko/attention.md",
"repo_id": "transformers",
"token_count": 3070
}
| 43 |
<!--Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Trainer API를 사용한 하이퍼파라미터 탐색 [[hyperparameter-search-using-trainer-api]]
🤗 Transformers에서는 🤗 Transformers 모델을 학습시키는데 최적화된 [`Trainer`] 클래스를 제공하기 때문에, 사용자는 직접 훈련 루프를 작성할 필요 없이 더욱 간편하게 학습을 시킬 수 있습니다. 또한, [`Trainer`]는 하이퍼파라미터 탐색을 위한 API를 제공합니다. 이 문서에서 이 API를 활용하는 방법을 예시와 함께 보여드리겠습니다.
## 하이퍼파라미터 탐색 백엔드 [[hyperparameter-search-backend]]
[`Trainer`]는 현재 아래 4가지 하이퍼파라미터 탐색 백엔드를 지원합니다:
[optuna](https://optuna.org/)와 [sigopt](https://sigopt.com/), [raytune](https://docs.ray.io/en/latest/tune/index.html), [wandb](https://wandb.ai/site/sweeps) 입니다.
하이퍼파라미터 탐색 백엔드로 사용하기 전에 아래의 명령어를 사용하여 라이브러리들을 설치하세요.
```bash
pip install optuna/sigopt/wandb/ray[tune]
```
## 예제에서 하이퍼파라미터 탐색을 활성화하는 방법 [[how-to-enable-hyperparameter-search-in-example]]
하이퍼파라미터 탐색 공간을 정의하세요. 하이퍼파라미터 탐색 백엔드마다 서로 다른 형식이 필요합니다.
sigopt의 경우, 해당 [object_parameter](https://docs.sigopt.com/ai-module-api-references/api_reference/objects/object_parameter) 문서를 참조하여 아래와 같이 작성하세요:
```py
>>> def sigopt_hp_space(trial):
... return [
... {"bounds": {"min": 1e-6, "max": 1e-4}, "name": "learning_rate", "type": "double"},
... {
... "categorical_values": ["16", "32", "64", "128"],
... "name": "per_device_train_batch_size",
... "type": "categorical",
... },
... ]
```
optuna의 경우, 해당 [object_parameter](https://optuna.readthedocs.io/en/stable/tutorial/10_key_features/002_configurations.html#sphx-glr-tutorial-10-key-features-002-configurations-py) 문서를 참조하여 아래와 같이 작성하세요:
```py
>>> def optuna_hp_space(trial):
... return {
... "learning_rate": trial.suggest_float("learning_rate", 1e-6, 1e-4, log=True),
... "per_device_train_batch_size": trial.suggest_categorical("per_device_train_batch_size", [16, 32, 64, 128]),
... }
```
raytune의 경우, 해당 [object_parameter](https://docs.ray.io/en/latest/tune/api/search_space.html) 문서를 참조하여 아래와 같이 작성하세요:
```py
>>> def ray_hp_space(trial):
... return {
... "learning_rate": tune.loguniform(1e-6, 1e-4),
... "per_device_train_batch_size": tune.choice([16, 32, 64, 128]),
... }
```
wandb의 경우, 해당 [object_parameter](https://docs.wandb.ai/guides/sweeps/configuration) 문서를 참조하여 아래와 같이 작성하세요:
```py
>>> def wandb_hp_space(trial):
... return {
... "method": "random",
... "metric": {"name": "objective", "goal": "minimize"},
... "parameters": {
... "learning_rate": {"distribution": "uniform", "min": 1e-6, "max": 1e-4},
... "per_device_train_batch_size": {"values": [16, 32, 64, 128]},
... },
... }
```
`model_init` 함수를 정의하고 이를 [`Trainer`]에 전달하세요. 아래는 그 예시입니다.
```py
>>> def model_init(trial):
... return AutoModelForSequenceClassification.from_pretrained(
... model_args.model_name_or_path,
... from_tf=bool(".ckpt" in model_args.model_name_or_path),
... config=config,
... cache_dir=model_args.cache_dir,
... revision=model_args.model_revision,
... token=True if model_args.use_auth_token else None,
... )
```
아래와 같이 `model_init` 함수, 훈련 인수, 훈련 및 테스트 데이터셋, 그리고 평가 함수를 사용하여 [`Trainer`]를 생성하세요:
```py
>>> trainer = Trainer(
... model=None,
... args=training_args,
... train_dataset=small_train_dataset,
... eval_dataset=small_eval_dataset,
... compute_metrics=compute_metrics,
... processing_class=tokenizer,
... model_init=model_init,
... data_collator=data_collator,
... )
```
하이퍼파라미터 탐색을 호출하고, 최적의 시험 매개변수를 가져오세요. 백엔드는 `"optuna"`/`"sigopt"`/`"wandb"`/`"ray"` 중에서 선택할 수 있습니다. 방향은 `"minimize"` 또는 `"maximize"` 중 선택하며, 목표를 최소화할 것인지 최대화할 것인지를 결정합니다.
자신만의 compute_objective 함수를 정의할 수 있습니다. 만약 이 함수를 정의하지 않으면, 기본 compute_objective가 호출되고, f1과 같은 평가 지표의 합이 목푯값으로 반환됩니다.
```py
>>> best_trial = trainer.hyperparameter_search(
... direction="maximize",
... backend="optuna",
... hp_space=optuna_hp_space,
... n_trials=20,
... compute_objective=compute_objective,
... )
```
## DDP 미세 조정을 위한 하이퍼파라미터 탐색 [[hyperparameter-search-for-ddp-finetune]]
현재, DDP(Distributed Data Parallelism; 분산 데이터 병렬처리)를 위한 하이퍼파라미터 탐색은 optuna와 sigopt에서 가능합니다. 최상위 프로세스가 하이퍼파라미터 탐색 과정을 시작하고 그 결과를 다른 프로세스에 전달합니다.
|
transformers/docs/source/ko/hpo_train.md/0
|
{
"file_path": "transformers/docs/source/ko/hpo_train.md",
"repo_id": "transformers",
"token_count": 3520
}
| 44 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 에이전트 & 도구 [[agents-tools]]
<Tip warning={true}>
Transformers Agent는 실험 중인 API이므로 언제든지 변경될 수 있습니다.
API나 기반 모델이 자주 업데이트되므로, 에이전트가 제공하는 결과물은 달라질 수 있습니다.
</Tip>
에이전트와 도구에 대해 더 알아보려면 [소개 가이드](../transformers_agents)를 꼭 읽어보세요.
이 페이지에는 기본 클래스에 대한 API 문서가 포함되어 있습니다.
## 에이전트 [[agents]]
우리는 기본 [`Agent`] 클래스를 기반으로 두 가지 유형의 에이전트를 제공합니다:
- [`CodeAgent`]는 한 번에 동작합니다. 작업을 해결하기 위해 코드를 생성한 다음, 바로 실행합니다.
- [`ReactAgent`]는 단계별로 동작하며, 각 단계는 하나의 생각, 하나의 도구 호출 및 실행으로 구성됩니다. 이 에이전트에는 두 가지 클래스가 있습니다:
- [`ReactJsonAgent`]는 도구 호출을 JSON으로 작성합니다.
- [`ReactCodeAgent`]는 도구 호출을 Python 코드로 작성합니다.
### Agent [[agent]]
[[autodoc]] Agent
### CodeAgent [[codeagent]]
[[autodoc]] CodeAgent
### React agents [[react-agents]]
[[autodoc]] ReactAgent
[[autodoc]] ReactJsonAgent
[[autodoc]] ReactCodeAgent
## Tools [[tools]]
### load_tool [[loadtool]]
[[autodoc]] load_tool
### Tool [[tool]]
[[autodoc]] Tool
### Toolbox [[toolbox]]
[[autodoc]] Toolbox
### PipelineTool [[pipelinetool]]
[[autodoc]] PipelineTool
### launch_gradio_demo [[launchgradiodemo]]
[[autodoc]] launch_gradio_demo
### ToolCollection [[toolcollection]]
[[autodoc]] ToolCollection
## 엔진 [[engines]]
에이전트 프레임워크에서 사용할 수 있는 엔진을 자유롭게 만들고 사용할 수 있습니다.
이 엔진들은 다음과 같은 사양을 가지고 있습니다:
1. 입력(`List[Dict[str, str]]`)에 대한 [메시지 형식](../chat_templating.md)을 따르고 문자열을 반환해야 합니다.
2. 인수 `stop_sequences`에 시퀀스가 전달되기 *전에* 출력을 생성하는 것을 중지해야 합니다.
### HfApiEngine [[HfApiEngine]]
편의를 위해, 위의 사항을 구현하고 대규모 언어 모델 실행을 위해 추론 엔드포인트를 사용하는 `HfApiEngine`을 추가했습니다.
```python
>>> from transformers import HfApiEngine
>>> messages = [
... {"role": "user", "content": "Hello, how are you?"},
... {"role": "assistant", "content": "I'm doing great. How can I help you today?"},
... {"role": "user", "content": "No need to help, take it easy."},
... ]
>>> HfApiEngine()(messages, stop_sequences=["conversation"])
"That's very kind of you to say! It's always nice to have a relaxed "
```
[[autodoc]] HfApiEngine
## 에이전트 유형 [[agent-types]]
에이전트는 도구 간의 모든 유형의 객체를 처리할 수 있습니다; 도구는 완전히 멀티모달이므로 텍스트, 이미지, 오디오, 비디오 등 다양한 유형을 수락하고 반환할 수 있습니다.
도구 간의 호환성을 높이고 ipython (jupyter, colab, ipython 노트북, ...)에서 이러한
반환 값을 올바르게 렌더링하기 위해 이러한 유형을 중심으로 래퍼 클래스를
구현합니다.
래핑된 객체는 처음과 동일하게 작동해야 합니다; 텍스트 객체는 여전히 문자열로 작동해야 하며,
이미지 객체는 여전히 `PIL.Image`로 작동해야 합니다.
이러한 유형에는 세 가지 특정 목적이 있습니다:
- `to_raw`를 호출하면 기본 객체가 반환되어야 합니다.
- `to_string`을 호출하면 객체가 문자열로 반환되어야 합니다:
`AgentText`의 경우 문자열이 될 수 있지만, 다른 경우에는 객체의 직렬화된 버전의 경로일 수 있습니다.
- ipython 커널에서 표시할 때 객체가 올바르게 표시되어야 합니다.
### AgentText [[agenttext]]
[[autodoc]] transformers.agents.agent_types.AgentText
### AgentImage [[agentimage]]
[[autodoc]] transformers.agents.agent_types.AgentImage
### AgentAudio [[agentaudio]]
[[autodoc]] transformers.agents.agent_types.AgentAudio
|
transformers/docs/source/ko/main_classes/agent.md/0
|
{
"file_path": "transformers/docs/source/ko/main_classes/agent.md",
"repo_id": "transformers",
"token_count": 2949
}
| 45 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Autoformer[[autoformer]]
## 개요[[overview]]
The Autoformer 모델은 Haixu Wu, Jiehui Xu, Jianmin Wang, Mingsheng Long가 제안한 [오토포머: 장기 시계열 예측을 위한 자기상관 분해 트랜스포머](https://arxiv.org/abs/2106.13008) 라는 논문에서 소개 되었습니다.
이 모델은 트랜스포머를 심층 분해 아키텍처로 확장하여, 예측 과정에서 추세와 계절성 요소를 점진적으로 분해할 수 있습니다.
해당 논문의 초록입니다:
*예측 시간을 연장하는 것은 극한 기상 조기 경보 및 장기 에너지 소비 계획과 같은 실제 응용 프로그램에 중요한 요구 사항입니다. 본 논문은 시계열의 장기 예측 문제를 연구합니다. 기존의 트랜스포머 기반 모델들은 장거리 종속성을 발견하기 위해 다양한 셀프 어텐션 메커니즘을 채택합니다. 그러나 장기 미래의 복잡한 시간적 패턴으로 인해 모델이 신뢰할 수 있는 종속성을 찾기 어렵습니다. 또한, 트랜스포머는 긴 시계열의 효율성을 위해 점별 셀프 어텐션의 희소 버전을 채택해야 하므로 정보 활용의 병목 현상이 발생합니다. 우리는 트랜스포머를 넘어서 자기상관 메커니즘을 갖춘 새로운 분해 아키텍처인 Autoformer를 설계했습니다. 우리는 시계열 분해의 전처리 관행을 깨고 이를 심층 모델의 기본 내부 블록으로 혁신했습니다. 이 설계는 Autoformer에 복잡한 시계열에 대한 점진적 분해 능력을 부여합니다. 또한, 확률 과정 이론에서 영감을 받아 시계열의 주기성을 기반으로 자기상관 메커니즘을 설계했으며, 이는 하위 시계열 수준에서 종속성 발견과 표현 집계를 수행합니다. 자기상관은 효율성과 정확도 면에서 셀프 어텐션를 능가합니다. 장기 예측에서 Autoformer는 에너지, 교통, 경제, 날씨, 질병 등 5가지 실용적 응용 분야를 포괄하는 6개 벤치마크에서 38%의 상대적 개선으로 최첨단 정확도를 달성했습니다.*
이 모델은 [elisim](https://huggingface.co/elisim)과 [kashif](https://huggingface.co/kashif)에 의해 기여 되었습니다.
원본 코드는 [이곳](https://github.com/thuml/Autoformer)에서 확인할 수 있습니다.
## 자료[[resources]]
시작하는 데 도움이 되는 Hugging Face와 community 자료 목록(🌎로 표시됨) 입니다. 여기에 포함될 자료를 제출하고 싶으시다면 PR(Pull Request)를 열어주세요. 리뷰 해드리겠습니다! 자료는 기존 자료를 복제하는 대신 새로운 내용을 담고 있어야 합니다.
- HuggingFace 블로그에서 Autoformer 포스트를 확인하세요: [네, 그렇습니다, 트랜스포머는 시계열 예측에 효과적입니다(+ Autoformer)](https://huggingface.co/blog/autoformer)
## AutoformerConfig[[transformers.AutoformerConfig]]
[[autodoc]] AutoformerConfig
## AutoformerModel[[transformers.AutoformerModel]]
[[autodoc]] AutoformerModel
- forward
## AutoformerForPrediction[[transformers.AutoformerForPrediction]]
[[autodoc]] AutoformerForPrediction
- forward
|
transformers/docs/source/ko/model_doc/autoformer.md/0
|
{
"file_path": "transformers/docs/source/ko/model_doc/autoformer.md",
"repo_id": "transformers",
"token_count": 2603
}
| 46 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# DeBERTa[[deberta]]
## 개요[[overview]]
DeBERTa 모델은 Pengcheng He, Xiaodong Liu, Jianfeng Gao, Weizhu Chen이 작성한 [DeBERTa: 분리된 어텐션을 활용한 디코딩 강화 BERT](https://arxiv.org/abs/2006.03654)이라는 논문에서 제안되었습니다. 이 모델은 2018년 Google이 발표한 BERT 모델과 2019년 Facebook이 발표한 RoBERTa 모델을 기반으로 합니다.
DeBERTa는 RoBERTa에서 사용된 데이터의 절반만을 사용하여 분리된(disentangled) 어텐션과 향상된 마스크 디코더 학습을 통해 RoBERTa를 개선했습니다.
논문의 초록은 다음과 같습니다:
*사전 학습된 신경망 언어 모델의 최근 발전은 많은 자연어 처리(NLP) 작업의 성능을 크게 향상시켰습니다. 본 논문에서는 두 가지 새로운 기술을 사용하여 BERT와 RoBERTa 모델을 개선한 새로운 모델 구조인 DeBERTa를 제안합니다. 첫 번째는 분리된 어텐션 메커니즘으로, 각 단어가 내용과 위치를 각각 인코딩하는 두 개의 벡터로 표현되며, 단어들 간의 어텐션 가중치는 내용과 상대적 위치에 대한 분리된 행렬을 사용하여 계산됩니다. 두 번째로, 모델 사전 학습을 위해 마스킹된 토큰을 예측하는 출력 소프트맥스 층을 대체하는 향상된 마스크 디코더가 사용됩니다. 우리는 이 두 가지 기술이 모델 사전 학습의 효율성과 다운스트림 작업의 성능을 크게 향상시킨다는 것을 보여줍니다. RoBERTa-Large와 비교했을 때, 절반의 학습 데이터로 학습된 DeBERTa 모델은 광범위한 NLP 작업에서 일관되게 더 나은 성능을 보여주며, MNLI에서 +0.9%(90.2% vs 91.1%), SQuAD v2.0에서 +2.3%(88.4% vs 90.7%), RACE에서 +3.6%(83.2% vs 86.8%)의 성능 향상을 달성했습니다. DeBERTa 코드와 사전 학습된 모델은 https://github.com/microsoft/DeBERTa 에서 공개될 예정입니다.*
[DeBERTa](https://huggingface.co/DeBERTa) 모델의 텐서플로 2.0 구현은 [kamalkraj](https://huggingface.co/kamalkraj)가 기여했습니다. 원본 코드는 [이곳](https://github.com/microsoft/DeBERTa)에서 확인하실 수 있습니다.
## 리소스[[resources]]
DeBERTa를 시작하는 데 도움이 되는 Hugging Face와 community 자료 목록(🌎로 표시됨) 입니다. 여기에 포함될 자료를 제출하고 싶으시다면 PR(Pull Request)를 열어주세요. 리뷰해 드리겠습니다! 자료는 기존 자료를 복제하는 대신 새로운 내용을 담고 있어야 합니다.
<PipelineTag pipeline="text-classification"/>
- DeBERTa와 [DeepSpeed를 이용해서 대형 모델 학습을 가속시키는](https://huggingface.co/blog/accelerate-deepspeed) 방법에 대한 포스트.
- DeBERTa와 [머신러닝으로 한층 향상된 고객 서비스](https://huggingface.co/blog/supercharge-customer-service-with-machine-learning)에 대한 블로그 포스트.
- [`DebertaForSequenceClassification`]는 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification.ipynb)에서 지원됩니다.
- [`TFDebertaForSequenceClassification`]는 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/text-classification)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/text_classification-tf.ipynb)에서 지원됩니다.
- [텍스트 분류 작업 가이드](../tasks/sequence_classification)
<PipelineTag pipeline="token-classification" />
- [`DebertaForTokenClassification`]는 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/pytorch/token-classification)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification.ipynb)에서 지원합니다.
- [`TFDebertaForTokenClassification`]는 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/token-classification)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/token_classification-tf.ipynb)에서 지원합니다.
- 🤗 Hugging Face 코스의 [토큰 분류](https://huggingface.co/course/chapter7/2?fw=pt) 장.
- 🤗 Hugging Face 코스의 [BPE(Byte-Pair Encoding) 토큰화](https://huggingface.co/course/chapter6/5?fw=pt) 장.
- [토큰 분류 작업 가이드](../tasks/token_classification)
<PipelineTag pipeline="fill-mask"/>
- [`DebertaForMaskedLM`]는 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling#robertabertdistilbert-and-masked-language-modeling)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling.ipynb)에서 지원합니다.
- [`TFDebertaForMaskedLM`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/language-modeling#run_mlmpy)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/language_modeling-tf.ipynb)에서 지원합니다.
- 🤗 Hugging Face 코스의 [마스크 언어 모델링](https://huggingface.co/course/chapter7/3?fw=pt) 장.
- [마스크 언어 모델링 작업 가이드](../tasks/masked_language_modeling)
<PipelineTag pipeline="question-answering"/>
- [`DebertaForQuestionAnswering`]은 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/pytorch/question-answering)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering.ipynb)에서 지원합니다.
- [`TFDebertaForQuestionAnswering`]는 이 [예제 스크립트](https://github.com/huggingface/transformers/tree/main/examples/tensorflow/question-answering)와 [노트북](https://colab.research.google.com/github/huggingface/notebooks/blob/main/examples/question_answering-tf.ipynb)에서 지원합니다.
- 🤗 Hugging Face 코스의 [질의응답(Question answering)](https://huggingface.co/course/chapter7/7?fw=pt) 장.
- [질의응답 작업 가이드](../tasks/question_answering)
## DebertaConfig[[transformers.DebertaConfig]]
[[autodoc]] DebertaConfig
## DebertaTokenizer[[transformers.DebertaTokenizer]]
[[autodoc]] DebertaTokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## DebertaTokenizerFast[[transformers.DebertaTokenizerFast]]
[[autodoc]] DebertaTokenizerFast
- build_inputs_with_special_tokens
- create_token_type_ids_from_sequences
<frameworkcontent>
<pt>
## DebertaModel[[transformers.DebertaModel]]
[[autodoc]] DebertaModel
- forward
## DebertaPreTrainedModel[[transformers.DebertaPreTrainedModel]]
[[autodoc]] DebertaPreTrainedModel
## DebertaForMaskedLM[[transformers.DebertaForMaskedLM]]
[[autodoc]] DebertaForMaskedLM
- forward
## DebertaForSequenceClassification[[transformers.DebertaForSequenceClassification]]
[[autodoc]] DebertaForSequenceClassification
- forward
## DebertaForTokenClassification[[transformers.DebertaForTokenClassification]]
[[autodoc]] DebertaForTokenClassification
- forward
## DebertaForQuestionAnswering[[transformers.DebertaForQuestionAnswering]]
[[autodoc]] DebertaForQuestionAnswering
- forward
</pt>
<tf>
## TFDebertaModel[[transformers.TFDebertaModel]]
[[autodoc]] TFDebertaModel
- call
## TFDebertaPreTrainedModel[[transformers.TFDebertaPreTrainedModel]]
[[autodoc]] TFDebertaPreTrainedModel
- call
## TFDebertaForMaskedLM[[transformers.TFDebertaForMaskedLM]]
[[autodoc]] TFDebertaForMaskedLM
- call
## TFDebertaForSequenceClassification[[transformers.TFDebertaForSequenceClassification]]
[[autodoc]] TFDebertaForSequenceClassification
- call
## TFDebertaForTokenClassification[[transformers.TFDebertaForTokenClassification]]
[[autodoc]] TFDebertaForTokenClassification
- call
## TFDebertaForQuestionAnswering[[transformers.TFDebertaForQuestionAnswering]]
[[autodoc]] TFDebertaForQuestionAnswering
- call
</tf>
</frameworkcontent>
|
transformers/docs/source/ko/model_doc/deberta.md/0
|
{
"file_path": "transformers/docs/source/ko/model_doc/deberta.md",
"repo_id": "transformers",
"token_count": 4741
}
| 47 |
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# PaliGemma[[paligemma]]
## 개요[[overview]]
PaliGemma 모델은 구글이 제안한 [PaliGemma – Google의 최첨단 오픈 비전 언어 모델](https://huggingface.co/blog/paligemma)에서 소개 되었습니다. PaliGemma는 [SigLIP](siglip) 비전 인코더와 [Gemma](gemma) 언어 인코더로 구성된 3B 규모의 비전-언어 모델로, 두 인코더가 멀티모달 선형 프로젝션으로 연결되어 있습니다. 이 모델은 이미지를 고정된 수의 VIT토큰으로 분할하고 이를 선택적 프롬프트 앞에 추가 하며, 모든 이미지 토큰과 입력 텍스트 토큰에 대해 전체 블록 어텐션을 사용하는 특징을 가지고 있습니다.
PaliGemma는 224x224, 448x448, 896x896의 3가지 해상도로 제공되며, 3개의 기본 모델과 55개의 다양한 작업에 대해 미세 조정된 버전, 그리고 2개의 혼합 모델이 있습니다.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/blog/paligemma/paligemma_arch.png"
alt="drawing" width="600"/>
<small> PaliGemma 아키텍처 <a href="https://huggingface.co/blog/paligemma">블로그 포스트.</a> </small>
이 모델은 [Molbap](https://huggingface.co/Molbap)에 의해 기여 되었습니다.
## 사용 팁[[usage-tips]]
PaliGemma의 추론은 다음처럼 수행됩니다:
```python
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
model_id = "google/paligemma-3b-mix-224"
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
prompt = "What is on the flower?"
image_file = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg?download=true"
raw_image = Image.open(requests.get(image_file, stream=True).raw)
inputs = processor(raw_image, prompt, return_tensors="pt")
output = model.generate(**inputs, max_new_tokens=20)
print(processor.decode(output[0], skip_special_tokens=True)[len(prompt):])
```
- PaliGemma는 대화용으로 설계되지 않았으며, 특정 사용 사례에 대해 미세 조정할 때 가장 잘 작동합니다. PaliGemma를 미세 조정할 수 있는 몇 가지 하위 작업에는 이미지 캡셔닝, 시각적 질문 답변(VQA), 오브젝트 디텍션, 참조 표현 분할 및 문서 이해가 포함됩니다.
- 모델에 필요한 이미지, 텍스트 및 선택적 레이블을 준비하는데 `PaliGemmaProcessor`를 사용할 수 있습니다. PaliGemma 모델을 미세 조정할 때는, 프로세서에 `suffix`인자를 전달하여 다음 처럼 모델의 `labels`를 생성할 수 있습니다:
```python
prompt = "What is on the flower?"
answer = "a bee"
inputs = processor(images=raw_image, text=prompt, suffix=answer, return_tensors="pt")
```
## 자료[[resources]]
PaliGemma를 시작하는 데 도움이 되는 Hugging Face와 community 자료 목록(🌎로 표시됨) 입니다.여기에 포함될 자료를 제출하고 싶으시다면 PR(Pull Request)를 열어주세요. 리뷰 해드리겠습니다! 자료는 기존 자료를 복제하는 대신 새로운 내용을 담고 있어야 합니다.
- PaliGemma의 모든 기능을 소개하는 블로그 포스트는 [이곳](https://huggingface.co/blog/paligemma)에서 찾을 수 있습니다. 🌎
- Trainer API를 사용하여 VQA(Visual Question Answering)를 위해 PaliGemma를 미세 조정하는 방법과 추론에 대한 데모 노트북은 [이곳](https://github.com/huggingface/notebooks/tree/main/examples/paligemma)에서 찾을 수 있습니다. 🌎
- 사용자 정의 데이터셋(영수증 이미지 -> JSON)에 대해 PaliGemma를 미세 조정하는 방법과 추론에 대한 데모 노트북은 [이곳](https://github.com/NielsRogge/Transformers-Tutorials/tree/master/PaliGemma)에서 찾을 수 있습니다. 🌎
## PaliGemmaConfig[[transformers.PaliGemmaConfig]]
[[autodoc]] PaliGemmaConfig
## PaliGemmaProcessor[[transformers.PaliGemmaProcessor]]
[[autodoc]] PaliGemmaProcessor
## PaliGemmaForConditionalGeneration[[transformers.PaliGemmaForConditionalGeneration]]
[[autodoc]] PaliGemmaForConditionalGeneration
- forward
|
transformers/docs/source/ko/model_doc/paligemma.md/0
|
{
"file_path": "transformers/docs/source/ko/model_doc/paligemma.md",
"repo_id": "transformers",
"token_count": 2814
}
| 48 |
# 모듈식 트랜스포머 [[modular-transformers]]
`transformers`는 opinionated(자기 의견이 강한) 프레임워크이며, 우리의 철학은 다음의 [개념 가이드](./philosophy)에 정의되어 있습니다.
이 철학의 핵심은 라이브러리의 [단일 모델, 단일 파일](https://huggingface.co/blog/transformers-design-philosophy) 측면에서 잘 나타납니다. 이 구성 요소의 단점은 파일 간에 구성 요소의 상속과 임포트 가능성을 제한한다는 것입니다.
그 결과, 모델 구성 요소가 여러 파일에 걸쳐 반복되는 경향이 있습니다. `transformers`에는 모델 수만큼 많은 어텐션 레이어가 정의되어 있으며, 그 중 상당수는 서로 동일합니다. 안타깝게도, 수정과 변경 사항이 코드의 특정 부분에 적용되면서 독립적인 구현들이 서로 분기되는 경향이 있습니다.
이 문제를 적절히 해결하기 위해, 우리는 라이브러리 전체에 "복사본"의 개념을 도입했습니다. 코드가 다른 코드의 복사본임을 나타내는 주석을 추가함으로써, CI 및 로컬 명령을 통해 복사본이 분기되지 않도록 강제할 수 있습니다. 그러나 복잡성이 낮더라도 이는 종종 매우 번거로운 작업입니다.
마지막으로, 이 방식은 우리가 줄이고자 하는 상당한 오버헤드를 모델 기여 과정에 추가하게 됩니다. 이 접근 방식은 종종 모델 기여에 모델링 코드(~1,000줄), 프로세서(~500줄), 테스트, 문서 등을 추가해야 합니다. 모델 기여 PR은 대부분 3,000~5,000줄 이상의 코드를 추가하며, 이 중 많은 부분이 보일러플레이트(boilerplate) 코드입니다.
이는 기여의 장벽을 높이며, 모듈식 트랜스포머를 통해 우리는 이러한 장벽을 훨씬 더 수용 가능한 수준으로 낮추고자 합니다.
## 무엇인가요 [[what-is-it]]
모듈식 트랜스포머는 모델 폴더에 "모듈식" 파일의 개념을 도입합니다. 이 모듈식 파일은 일반적으로 모델링/프로세싱 파일에서 허용되지 않는 코드를 허용하며, 이는 인접한 모델로부터의 임포트와 클래스 간의 상속을 허용합니다.
이 모듈식 파일은 각각의 별도의 모듈에서 정의되었을 모델, 프로세서 및 구성 클래스를 정의합니다.
마지막으로, 이 기능은 모듈식 파일을 "풀어내어" 단일 모델, 단일 파일 디렉토리 구조로 변환하는 새로운 `linter`를 도입합니다. 이 파일들은 스크립트가 실행될 때마다 자동으로 생성되며, 기여해야 할 내용을 모듈식 파일, 그리고 기여된 모델과 다른 모델 간의 차이점으로만 줄여줍니다.
모델 사용자는 단일 파일 인터페이스를 임포트하고 사용하게 되므로, 여기에는 변화가 없을 것입니다. 이를 통해 간단한 기여를 가능하게 하면서도 우리의 철학을 유지하는 양쪽의 장점을 결합하고자 합니다.
따라서 이는 `# Copied from` 마커의 대체품이며, 이전에 기여된 모델은 앞으로 몇 달 내에 새로운 모듈식 트랜스포머 형식으로 전환될 예정입니다.
### 자세한 내용 [[details]]
“linter”는 상속 구조를 풀어서 모듈화된 파일로부터 모든 단일 파일을 생성하며, Python 사용자들에게는 그 과정이 보이지 않도록 동작합니다. 현재 linter는 **단일** 수준의 상속만을 평탄화합니다.
예를 들어:
- 구성 클래스가 다른 클래스를 상속하고 인자를 추가/삭제하는 경우, 생성된 파일은 직접 참조(추가의 경우)하거나 완전히 제거합니다(삭제의 경우).
- 클래스가 다른 클래스를 상속하는 경우, 예를 들어 class GemmaModel(LlamaModel): 의 경우, 종속성이 자동으로 추론됩니다. 모든 서브모듈은 슈퍼클래스로부터 자동으로 추론됩니다.
토크나이저, 이미지 프로세서, 모델, 구성 등을 이 `modular` 파일에 모두 작성할 수 있으며, 해당 파일들이 자동으로 생성됩니다.
### 시행 [[enforcement]]
[TODO] 우리는 새로운 테스트를 도입하여 생성된 콘텐츠가 `modular_xxxx.py`에 있는 내용과 일치하는지 확인합니다.
### 예시 [[examples]]
여기 BERT와 RoBERTa의 간단한 예가 있습니다. 두 모델은 밀접하게 관련되어 있으며, 모델 구현의 차이는 임베딩 레이어의 변경에서만 있습니다.
모델을 완전히 재정의하는 대신, `modular_roberta.py` 파일은 모델링 및 구성 클래스를 위해 다음과 같이 생겼습니다. (예시를 위해, 토크나이저는 매우 다르므로 일단 무시합니다.)
```python
from torch import nn
from ..bert.configuration_bert import BertConfig
from ..bert.modeling_bert import (
BertModel,
BertEmbeddings,
BertForMaskedLM
)
# RoBERTa 구성은 BERT의 구성과 동일합니다
class RobertaConfig(BertConfig):
model_type = 'roberta'
# 여기서 패딩 ID 차이를 강조하기 위해 임베딩을 재정의하고, 위치 임베딩을 재정의합니다
class RobertaEmbeddings(BertEmbeddings):
def __init__(self, config):
super().__init__(config())
self.padding_idx = config.pad_token_id
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
# RoBERTa 모델은 임베딩 레이어를 제외하면 BERT 모델과 동일합니다.
# 위에서 임베딩을 재정의했으므로, 여기서는 추가 작업이 필요 없습니다
class RobertaModel(BertModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = RobertaEmbeddings(config)
# 헤드는 이제 내부에서 올바른 `RobertaModel`을 재정의하기만 하면 됩니다
class RobertaForMaskedLM(BertForMaskedLM):
def __init__(self, config):
super().__init__(config)
self.model = RobertaModel(config)
```
정의한 종속성을 사용하지 않으면 다음과 같은 오류가 발생합니다:
```bash
ValueError: You defined `RobertaEmbeddings` in the modular_roberta.py, it should be used
when you define `BertModel`, as it is one of it's direct dependencies. Make sure
you use it in the `__init__` function.
```
또한, 다음에서 예시 목록을 찾을 수 있습니다:
## 무엇이 아닌가요 [[what-it-is-not]]
(아직은?) 모델링 코드를 대체하는 것은 아닙니다. 그리고 여러분의 모델이 지금까지 존재했던 다른 어떤 것에도 기반하지 않는다면, 기존과 같이 `modeling` 파일을 추가할 수 있습니다.
|
transformers/docs/source/ko/modular_transformers.md/0
|
{
"file_path": "transformers/docs/source/ko/modular_transformers.md",
"repo_id": "transformers",
"token_count": 5200
}
| 49 |
<!--⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 웹 서버를 위한 파이프라인 사용하기[[using_pipelines_for_a_webserver]]
<Tip>
추론 엔진을 만드는 것은 복잡한 주제이며, "최선의" 솔루션은 문제 공간에 따라 달라질 가능성이 높습니다. CPU 또는 GPU를 사용하는지에 따라 다르고 낮은 지연 시간을 원하는지, 높은 처리량을 원하는지, 다양한 모델을 지원할 수 있길 원하는지, 하나의 특정 모델을 고도로 최적화하길 원하는지 등에 따라 달라집니다. 이 주제를 해결하는 방법에는 여러 가지가 있으므로, 이 장에서 제시하는 것은 처음 시도해 보기에 좋은 출발점일 수는 있지만, 이 장을 읽는 여러분이 필요로 하는 최적의 솔루션은 아닐 수 있습니다.
</Tip>
핵심적으로 이해해야 할 점은 [dataset](pipeline_tutorial#using-pipelines-on-a-dataset)를 다룰 때와 마찬가지로 반복자를 사용 가능하다는 것입니다. 왜냐하면, 웹 서버는 기본적으로 요청을 기다리고 들어오는 대로 처리하는 시스템이기 때문입니다.
보통 웹 서버는 다양한 요청을 동시에 다루기 위해 매우 다중화된 구조(멀티 스레딩, 비동기 등)를 지니고 있습니다. 반면에, 파이프라인(대부분 파이프라인 안에 있는 모델)은 병렬처리에 그다지 좋지 않습니다. 왜냐하면 파이프라인은 많은 RAM을 차지하기 때문입니다. 따라서, 파이프라인이 실행 중이거나 계산 집약적인 작업 중일 때 모든 사용 가능한 리소스를 제공하는 것이 가장 좋습니다.
이 문제를 우리는 웹 서버가 요청을 받고 보내는 가벼운 부하를 처리하고, 실제 작업을 처리하는 단일 스레드를 갖는 방법으로 해결할 것입니다. 이 예제는 `starlette` 라이브러리를 사용합니다.
실제 프레임워크는 중요하지 않지만, 다른 프레임워크를 사용하는 경우 동일한 효과를 보기 위해선 코드를 조정하거나 변경해야 할 수 있습니다.
`server.py`를 생성하세요:
```py
from starlette.applications import Starlette
from starlette.responses import JSONResponse
from starlette.routing import Route
from transformers import pipeline
import asyncio
async def homepage(request):
payload = await request.body()
string = payload.decode("utf-8")
response_q = asyncio.Queue()
await request.app.model_queue.put((string, response_q))
output = await response_q.get()
return JSONResponse(output)
async def server_loop(q):
pipe = pipeline(model="google-bert/bert-base-uncased")
while True:
(string, response_q) = await q.get()
out = pipe(string)
await response_q.put(out)
app = Starlette(
routes=[
Route("/", homepage, methods=["POST"]),
],
)
@app.on_event("startup")
async def startup_event():
q = asyncio.Queue()
app.model_queue = q
asyncio.create_task(server_loop(q))
```
이제 다음 명령어로 실행시킬 수 있습니다:
```bash
uvicorn server:app
```
이제 쿼리를 날려볼 수 있습니다:
```bash
curl -X POST -d "test [MASK]" http://localhost:8000/
#[{"score":0.7742936015129089,"token":1012,"token_str":".","sequence":"test."},...]
```
자, 이제 웹 서버를 만드는 방법에 대한 좋은 개념을 알게 되었습니다!
중요한 점은 모델을 **한 번만** 가져온다는 것입니다. 따라서 웹 서버에는 모델의 사본이 없습니다. 이런 방식은 불필요한 RAM이 사용되지 않습니다. 그런 다음 큐 메커니즘을 사용하면, 다음과 같은
동적 배치를 사용하기 위해 추론 전 단계에 몇 개의 항목을 축적하는 것과 같은 멋진 작업을 할 수 있습니다:
<Tip warning={true}>
코드는 의도적으로 가독성을 위해 의사 코드처럼 작성되었습니다!
아래 코드를 작동시키기 전에 시스템 자원이 충분한지 확인하세요!
</Tip>
```py
(string, rq) = await q.get()
strings = []
queues = []
while True:
try:
(string, rq) = await asyncio.wait_for(q.get(), timeout=0.001) # 1ms
except asyncio.exceptions.TimeoutError:
break
strings.append(string)
queues.append(rq)
strings
outs = pipe(strings, batch_size=len(strings))
for rq, out in zip(queues, outs):
await rq.put(out)
```
다시 말씀 드리자면, 제안된 코드는 가독성을 위해 최적화되었으며, 최상의 코드는 아닙니다.
첫째, 배치 크기 제한이 없으며 이는 일반적으로 좋은 방식이 아닙니다.
둘째, 모든 큐 가져오기에서 타임아웃이 재설정되므로 추론을 실행하기 전에 1ms보다 훨씬 오래 기다릴 수 있습니다(첫 번째 요청을 그만큼 지연시킴).
단일 1ms 길이의 데드라인을 두는 편이 더 좋습니다.
이 방식을 사용하면 큐가 비어 있어도 항상 1ms를 기다리게 될 것입니다.
큐에 아무것도 없을 때 추론을 원하는 경우에는 최선의 방법이 아닐 수 있습니다.
하지만 배치 작업이 사용례에 따라 정말로 중요하다면 의미가 있을 수도 있습니다.
다시 말하지만, 최상의 솔루션은 없습니다.
## 고려해야 할 몇 가지 사항[[few_things_you_might want_to_consider]]
### 에러 확인[[error_checking]]
프로덕션 환경에서는 문제가 발생할 여지가 많습니다.
메모리가 모자라거나, 공간이 부족하거나, 모델을 가져오는 데에 실패하거나, 쿼리가 잘못되었거나, 쿼리는 정확해도 모델 설정이 잘못되어 실행에 실패하는 등등 많은 경우가 존재합니다.
일반적으로 서버가 사용자에게 오류를 출력하는 것이 좋으므로
오류를 표시하기 위해 `try...except` 문을 많이 추가하는 것이 좋습니다.
하지만 보안 상황에 따라 모든 오류를 표시하는 것은 보안상 위험할 수도 있다는 점을 명심해야합니다.
### 서킷 브레이킹[[circuit_breaking]]
웹 서버는 일반적으로 서킷 브레이킹을 수행할 때 더 나은 상황에 직면합니다.
즉, 이는 서버가 쿼리를 무기한 기다리는 대신 과부하 상태일 때 적절한 오류를 반환하는 것을 의미합니다.
서버가 매우 오랜 시간 동안 대기하거나 적당한 시간이 지난 후에 504 에러를 반환하는 대신 503 에러를 빠르게 반환하게 하는 것입니다.
제안된 코드에는 단일 큐가 있으므로 구현하기가 비교적 쉽습니다.
큐 크기를 확인하는 것은 웹 서버가 과부하 상항 하에 있을 때 에러를 반환하기 위한 가장 기초적인 작업입니다.
### 메인 쓰레드 차단[[blocking_the_main_thread]]
현재 PyTorch는 비동기 처리를 지원하지 않으며, 실행 중에는 메인 스레드가 차단됩니다.
따라서 PyTorch를 별도의 스레드/프로세스에서 실행하도록 강제하는 것이 좋습니다.
여기서는 이 작업이 수행되지 않았습니다. 왜냐하면 코드가 훨씬 더 복잡하기 때문입니다(주로 스레드, 비동기 처리, 큐가 서로 잘 맞지 않기 때문입니다).
하지만 궁극적으로는 같은 작업을 수행하는 것입니다.
단일 항목의 추론이 오래 걸린다면 (> 1초), 메인 쓰레드를 차단하는 것은 중요할 수 있습니다. 왜냐하면 이 경우 추론 중 모든 쿼리는 오류를 받기 전에 1초를 기다려야 하기 때문입니다.
### 동적 배치[[dynamic_batching]]
일반적으로, 배치 처리가 1개 항목을 한 번에 전달하는 것에 비해 반드시 성능 향상이 있는 것은 아닙니다(자세한 내용은 [`batching details`](./main_classes/pipelines#pipeline-batching)을 참고하세요).
하지만 올바른 설정에서 사용하면 매우 효과적일 수 있습니다.
API에는 기본적으로 속도 저하의 가능성이 매우 높기 때문에 동적 배치 처리가 없습니다.
하지만 매우 큰 모델인 BLOOM 추론의 경우 동적 배치 처리는 모든 사람에게 적절한 경험을 제공하는 데 **필수**입니다.
|
transformers/docs/source/ko/pipeline_webserver.md/0
|
{
"file_path": "transformers/docs/source/ko/pipeline_webserver.md",
"repo_id": "transformers",
"token_count": 6178
}
| 50 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# IDEFICS를 이용한 이미지 작업[[image-tasks-with-idefics]]
[[open-in-colab]]
개별 작업은 특화된 모델을 미세 조정하여 처리할 수 있지만, 최근 등장하여 인기를 얻고 있는 방식은 대규모 모델을 미세 조정 없이 다양한 작업에 사용하는 것입니다. 예를 들어, 대규모 언어 모델은 요약, 번역, 분류 등과 같은 자연어처리 (NLP) 작업을 처리할 수 있습니다. 이 접근 방식은 텍스트와 같은 단일 모달리티에 국한되지 않으며, 이 가이드에서는 IDEFICS라는 대규모 멀티모달 모델을 사용하여 이미지-텍스트 작업을 다루는 방법을 설명합니다.
[IDEFICS](../model_doc/idefics)는 [Flamingo](https://huggingface.co/papers/2204.14198)를 기반으로 하는 오픈 액세스 비전 및 언어 모델로, DeepMind에서 처음 개발한 최신 시각 언어 모델입니다. 이 모델은 임의의 이미지 및 텍스트 입력 시퀀스를 받아 일관성 있는 텍스트를 출력으로 생성합니다. 이미지에 대한 질문에 답변하고, 시각적인 내용을 설명하며, 여러 이미지에 기반한 이야기를 생성하는 등 다양한 작업을 수행할 수 있습니다. IDEFICS는 [800억 파라미터](https://huggingface.co/HuggingFaceM4/idefics-80b)와 [90억 파라미터](https://huggingface.co/HuggingFaceM4/idefics-9b) 두 가지 버전을 제공하며, 두 버전 모두 🤗 Hub에서 이용할 수 있습니다. 각 버전에는 대화형 사용 사례에 맞게 미세 조정된 버전도 있습니다.
이 모델은 매우 다재다능하며 광범위한 이미지 및 멀티모달 작업에 사용될 수 있습니다. 그러나 대규모 모델이기 때문에 상당한 컴퓨팅 자원과 인프라가 필요합니다. 각 개별 작업에 특화된 모델을 미세 조정하는 것보다 모델을 그대로 사용하는 것이 더 적합한지는 사용자가 판단해야 합니다.
이 가이드에서는 다음을 배우게 됩니다:
- [IDEFICS 로드하기](#loading-the-model) 및 [양자화된 버전의 모델 로드하기](#quantized-model)
- IDEFICS를 사용하여:
- [이미지 캡셔닝](#image-captioning)
- [프롬프트 이미지 캡셔닝](#prompted-image-captioning)
- [퓨샷 프롬프트](#few-shot-prompting)
- [시각적 질의 응답](#visual-question-answering)
- [이미지 분류](#image-classification)
- [이미지 기반 텍스트 생성](#image-guided-text-generation)
- [배치 모드에서 추론 실행](#running-inference-in-batch-mode)
- [대화형 사용을 위한 IDEFICS 인스트럭트 실행](#idefics-instruct-for-conversational-use)
시작하기 전에 필요한 모든 라이브러리가 설치되어 있는지 확인하세요.
```bash
pip install -q bitsandbytes sentencepiece accelerate transformers
```
<Tip>
다음 예제를 비양자화된 버전의 모델 체크포인트로 실행하려면 최소 20GB의 GPU 메모리가 필요합니다.
</Tip>
## 모델 로드[[loading-the-model]]
모델을 90억 파라미터 버전의 체크포인트로 로드해 봅시다:
```py
>>> checkpoint = "HuggingFaceM4/idefics-9b"
```
다른 Transformers 모델과 마찬가지로, 체크포인트에서 프로세서와 모델 자체를 로드해야 합니다.
IDEFICS 프로세서는 [`LlamaTokenizer`]와 IDEFICS 이미지 프로세서를 하나의 프로세서로 감싸서 텍스트와 이미지 입력을 모델에 맞게 준비합니다.
```py
>>> import torch
>>> from transformers import IdeficsForVisionText2Text, AutoProcessor
>>> processor = AutoProcessor.from_pretrained(checkpoint)
>>> model = IdeficsForVisionText2Text.from_pretrained(checkpoint, torch_dtype=torch.bfloat16, device_map="auto")
```
`device_map`을 `"auto"`로 설정하면 사용 중인 장치를 고려하여 모델 가중치를 가장 최적화된 방식으로 로드하고 저장하는 방법을 자동으로 결정합니다.
### 양자화된 모델[[quantized-model]]
고용량 GPU 사용이 어려운 경우, 모델의 양자화된 버전을 로드할 수 있습니다. 모델과 프로세서를 4비트 정밀도로 로드하기 위해서, `from_pretrained` 메소드에 `BitsAndBytesConfig`를 전달하면 모델이 로드되는 동안 실시간으로 압축됩니다.
```py
>>> import torch
>>> from transformers import IdeficsForVisionText2Text, AutoProcessor, BitsAndBytesConfig
>>> quantization_config = BitsAndBytesConfig(
... load_in_4bit=True,
... bnb_4bit_compute_dtype=torch.float16,
... )
>>> processor = AutoProcessor.from_pretrained(checkpoint)
>>> model = IdeficsForVisionText2Text.from_pretrained(
... checkpoint,
... quantization_config=quantization_config,
... device_map="auto"
... )
```
이제 모델을 제안된 방법 중 하나로 로드했으니, IDEFICS를 사용할 수 있는 작업들을 탐구해봅시다.
## 이미지 캡셔닝[[image-captioning]]
이미지 캡셔닝은 주어진 이미지에 대한 캡션을 예측하는 작업입니다. 일반적인 응용 분야는 시각 장애인이 다양한 상황을 탐색할 수 있도록 돕는 것입니다. 예를 들어, 온라인에서 이미지 콘텐츠를 탐색하는 데 도움을 줄 수 있습니다.
작업을 설명하기 위해 캡션을 달 이미지 예시를 가져옵니다. 예시:
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-im-captioning.jpg" alt="Image of a puppy in a flower bed"/>
</div>
사진 제공: [Hendo Wang](https://unsplash.com/@hendoo).
IDEFICS는 텍스트 및 이미지 프롬프트를 모두 수용합니다. 그러나 이미지를 캡션하기 위해 모델에 텍스트 프롬프트를 제공할 필요는 없습니다. 전처리된 입력 이미지만 제공하면 됩니다. 텍스트 프롬프트 없이 모델은 BOS(시퀀스 시작) 토큰부터 텍스트 생성을 시작하여 캡션을 만듭니다.
모델에 이미지 입력으로는 이미지 객체(`PIL.Image`) 또는 이미지를 가져올 수 있는 URL을 사용할 수 있습니다.
```py
>>> prompt = [
... "https://images.unsplash.com/photo-1583160247711-2191776b4b91?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3542&q=80",
... ]
>>> inputs = processor(prompt, return_tensors="pt").to("cuda")
>>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
>>> generated_ids = model.generate(**inputs, max_new_tokens=10, bad_words_ids=bad_words_ids)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
>>> print(generated_text[0])
A puppy in a flower bed
```
<Tip>
`max_new_tokens`의 크기를 증가시킬 때 발생할 수 있는 오류를 피하기 위해 `generate` 호출 시 `bad_words_ids`를 포함하는 것이 좋습니다. 모델로부터 생성된 이미지가 없을 때 새로운 `<image>` 또는 `<fake_token_around_image>` 토큰을 생성하려고 하기 때문입니다.
이 가이드에서처럼 `bad_words_ids`를 함수 호출 시에 매개변수로 설정하거나, [텍스트 생성 전략](../generation_strategies) 가이드에 설명된 대로 `GenerationConfig`에 저장할 수도 있습니다.
</Tip>
## 프롬프트 이미지 캡셔닝[[prompted-image-captioning]]
텍스트 프롬프트를 이용하여 이미지 캡셔닝을 확장할 수 있으며, 모델은 주어진 이미지를 바탕으로 텍스트를 계속 생성합니다. 다음 이미지를 예시로 들어보겠습니다:
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-prompted-im-captioning.jpg" alt="Image of the Eiffel Tower at night"/>
</div>
사진 제공: [Denys Nevozhai](https://unsplash.com/@dnevozhai).
텍스트 및 이미지 프롬프트는 적절한 입력을 생성하기 위해 모델의 프로세서에 하나의 목록으로 전달될 수 있습니다.
```py
>>> prompt = [
... "https://images.unsplash.com/photo-1543349689-9a4d426bee8e?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3501&q=80",
... "This is an image of ",
... ]
>>> inputs = processor(prompt, return_tensors="pt").to("cuda")
>>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
>>> generated_ids = model.generate(**inputs, max_new_tokens=10, bad_words_ids=bad_words_ids)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
>>> print(generated_text[0])
This is an image of the Eiffel Tower in Paris, France.
```
## 퓨샷 프롬프트[[few-shot-prompting]]
IDEFICS는 훌륭한 제로샷 결과를 보여주지만, 작업에 특정 형식의 캡션이 필요하거나 작업의 복잡성을 높이는 다른 제한 사항이나 요구 사항이 있을 수 있습니다. 이럴 때 퓨샷 프롬프트를 사용하여 맥락 내 학습(In-Context Learning)을 가능하게 할 수 있습니다.
프롬프트에 예시를 제공함으로써 모델이 주어진 예시의 형식을 모방한 결과를 생성하도록 유도할 수 있습니다.
이전의 에펠탑 이미지를 모델에 예시로 사용하고, 모델에게 이미지의 객체를 학습하는 것 외에도 흥미로운 정보를 얻고 싶다는 것을 보여주는 프롬프트를 작성해 봅시다.
그런 다음 자유의 여신상 이미지에 대해 동일한 응답 형식을 얻을 수 있는지 확인해 봅시다:
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-few-shot.jpg" alt="Image of the Statue of Liberty"/>
</div>
사진 제공: [Juan Mayobre](https://unsplash.com/@jmayobres).
```py
>>> prompt = ["User:",
... "https://images.unsplash.com/photo-1543349689-9a4d426bee8e?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3501&q=80",
... "Describe this image.\nAssistant: An image of the Eiffel Tower at night. Fun fact: the Eiffel Tower is the same height as an 81-storey building.\n",
... "User:",
... "https://images.unsplash.com/photo-1524099163253-32b7f0256868?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3387&q=80",
... "Describe this image.\nAssistant:"
... ]
>>> inputs = processor(prompt, return_tensors="pt").to("cuda")
>>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
>>> generated_ids = model.generate(**inputs, max_new_tokens=30, bad_words_ids=bad_words_ids)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
>>> print(generated_text[0])
User: Describe this image.
Assistant: An image of the Eiffel Tower at night. Fun fact: the Eiffel Tower is the same height as an 81-storey building.
User: Describe this image.
Assistant: An image of the Statue of Liberty. Fun fact: the Statue of Liberty is 151 feet tall.
```
단 하나의 예시만으로도(즉, 1-shot) 모델이 작업 수행 방법을 학습했다는 점이 주목할 만합니다. 더 복잡한 작업의 경우, 더 많은 예시(예: 3-shot, 5-shot 등)를 사용하여 실험해 보는 것도 좋은 방법입니다.
## 시각적 질의 응답[[visual-question-answering]]
시각적 질의 응답(VQA)은 이미지를 기반으로 개방형 질문에 답하는 작업입니다. 이미지 캡셔닝과 마찬가지로 접근성 애플리케이션에서 사용할 수 있지만, 교육(시각 자료에 대한 추론), 고객 서비스(이미지를 기반으로 한 제품 질문), 이미지 검색 등에서도 사용할 수 있습니다.
이 작업을 위해 새로운 이미지를 가져옵니다:
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg" alt="Image of a couple having a picnic"/>
</div>
사진 제공: [Jarritos Mexican Soda](https://unsplash.com/@jarritos).
적절한 지시문을 사용하면 이미지 캡셔닝에서 시각적 질의 응답으로 모델을 유도할 수 있습니다:
```py
>>> prompt = [
... "Instruction: Provide an answer to the question. Use the image to answer.\n",
... "https://images.unsplash.com/photo-1623944889288-cd147dbb517c?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3540&q=80",
... "Question: Where are these people and what's the weather like? Answer:"
... ]
>>> inputs = processor(prompt, return_tensors="pt").to("cuda")
>>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
>>> generated_ids = model.generate(**inputs, max_new_tokens=20, bad_words_ids=bad_words_ids)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
>>> print(generated_text[0])
Instruction: Provide an answer to the question. Use the image to answer.
Question: Where are these people and what's the weather like? Answer: They're in a park in New York City, and it's a beautiful day.
```
## 이미지 분류[[image-classification]]
IDEFICS는 특정 카테고리의 라벨이 포함된 데이터로 명시적으로 학습되지 않아도 이미지를 다양한 카테고리로 분류할 수 있습니다. 카테고리 목록이 주어지면, 모델은 이미지와 텍스트 이해 능력을 사용하여 이미지가 속할 가능성이 높은 카테고리를 추론할 수 있습니다.
여기에 야채 가판대 이미지가 있습니다.
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-classification.jpg" alt="Image of a vegetable stand"/>
</div>
사진 제공: [Peter Wendt](https://unsplash.com/@peterwendt).
우리는 모델에게 우리가 가진 카테고리 중 하나로 이미지를 분류하도록 지시할 수 있습니다:
```py
>>> categories = ['animals','vegetables', 'city landscape', 'cars', 'office']
>>> prompt = [f"Instruction: Classify the following image into a single category from the following list: {categories}.\n",
... "https://images.unsplash.com/photo-1471193945509-9ad0617afabf?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3540&q=80",
... "Category: "
... ]
>>> inputs = processor(prompt, return_tensors="pt").to("cuda")
>>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
>>> generated_ids = model.generate(**inputs, max_new_tokens=6, bad_words_ids=bad_words_ids)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
>>> print(generated_text[0])
Instruction: Classify the following image into a single category from the following list: ['animals', 'vegetables', 'city landscape', 'cars', 'office'].
Category: Vegetables
```
위 예제에서는 모델에게 이미지를 단일 카테고리로 분류하도록 지시했지만, 순위 분류를 하도록 모델에 프롬프트를 제공할 수도 있습니다.
## 이미지 기반 텍스트 생성[[image-guided-text-generation]]
이미지를 활용한 텍스트 생성 기술을 사용하면 더욱 창의적인 작업이 가능합니다. 이 기술은 이미지를 바탕으로 텍스트를 만들어내며, 제품 설명, 광고 문구, 장면 묘사 등 다양한 용도로 활용할 수 있습니다.
간단한 예로, 빨간 문 이미지를 IDEFICS에 입력하여 이야기를 만들어보겠습니다:
<div class="flex justify-center">
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-story-generation.jpg" alt="Image of a red door with a pumpkin on the steps"/>
</div>
사진 제공: [Craig Tidball](https://unsplash.com/@devonshiremedia).
```py
>>> prompt = ["Instruction: Use the image to write a story. \n",
... "https://images.unsplash.com/photo-1517086822157-2b0358e7684a?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=2203&q=80",
... "Story: \n"]
>>> inputs = processor(prompt, return_tensors="pt").to("cuda")
>>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
>>> generated_ids = model.generate(**inputs, num_beams=2, max_new_tokens=200, bad_words_ids=bad_words_ids)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
>>> print(generated_text[0])
Instruction: Use the image to write a story.
Story:
Once upon a time, there was a little girl who lived in a house with a red door. She loved her red door. It was the prettiest door in the whole world.
One day, the little girl was playing in her yard when she noticed a man standing on her doorstep. He was wearing a long black coat and a top hat.
The little girl ran inside and told her mother about the man.
Her mother said, “Don’t worry, honey. He’s just a friendly ghost.”
The little girl wasn’t sure if she believed her mother, but she went outside anyway.
When she got to the door, the man was gone.
The next day, the little girl was playing in her yard again when she noticed the man standing on her doorstep.
He was wearing a long black coat and a top hat.
The little girl ran
```
IDEFICS가 문 앞에 있는 호박을 보고 유령에 대한 으스스한 할로윈 이야기를 만든 것 같습니다.
<Tip>
이처럼 긴 텍스트를 생성할 때는 텍스트 생성 전략을 조정하는 것이 좋습니다. 이렇게 하면 생성된 결과물의 품질을 크게 향상시킬 수 있습니다. 자세한 내용은 [텍스트 생성 전략](../generation_strategies)을 참조하세요.
</Tip>
## 배치 모드에서 추론 실행[[running-inference-in-batch-mode]]
앞선 모든 섹션에서는 단일 예시에 대해 IDEFICS를 설명했습니다. 이와 매우 유사한 방식으로, 프롬프트 목록을 전달하여 여러 예시에 대한 추론을 실행할 수 있습니다:
```py
>>> prompts = [
... [ "https://images.unsplash.com/photo-1543349689-9a4d426bee8e?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3501&q=80",
... "This is an image of ",
... ],
... [ "https://images.unsplash.com/photo-1623944889288-cd147dbb517c?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3540&q=80",
... "This is an image of ",
... ],
... [ "https://images.unsplash.com/photo-1471193945509-9ad0617afabf?ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D&auto=format&fit=crop&w=3540&q=80",
... "This is an image of ",
... ],
... ]
>>> inputs = processor(prompts, return_tensors="pt").to("cuda")
>>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
>>> generated_ids = model.generate(**inputs, max_new_tokens=10, bad_words_ids=bad_words_ids)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
>>> for i,t in enumerate(generated_text):
... print(f"{i}:\n{t}\n")
0:
This is an image of the Eiffel Tower in Paris, France.
1:
This is an image of a couple on a picnic blanket.
2:
This is an image of a vegetable stand.
```
## 대화형 사용을 위한 IDEFICS 인스트럭트 실행[[idefics-instruct-for-conversational-use]]
대화형 사용 사례를 위해, 🤗 Hub에서 명령어 수행에 최적화된 버전의 모델을 찾을 수 있습니다. 이곳에는 `HuggingFaceM4/idefics-80b-instruct`와 `HuggingFaceM4/idefics-9b-instruct`가 있습니다.
이 체크포인트는 지도 학습 및 명령어 미세 조정 데이터셋의 혼합으로 각각의 기본 모델을 미세 조정한 결과입니다. 이를 통해 모델의 하위 작업 성능을 향상시키는 동시에 대화형 환경에서 모델을 더 사용하기 쉽게 합니다.
대화형 사용을 위한 사용법 및 프롬프트는 기본 모델을 사용하는 것과 매우 유사합니다.
```py
>>> import torch
>>> from transformers import IdeficsForVisionText2Text, AutoProcessor
>>> device = "cuda" if torch.cuda.is_available() else "cpu"
>>> checkpoint = "HuggingFaceM4/idefics-9b-instruct"
>>> model = IdeficsForVisionText2Text.from_pretrained(checkpoint, torch_dtype=torch.bfloat16).to(device)
>>> processor = AutoProcessor.from_pretrained(checkpoint)
>>> prompts = [
... [
... "User: What is in this image?",
... "https://upload.wikimedia.org/wikipedia/commons/8/86/Id%C3%A9fix.JPG",
... "<end_of_utterance>",
... "\nAssistant: This picture depicts Idefix, the dog of Obelix in Asterix and Obelix. Idefix is running on the ground.<end_of_utterance>",
... "\nUser:",
... "https://static.wikia.nocookie.net/asterix/images/2/25/R22b.gif/revision/latest?cb=20110815073052",
... "And who is that?<end_of_utterance>",
... "\nAssistant:",
... ],
... ]
>>> # --batched mode
>>> inputs = processor(prompts, add_end_of_utterance_token=False, return_tensors="pt").to(device)
>>> # --single sample mode
>>> # inputs = processor(prompts[0], return_tensors="pt").to(device)
>>> # args 생성
>>> exit_condition = processor.tokenizer("<end_of_utterance>", add_special_tokens=False).input_ids
>>> bad_words_ids = processor.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids
>>> generated_ids = model.generate(**inputs, eos_token_id=exit_condition, bad_words_ids=bad_words_ids, max_length=100)
>>> generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
>>> for i, t in enumerate(generated_text):
... print(f"{i}:\n{t}\n")
```
|
transformers/docs/source/ko/tasks/idefics.md/0
|
{
"file_path": "transformers/docs/source/ko/tasks/idefics.md",
"repo_id": "transformers",
"token_count": 13254
}
| 51 |
<!---
Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 문제 해결[[troubleshoot]]
때때로 오류가 발생할 수 있지만, 저희가 도와드리겠습니다! 이 가이드는 현재까지 확인된 가장 일반적인 문제 몇 가지와 그것들을 해결하는 방법에 대해 다룹니다. 그러나 이 가이드는 모든 🤗 Transformers 문제를 포괄적으로 다루고 있지 않습니다. 문제 해결에 더 많은 도움을 받으려면 다음을 시도해보세요:
<Youtube id="S2EEG3JIt2A"/>
1. [포럼](https://discuss.huggingface.co/)에서 도움을 요청하세요. [Beginners](https://discuss.huggingface.co/c/beginners/5) 또는 [🤗 Transformers](https://discuss.huggingface.co/c/transformers/9)와 같은 특정 카테고리에 질문을 게시할 수 있습니다. 재현 가능한 코드와 함께 잘 서술된 포럼 게시물을 작성하여 여러분의 문제가 해결될 가능성을 극대화하세요!
<Youtube id="_PAli-V4wj0"/>
2. 라이브러리와 관련된 버그이면 🤗 Transformers 저장소에서 [이슈](https://github.com/huggingface/transformers/issues/new/choose)를 생성하세요. 버그에 대해 설명하는 정보를 가능한 많이 포함하려고 노력하여, 무엇이 잘못 되었는지와 어떻게 수정할 수 있는지 더 잘 파악할 수 있도록 도와주세요.
3. 이전 버전의 🤗 Transformers을 사용하는 경우 중요한 변경 사항이 버전 사이에 도입되었기 때문에 [마이그레이션](migration) 가이드를 확인하세요.
문제 해결 및 도움 매뉴얼에 대한 자세한 내용은 Hugging Face 강좌의 [8장](https://huggingface.co/course/chapter8/1?fw=pt)을 참조하세요.
## 방화벽 환경[[firewalled-environments]]
클라우드 및 내부망(intranet) 설정의 일부 GPU 인스턴스는 외부 연결에 대한 방화벽으로 차단되어 연결 오류가 발생할 수 있습니다. 스크립트가 모델 가중치나 데이터를 다운로드하려고 할 때, 다운로드가 중단되고 다음 메시지와 함께 시간 초과됩니다:
```
ValueError: Connection error, and we cannot find the requested files in the cached path.
Please try again or make sure your Internet connection is on.
```
이 경우에는 연결 오류를 피하기 위해 🤗 Transformers를 [오프라인 모드](installation#offline-mode)로 실행해야 합니다.
## CUDA 메모리 부족(CUDA out of memory)[[cuda-out-of-memory]]
수백만 개의 매개변수로 대규모 모델을 훈련하는 것은 적절한 하드웨어 없이 어려울 수 있습니다. GPU 메모리가 부족한 경우 발생할 수 있는 일반적인 오류는 다음과 같습니다:
```
CUDA out of memory. Tried to allocate 256.00 MiB (GPU 0; 11.17 GiB total capacity; 9.70 GiB already allocated; 179.81 MiB free; 9.85 GiB reserved in total by PyTorch)
```
다음은 메모리 사용을 줄이기 위해 시도해 볼 수 있는 몇 가지 잠재적인 해결책입니다:
- [`TrainingArguments`]의 [`per_device_train_batch_size`](main_classes/trainer#transformers.TrainingArguments.per_device_train_batch_size) 값을 줄이세요.
- [`TrainingArguments`]의 [`gradient_accumulation_steps`](main_classes/trainer#transformers.TrainingArguments.gradient_accumulation_steps)은 전체 배치 크기를 효과적으로 늘리세요.
<Tip>
메모리 절약 기술에 대한 자세한 내용은 성능 [가이드](performance)를 참조하세요.
</Tip>
## 저장된 TensorFlow 모델을 가져올 수 없습니다(Unable to load a saved TensorFlow model)[[unable-to-load-a-saved-uensorFlow-model]]
TensorFlow의 [model.save](https://www.tensorflow.org/tutorials/keras/save_and_load#save_the_entire_model) 메소드는 아키텍처, 가중치, 훈련 구성 등 전체 모델을 단일 파일에 저장합니다. 그러나 모델 파일을 다시 가져올 때 🤗 Transformers는 모델 파일에 있는 모든 TensorFlow 관련 객체를 가져오지 않을 수 있기 때문에 오류가 발생할 수 있습니다. TensorFlow 모델 저장 및 가져오기 문제를 피하려면 다음을 권장합니다:
- 모델 가중치를 `h5` 파일 확장자로 [`model.save_weights`](https://www.tensorflow.org/tutorials/keras/save_and_load#save_the_entire_model)로 저장한 다음 [`~TFPreTrainedModel.from_pretrained`]로 모델을 다시 가져옵니다:
```py
>>> from transformers import TFPreTrainedModel
>>> from tensorflow import keras
>>> model.save_weights("some_folder/tf_model.h5")
>>> model = TFPreTrainedModel.from_pretrained("some_folder")
```
- 모델을 [`~TFPretrainedModel.save_pretrained`]로 저장하고 [`~TFPreTrainedModel.from_pretrained`]로 다시 가져옵니다:
```py
>>> from transformers import TFPreTrainedModel
>>> model.save_pretrained("path_to/model")
>>> model = TFPreTrainedModel.from_pretrained("path_to/model")
```
## ImportError[[importerror]]
특히 최신 모델인 경우 만날 수 있는 다른 일반적인 오류는 `ImportError`입니다:
```
ImportError: cannot import name 'ImageGPTImageProcessor' from 'transformers' (unknown location)
```
이러한 오류 유형의 경우 최신 모델에 액세스할 수 있도록 최신 버전의 🤗 Transformers가 설치되어 있는지 확인하세요:
```bash
pip install transformers --upgrade
```
## CUDA error: device-side assert triggered[[cuda-error-deviceside-assert-triggered]]
때때로 장치 코드 오류에 대한 일반적인 CUDA 오류가 발생할 수 있습니다.
```
RuntimeError: CUDA error: device-side assert triggered
```
더 자세한 오류 메시지를 얻으려면 우선 코드를 CPU에서 실행합니다. 다음 환경 변수를 코드의 시작 부분에 추가하여 CPU로 전환하세요:
```py
>>> import os
>>> os.environ["CUDA_VISIBLE_DEVICES"] = ""
```
또 다른 옵션은 GPU에서 더 나은 역추적(traceback)을 얻는 것입니다. 다음 환경 변수를 코드의 시작 부분에 추가하여 역추적이 오류가 발생한 소스를 가리키도록 하세요:
```py
>>> import os
>>> os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
```
## 패딩 토큰이 마스킹되지 않은 경우 잘못된 출력(Incorrect output when padding tokens aren't masked)[[incorrect-output-when-padding-tokens-arent-masked]]
경우에 따라 `input_ids`에 패딩 토큰이 포함된 경우 `hidden_state` 출력이 올바르지 않을 수 있습니다. 데모를 위해 모델과 토크나이저를 가져오세요. 모델의 `pad_token_id`에 액세스하여 해당 값을 확인할 수 있습니다. 일부 모델의 경우 `pad_token_id`가 `None`일 수 있지만 언제든지 수동으로 설정할 수 있습니다.
```py
>>> from transformers import AutoModelForSequenceClassification
>>> import torch
>>> model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-uncased")
>>> model.config.pad_token_id
0
```
다음 예제는 패딩 토큰을 마스킹하지 않은 출력을 보여줍니다:
```py
>>> input_ids = torch.tensor([[7592, 2057, 2097, 2393, 9611, 2115], [7592, 0, 0, 0, 0, 0]])
>>> output = model(input_ids)
>>> print(output.logits)
tensor([[ 0.0082, -0.2307],
[ 0.1317, -0.1683]], grad_fn=<AddmmBackward0>)
```
다음은 두 번째 시퀀스의 실제 출력입니다:
```py
>>> input_ids = torch.tensor([[7592]])
>>> output = model(input_ids)
>>> print(output.logits)
tensor([[-0.1008, -0.4061]], grad_fn=<AddmmBackward0>)
```
대부분의 경우 모델에 `attention_mask`를 제공하여 패딩 토큰을 무시해야 이러한 조용한 오류를 방지할 수 있습니다. 이제 두 번째 시퀀스의 출력이 실제 출력과 일치합니다:
<Tip>
일반적으로 토크나이저는 특정 토크나이저의 기본 값을 기준으로 사용자에 대한 'attention_mask'를 만듭니다.
</Tip>
```py
>>> attention_mask = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 0, 0, 0, 0, 0]])
>>> output = model(input_ids, attention_mask=attention_mask)
>>> print(output.logits)
tensor([[ 0.0082, -0.2307],
[-0.1008, -0.4061]], grad_fn=<AddmmBackward0>)
```
🤗 Transformers는 패딩 토큰이 제공된 경우 패딩 토큰을 마스킹하기 위한 `attention_mask`를 자동으로 생성하지 않습니다. 그 이유는 다음과 같습니다:
- 일부 모델에는 패딩 토큰이 없습니다.
- 일부 사용 사례의 경우 사용자가 모델이 패딩 토큰을 관리하기를 원합니다.
## ValueError: 이 유형의 AutoModel에 대해 인식할 수 없는 XYZ 구성 클래스(ValueError: Unrecognized configuration class XYZ for this kind of AutoModel)[[valueerror-unrecognized-configuration-class-xyz-for-this-kind-of-automodel]]
일반적으로, 사전 학습된 모델의 인스턴스를 가져오기 위해 [`AutoModel`] 클래스를 사용하는 것이 좋습니다.
이 클래스는 구성에 따라 주어진 체크포인트에서 올바른 아키텍처를 자동으로 추론하고 가져올 수 있습니다.
모델을 체크포인트에서 가져올 때 이 `ValueError`가 발생하면, 이는 Auto 클래스가 주어진 체크포인트의 구성에서
가져오려는 모델 유형과 매핑을 찾을 수 없다는 것을 의미합니다. 가장 흔하게 발생하는 경우는
체크포인트가 주어진 태스크를 지원하지 않을 때입니다.
예를 들어, 다음 예제에서 질의응답에 대한 GPT2가 없기 때문에 오류가 발생합니다:
```py
>>> from transformers import AutoProcessor, AutoModelForQuestionAnswering
>>> processor = AutoProcessor.from_pretrained("openai-community/gpt2-medium")
>>> model = AutoModelForQuestionAnswering.from_pretrained("openai-community/gpt2-medium")
ValueError: Unrecognized configuration class <class 'transformers.models.gpt2.configuration_gpt2.GPT2Config'> for this kind of AutoModel: AutoModelForQuestionAnswering.
Model type should be one of AlbertConfig, BartConfig, BertConfig, BigBirdConfig, BigBirdPegasusConfig, BloomConfig, ...
```
|
transformers/docs/source/ko/troubleshooting.md/0
|
{
"file_path": "transformers/docs/source/ko/troubleshooting.md",
"repo_id": "transformers",
"token_count": 6571
}
| 52 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Exportando modelos para ONNX
Se você precisar implantar modelos 🤗 Transformers em ambientes de produção, recomendamos
exporta-los para um formato serializado que pode ser carregado e executado em
tempos de execução e hardware. Neste guia, mostraremos como exportar modelos 🤗 Transformers
para [ONNX (Open Neural Network eXchange)](http://onnx.ai).
<Tip>
Uma vez exportado, um modelo pode ser otimizado para inferência por meio de técnicas como
quantização e poda. Se você estiver interessado em otimizar seus modelos para serem executados com
máxima eficiência, confira a biblioteca [🤗 Optimum
](https://github.com/huggingface/optimum).
</Tip>
ONNX é um padrão aberto que define um conjunto comum de operadores e um formato de arquivo comum
para representar modelos de aprendizado profundo em uma ampla variedade de estruturas, incluindo PyTorch e
TensorFlow. Quando um modelo é exportado para o formato ONNX, esses operadores são usados para
construir um grafo computacional (muitas vezes chamado de _representação intermediária_) que
representa o fluxo de dados através da rede neural.
Ao expor um grafo com operadores e tipos de dados padronizados, o ONNX facilita a
alternar entre os frameworks. Por exemplo, um modelo treinado em PyTorch pode ser exportado para
formato ONNX e depois importado no TensorFlow (e vice-versa).
🤗 Transformers fornece um pacote [`transformers.onnx`](main_classes/onnx) que permite
que você converta os checkpoints do modelo em um grafo ONNX aproveitando os objetos de configuração.
Esses objetos de configuração vêm prontos para várias arquiteturas de modelo e são
projetado para ser facilmente extensível a outras arquiteturas.
As configurações prontas incluem as seguintes arquiteturas:
<!--This table is automatically generated by `make fix-copies`, do not fill manually!-->
- ALBERT
- BART
- BEiT
- BERT
- BigBird
- BigBird-Pegasus
- Blenderbot
- BlenderbotSmall
- BLOOM
- CamemBERT
- CLIP
- CodeGen
- Conditional DETR
- ConvBERT
- ConvNeXT
- ConvNeXTV2
- Data2VecText
- Data2VecVision
- DeBERTa
- DeBERTa-v2
- DeiT
- DETR
- DistilBERT
- ELECTRA
- ERNIE
- FlauBERT
- GPT Neo
- GPT-J
- GroupViT
- I-BERT
- LayoutLM
- LayoutLMv3
- LeViT
- Longformer
- LongT5
- M2M100
- Marian
- mBART
- MobileBERT
- MobileViT
- MT5
- OpenAI GPT-2
- OWL-ViT
- Perceiver
- PLBart
- ResNet
- RoBERTa
- RoFormer
- SegFormer
- SqueezeBERT
- Swin Transformer
- T5
- Table Transformer
- Vision Encoder decoder
- ViT
- XLM
- XLM-RoBERTa
- XLM-RoBERTa-XL
- YOLOS
Nas próximas duas seções, mostraremos como:
* Exportar um modelo suportado usando o pacote `transformers.onnx`.
* Exportar um modelo personalizado para uma arquitetura sem suporte.
## Exportando um modelo para ONNX
Para exportar um modelo 🤗 Transformers para o ONNX, primeiro você precisa instalar algumas
dependências extras:
```bash
pip install transformers[onnx]
```
O pacote `transformers.onnx` pode então ser usado como um módulo Python:
```bash
python -m transformers.onnx --help
usage: Hugging Face Transformers ONNX exporter [-h] -m MODEL [--feature {causal-lm, ...}] [--opset OPSET] [--atol ATOL] output
positional arguments:
output Path indicating where to store generated ONNX model.
optional arguments:
-h, --help show this help message and exit
-m MODEL, --model MODEL
Model ID on huggingface.co or path on disk to load model from.
--feature {causal-lm, ...}
The type of features to export the model with.
--opset OPSET ONNX opset version to export the model with.
--atol ATOL Absolute difference tolerance when validating the model.
```
A exportação de um checkpoint usando uma configuração pronta pode ser feita da seguinte forma:
```bash
python -m transformers.onnx --model=distilbert/distilbert-base-uncased onnx/
```
Você deve ver os seguintes logs:
```bash
Validating ONNX model...
-[✓] ONNX model output names match reference model ({'last_hidden_state'})
- Validating ONNX Model output "last_hidden_state":
-[✓] (2, 8, 768) matches (2, 8, 768)
-[✓] all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
```
Isso exporta um grafo ONNX do ponto de verificação definido pelo argumento `--model`. Nisso
Por exemplo, é `distilbert/distilbert-base-uncased`, mas pode ser qualquer checkpoint no Hugging
Face Hub ou um armazenado localmente.
O arquivo `model.onnx` resultante pode ser executado em um dos [muitos
aceleradores](https://onnx.ai/supported-tools.html#deployModel) que suportam o ONNX
padrão. Por exemplo, podemos carregar e executar o modelo com [ONNX
Tempo de execução](https://onnxruntime.ai/) da seguinte forma:
```python
>>> from transformers import AutoTokenizer
>>> from onnxruntime import InferenceSession
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
>>> session = InferenceSession("onnx/model.onnx")
>>> # ONNX Runtime expects NumPy arrays as input
>>> inputs = tokenizer("Using DistilBERT with ONNX Runtime!", return_tensors="np")
>>> outputs = session.run(output_names=["last_hidden_state"], input_feed=dict(inputs))
```
Os nomes de saída necessários (como `["last_hidden_state"]`) podem ser obtidos pegando uma
configuração ONNX de cada modelo. Por exemplo, para DistilBERT temos:
```python
>>> from transformers.models.distilbert import DistilBertConfig, DistilBertOnnxConfig
>>> config = DistilBertConfig()
>>> onnx_config = DistilBertOnnxConfig(config)
>>> print(list(onnx_config.outputs.keys()))
["last_hidden_state"]
```
O processo é idêntico para os checkpoints do TensorFlow no Hub. Por exemplo, podemos
exportar um checkpoint TensorFlow puro do [Keras
](https://huggingface.co/keras-io) da seguinte forma:
```bash
python -m transformers.onnx --model=keras-io/transformers-qa onnx/
```
Para exportar um modelo armazenado localmente, você precisará ter os pesos e
arquivos tokenizer armazenados em um diretório. Por exemplo, podemos carregar e salvar um checkpoint como:
```python
>>> from transformers import AutoTokenizer, AutoModelForSequenceClassification
>>> # Load tokenizer and PyTorch weights form the Hub
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
>>> pt_model = AutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-pt-checkpoint")
>>> pt_model.save_pretrained("local-pt-checkpoint")
```
Uma vez que o checkpoint é salvo, podemos exportá-lo para o ONNX apontando o `--model`
argumento do pacote `transformers.onnx` para o diretório desejado:
```bash
python -m transformers.onnx --model=local-pt-checkpoint onnx/
```
```python
>>> from transformers import AutoTokenizer, TFAutoModelForSequenceClassification
>>> # Load tokenizer and TensorFlow weights from the Hub
>>> tokenizer = AutoTokenizer.from_pretrained("distilbert/distilbert-base-uncased")
>>> tf_model = TFAutoModelForSequenceClassification.from_pretrained("distilbert/distilbert-base-uncased")
>>> # Save to disk
>>> tokenizer.save_pretrained("local-tf-checkpoint")
>>> tf_model.save_pretrained("local-tf-checkpoint")
```
Uma vez que o checkpoint é salvo, podemos exportá-lo para o ONNX apontando o `--model`
argumento do pacote `transformers.onnx` para o diretório desejado:
```bash
python -m transformers.onnx --model=local-tf-checkpoint onnx/
```
## Selecionando features para diferentes tarefas do modelo
Cada configuração pronta vem com um conjunto de _features_ que permitem exportar
modelos para diferentes tipos de tarefas. Conforme mostrado na tabela abaixo, cada recurso é
associado a uma `AutoClass` diferente:
| Feature | Auto Class |
| ------------------------------------ | ------------------------------------ |
| `causal-lm`, `causal-lm-with-past` | `AutoModelForCausalLM` |
| `default`, `default-with-past` | `AutoModel` |
| `masked-lm` | `AutoModelForMaskedLM` |
| `question-answering` | `AutoModelForQuestionAnswering` |
| `seq2seq-lm`, `seq2seq-lm-with-past` | `AutoModelForSeq2SeqLM` |
| `sequence-classification` | `AutoModelForSequenceClassification` |
| `token-classification` | `AutoModelForTokenClassification` |
Para cada configuração, você pode encontrar a lista de recursos suportados por meio do
[`~transformers.onnx.FeaturesManager`]. Por exemplo, para DistilBERT temos:
```python
>>> from transformers.onnx.features import FeaturesManager
>>> distilbert_features = list(FeaturesManager.get_supported_features_for_model_type("distilbert").keys())
>>> print(distilbert_features)
["default", "masked-lm", "causal-lm", "sequence-classification", "token-classification", "question-answering"]
```
Você pode então passar um desses recursos para o argumento `--feature` no
pacote `transformers.onnx`. Por exemplo, para exportar um modelo de classificação de texto, podemos
escolher um modelo ajustado no Hub e executar:
```bash
python -m transformers.onnx --model=distilbert/distilbert-base-uncased-finetuned-sst-2-english \
--feature=sequence-classification onnx/
```
Isso exibe os seguintes logs:
```bash
Validating ONNX model...
-[✓] ONNX model output names match reference model ({'logits'})
- Validating ONNX Model output "logits":
-[✓] (2, 2) matches (2, 2)
-[✓] all values close (atol: 1e-05)
All good, model saved at: onnx/model.onnx
```
Observe que, neste caso, os nomes de saída do modelo ajustado são `logits`
em vez do `last_hidden_state` que vimos com o checkpoint `distilbert/distilbert-base-uncased`
mais cedo. Isso é esperado, pois o modelo ajustado (fine-tuned) possui uma cabeça de classificação de sequência.
<Tip>
Os recursos que têm um sufixo `with-pass` (como `causal-lm-with-pass`) correspondem a
classes de modelo com estados ocultos pré-computados (chave e valores nos blocos de atenção)
que pode ser usado para decodificação autorregressiva rápida.
</Tip>
<Tip>
Para modelos do tipo `VisionEncoderDecoder`, as partes do codificador e do decodificador são
exportados separadamente como dois arquivos ONNX chamados `encoder_model.onnx` e `decoder_model.onnx` respectivamente.
</Tip>
## Exportando um modelo para uma arquitetura sem suporte
Se você deseja exportar um modelo cuja arquitetura não é suportada nativamente pela
biblioteca, há três etapas principais a seguir:
1. Implemente uma configuração ONNX personalizada.
2. Exporte o modelo para o ONNX.
3. Valide as saídas do PyTorch e dos modelos exportados.
Nesta seção, veremos como o DistilBERT foi implementado para mostrar o que está envolvido
em cada passo.
### Implementando uma configuração ONNX personalizada
Vamos começar com o objeto de configuração ONNX. Fornecemos três classes abstratas que
você deve herdar, dependendo do tipo de arquitetura de modelo que deseja exportar:
* Modelos baseados em codificador herdam de [`~onnx.config.OnnxConfig`]
* Modelos baseados em decodificador herdam de [`~onnx.config.OnnxConfigWithPast`]
* Os modelos codificador-decodificador herdam de [`~onnx.config.OnnxSeq2SeqConfigWithPast`]
<Tip>
Uma boa maneira de implementar uma configuração ONNX personalizada é observar as
implementação no arquivo `configuration_<model_name>.py` de uma arquitetura semelhante.
</Tip>
Como o DistilBERT é um modelo baseado em codificador, sua configuração é herdada de
`OnnxConfig`:
```python
>>> from typing import Mapping, OrderedDict
>>> from transformers.onnx import OnnxConfig
>>> class DistilBertOnnxConfig(OnnxConfig):
... @property
... def inputs(self) -> Mapping[str, Mapping[int, str]]:
... return OrderedDict(
... [
... ("input_ids", {0: "batch", 1: "sequence"}),
... ("attention_mask", {0: "batch", 1: "sequence"}),
... ]
... )
```
Todo objeto de configuração deve implementar a propriedade `inputs` e retornar um mapeamento,
onde cada chave corresponde a uma entrada esperada e cada valor indica o eixo
dessa entrada. Para o DistilBERT, podemos ver que duas entradas são necessárias: `input_ids` e
`attention_mask`. Essas entradas têm a mesma forma de `(batch_size, sequence_length)`
é por isso que vemos os mesmos eixos usados na configuração.
<Tip>
Notice that `inputs` property for `DistilBertOnnxConfig` returns an `OrderedDict`. This
ensures that the inputs are matched with their relative position within the
`PreTrainedModel.forward()` method when tracing the graph. We recommend using an
`OrderedDict` for the `inputs` and `outputs` properties when implementing custom ONNX
configurations.
Observe que a propriedade `inputs` para `DistilBertOnnxConfig` retorna um `OrderedDict`. Este
garante que as entradas sejam combinadas com sua posição relativa dentro do
método `PreTrainedModel.forward()` ao traçar o grafo. Recomendamos o uso de um
`OrderedDict` para as propriedades `inputs` e `outputs` ao implementar configurações personalizadas ONNX.
</Tip>
Depois de implementar uma configuração ONNX, você pode instanciá-la fornecendo a
configuração do modelo base da seguinte forma:
```python
>>> from transformers import AutoConfig
>>> config = AutoConfig.from_pretrained("distilbert/distilbert-base-uncased")
>>> onnx_config = DistilBertOnnxConfig(config)
```
O objeto resultante tem várias propriedades úteis. Por exemplo, você pode visualizar o conjunto de operadores ONNX
que será usado durante a exportação:
```python
>>> print(onnx_config.default_onnx_opset)
11
```
Você também pode visualizar as saídas associadas ao modelo da seguinte forma:
```python
>>> print(onnx_config.outputs)
OrderedDict([("last_hidden_state", {0: "batch", 1: "sequence"})])
```
Observe que a propriedade outputs segue a mesma estrutura das entradas; ele retorna um
`OrderedDict` de saídas nomeadas e suas formas. A estrutura de saída está ligada a
escolha do recurso com o qual a configuração é inicializada. Por padrão, a configuração do ONNX
é inicializada com o recurso `default` que corresponde à exportação de um
modelo carregado com a classe `AutoModel`. Se você deseja exportar um modelo para outra tarefa,
apenas forneça um recurso diferente para o argumento `task` quando você inicializar a configuração ONNX
. Por exemplo, se quisermos exportar o DistilBERT com uma sequência
de classificação, poderíamos usar:
```python
>>> from transformers import AutoConfig
>>> config = AutoConfig.from_pretrained("distilbert/distilbert-base-uncased")
>>> onnx_config_for_seq_clf = DistilBertOnnxConfig(config, task="sequence-classification")
>>> print(onnx_config_for_seq_clf.outputs)
OrderedDict([('logits', {0: 'batch'})])
```
<Tip>
Todas as propriedades e métodos básicos associados a [`~onnx.config.OnnxConfig`] e
as outras classes de configuração podem ser substituídas se necessário. Confira [`BartOnnxConfig`]
para um exemplo avançado.
</Tip>
### Exportando um modelo
Depois de ter implementado a configuração do ONNX, o próximo passo é exportar o modelo.
Aqui podemos usar a função `export()` fornecida pelo pacote `transformers.onnx`.
Esta função espera a configuração do ONNX, juntamente com o modelo base e o tokenizer,
e o caminho para salvar o arquivo exportado:
```python
>>> from pathlib import Path
>>> from transformers.onnx import export
>>> from transformers import AutoTokenizer, AutoModel
>>> onnx_path = Path("model.onnx")
>>> model_ckpt = "distilbert/distilbert-base-uncased"
>>> base_model = AutoModel.from_pretrained(model_ckpt)
>>> tokenizer = AutoTokenizer.from_pretrained(model_ckpt)
>>> onnx_inputs, onnx_outputs = export(tokenizer, base_model, onnx_config, onnx_config.default_onnx_opset, onnx_path)
```
Os `onnx_inputs` e `onnx_outputs` retornados pela função `export()` são listas de
chaves definidas nas propriedades `inputs` e `outputs` da configuração. Uma vez que o
modelo é exportado, você pode testar se o modelo está bem formado da seguinte forma:
```python
>>> import onnx
>>> onnx_model = onnx.load("model.onnx")
>>> onnx.checker.check_model(onnx_model)
```
<Tip>
Se o seu modelo for maior que 2GB, você verá que muitos arquivos adicionais são criados
durante a exportação. Isso é _esperado_ porque o ONNX usa [Protocol
Buffers](https://developers.google.com/protocol-buffers/) para armazenar o modelo e estes
têm um limite de tamanho de 2GB. Veja a [ONNX
documentação](https://github.com/onnx/onnx/blob/master/docs/ExternalData.md) para
instruções sobre como carregar modelos com dados externos.
</Tip>
### Validando a saída dos modelos
A etapa final é validar se as saídas do modelo base e exportado concordam
dentro de alguma tolerância absoluta. Aqui podemos usar a função `validate_model_outputs()`
fornecida pelo pacote `transformers.onnx` da seguinte forma:
```python
>>> from transformers.onnx import validate_model_outputs
>>> validate_model_outputs(
... onnx_config, tokenizer, base_model, onnx_path, onnx_outputs, onnx_config.atol_for_validation
... )
```
Esta função usa o método [`~transformers.onnx.OnnxConfig.generate_dummy_inputs`] para
gerar entradas para o modelo base e o exportado, e a tolerância absoluta pode ser
definida na configuração. Geralmente encontramos concordância numérica em 1e-6 a 1e-4
de alcance, embora qualquer coisa menor que 1e-3 provavelmente esteja OK.
## Contribuindo com uma nova configuração para 🤗 Transformers
Estamos procurando expandir o conjunto de configurações prontas e receber contribuições
da comunidade! Se você gostaria de contribuir para a biblioteca, você
precisará:
* Implemente a configuração do ONNX no arquivo `configuration_<model_name>.py` correspondente
Arquivo
* Incluir a arquitetura do modelo e recursos correspondentes em
[`~onnx.features.FeatureManager`]
* Adicione sua arquitetura de modelo aos testes em `test_onnx_v2.py`
Confira como ficou a configuração do [IBERT
](https://github.com/huggingface/transformers/pull/14868/files) para obter uma
idéia do que está envolvido.
|
transformers/docs/source/pt/serialization.md/0
|
{
"file_path": "transformers/docs/source/pt/serialization.md",
"repo_id": "transformers",
"token_count": 7144
}
| 53 |
<!--版权2020年HuggingFace团队保留所有权利。
根据Apache许可证第2.0版(“许可证”)许可;除非符合许可证,否则您不得使用此文件。您可以在以下网址获取许可证的副本:
http://www.apache.org/licenses/LICENSE-2.0
除非适用法律要求或书面同意,否则按“按原样”分发的软件,无论是明示还是暗示的,都没有任何担保或条件。请参阅许可证以了解特定语言下的权限和限制。
⚠️ 请注意,本文件虽然使用Markdown编写,但包含了特定的语法,适用于我们的doc-builder(类似于MDX),可能无法在您的Markdown查看器中正常渲染。
-->
# 基于BERT进行的相关研究(BERTology)
当前,一个新兴的研究领域正致力于探索大规模 transformer 模型(如BERT)的内部工作机制,一些人称之为“BERTology”。以下是这个领域的一些典型示例:
- BERT Rediscovers the Classical NLP Pipeline by Ian Tenney, Dipanjan Das, Ellie Pavlick:
https://arxiv.org/abs/1905.05950
- Are Sixteen Heads Really Better than One? by Paul Michel, Omer Levy, Graham Neubig: https://arxiv.org/abs/1905.10650
- What Does BERT Look At? An Analysis of BERT's Attention by Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D.
Manning: https://arxiv.org/abs/1906.04341
- CAT-probing: A Metric-based Approach to Interpret How Pre-trained Models for Programming Language Attend Code Structure: https://arxiv.org/abs/2210.04633
为了助力这一新兴领域的发展,我们在BERT/GPT/GPT-2模型中增加了一些附加功能,方便人们访问其内部表示,这些功能主要借鉴了Paul Michel的杰出工作(https://arxiv.org/abs/1905.10650):
- 访问BERT/GPT/GPT-2的所有隐藏状态,
- 访问BERT/GPT/GPT-2每个注意力头的所有注意力权重,
- 检索注意力头的输出值和梯度,以便计算头的重要性得分并对头进行剪枝,详情可见论文:https://arxiv.org/abs/1905.10650。
为了帮助您理解和使用这些功能,我们添加了一个具体的示例脚本:[bertology.py](https://github.com/huggingface/transformers/tree/main/examples/research_projects/bertology/run_bertology.py),该脚本可以对一个在 GLUE 数据集上预训练的模型进行信息提取与剪枝。
|
transformers/docs/source/zh/bertology.md/0
|
{
"file_path": "transformers/docs/source/zh/bertology.md",
"repo_id": "transformers",
"token_count": 1340
}
| 54 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 用于生成的工具
此页面列出了所有由 [`~generation.GenerationMixin.generate`]。
## 生成输出
[`~generation.GenerationMixin.generate`] 的输出是 [`~utils.ModelOutput`] 的一个子类的实例。这个输出是一种包含 [`~generation.GenerationMixin.generate`] 返回的所有信息数据结构,但也可以作为元组或字典使用。
这里是一个例子:
```python
from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
model = GPT2LMHeadModel.from_pretrained("openai-community/gpt2")
inputs = tokenizer("Hello, my dog is cute and ", return_tensors="pt")
generation_output = model.generate(**inputs, return_dict_in_generate=True, output_scores=True)
```
`generation_output` 的对象是 [`~generation.GenerateDecoderOnlyOutput`] 的一个实例,从该类的文档中我们可以看到,这意味着它具有以下属性:
- `sequences`: 生成的tokens序列
- `scores`(可选): 每个生成步骤的语言建模头的预测分数
- `hidden_states`(可选): 每个生成步骤模型的hidden states
- `attentions`(可选): 每个生成步骤模型的注意力权重
在这里,由于我们传递了 `output_scores=True`,我们具有 `scores` 属性。但我们没有 `hidden_states` 和 `attentions`,因为没有传递 `output_hidden_states=True` 或 `output_attentions=True`。
您可以像通常一样访问每个属性,如果该属性未被模型返回,则将获得 `None`。例如,在这里 `generation_output.scores` 是语言建模头的所有生成预测分数,而 `generation_output.attentions` 为 `None`。
当我们将 `generation_output` 对象用作元组时,它只保留非 `None` 值的属性。例如,在这里它有两个元素,`loss` 然后是 `logits`,所以
```python
generation_output[:2]
```
将返回元组`(generation_output.sequences, generation_output.scores)`。
当我们将`generation_output`对象用作字典时,它只保留非`None`的属性。例如,它有两个键,分别是`sequences`和`scores`。
我们在此记录所有输出类型。
### PyTorch
[[autodoc]] generation.GenerateDecoderOnlyOutput
[[autodoc]] generation.GenerateEncoderDecoderOutput
[[autodoc]] generation.GenerateBeamDecoderOnlyOutput
[[autodoc]] generation.GenerateBeamEncoderDecoderOutput
### TensorFlow
[[autodoc]] generation.TFGreedySearchEncoderDecoderOutput
[[autodoc]] generation.TFGreedySearchDecoderOnlyOutput
[[autodoc]] generation.TFSampleEncoderDecoderOutput
[[autodoc]] generation.TFSampleDecoderOnlyOutput
[[autodoc]] generation.TFBeamSearchEncoderDecoderOutput
[[autodoc]] generation.TFBeamSearchDecoderOnlyOutput
[[autodoc]] generation.TFBeamSampleEncoderDecoderOutput
[[autodoc]] generation.TFBeamSampleDecoderOnlyOutput
[[autodoc]] generation.TFContrastiveSearchEncoderDecoderOutput
[[autodoc]] generation.TFContrastiveSearchDecoderOnlyOutput
### FLAX
[[autodoc]] generation.FlaxSampleOutput
[[autodoc]] generation.FlaxGreedySearchOutput
[[autodoc]] generation.FlaxBeamSearchOutput
## LogitsProcessor
[`LogitsProcessor`] 可以用于修改语言模型头的预测分数以进行生成
### PyTorch
[[autodoc]] AlternatingCodebooksLogitsProcessor
- __call__
[[autodoc]] ClassifierFreeGuidanceLogitsProcessor
- __call__
[[autodoc]] EncoderNoRepeatNGramLogitsProcessor
- __call__
[[autodoc]] EncoderRepetitionPenaltyLogitsProcessor
- __call__
[[autodoc]] EpsilonLogitsWarper
- __call__
[[autodoc]] EtaLogitsWarper
- __call__
[[autodoc]] ExponentialDecayLengthPenalty
- __call__
[[autodoc]] ForcedBOSTokenLogitsProcessor
- __call__
[[autodoc]] ForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] HammingDiversityLogitsProcessor
- __call__
[[autodoc]] InfNanRemoveLogitsProcessor
- __call__
[[autodoc]] LogitNormalization
- __call__
[[autodoc]] LogitsProcessor
- __call__
[[autodoc]] LogitsProcessorList
- __call__
[[autodoc]] MinLengthLogitsProcessor
- __call__
[[autodoc]] MinNewTokensLengthLogitsProcessor
- __call__
[[autodoc]] NoBadWordsLogitsProcessor
- __call__
[[autodoc]] NoRepeatNGramLogitsProcessor
- __call__
[[autodoc]] PrefixConstrainedLogitsProcessor
- __call__
[[autodoc]] RepetitionPenaltyLogitsProcessor
- __call__
[[autodoc]] SequenceBiasLogitsProcessor
- __call__
[[autodoc]] SuppressTokensAtBeginLogitsProcessor
- __call__
[[autodoc]] SuppressTokensLogitsProcessor
- __call__
[[autodoc]] TemperatureLogitsWarper
- __call__
[[autodoc]] TopKLogitsWarper
- __call__
[[autodoc]] TopPLogitsWarper
- __call__
[[autodoc]] TypicalLogitsWarper
- __call__
[[autodoc]] UnbatchedClassifierFreeGuidanceLogitsProcessor
- __call__
[[autodoc]] WhisperTimeStampLogitsProcessor
- __call__
### TensorFlow
[[autodoc]] TFForcedBOSTokenLogitsProcessor
- __call__
[[autodoc]] TFForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] TFForceTokensLogitsProcessor
- __call__
[[autodoc]] TFLogitsProcessor
- __call__
[[autodoc]] TFLogitsProcessorList
- __call__
[[autodoc]] TFLogitsWarper
- __call__
[[autodoc]] TFMinLengthLogitsProcessor
- __call__
[[autodoc]] TFNoBadWordsLogitsProcessor
- __call__
[[autodoc]] TFNoRepeatNGramLogitsProcessor
- __call__
[[autodoc]] TFRepetitionPenaltyLogitsProcessor
- __call__
[[autodoc]] TFSuppressTokensAtBeginLogitsProcessor
- __call__
[[autodoc]] TFSuppressTokensLogitsProcessor
- __call__
[[autodoc]] TFTemperatureLogitsWarper
- __call__
[[autodoc]] TFTopKLogitsWarper
- __call__
[[autodoc]] TFTopPLogitsWarper
- __call__
### FLAX
[[autodoc]] FlaxForcedBOSTokenLogitsProcessor
- __call__
[[autodoc]] FlaxForcedEOSTokenLogitsProcessor
- __call__
[[autodoc]] FlaxForceTokensLogitsProcessor
- __call__
[[autodoc]] FlaxLogitsProcessor
- __call__
[[autodoc]] FlaxLogitsProcessorList
- __call__
[[autodoc]] FlaxLogitsWarper
- __call__
[[autodoc]] FlaxMinLengthLogitsProcessor
- __call__
[[autodoc]] FlaxSuppressTokensAtBeginLogitsProcessor
- __call__
[[autodoc]] FlaxSuppressTokensLogitsProcessor
- __call__
[[autodoc]] FlaxTemperatureLogitsWarper
- __call__
[[autodoc]] FlaxTopKLogitsWarper
- __call__
[[autodoc]] FlaxTopPLogitsWarper
- __call__
[[autodoc]] FlaxWhisperTimeStampLogitsProcessor
- __call__
## StoppingCriteria
可以使用[`StoppingCriteria`]来更改停止生成的时间(除了EOS token以外的方法)。请注意,这仅适用于我们的PyTorch实现。
[[autodoc]] StoppingCriteria
- __call__
[[autodoc]] StoppingCriteriaList
- __call__
[[autodoc]] MaxLengthCriteria
- __call__
[[autodoc]] MaxTimeCriteria
- __call__
## Constraints
可以使用[`Constraint`]来强制生成结果包含输出中的特定tokens或序列。请注意,这仅适用于我们的PyTorch实现。
[[autodoc]] Constraint
[[autodoc]] PhrasalConstraint
[[autodoc]] DisjunctiveConstraint
[[autodoc]] ConstraintListState
## BeamSearch
[[autodoc]] BeamScorer
- process
- finalize
[[autodoc]] BeamSearchScorer
- process
- finalize
[[autodoc]] ConstrainedBeamSearchScorer
- process
- finalize
## Streamers
[[autodoc]] TextStreamer
[[autodoc]] TextIteratorStreamer
|
transformers/docs/source/zh/internal/generation_utils.md/0
|
{
"file_path": "transformers/docs/source/zh/internal/generation_utils.md",
"repo_id": "transformers",
"token_count": 3447
}
| 55 |
<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# Logging
🤗 Transformers拥有一个集中式的日志系统,因此您可以轻松设置库输出的日志详细程度。
当前库的默认日志详细程度为`WARNING`。
要更改日志详细程度,只需使用其中一个直接的setter。例如,以下是如何将日志详细程度更改为INFO级别的方法:
```python
import transformers
transformers.logging.set_verbosity_info()
```
您还可以使用环境变量`TRANSFORMERS_VERBOSITY`来覆盖默认的日志详细程度。您可以将其设置为以下级别之一:`debug`、`info`、`warning`、`error`、`critical`。例如:
```bash
TRANSFORMERS_VERBOSITY=error ./myprogram.py
```
此外,通过将环境变量`TRANSFORMERS_NO_ADVISORY_WARNINGS`设置为`true`(如*1*),可以禁用一些`warnings`。这将禁用[`logger.warning_advice`]记录的任何警告。例如:
```bash
TRANSFORMERS_NO_ADVISORY_WARNINGS=1 ./myprogram.py
```
以下是如何在您自己的模块或脚本中使用与库相同的logger的示例:
```python
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger("transformers")
logger.info("INFO")
logger.warning("WARN")
```
此日志模块的所有方法都在下面进行了记录,主要的方法包括 [`logging.get_verbosity`] 用于获取logger当前输出日志详细程度的级别和 [`logging.set_verbosity`] 用于将详细程度设置为您选择的级别。按照顺序(从最不详细到最详细),这些级别(及其相应的整数值)为:
- `transformers.logging.CRITICAL` 或 `transformers.logging.FATAL`(整数值,50):仅报告最关键的errors。
- `transformers.logging.ERROR`(整数值,40):仅报告errors。
- `transformers.logging.WARNING` 或 `transformers.logging.WARN`(整数值,30):仅报告error和warnings。这是库使用的默认级别。
- `transformers.logging.INFO`(整数值,20):报告error、warnings和基本信息。
- `transformers.logging.DEBUG`(整数值,10):报告所有信息。
默认情况下,将在模型下载期间显示`tqdm`进度条。[`logging.disable_progress_bar`] 和 [`logging.enable_progress_bar`] 可用于禁止或启用此行为。
## `logging` vs `warnings`
Python有两个经常一起使用的日志系统:如上所述的`logging`,和对特定buckets中的警告进行进一步分类的`warnings`,例如,`FutureWarning`用于输出已经被弃用的功能或路径,`DeprecationWarning`用于指示即将被弃用的内容。
我们在`transformers`库中同时使用这两个系统。我们利用并调整了`logging`的`captureWarning`方法,以便通过上面的详细程度setters来管理这些警告消息。
对于库的开发人员,这意味着什么呢?我们应该遵循以下启发法则:
- 库的开发人员和依赖于`transformers`的库应优先使用`warnings`
- `logging`应该用于在日常项目中经常使用它的用户
以下是`captureWarnings`方法的参考。
[[autodoc]] logging.captureWarnings
## Base setters
[[autodoc]] logging.set_verbosity_error
[[autodoc]] logging.set_verbosity_warning
[[autodoc]] logging.set_verbosity_info
[[autodoc]] logging.set_verbosity_debug
## Other functions
[[autodoc]] logging.get_verbosity
[[autodoc]] logging.set_verbosity
[[autodoc]] logging.get_logger
[[autodoc]] logging.enable_default_handler
[[autodoc]] logging.disable_default_handler
[[autodoc]] logging.enable_explicit_format
[[autodoc]] logging.reset_format
[[autodoc]] logging.enable_progress_bar
[[autodoc]] logging.disable_progress_bar
|
transformers/docs/source/zh/main_classes/logging.md/0
|
{
"file_path": "transformers/docs/source/zh/main_classes/logging.md",
"repo_id": "transformers",
"token_count": 2154
}
| 56 |
<!--Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 使用 torch.compile() 优化推理
本指南旨在为使用[`torch.compile()`](https://pytorch.org/tutorials/intermediate/torch_compile_tutorial.html)在[🤗 Transformers中的计算机视觉模型](https://huggingface.co/models?pipeline_tag=image-classification&library=transformers&sort=trending)中引入的推理速度提升提供一个基准。
## torch.compile 的优势
根据模型和GPU的不同,`torch.compile()`在推理过程中可以提高多达30%的速度。要使用`torch.compile()`,只需安装2.0及以上版本的`torch`即可。
编译模型需要时间,因此如果您只需要编译一次模型而不是每次推理都编译,那么它非常有用。
要编译您选择的任何计算机视觉模型,请按照以下方式调用`torch.compile()`:
```diff
from transformers import AutoModelForImageClassification
model = AutoModelForImageClassification.from_pretrained(MODEL_ID).to("cuda")
+ model = torch.compile(model)
```
`compile()` 提供了多种编译模式,它们在编译时间和推理开销上有所不同。`max-autotune` 比 `reduce-overhead` 需要更长的时间,但会得到更快的推理速度。默认模式在编译时最快,但在推理时间上与 `reduce-overhead` 相比效率较低。在本指南中,我们使用了默认模式。您可以在[这里](https://pytorch.org/get-started/pytorch-2.0/#user-experience)了解更多信息。
我们在 PyTorch 2.0.1 版本上使用不同的计算机视觉模型、任务、硬件类型和数据批量大小对 `torch.compile` 进行了基准测试。
## 基准测试代码
以下是每个任务的基准测试代码。我们在推理之前”预热“GPU,并取300次推理的平均值,每次使用相同的图像。
### 使用 ViT 进行图像分类
```python
import torch
from PIL import Image
import requests
import numpy as np
from transformers import AutoImageProcessor, AutoModelForImageClassification
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")
model = AutoModelForImageClassification.from_pretrained("google/vit-base-patch16-224").to("cuda")
model = torch.compile(model)
processed_input = processor(image, return_tensors='pt').to(device="cuda")
with torch.no_grad():
_ = model(**processed_input)
```
#### 使用 DETR 进行目标检测
```python
from transformers import AutoImageProcessor, AutoModelForObjectDetection
processor = AutoImageProcessor.from_pretrained("facebook/detr-resnet-50")
model = AutoModelForObjectDetection.from_pretrained("facebook/detr-resnet-50").to("cuda")
model = torch.compile(model)
texts = ["a photo of a cat", "a photo of a dog"]
inputs = processor(text=texts, images=image, return_tensors="pt").to("cuda")
with torch.no_grad():
_ = model(**inputs)
```
#### 使用 Segformer 进行图像分割
```python
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
processor = SegformerImageProcessor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512").to("cuda")
model = torch.compile(model)
seg_inputs = processor(images=image, return_tensors="pt").to("cuda")
with torch.no_grad():
_ = model(**seg_inputs)
```
以下是我们进行基准测试的模型列表。
**图像分类**
- [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224)
- [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k)
- [facebook/convnext-large-224](https://huggingface.co/facebook/convnext-large-224)
- [microsoft/resnet-50](https://huggingface.co/)
**图像分割**
- [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512)
- [facebook/mask2former-swin-tiny-coco-panoptic](https://huggingface.co/facebook/mask2former-swin-tiny-coco-panoptic)
- [facebook/maskformer-swin-base-ade](https://huggingface.co/facebook/maskformer-swin-base-ade)
- [google/deeplabv3_mobilenet_v2_1.0_513](https://huggingface.co/google/deeplabv3_mobilenet_v2_1.0_513)
**目标检测**
- [google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32)
- [facebook/detr-resnet-101](https://huggingface.co/facebook/detr-resnet-101)
- [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50)
下面是使用和不使用`torch.compile()`的推理持续时间可视化,以及每个模型在不同硬件和数据批量大小下的改进百分比。
<div class="flex">
<div>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/torch_compile/a100_batch_comp.png" />
</div>
<div>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/torch_compile/v100_batch_comp.png" />
</div>
<div>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/torch_compile/t4_batch_comp.png" />
</div>
</div>
<div class="flex">
<div>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/torch_compile/A100_1_duration.png" />
</div>
<div>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/torch_compile/A100_1_percentage.png" />
</div>
</div>


下面可以找到每个模型使用和不使用`compile()`的推理时间(毫秒)。请注意,OwlViT在大批量大小下会导致内存溢出。
### A100 (batch size: 1)
| **Task/Model** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|
| Image Classification/ViT | 9.325 | 7.584 |
| Image Segmentation/Segformer | 11.759 | 10.500 |
| Object Detection/OwlViT | 24.978 | 18.420 |
| Image Classification/BeiT | 11.282 | 8.448 |
| Object Detection/DETR | 34.619 | 19.040 |
| Image Classification/ConvNeXT | 10.410 | 10.208 |
| Image Classification/ResNet | 6.531 | 4.124 |
| Image Segmentation/Mask2former | 60.188 | 49.117 |
| Image Segmentation/Maskformer | 75.764 | 59.487 |
| Image Segmentation/MobileNet | 8.583 | 3.974 |
| Object Detection/Resnet-101 | 36.276 | 18.197 |
| Object Detection/Conditional-DETR | 31.219 | 17.993 |
### A100 (batch size: 4)
| **Task/Model** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|
| Image Classification/ViT | 14.832 | 14.499 |
| Image Segmentation/Segformer | 18.838 | 16.476 |
| Image Classification/BeiT | 13.205 | 13.048 |
| Object Detection/DETR | 48.657 | 32.418|
| Image Classification/ConvNeXT | 22.940 | 21.631 |
| Image Classification/ResNet | 6.657 | 4.268 |
| Image Segmentation/Mask2former | 74.277 | 61.781 |
| Image Segmentation/Maskformer | 180.700 | 159.116 |
| Image Segmentation/MobileNet | 14.174 | 8.515 |
| Object Detection/Resnet-101 | 68.101 | 44.998 |
| Object Detection/Conditional-DETR | 56.470 | 35.552 |
### A100 (batch size: 16)
| **Task/Model** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|
| Image Classification/ViT | 40.944 | 40.010 |
| Image Segmentation/Segformer | 37.005 | 31.144 |
| Image Classification/BeiT | 41.854 | 41.048 |
| Object Detection/DETR | 164.382 | 161.902 |
| Image Classification/ConvNeXT | 82.258 | 75.561 |
| Image Classification/ResNet | 7.018 | 5.024 |
| Image Segmentation/Mask2former | 178.945 | 154.814 |
| Image Segmentation/Maskformer | 638.570 | 579.826 |
| Image Segmentation/MobileNet | 51.693 | 30.310 |
| Object Detection/Resnet-101 | 232.887 | 155.021 |
| Object Detection/Conditional-DETR | 180.491 | 124.032 |
### V100 (batch size: 1)
| **Task/Model** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|
| Image Classification/ViT | 10.495 | 6.00 |
| Image Segmentation/Segformer | 13.321 | 5.862 |
| Object Detection/OwlViT | 25.769 | 22.395 |
| Image Classification/BeiT | 11.347 | 7.234 |
| Object Detection/DETR | 33.951 | 19.388 |
| Image Classification/ConvNeXT | 11.623 | 10.412 |
| Image Classification/ResNet | 6.484 | 3.820 |
| Image Segmentation/Mask2former | 64.640 | 49.873 |
| Image Segmentation/Maskformer | 95.532 | 72.207 |
| Image Segmentation/MobileNet | 9.217 | 4.753 |
| Object Detection/Resnet-101 | 52.818 | 28.367 |
| Object Detection/Conditional-DETR | 39.512 | 20.816 |
### V100 (batch size: 4)
| **Task/Model** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|
| Image Classification/ViT | 15.181 | 14.501 |
| Image Segmentation/Segformer | 16.787 | 16.188 |
| Image Classification/BeiT | 15.171 | 14.753 |
| Object Detection/DETR | 88.529 | 64.195 |
| Image Classification/ConvNeXT | 29.574 | 27.085 |
| Image Classification/ResNet | 6.109 | 4.731 |
| Image Segmentation/Mask2former | 90.402 | 76.926 |
| Image Segmentation/Maskformer | 234.261 | 205.456 |
| Image Segmentation/MobileNet | 24.623 | 14.816 |
| Object Detection/Resnet-101 | 134.672 | 101.304 |
| Object Detection/Conditional-DETR | 97.464 | 69.739 |
### V100 (batch size: 16)
| **Task/Model** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|
| Image Classification/ViT | 52.209 | 51.633 |
| Image Segmentation/Segformer | 61.013 | 55.499 |
| Image Classification/BeiT | 53.938 | 53.581 |
| Object Detection/DETR | OOM | OOM |
| Image Classification/ConvNeXT | 109.682 | 100.771 |
| Image Classification/ResNet | 14.857 | 12.089 |
| Image Segmentation/Mask2former | 249.605 | 222.801 |
| Image Segmentation/Maskformer | 831.142 | 743.645 |
| Image Segmentation/MobileNet | 93.129 | 55.365 |
| Object Detection/Resnet-101 | 482.425 | 361.843 |
| Object Detection/Conditional-DETR | 344.661 | 255.298 |
### T4 (batch size: 1)
| **Task/Model** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|
| Image Classification/ViT | 16.520 | 15.786 |
| Image Segmentation/Segformer | 16.116 | 14.205 |
| Object Detection/OwlViT | 53.634 | 51.105 |
| Image Classification/BeiT | 16.464 | 15.710 |
| Object Detection/DETR | 73.100 | 53.99 |
| Image Classification/ConvNeXT | 32.932 | 30.845 |
| Image Classification/ResNet | 6.031 | 4.321 |
| Image Segmentation/Mask2former | 79.192 | 66.815 |
| Image Segmentation/Maskformer | 200.026 | 188.268 |
| Image Segmentation/MobileNet | 18.908 | 11.997 |
| Object Detection/Resnet-101 | 106.622 | 82.566 |
| Object Detection/Conditional-DETR | 77.594 | 56.984 |
### T4 (batch size: 4)
| **Task/Model** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|
| Image Classification/ViT | 43.653 | 43.626 |
| Image Segmentation/Segformer | 45.327 | 42.445 |
| Image Classification/BeiT | 52.007 | 51.354 |
| Object Detection/DETR | 277.850 | 268.003 |
| Image Classification/ConvNeXT | 119.259 | 105.580 |
| Image Classification/ResNet | 13.039 | 11.388 |
| Image Segmentation/Mask2former | 201.540 | 184.670 |
| Image Segmentation/Maskformer | 764.052 | 711.280 |
| Image Segmentation/MobileNet | 74.289 | 48.677 |
| Object Detection/Resnet-101 | 421.859 | 357.614 |
| Object Detection/Conditional-DETR | 289.002 | 226.945 |
### T4 (batch size: 16)
| **Task/Model** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|
| Image Classification/ViT | 163.914 | 160.907 |
| Image Segmentation/Segformer | 192.412 | 163.620 |
| Image Classification/BeiT | 188.978 | 187.976 |
| Object Detection/DETR | OOM | OOM |
| Image Classification/ConvNeXT | 422.886 | 388.078 |
| Image Classification/ResNet | 44.114 | 37.604 |
| Image Segmentation/Mask2former | 756.337 | 695.291 |
| Image Segmentation/Maskformer | 2842.940 | 2656.88 |
| Image Segmentation/MobileNet | 299.003 | 201.942 |
| Object Detection/Resnet-101 | 1619.505 | 1262.758 |
| Object Detection/Conditional-DETR | 1137.513 | 897.390|
## PyTorch Nightly
我们还在 PyTorch Nightly 版本(2.1.0dev)上进行了基准测试,可以在[这里](https://download.pytorch.org/whl/nightly/cu118)找到 Nightly 版本的安装包,并观察到了未编译和编译模型的延迟性能改善。
### A100
| **Task/Model** | **Batch Size** | **torch 2.0 - no compile** | **torch 2.0 -<br> compile** |
|:---:|:---:|:---:|:---:|
| Image Classification/BeiT | Unbatched | 12.462 | 6.954 |
| Image Classification/BeiT | 4 | 14.109 | 12.851 |
| Image Classification/BeiT | 16 | 42.179 | 42.147 |
| Object Detection/DETR | Unbatched | 30.484 | 15.221 |
| Object Detection/DETR | 4 | 46.816 | 30.942 |
| Object Detection/DETR | 16 | 163.749 | 163.706 |
### T4
| **Task/Model** | **Batch Size** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|:---:|
| Image Classification/BeiT | Unbatched | 14.408 | 14.052 |
| Image Classification/BeiT | 4 | 47.381 | 46.604 |
| Image Classification/BeiT | 16 | 42.179 | 42.147 |
| Object Detection/DETR | Unbatched | 68.382 | 53.481 |
| Object Detection/DETR | 4 | 269.615 | 204.785 |
| Object Detection/DETR | 16 | OOM | OOM |
### V100
| **Task/Model** | **Batch Size** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|:---:|
| Image Classification/BeiT | Unbatched | 13.477 | 7.926 |
| Image Classification/BeiT | 4 | 15.103 | 14.378 |
| Image Classification/BeiT | 16 | 52.517 | 51.691 |
| Object Detection/DETR | Unbatched | 28.706 | 19.077 |
| Object Detection/DETR | 4 | 88.402 | 62.949|
| Object Detection/DETR | 16 | OOM | OOM |
## 降低开销
我们在 PyTorch Nightly 版本中为 A100 和 T4 进行了 `reduce-overhead` 编译模式的性能基准测试。
### A100
| **Task/Model** | **Batch Size** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|:---:|
| Image Classification/ConvNeXT | Unbatched | 11.758 | 7.335 |
| Image Classification/ConvNeXT | 4 | 23.171 | 21.490 |
| Image Classification/ResNet | Unbatched | 7.435 | 3.801 |
| Image Classification/ResNet | 4 | 7.261 | 2.187 |
| Object Detection/Conditional-DETR | Unbatched | 32.823 | 11.627 |
| Object Detection/Conditional-DETR | 4 | 50.622 | 33.831 |
| Image Segmentation/MobileNet | Unbatched | 9.869 | 4.244 |
| Image Segmentation/MobileNet | 4 | 14.385 | 7.946 |
### T4
| **Task/Model** | **Batch Size** | **torch 2.0 - <br>no compile** | **torch 2.0 - <br>compile** |
|:---:|:---:|:---:|:---:|
| Image Classification/ConvNeXT | Unbatched | 32.137 | 31.84 |
| Image Classification/ConvNeXT | 4 | 120.944 | 110.209 |
| Image Classification/ResNet | Unbatched | 9.761 | 7.698 |
| Image Classification/ResNet | 4 | 15.215 | 13.871 |
| Object Detection/Conditional-DETR | Unbatched | 72.150 | 57.660 |
| Object Detection/Conditional-DETR | 4 | 301.494 | 247.543 |
| Image Segmentation/MobileNet | Unbatched | 22.266 | 19.339 |
| Image Segmentation/MobileNet | 4 | 78.311 | 50.983 |
|
transformers/docs/source/zh/perf_torch_compile.md/0
|
{
"file_path": "transformers/docs/source/zh/perf_torch_compile.md",
"repo_id": "transformers",
"token_count": 6785
}
| 57 |
<!--
Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
# 导出为 TorchScript
<Tip>
这是开始使用 TorchScript 进行实验的起点,我们仍在探索其在变量输入大小模型中的能力。
这是我们关注的焦点,我们将在即将发布的版本中深入分析,提供更多的代码示例、更灵活的实现以及比较
Python 代码与编译 TorchScript 的性能基准。
</Tip>
根据 [TorchScript 文档](https://pytorch.org/docs/stable/jit.html):
> TorchScript 是从 PyTorch 代码创建可序列化和可优化的模型的一种方式。
有两个 PyTorch 模块:[JIT 和 TRACE](https://pytorch.org/docs/stable/jit.html)。
这两个模块允许开发人员将其模型导出到其他程序中重用,比如面向效率的 C++ 程序。
我们提供了一个接口,允许您将 🤗 Transformers 模型导出为 TorchScript,
以便在与基于 PyTorch 的 Python 程序不同的环境中重用。
本文解释如何使用 TorchScript 导出并使用我们的模型。
导出模型需要两个步骤:
- 使用 `torchscript` 参数实例化模型
- 使用虚拟输入进行前向传递
这些必要条件意味着开发人员应该注意以下详细信息。
## TorchScript 参数和绑定权重
`torchscript` 参数是必需的,因为大多数 🤗 Transformers 语言模型的 `Embedding` 层和
`Decoding` 层之间有绑定权重。TorchScript 不允许导出具有绑定权重的模型,因此必须事先解绑和克隆权重。
使用 `torchscript` 参数实例化的模型将其 `Embedding` 层和 `Decoding` 层分开,
这意味着它们不应该在后续进行训练。训练将导致这两层不同步,产生意外结果。
对于没有语言模型头部的模型,情况不同,因为这些模型没有绑定权重。
这些模型可以安全地导出而无需 `torchscript` 参数。
## 虚拟输入和标准长度
虚拟输入用于模型的前向传递。当输入的值传播到各层时,PyTorch 会跟踪在每个张量上执行的不同操作。
然后使用记录的操作来创建模型的 *trace* 。
跟踪是相对于输入的维度创建的。因此,它受到虚拟输入的维度限制,对于任何其他序列长度或批量大小都不起作用。
当尝试使用不同大小时,会引发以下错误:
```text
`The expanded size of the tensor (3) must match the existing size (7) at non-singleton dimension 2`
```
我们建议使用至少与推断期间将馈送到模型的最大输入一样大的虚拟输入大小进行跟踪。
填充可以帮助填补缺失的值。然而,由于模型是使用更大的输入大小进行跟踪的,矩阵的维度也会很大,导致更多的计算。
在每个输入上执行的操作总数要仔细考虑,并在导出不同序列长度模型时密切关注性能。
## 在 Python 中使用 TorchScript
本节演示了如何保存和加载模型以及如何使用 trace 进行推断。
### 保存模型
要使用 TorchScript 导出 `BertModel`,请从 `BertConfig` 类实例化 `BertModel`,
然后将其保存到名为 `traced_bert.pt` 的磁盘文件中:
```python
from transformers import BertModel, BertTokenizer, BertConfig
import torch
enc = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
# 对输入文本分词
text = "[CLS] Who was Jim Henson ? [SEP] Jim Henson was a puppeteer [SEP]"
tokenized_text = enc.tokenize(text)
# 屏蔽一个输入 token
masked_index = 8
tokenized_text[masked_index] = "[MASK]"
indexed_tokens = enc.convert_tokens_to_ids(tokenized_text)
segments_ids = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]
# 创建虚拟输入
tokens_tensor = torch.tensor([indexed_tokens])
segments_tensors = torch.tensor([segments_ids])
dummy_input = [tokens_tensor, segments_tensors]
# 使用 torchscript 参数初始化模型
# 即使此模型没有 LM Head,也将参数设置为 True。
config = BertConfig(
vocab_size_or_config_json_file=32000,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
torchscript=True,
)
# 实例化模型
model = BertModel(config)
# 模型需要处于评估模式
model.eval()
# 如果您使用 *from_pretrained* 实例化模型,还可以轻松设置 TorchScript 参数
model = BertModel.from_pretrained("google-bert/bert-base-uncased", torchscript=True)
# 创建 trace
traced_model = torch.jit.trace(model, [tokens_tensor, segments_tensors])
torch.jit.save(traced_model, "traced_bert.pt")
```
### 加载模型
现在,您可以从磁盘加载先前保存的 `BertModel`、`traced_bert.pt`,并在先前初始化的 `dummy_input` 上使用:
```python
loaded_model = torch.jit.load("traced_bert.pt")
loaded_model.eval()
all_encoder_layers, pooled_output = loaded_model(*dummy_input)
```
### 使用 trace 模型进行推断
通过使用其 `__call__` dunder 方法使用 trace 模型进行推断:
```python
traced_model(tokens_tensor, segments_tensors)
```
## 使用 Neuron SDK 将 Hugging Face TorchScript 模型部署到 AWS
AWS 引入了用于云端低成本、高性能机器学习推理的
[Amazon EC2 Inf1](https://aws.amazon.com/ec2/instance-types/inf1/) 实例系列。
Inf1 实例由 AWS Inferentia 芯片提供支持,这是一款专为深度学习推理工作负载而构建的定制硬件加速器。
[AWS Neuron](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/#) 是
Inferentia 的 SDK,支持对 transformers 模型进行跟踪和优化,以便在 Inf1 上部署。Neuron SDK 提供:
1. 简单易用的 API,只需更改一行代码即可为云端推理跟踪和优化 TorchScript 模型。
2. 针对[改进的性能成本](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/benchmark/)的即插即用性能优化。
3. 支持使用 [PyTorch](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/bert_tutorial/tutorial_pretrained_bert.html)
或 [TensorFlow](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/tensorflow/huggingface_bert/huggingface_bert.html)
构建的 Hugging Face transformers 模型。
### 影响
基于 [BERT(来自 Transformers 的双向编码器表示)](https://huggingface.co/docs/transformers/main/model_doc/bert)架构的
transformers 模型,或其变体,如 [distilBERT](https://huggingface.co/docs/transformers/main/model_doc/distilbert)
和 [roBERTa](https://huggingface.co/docs/transformers/main/model_doc/roberta) 在 Inf1 上运行最佳,
可用于生成抽取式问答、序列分类和标记分类等任务。然而,文本生成任务仍可以适应在 Inf1 上运行,
如这篇 [AWS Neuron MarianMT 教程](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/src/examples/pytorch/transformers-marianmt.html)所述。
有关可以直接在 Inferentia 上转换的模型的更多信息,请参阅 Neuron 文档的[模型架构适配](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/models/models-inferentia.html#models-inferentia)章节。
### 依赖关系
使用 AWS Neuron 将模型转换为模型需要一个
[Neuron SDK 环境](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/neuron-guide/neuron-frameworks/pytorch-neuron/index.html#installation-guide),
它已经预先配置在 [AWS 深度学习 AMI](https://docs.aws.amazon.com/dlami/latest/devguide/tutorial-inferentia-launching.html)上。
### 将模型转换为 AWS Neuron
使用与 [Python 中使用 TorchScript](torchscript#using-torchscript-in-python) 相同的代码来跟踪
`BertModel` 以将模型转换为 AWS NEURON。导入 `torch.neuron` 框架扩展以通过 Python API 访问 Neuron SDK 的组件:
```python
from transformers import BertModel, BertTokenizer, BertConfig
import torch
import torch.neuron
```
您只需要修改下面这一行:
```diff
- torch.jit.trace(model, [tokens_tensor, segments_tensors])
+ torch.neuron.trace(model, [token_tensor, segments_tensors])
```
这样就能使 Neuron SDK 跟踪模型并对其进行优化,以在 Inf1 实例上运行。
要了解有关 AWS Neuron SDK 功能、工具、示例教程和最新更新的更多信息,
请参阅 [AWS NeuronSDK 文档](https://awsdocs-neuron.readthedocs-hosted.com/en/latest/index.html)。
|
transformers/docs/source/zh/torchscript.md/0
|
{
"file_path": "transformers/docs/source/zh/torchscript.md",
"repo_id": "transformers",
"token_count": 4763
}
| 58 |
#!/usr/bin/env python3
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class SentencePieceUnigramTokenizer(BaseTokenizer):
"""
This class is a copy of `DeDLOC's tokenizer implementation <https://github.com/yandex-research/DeDLOC/blob/main/sahajbert/tokenizer/tokenizer_model.py>`__ .
Custom SentencePiece Unigram Tokenizer with NMT, NKFC, spaces and lower-casing characters normalization
Represents the Unigram algorithm, with the pretokenization used by SentencePiece
"""
def __init__(
self,
replacement: str = "▁",
add_prefix_space: bool = True,
unk_token: Union[str, AddedToken] = "<unk>",
eos_token: Union[str, AddedToken] = "</s>",
pad_token: Union[str, AddedToken] = "<pad>",
):
self.special_tokens = {
"pad": {"id": 0, "token": pad_token},
"eos": {"id": 1, "token": eos_token},
"unk": {"id": 2, "token": unk_token},
}
self.special_tokens_list = [None] * len(self.special_tokens)
for token_dict in self.special_tokens.values():
self.special_tokens_list[token_dict["id"]] = token_dict["token"]
tokenizer = Tokenizer(Unigram())
tokenizer.normalizer = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(" {2,}"), " "),
normalizers.Lowercase(),
]
)
tokenizer.pre_tokenizer = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(
replacement=replacement, prepend_scheme="always" if add_prefix_space else "never"
),
pre_tokenizers.Digits(individual_digits=True),
pre_tokenizers.Punctuation(),
]
)
tokenizer.decoder = decoders.Metaspace(
replacement=replacement, prepend_scheme="always" if add_prefix_space else "never"
)
tokenizer.post_processor = TemplateProcessing(
single=f"$A {self.special_tokens['eos']['token']}",
special_tokens=[(self.special_tokens["eos"]["token"], self.special_tokens["eos"]["id"])],
)
parameters = {
"model": "SentencePieceUnigram",
"replacement": replacement,
"add_prefix_space": add_prefix_space,
}
super().__init__(tokenizer, parameters)
def train(
self,
files: Union[str, List[str]],
vocab_size: int = 8000,
show_progress: bool = True,
):
"""Train the model using the given files"""
trainer = trainers.UnigramTrainer(
vocab_size=vocab_size,
special_tokens=self.special_tokens_list,
show_progress=show_progress,
)
if isinstance(files, str):
files = [files]
self._tokenizer.train(files, trainer=trainer)
self.add_unk_id()
def train_from_iterator(
self,
iterator: Union[Iterator[str], Iterator[Iterator[str]]],
vocab_size: int = 8000,
show_progress: bool = True,
):
"""Train the model using the given iterator"""
trainer = trainers.UnigramTrainer(
vocab_size=vocab_size,
special_tokens=self.special_tokens_list,
show_progress=show_progress,
)
self._tokenizer.train_from_iterator(iterator, trainer=trainer)
self.add_unk_id()
def add_unk_id(self):
tokenizer_json = json.loads(self._tokenizer.to_str())
tokenizer_json["model"]["unk_id"] = self.special_tokens["unk"]["id"]
self._tokenizer = Tokenizer.from_str(json.dumps(tokenizer_json))
|
transformers/examples/flax/language-modeling/t5_tokenizer_model.py/0
|
{
"file_path": "transformers/examples/flax/language-modeling/t5_tokenizer_model.py",
"repo_id": "transformers",
"token_count": 1823
}
| 59 |
import argparse
import glob
import logging
import os
from argparse import Namespace
from importlib import import_module
import numpy as np
import torch
from lightning_base import BaseTransformer, add_generic_args, generic_train
from seqeval.metrics import accuracy_score, f1_score, precision_score, recall_score
from torch.nn import CrossEntropyLoss
from torch.utils.data import DataLoader, TensorDataset
from utils_ner import TokenClassificationTask
logger = logging.getLogger(__name__)
class NERTransformer(BaseTransformer):
"""
A training module for NER. See BaseTransformer for the core options.
"""
mode = "token-classification"
def __init__(self, hparams):
if isinstance(hparams, dict):
hparams = Namespace(**hparams)
module = import_module("tasks")
try:
token_classification_task_clazz = getattr(module, hparams.task_type)
self.token_classification_task: TokenClassificationTask = token_classification_task_clazz()
except AttributeError:
raise ValueError(
f"Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. "
f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}"
)
self.labels = self.token_classification_task.get_labels(hparams.labels)
self.pad_token_label_id = CrossEntropyLoss().ignore_index
super().__init__(hparams, len(self.labels), self.mode)
def forward(self, **inputs):
return self.model(**inputs)
def training_step(self, batch, batch_num):
"Compute loss and log."
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
inputs["token_type_ids"] = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
outputs = self(**inputs)
loss = outputs[0]
# tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]}
return {"loss": loss}
def prepare_data(self):
"Called to initialize data. Use the call to construct features"
args = self.hparams
for mode in ["train", "dev", "test"]:
cached_features_file = self._feature_file(mode)
if os.path.exists(cached_features_file) and not args.overwrite_cache:
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir)
examples = self.token_classification_task.read_examples_from_file(args.data_dir, mode)
features = self.token_classification_task.convert_examples_to_features(
examples,
self.labels,
args.max_seq_length,
self.tokenizer,
cls_token_at_end=bool(self.config.model_type in ["xlnet"]),
cls_token=self.tokenizer.cls_token,
cls_token_segment_id=2 if self.config.model_type in ["xlnet"] else 0,
sep_token=self.tokenizer.sep_token,
sep_token_extra=False,
pad_on_left=bool(self.config.model_type in ["xlnet"]),
pad_token=self.tokenizer.pad_token_id,
pad_token_segment_id=self.tokenizer.pad_token_type_id,
pad_token_label_id=self.pad_token_label_id,
)
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
def get_dataloader(self, mode: int, batch_size: int, shuffle: bool = False) -> DataLoader:
"Load datasets. Called after prepare data."
cached_features_file = self._feature_file(mode)
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long)
if features[0].token_type_ids is not None:
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long)
else:
all_token_type_ids = torch.tensor([0 for f in features], dtype=torch.long)
# HACK(we will not use this anymore soon)
all_label_ids = torch.tensor([f.label_ids for f in features], dtype=torch.long)
return DataLoader(
TensorDataset(all_input_ids, all_attention_mask, all_token_type_ids, all_label_ids), batch_size=batch_size
)
def validation_step(self, batch, batch_nb):
"""Compute validation""" ""
inputs = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]}
if self.config.model_type != "distilbert":
inputs["token_type_ids"] = (
batch[2] if self.config.model_type in ["bert", "xlnet"] else None
) # XLM and RoBERTa don"t use token_type_ids
outputs = self(**inputs)
tmp_eval_loss, logits = outputs[:2]
preds = logits.detach().cpu().numpy()
out_label_ids = inputs["labels"].detach().cpu().numpy()
return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids}
def _eval_end(self, outputs):
"Evaluation called for both Val and Test"
val_loss_mean = torch.stack([x["val_loss"] for x in outputs]).mean()
preds = np.concatenate([x["pred"] for x in outputs], axis=0)
preds = np.argmax(preds, axis=2)
out_label_ids = np.concatenate([x["target"] for x in outputs], axis=0)
label_map = dict(enumerate(self.labels))
out_label_list = [[] for _ in range(out_label_ids.shape[0])]
preds_list = [[] for _ in range(out_label_ids.shape[0])]
for i in range(out_label_ids.shape[0]):
for j in range(out_label_ids.shape[1]):
if out_label_ids[i, j] != self.pad_token_label_id:
out_label_list[i].append(label_map[out_label_ids[i][j]])
preds_list[i].append(label_map[preds[i][j]])
results = {
"val_loss": val_loss_mean,
"accuracy_score": accuracy_score(out_label_list, preds_list),
"precision": precision_score(out_label_list, preds_list),
"recall": recall_score(out_label_list, preds_list),
"f1": f1_score(out_label_list, preds_list),
}
ret = dict(results.items())
ret["log"] = results
return ret, preds_list, out_label_list
def validation_epoch_end(self, outputs):
# when stable
ret, preds, targets = self._eval_end(outputs)
logs = ret["log"]
return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
def test_epoch_end(self, outputs):
# updating to test_epoch_end instead of deprecated test_end
ret, predictions, targets = self._eval_end(outputs)
# Converting to the dict required by pl
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\
# pytorch_lightning/trainer/logging.py#L139
logs = ret["log"]
# `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss`
return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs}
@staticmethod
def add_model_specific_args(parser, root_dir):
# Add NER specific options
BaseTransformer.add_model_specific_args(parser, root_dir)
parser.add_argument(
"--task_type", default="NER", type=str, help="Task type to fine tune in training (e.g. NER, POS, etc)"
)
parser.add_argument(
"--max_seq_length",
default=128,
type=int,
help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
),
)
parser.add_argument(
"--labels",
default="",
type=str,
help="Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.",
)
parser.add_argument(
"--gpus",
default=0,
type=int,
help="The number of GPUs allocated for this, it is by default 0 meaning none",
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
)
return parser
if __name__ == "__main__":
parser = argparse.ArgumentParser()
add_generic_args(parser, os.getcwd())
parser = NERTransformer.add_model_specific_args(parser, os.getcwd())
args = parser.parse_args()
model = NERTransformer(args)
trainer = generic_train(model, args)
if args.do_predict:
# See https://github.com/huggingface/transformers/issues/3159
# pl use this default format to create a checkpoint:
# https://github.com/PyTorchLightning/pytorch-lightning/blob/master\
# /pytorch_lightning/callbacks/model_checkpoint.py#L322
checkpoints = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True))
model = model.load_from_checkpoint(checkpoints[-1])
trainer.test(model)
|
transformers/examples/legacy/pytorch-lightning/run_ner.py/0
|
{
"file_path": "transformers/examples/legacy/pytorch-lightning/run_ner.py",
"repo_id": "transformers",
"token_count": 4295
}
| 60 |
#!/usr/bin/env python
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import itertools
import operator
import sys
from collections import OrderedDict
from run_eval import datetime_now, run_generate
from utils import ROUGE_KEYS
# A table of supported tasks and the list of scores in the order of importance to be sorted by.
# To add a new task, simply list the score names that `run_eval.run_generate()` returns
task_score_names = {
"translation": ["bleu"],
"summarization": ROUGE_KEYS,
}
def parse_search_arg(search):
groups = search.split()
entries = dict((g.split("=") for g in groups))
entry_names = list(entries.keys())
sets = [[f"--{k} {v}" for v in vs.split(":")] for k, vs in entries.items()]
matrix = [list(x) for x in itertools.product(*sets)]
return matrix, entry_names
def run_search():
"""
Run parametric search over the desired hparam space with help of ``run_eval.py``.
All the arguments except ``--search`` are passed to ``run_eval.py`` as is. The values inside of "--search" are parsed, reformatted and fed to ``run_eval.py`` as additional args.
The format for the ``--search`` value is a simple string with hparams and colon separated values to try, e.g.:
```
--search "num_beams=5:10 length_penalty=0.8:1.0:1.2 early_stopping=true:false"
```
which will generate ``12`` ``(2*3*2)`` searches for a product of each hparam. For example the example that was just used will invoke ``run_eval.py`` repeatedly with:
```
--num_beams 5 --length_penalty 0.8 --early_stopping true
--num_beams 5 --length_penalty 0.8 --early_stopping false
[...]
--num_beams 10 --length_penalty 1.2 --early_stopping false
```
On completion, this function prints a markdown table of the results sorted by the best BLEU score and the winning arguments.
"""
prog = sys.argv[0]
parser = argparse.ArgumentParser(
usage=(
"\n\nImportant: this script accepts all arguments `run_eval.py` accepts and then a few extra, therefore"
" refer to `run_eval.py -h` for the complete list."
)
)
parser.add_argument(
"--search",
type=str,
required=False,
help='param space to search, e.g. "num_beams=5:10 length_penalty=0.8:1.0:1.2"',
)
parser.add_argument(
"--bs", type=int, default=8, required=False, help="initial batch size (may get reduced if it's too big)"
)
parser.add_argument("--task", type=str, help="used for task_specific_params + metrics")
parser.add_argument(
"--info",
nargs="?",
type=str,
const=datetime_now(),
help=(
"add custom notes to be printed before the results table. If no value is passed, the current datetime"
" string will be used."
),
)
args, args_main = parser.parse_known_args()
# we share some of the args
args_main.extend(["--task", args.task])
args_normal = [prog] + args_main
# to support variations like translation_en_to_de"
task = "translation" if "translation" in args.task else "summarization"
matrix, col_names = parse_search_arg(args.search)
col_names[0:0] = task_score_names[task] # score cols first
col_widths = {col: len(str(col)) for col in col_names}
results = []
for r in matrix:
hparams = dict((x.replace("--", "").split() for x in r))
args_exp = " ".join(r).split()
args_exp.extend(["--bs", str(args.bs)]) # in case we need to reduce its size due to CUDA OOM
sys.argv = args_normal + args_exp
# XXX: need to trap CUDA OOM and lower args.bs if that happens and retry
scores = run_generate(verbose=False)
# make sure scores are first in the table
result = OrderedDict()
for score in task_score_names[task]:
result[score] = scores[score]
result.update(hparams)
results.append(result)
# find widest entries
for k, v in result.items():
l = len(str(v))
if l > col_widths[k]:
col_widths[k] = l
results_sorted = sorted(results, key=operator.itemgetter(*task_score_names[task]), reverse=True)
print(" | ".join([f"{col:{col_widths[col]}}" for col in col_names]))
print(" | ".join([f"{'-'*col_widths[col]}" for col in col_names]))
for row in results_sorted:
print(" | ".join([f"{row[col]:{col_widths[col]}}" for col in col_names]))
best = results_sorted[0]
for score in task_score_names[task]:
del best[score]
best_args = [f"--{k} {v}" for k, v in best.items()]
dyn_args = ["--bs", str(args.bs)]
if args.info:
print(f"\nInfo: {args.info}")
print("\nBest score args:")
print(" ".join(args_main + best_args + dyn_args))
return results_sorted
if __name__ == "__main__":
# Usage:
# [normal-run_eval_search.py cmd plus] \
# --search="num_beams=1:5:10 length_penalty=0.8:1:1.2 early_stopping=true:false"
#
# Example:
# PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval_search.py $MODEL_NAME \
# $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target \
# --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation \
# --search="num_beams=1:5:10 length_penalty=0.8:1:1.2 early_stopping=true:false"
run_search()
|
transformers/examples/legacy/seq2seq/run_eval_search.py/0
|
{
"file_path": "transformers/examples/legacy/seq2seq/run_eval_search.py",
"repo_id": "transformers",
"token_count": 2316
}
| 61 |
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from examples/modular-transformers/modular_my_new_model.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_my_new_model.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
from ...configuration_utils import PretrainedConfig
from ...modeling_rope_utils import rope_config_validation
class MyNewModelConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MyNewModelModel`]. It is used to instantiate an MyNewModel
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the MyNewModel-7B.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the MyNewModel model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`MyNewModelModel`]
hidden_size (`int`, *optional*, defaults to 4096):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 11008):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 32):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 32):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
The non-linear activation function (function or string) in the decoder.
max_position_embeddings (`int`, *optional*, defaults to 2048):
The maximum sequence length that this model might ever be used with. MyNewModel 1 supports up to 2048 tokens,
MyNewModel 2 up to 4096, CodeLlama up to 16384.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*):
Padding token id.
bos_token_id (`int`, *optional*, defaults to 1):
Beginning of stream token id.
eos_token_id (`int`, *optional*, defaults to 2):
End of stream token id.
pretraining_tp (`int`, *optional*, defaults to 1):
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
rope_scaling (`Dict`, *optional*):
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
accordingly.
Expected contents:
`rope_type` (`str`):
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
'my_new_model3'], with 'default' being the original RoPE implementation.
`factor` (`float`, *optional*):
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
original maximum pre-trained length.
`original_max_position_embeddings` (`int`, *optional*):
Used with 'dynamic', 'longrope' and 'my_new_model3'. The original max position embeddings used during
pretraining.
`attention_factor` (`float`, *optional*):
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
computation. If unspecified, it defaults to value recommended by the implementation, using the
`factor` field to infer the suggested value.
`beta_fast` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
ramp function. If unspecified, it defaults to 32.
`beta_slow` (`float`, *optional*):
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
ramp function. If unspecified, it defaults to 1.
`short_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`long_factor` (`List[float]`, *optional*):
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
size divided by the number of attention heads divided by 2
`low_freq_factor` (`float`, *optional*):
Only used with 'my_new_model3'. Scaling factor applied to low frequency components of the RoPE
`high_freq_factor` (`float`, *optional*):
Only used with 'my_new_model3'. Scaling factor applied to high frequency components of the RoPE
attention_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
mlp_bias (`bool`, *optional*, defaults to `False`):
Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
head_dim (`int`, *optional*):
The attention head dimension. If None, it will default to hidden_size // num_attention_heads
```python
>>> from transformers import MyNewModelModel, MyNewModelConfig
>>> # Initializing a MyNewModel my_new_model-7b style configuration
>>> configuration = MyNewModelConfig()
>>> # Initializing a model from the my_new_model-7b style configuration
>>> model = MyNewModelModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
new_param (`int`, *optional*, defaults to `False`):
A fun new parameter
"""
model_type = "my_new_model"
keys_to_ignore_at_inference = ["past_key_values"]
# Default tensor parallel plan for base model `MyNewModelModel`
base_model_tp_plan = {
"layers.*.self_attn.q_proj": "colwise",
"layers.*.self_attn.k_proj": "colwise",
"layers.*.self_attn.v_proj": "colwise",
"layers.*.self_attn.o_proj": "rowwise",
"layers.*.mlp.gate_proj": "colwise",
"layers.*.mlp.up_proj": "colwise",
"layers.*.mlp.down_proj": "rowwise",
}
def __init__(
self,
vocab_size=32000,
hidden_size=4096,
intermediate_size=11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=None,
bos_token_id=1,
eos_token_id=2,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
mlp_bias=True,
head_dim=None,
new_param=0,
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
num_key_value_heads = num_attention_heads
self.num_key_value_heads = num_key_value_heads
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.pretraining_tp = pretraining_tp
self.use_cache = use_cache
self.rope_theta = rope_theta
self.rope_scaling = rope_scaling
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.mlp_bias = mlp_bias
self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
# Validate the correctness of rotary position embeddings parameters
# BC: if there is a 'type' field, copy it it to 'rope_type'.
if self.rope_scaling is not None and "type" in self.rope_scaling:
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
rope_config_validation(self)
self.new_param = new_param
|
transformers/examples/modular-transformers/configuration_my_new_model.py/0
|
{
"file_path": "transformers/examples/modular-transformers/configuration_my_new_model.py",
"repo_id": "transformers",
"token_count": 4977
}
| 62 |
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from examples/modular-transformers/modular_switch_function.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_switch_function.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# Note that llama and cohere have different definitions for rotate_half
from typing import Callable, Optional, Tuple
import torch
from torch import nn
from ...cache_utils import Cache
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import logging
from .configuration_switch_function import SwitchFunctionConfig
logger = logging.get_logger(__name__)
def rotate_half(x):
# Split and rotate. Note that this function is different from e.g. Llama.
x1 = x[..., ::2]
x2 = x[..., 1::2]
rot_x = torch.stack([-x2, x1], dim=-1).flatten(-2)
return rot_x
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class SwitchFunctionAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config: SwitchFunctionConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.is_causal = True
self.q_proj = nn.Linear(
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
)
self.k_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.v_proj = nn.Linear(
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
)
self.o_proj = nn.Linear(
config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
|
transformers/examples/modular-transformers/modeling_switch_function.py/0
|
{
"file_path": "transformers/examples/modular-transformers/modeling_switch_function.py",
"repo_id": "transformers",
"token_count": 3528
}
| 63 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
import argparse
import logging
import math
import os
from pathlib import Path
import datasets
import numpy as np
import torch
from accelerate import Accelerator, DistributedType
from accelerate.utils import set_seed
from datasets import load_dataset
from huggingface_hub import HfApi
from torch.utils.data import DataLoader
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from tqdm.auto import tqdm
import transformers
from transformers import (
CONFIG_MAPPING,
IMAGE_PROCESSOR_MAPPING,
MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForMaskedImageModeling,
SchedulerType,
get_scheduler,
)
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
""" Pre-training a 🤗 Transformers model for simple masked image modeling (SimMIM)
without using HuggingFace Trainer.
Any model supported by the AutoModelForMaskedImageModeling API can be used.
"""
logger = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.49.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt")
MODEL_CONFIG_CLASSES = list(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def parse_args():
parser = argparse.ArgumentParser(
description="Finetune a transformers model on a simple Masked Image Modeling task"
)
parser.add_argument(
"--dataset_name",
type=str,
default="cifar10",
help="Name of a dataset from the datasets package",
)
parser.add_argument(
"--dataset_config_name",
type=str,
default=None,
help="The configuration name of the dataset to use (via the datasets library).",
)
parser.add_argument(
"--image_column_name",
type=str,
default=None,
help="The column name of the images in the files. If not set, will try to use 'image' or 'img'.",
)
parser.add_argument(
"--train_dir",
type=str,
default=None,
help="A folder containing the training data.",
)
parser.add_argument(
"--validation_dir",
type=None,
default=None,
help="A folder containing the validation data.",
)
parser.add_argument(
"--train_val_split",
type=float,
default=0.15,
help="Percent to split off of train for validation.",
)
parser.add_argument(
"--mask_patch_size",
type=int,
default=32,
help="The size of the square patches to use for masking.",
)
parser.add_argument(
"--mask_ratio",
type=float,
default=0.6,
help="Percentage of patches to mask.",
)
parser.add_argument(
"--max_train_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
),
)
parser.add_argument(
"--max_eval_samples",
type=int,
default=None,
help=(
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
),
)
parser.add_argument(
"--model_name_or_path",
type=str,
default=None,
help=(
"The model checkpoint for weights initialization. Can be a local path to a pytorch_model.bin or a "
"checkpoint identifier on the hub. "
"Don't set if you want to train a model from scratch."
),
)
parser.add_argument(
"--model_type",
type=str,
default=None,
help="If training from scratch, pass a model type from the list: " + ", ".join(MODEL_TYPES),
)
parser.add_argument(
"--config_name_or_path",
type=str,
default=None,
help="Pretrained config name or path if not the same as model_name",
)
parser.add_argument(
"--config_overrides",
type=str,
default=None,
help=(
"Override some existing default config settings when a model is trained from scratch. Example: "
"n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"
),
)
parser.add_argument(
"--cache_dir",
type=str,
default=None,
help="Where do you want to store (cache) the pretrained models/datasets downloaded from the hub",
)
parser.add_argument(
"--model_revision",
type=str,
default="main",
help="The specific model version to use (can be a branch name, tag name or commit id).",
)
parser.add_argument(
"--gradient_accumulation_steps",
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--image_processor_name",
type=str,
default=None,
help="Name or path of preprocessor config.",
)
parser.add_argument(
"--token",
type=str,
default=None,
help=(
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
),
)
parser.add_argument(
"--trust_remote_code",
action="store_true",
help=(
"Whether to trust the execution of code from datasets/models defined on the Hub."
" This option should only be set to `True` for repositories you trust and in which you have read the"
" code, as it will execute code present on the Hub on your local machine."
),
)
parser.add_argument(
"--image_size",
type=int,
default=None,
help="The size (resolution) of each image. If not specified, will use `image_size` of the configuration.",
)
parser.add_argument(
"--patch_size",
type=int,
default=None,
help="The size (resolution) of each patch. If not specified, will use `patch_size` of the configuration.",
)
parser.add_argument(
"--encoder_stride",
type=int,
default=None,
help={"help": "Stride to use for the encoder."},
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether or not to push the model to the Hub.",
)
parser.add_argument(
"--with_tracking",
action="store_true",
help="Whether to enable experiment trackers for logging.",
)
parser.add_argument(
"--report_to",
type=str,
default="all",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations. '
"Only applicable when `--with_tracking` is passed."
),
)
parser.add_argument(
"--seed",
type=int,
default=None,
help="A seed for reproducible training.",
)
parser.add_argument(
"--per_device_train_batch_size",
type=int,
default=8,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--learning_rate",
type=float,
default=5e-5,
help="The initial learning rate for [`AdamW`] optimizer.",
)
parser.add_argument(
"--weight_decay",
type=float,
default=0.0,
help="Weight decay to use.",
)
parser.add_argument(
"--num_train_epochs",
type=float,
default=3.0,
help="Total number of training epochs to perform (if not an integer, will perform the decimal part percents of the last epoch before stopping training).",
)
parser.add_argument(
"--max_train_steps",
type=int,
default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
)
parser.add_argument(
"--lr_scheduler_type",
type=SchedulerType,
default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps",
type=int,
default=0,
help="Number of steps for the warmup in the lr scheduler.",
)
parser.add_argument(
"--checkpointing_steps",
type=str,
default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
)
parser.add_argument(
"--resume_from_checkpoint",
type=str,
default=None,
help="If the training should continue from a checkpoint folder.",
)
parser.add_argument(
"--per_device_eval_batch_size",
type=int,
default=8,
help="Batch size (per device) for the evaluation dataloader.",
)
parser.add_argument(
"--output_dir",
type=str,
default=None,
help="Where to store the final model.",
)
args = parser.parse_args()
# Sanity checks
data_files = {}
if args.train_dir is not None:
data_files["train"] = args.train_dir
if args.validation_dir is not None:
data_files["val"] = args.validation_dir
args.data_files = data_files if data_files else None
if args.push_to_hub:
assert args.output_dir is not None, "Need an `output_dir` to create a repo when `--push_to_hub` is passed."
return args
class MaskGenerator:
"""
A class to generate boolean masks for the pretraining task.
A mask is a 1D tensor of shape (model_patch_size**2,) where the value is either 0 or 1,
where 1 indicates "masked".
"""
def __init__(self, input_size=192, mask_patch_size=32, model_patch_size=4, mask_ratio=0.6):
self.input_size = input_size
self.mask_patch_size = mask_patch_size
self.model_patch_size = model_patch_size
self.mask_ratio = mask_ratio
if self.input_size % self.mask_patch_size != 0:
raise ValueError("Input size must be divisible by mask patch size")
if self.mask_patch_size % self.model_patch_size != 0:
raise ValueError("Mask patch size must be divisible by model patch size")
self.rand_size = self.input_size // self.mask_patch_size
self.scale = self.mask_patch_size // self.model_patch_size
self.token_count = self.rand_size**2
self.mask_count = int(np.ceil(self.token_count * self.mask_ratio))
def __call__(self):
mask_idx = np.random.permutation(self.token_count)[: self.mask_count]
mask = np.zeros(self.token_count, dtype=int)
mask[mask_idx] = 1
mask = mask.reshape((self.rand_size, self.rand_size))
mask = mask.repeat(self.scale, axis=0).repeat(self.scale, axis=1)
return torch.tensor(mask.flatten())
def collate_fn(examples):
pixel_values = torch.stack([example["pixel_values"] for example in examples])
mask = torch.stack([example["mask"] for example in examples])
return {"pixel_values": pixel_values, "bool_masked_pos": mask}
def main():
args = parse_args()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_mim_no_trainer", args)
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
# If we're using tracking, we also need to initialize it here and it will by default pick up all supported trackers
# in the environment
accelerator_log_kwargs = {}
if args.with_tracking:
accelerator_log_kwargs["log_with"] = args.report_to
accelerator_log_kwargs["project_dir"] = args.output_dir
accelerator = Accelerator(
gradient_accumulation_steps=args.gradient_accumulation_steps,
**accelerator_log_kwargs,
)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.push_to_hub:
# Retrieve of infer repo_name
repo_name = args.hub_model_id
if repo_name is None:
repo_name = Path(args.output_dir).absolute().name
# Create repo and retrieve repo_id
api = HfApi()
repo_id = api.create_repo(repo_name, exist_ok=True, token=args.hub_token).repo_id
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
if "step_*" not in gitignore:
gitignore.write("step_*\n")
if "epoch_*" not in gitignore:
gitignore.write("epoch_*\n")
elif args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# Initialize our dataset.
ds = load_dataset(
args.dataset_name,
args.dataset_config_name,
data_files=args.data_files,
cache_dir=args.cache_dir,
token=args.token,
trust_remote_code=args.trust_remote_code,
)
# If we don't have a validation split, split off a percentage of train as validation.
args.train_val_split = None if "validation" in ds.keys() else args.train_val_split
if isinstance(args.train_val_split, float) and args.train_val_split > 0.0:
split = ds["train"].train_test_split(args.train_val_split)
ds["train"] = split["train"]
ds["validation"] = split["test"]
# Create config
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config_kwargs = {
"cache_dir": args.cache_dir,
"revision": args.model_revision,
"token": args.token,
"trust_remote_code": args.trust_remote_code,
}
if args.config_name_or_path:
config = AutoConfig.from_pretrained(args.config_name_or_path, **config_kwargs)
elif args.model_name_or_path:
config = AutoConfig.from_pretrained(args.model_name_or_path, **config_kwargs)
else:
config = CONFIG_MAPPING[args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if args.config_overrides is not None:
logger.info(f"Overriding config: {args.config_overrides}")
config.update_from_string(args.config_overrides)
logger.info(f"New config: {config}")
# make sure the decoder_type is "simmim" (only relevant for BEiT)
if hasattr(config, "decoder_type"):
config.decoder_type = "simmim"
# adapt config
args.image_size = args.image_size if args.image_size is not None else config.image_size
args.patch_size = args.patch_size if args.patch_size is not None else config.patch_size
args.encoder_stride = args.encoder_stride if args.encoder_stride is not None else config.encoder_stride
config.update(
{
"image_size": args.image_size,
"patch_size": args.patch_size,
"encoder_stride": args.encoder_stride,
}
)
# create image processor
if args.image_processor_name:
image_processor = AutoImageProcessor.from_pretrained(args.image_processor_name, **config_kwargs)
elif args.model_name_or_path:
image_processor = AutoImageProcessor.from_pretrained(args.model_name_or_path, **config_kwargs)
else:
IMAGE_PROCESSOR_TYPES = {
conf.model_type: image_processor_class for conf, image_processor_class in IMAGE_PROCESSOR_MAPPING.items()
}
image_processor = IMAGE_PROCESSOR_TYPES[args.model_type]()
# create model
if args.model_name_or_path:
model = AutoModelForMaskedImageModeling.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
cache_dir=args.cache_dir,
revision=args.model_revision,
token=args.token,
trust_remote_code=args.trust_remote_code,
)
else:
logger.info("Training new model from scratch")
model = AutoModelForMaskedImageModeling.from_config(
config,
token=args.token,
trust_remote_code=args.trust_remote_code,
)
column_names = ds["train"].column_names
if args.image_column_name is not None:
image_column_name = args.image_column_name
elif "image" in column_names:
image_column_name = "image"
elif "img" in column_names:
image_column_name = "img"
else:
image_column_name = column_names[0]
# transformations as done in original SimMIM paper
# source: https://github.com/microsoft/SimMIM/blob/main/data/data_simmim.py
transforms = Compose(
[
Lambda(lambda img: img.convert("RGB")),
RandomResizedCrop(args.image_size, scale=(0.67, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0)),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean, std=image_processor.image_std),
]
)
# create mask generator
mask_generator = MaskGenerator(
input_size=args.image_size,
mask_patch_size=args.mask_patch_size,
model_patch_size=args.patch_size,
mask_ratio=args.mask_ratio,
)
def preprocess_images(examples):
"""Preprocess a batch of images by applying transforms + creating a corresponding mask, indicating
which patches to mask."""
examples["pixel_values"] = [transforms(image) for image in examples[image_column_name]]
examples["mask"] = [mask_generator() for i in range(len(examples[image_column_name]))]
return examples
if args.max_train_samples is not None:
ds["train"] = ds["train"].shuffle(seed=args.seed).select(range(args.max_train_samples))
# Set the training transforms
ds["train"].set_transform(preprocess_images)
if args.max_eval_samples is not None:
ds["validation"] = ds["validation"].shuffle(seed=args.seed).select(range(args.max_eval_samples))
# Set the validation transforms
ds["validation"].set_transform(preprocess_images)
# DataLoaders creation:
train_dataloader = DataLoader(
ds["train"],
shuffle=True,
collate_fn=collate_fn,
batch_size=args.per_device_train_batch_size,
)
eval_dataloader = DataLoader(
ds["validation"],
collate_fn=collate_fn,
batch_size=args.per_device_eval_batch_size,
)
# Optimizer
# Split weights in two groups, one with weight decay and the other not.
no_decay = ["bias", "LayerNorm.weight"]
optimizer_grouped_parameters = [
{
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
"weight_decay": args.weight_decay,
},
{
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
"weight_decay": 0.0,
},
]
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps * accelerator.num_processes,
num_training_steps=args.max_train_steps
if overrode_max_train_steps
else args.max_train_steps * accelerator.num_processes,
)
# Prepare everything with our `accelerator`.
model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
model,
optimizer,
train_dataloader,
eval_dataloader,
lr_scheduler,
)
# On TPU, the tie weights in our model have been disconnected, so we need to restore the ties.
if accelerator.distributed_type == DistributedType.TPU:
model.tie_weights()
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Figure out how many steps we should save the Accelerator states
checkpointing_steps = args.checkpointing_steps
if checkpointing_steps is not None and checkpointing_steps.isdigit():
checkpointing_steps = int(checkpointing_steps)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if args.with_tracking:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("mim_no_trainer", experiment_config)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(ds['train'])}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(int(args.max_train_steps)), disable=not accelerator.is_local_main_process)
completed_steps = 0
starting_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
checkpoint_path = args.resume_from_checkpoint
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
checkpoint_path = path
path = os.path.basename(checkpoint_path)
accelerator.print(f"Resumed from checkpoint: {checkpoint_path}")
accelerator.load_state(checkpoint_path)
# Extract `epoch_{i}` or `step_{i}`
training_difference = os.path.splitext(path)[0]
if "epoch" in training_difference:
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
resume_step = None
completed_steps = starting_epoch * num_update_steps_per_epoch
else:
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
completed_steps = resume_step // args.gradient_accumulation_steps
resume_step -= starting_epoch * len(train_dataloader)
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
if args.with_tracking:
total_loss = 0
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We skip the first `n` batches in the dataloader when resuming from a checkpoint
active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
else:
active_dataloader = train_dataloader
for step, batch in enumerate(active_dataloader):
with accelerator.accumulate(model):
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0 and accelerator.sync_gradients:
output_dir = f"step_{completed_steps}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if completed_steps >= args.max_train_steps:
break
model.eval()
losses = []
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(**batch)
loss = outputs.loss
losses.append(accelerator.gather_for_metrics(loss.repeat(args.per_device_eval_batch_size)))
losses = torch.cat(losses)
eval_loss = torch.mean(losses)
logger.info(f"epoch {epoch}: eval_loss: {eval_loss}")
if args.with_tracking:
accelerator.log(
{
"eval_loss": eval_loss,
"train_loss": total_loss.item() / len(train_dataloader),
"epoch": epoch,
"step": completed_steps,
},
step=completed_steps,
)
if args.push_to_hub and epoch < args.num_train_epochs - 1:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if accelerator.is_main_process:
image_processor.save_pretrained(args.output_dir)
api.upload_folder(
commit_message=f"Training in progress epoch {epoch}",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
)
if args.checkpointing_steps == "epoch":
output_dir = f"epoch_{epoch}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if args.with_tracking:
accelerator.end_training()
if args.output_dir is not None:
accelerator.wait_for_everyone()
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.save_pretrained(
args.output_dir, is_main_process=accelerator.is_main_process, save_function=accelerator.save
)
if accelerator.is_main_process:
image_processor.save_pretrained(args.output_dir)
if args.push_to_hub:
api.upload_folder(
commit_message="End of training",
folder_path=args.output_dir,
repo_id=repo_id,
repo_type="model",
token=args.hub_token,
)
if __name__ == "__main__":
main()
|
transformers/examples/pytorch/image-pretraining/run_mim_no_trainer.py/0
|
{
"file_path": "transformers/examples/pytorch/image-pretraining/run_mim_no_trainer.py",
"repo_id": "transformers",
"token_count": 12859
}
| 64 |
# coding=utf-8
# Copyright 2021 The HuggingFace Team All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
A subclass of `Trainer` specific to Question-Answering tasks
"""
import math
import time
from typing import Dict, List, Optional
from torch.utils.data import Dataset
from transformers import Seq2SeqTrainer, is_torch_xla_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class QuestionAnsweringSeq2SeqTrainer(Seq2SeqTrainer):
def __init__(self, *args, eval_examples=None, post_process_function=None, **kwargs):
super().__init__(*args, **kwargs)
self.eval_examples = eval_examples
self.post_process_function = post_process_function
# def evaluate(self, eval_dataset=None, eval_examples=None, ignore_keys=None, metric_key_prefix: str = "eval"):
def evaluate(
self,
eval_dataset: Optional[Dataset] = None,
eval_examples=None,
ignore_keys: Optional[List[str]] = None,
metric_key_prefix: str = "eval",
**gen_kwargs,
) -> Dict[str, float]:
gen_kwargs = gen_kwargs.copy()
# Use legacy argument setting if a) the option is not explicitly passed; and b) the argument is set in the
# training args
if gen_kwargs.get("max_length") is None and self.args.generation_max_length is not None:
gen_kwargs["max_length"] = self.args.generation_max_length
if gen_kwargs.get("num_beams") is None and self.args.generation_num_beams is not None:
gen_kwargs["num_beams"] = self.args.generation_num_beams
self._gen_kwargs = gen_kwargs
eval_dataset = self.eval_dataset if eval_dataset is None else eval_dataset
eval_dataloader = self.get_eval_dataloader(eval_dataset)
eval_examples = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
compute_metrics = self.compute_metrics
self.compute_metrics = None
start_time = time.time()
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
output = eval_loop(
eval_dataloader,
description="Evaluation",
# No point gathering the predictions if there are no metrics, otherwise we defer to
# self.args.prediction_loss_only
prediction_loss_only=True if compute_metrics is None else None,
ignore_keys=ignore_keys,
metric_key_prefix=metric_key_prefix,
)
finally:
self.compute_metrics = compute_metrics
total_batch_size = self.args.eval_batch_size * self.args.world_size
if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
metric_key_prefix,
start_time,
num_samples=output.num_samples,
num_steps=math.ceil(output.num_samples / total_batch_size),
)
)
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
eval_preds = self.post_process_function(eval_examples, eval_dataset, output)
metrics = self.compute_metrics(eval_preds)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f"{metric_key_prefix}_"):
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
metrics.update(output.metrics)
else:
metrics = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(metrics)
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report())
self.control = self.callback_handler.on_evaluate(self.args, self.state, self.control, metrics)
return metrics
def predict(
self, predict_dataset, predict_examples, ignore_keys=None, metric_key_prefix: str = "test", **gen_kwargs
):
self._gen_kwargs = gen_kwargs.copy()
predict_dataloader = self.get_test_dataloader(predict_dataset)
# Temporarily disable metric computation, we will do it in the loop here.
compute_metrics = self.compute_metrics
self.compute_metrics = None
start_time = time.time()
eval_loop = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
try:
output = eval_loop(
predict_dataloader,
description="Prediction",
# No point gathering the predictions if there are no metrics, otherwise we defer to
# self.args.prediction_loss_only
prediction_loss_only=True if compute_metrics is None else None,
ignore_keys=ignore_keys,
metric_key_prefix=metric_key_prefix,
)
finally:
self.compute_metrics = compute_metrics
total_batch_size = self.args.eval_batch_size * self.args.world_size
if f"{metric_key_prefix}_jit_compilation_time" in output.metrics:
start_time += output.metrics[f"{metric_key_prefix}_jit_compilation_time"]
output.metrics.update(
speed_metrics(
metric_key_prefix,
start_time,
num_samples=output.num_samples,
num_steps=math.ceil(output.num_samples / total_batch_size),
)
)
if self.post_process_function is None or self.compute_metrics is None:
return output
predictions = self.post_process_function(predict_examples, predict_dataset, output, "predict")
metrics = self.compute_metrics(predictions)
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys()):
if not key.startswith(f"{metric_key_prefix}_"):
metrics[f"{metric_key_prefix}_{key}"] = metrics.pop(key)
metrics.update(output.metrics)
return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=metrics)
|
transformers/examples/pytorch/question-answering/trainer_seq2seq_qa.py/0
|
{
"file_path": "transformers/examples/pytorch/question-answering/trainer_seq2seq_qa.py",
"repo_id": "transformers",
"token_count": 3071
}
| 65 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for sequence to sequence.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import nltk # Here to have a nice missing dependency error message early on
import numpy as np
from datasets import load_dataset
from filelock import FileLock
import transformers
from transformers import (
AutoConfig,
AutoModelForSeq2SeqLM,
AutoTokenizer,
DataCollatorForSeq2Seq,
HfArgumentParser,
MBart50Tokenizer,
MBart50TokenizerFast,
MBartTokenizer,
MBartTokenizerFast,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, is_offline_mode, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.49.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
logger = logging.getLogger(__name__)
try:
nltk.data.find("tokenizers/punkt")
except (LookupError, OSError):
if is_offline_mode():
raise LookupError(
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
)
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
# A list of all multilingual tokenizer which require lang attribute.
MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast]
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
token: str = field(
default=None,
metadata={
"help": (
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether to trust the execution of code from datasets/models defined on the Hub."
" This option should only be set to `True` for repositories you trust and in which you have read the"
" code, as it will execute code present on the Hub on your local machine."
)
},
)
resize_position_embeddings: Optional[bool] = field(
default=None,
metadata={
"help": (
"Whether to automatically resize the position embeddings if `max_source_length` exceeds "
"the model's position embeddings."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
lang: Optional[str] = field(default=None, metadata={"help": "Language id for summarization."})
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
text_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."},
)
summary_column: Optional[str] = field(
default=None,
metadata={"help": "The name of the column in the datasets containing the summaries (for summarization)."},
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={
"help": (
"An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
)
},
)
test_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_source_length: Optional[int] = field(
default=1024,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
max_target_length: Optional[int] = field(
default=128,
metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
val_max_target_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. "
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
num_beams: Optional[int] = field(
default=1,
metadata={
"help": (
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
"which is used during ``evaluate`` and ``predict``."
)
},
)
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
},
)
source_prefix: Optional[str] = field(
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
)
forced_bos_token: Optional[str] = field(
default=None,
metadata={
"help": (
"The token to force as the first generated token after the decoder_start_token_id. "
"Useful for multilingual models like mBART where the first generated token"
"needs to be the target language token (Usually it is the target language token)"
)
},
)
def __post_init__(self):
if (
self.dataset_name is None
and self.train_file is None
and self.validation_file is None
and self.test_file is None
):
raise ValueError("Need either a dataset name or a training, validation, or test file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if self.test_file is not None:
extension = self.test_file.split(".")[-1]
assert extension in ["csv", "json"], "`test_file` should be a csv or a json file."
if self.val_max_target_length is None:
self.val_max_target_length = self.max_target_length
summarization_name_mapping = {
"amazon_reviews_multi": ("review_body", "review_title"),
"big_patent": ("description", "abstract"),
"cnn_dailymail": ("article", "highlights"),
"orange_sum": ("text", "summary"),
"pn_summary": ("article", "summary"),
"psc": ("extract_text", "summary_text"),
"samsum": ("dialogue", "summary"),
"thaisum": ("body", "summary"),
"xglue": ("news_body", "news_title"),
"xsum": ("document", "summary"),
"wiki_summary": ("article", "highlights"),
"multi_news": ("document", "summary"),
}
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_summarization", model_args, data_args)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
log_level = training_args.get_process_log_level()
logger.setLevel(log_level)
datasets.utils.logging.set_verbosity(log_level)
transformers.utils.logging.set_verbosity(log_level)
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, "
+ f"distributed training: {training_args.parallel_mode.value == 'distributed'}, 16-bits training: {training_args.fp16}"
)
logger.info(f"Training/evaluation parameters {training_args}")
if data_args.source_prefix is None and model_args.model_name_or_path in [
"google-t5/t5-small",
"google-t5/t5-base",
"google-t5/t5-large",
"google-t5/t5-3b",
"google-t5/t5-11b",
]:
logger.warning(
"You're running a t5 model but didn't provide a source prefix, which is the expected, e.g. with "
"`--source_prefix 'summarize: ' `"
)
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files this script will use the first column for the full texts and the second column for the
# summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
raw_datasets = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
model = AutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embedding_size = model.get_input_embeddings().weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
if isinstance(tokenizer, MBartTokenizer):
model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.lang]
else:
model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.lang)
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
if (
hasattr(model.config, "max_position_embeddings")
and model.config.max_position_embeddings < data_args.max_source_length
):
if model_args.resize_position_embeddings is None:
logger.warning(
"Increasing the model's number of position embedding vectors from"
f" {model.config.max_position_embeddings} to {data_args.max_source_length}."
)
model.resize_position_embeddings(data_args.max_source_length)
elif model_args.resize_position_embeddings:
model.resize_position_embeddings(data_args.max_source_length)
else:
raise ValueError(
f"`--max_source_length` is set to {data_args.max_source_length}, but the model only has"
f" {model.config.max_position_embeddings} position encodings. Consider either reducing"
f" `--max_source_length` to {model.config.max_position_embeddings} or to automatically resize the"
" model's position encodings by passing `--resize_position_embeddings`."
)
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
column_names = raw_datasets["train"].column_names
elif training_args.do_eval:
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
column_names = raw_datasets["validation"].column_names
elif training_args.do_predict:
if "test" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
column_names = raw_datasets["test"].column_names
else:
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
return
if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
assert (
data_args.lang is not None
), f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --lang argument"
tokenizer.src_lang = data_args.lang
tokenizer.tgt_lang = data_args.lang
# For multilingual translation models like mBART-50 and M2M100 we need to force the target language token
# as the first generated token. We ask the user to explicitly provide this as --forced_bos_token argument.
forced_bos_token_id = (
tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
)
model.config.forced_bos_token_id = forced_bos_token_id
# Get the column names for input/target.
dataset_columns = summarization_name_mapping.get(data_args.dataset_name, None)
if data_args.text_column is None:
text_column = dataset_columns[0] if dataset_columns is not None else column_names[0]
else:
text_column = data_args.text_column
if text_column not in column_names:
raise ValueError(
f"--text_column' value '{data_args.text_column}' needs to be one of: {', '.join(column_names)}"
)
if data_args.summary_column is None:
summary_column = dataset_columns[1] if dataset_columns is not None else column_names[1]
else:
summary_column = data_args.summary_column
if summary_column not in column_names:
raise ValueError(
f"--summary_column' value '{data_args.summary_column}' needs to be one of: {', '.join(column_names)}"
)
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
padding = "max_length" if data_args.pad_to_max_length else False
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
logger.warning(
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for "
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
)
def preprocess_function(examples):
# remove pairs where at least one record is None
inputs, targets = [], []
for i in range(len(examples[text_column])):
if examples[text_column][i] and examples[summary_column][i]:
inputs.append(examples[text_column][i])
targets.append(examples[summary_column][i])
inputs = [prefix + inp for inp in inputs]
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
# Tokenize targets with the `text_target` keyword argument
labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
labels["input_ids"] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
return model_inputs
if training_args.do_train:
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
with training_args.main_process_first(desc="train dataset map pre-processing"):
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
if training_args.do_eval:
max_target_length = data_args.val_max_target_length
eval_dataset = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
with training_args.main_process_first(desc="validation dataset map pre-processing"):
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
if training_args.do_predict:
max_target_length = data_args.val_max_target_length
predict_dataset = raw_datasets["test"]
if data_args.max_predict_samples is not None:
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
predict_dataset = predict_dataset.select(range(max_predict_samples))
with training_args.main_process_first(desc="prediction dataset map pre-processing"):
predict_dataset = predict_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on prediction dataset",
)
# Data collator
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
# Metric
metric = evaluate.load("rouge", cache_dir=model_args.cache_dir)
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
# rougeLSum expects newline after each sentence
preds = ["\n".join(nltk.sent_tokenize(pred)) for pred in preds]
labels = ["\n".join(nltk.sent_tokenize(label)) for label in labels]
return preds, labels
def compute_metrics(eval_preds):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
# Replace -100s used for padding as we can't decode them
preds = np.where(preds != -100, preds, tokenizer.pad_token_id)
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
result = metric.compute(predictions=decoded_preds, references=decoded_labels, use_stemmer=True)
result = {k: round(v * 100, 4) for k, v in result.items()}
prediction_lens = [np.count_nonzero(pred != tokenizer.pad_token_id) for pred in preds]
result["gen_len"] = np.mean(prediction_lens)
return result
# Override the decoding parameters of Seq2SeqTrainer
training_args.generation_max_length = (
training_args.generation_max_length
if training_args.generation_max_length is not None
else data_args.val_max_target_length
)
training_args.generation_num_beams = (
data_args.num_beams if data_args.num_beams is not None else training_args.generation_num_beams
)
# Initialize our Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
processing_class=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
)
# Training
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
if isinstance(eval_dataset, dict):
metrics = {}
for eval_ds_name, eval_ds in eval_dataset.items():
dataset_metrics = trainer.evaluate(eval_dataset=eval_ds, metric_key_prefix=f"eval_{eval_ds_name}")
metrics.update(dataset_metrics)
else:
metrics = trainer.evaluate(metric_key_prefix="eval")
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
predict_results = trainer.predict(predict_dataset, metric_key_prefix="predict")
metrics = predict_results.metrics
max_predict_samples = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
)
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
if trainer.is_world_process_zero():
if training_args.predict_with_generate:
predictions = predict_results.predictions
predictions = np.where(predictions != -100, predictions, tokenizer.pad_token_id)
predictions = tokenizer.batch_decode(
predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
predictions = [pred.strip() for pred in predictions]
output_prediction_file = os.path.join(training_args.output_dir, "generated_predictions.txt")
with open(output_prediction_file, "w") as writer:
writer.write("\n".join(predictions))
kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "summarization"}
if data_args.dataset_name is not None:
kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
kwargs["dataset_args"] = data_args.dataset_config_name
kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
else:
kwargs["dataset"] = data_args.dataset_name
if data_args.lang is not None:
kwargs["language"] = data_args.lang
if training_args.push_to_hub:
trainer.push_to_hub(**kwargs)
else:
trainer.create_model_card(**kwargs)
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
|
transformers/examples/pytorch/summarization/run_summarization.py/0
|
{
"file_path": "transformers/examples/pytorch/summarization/run_summarization.py",
"repo_id": "transformers",
"token_count": 13637
}
| 66 |
# coding=utf-8
# Copyright 2020 Google AI, Google Brain, the HuggingFace Inc. team and Microsoft Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ALBERT model with Patience-based Early Exit."""
import logging
import torch
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.albert.modeling_albert import (
ALBERT_INPUTS_DOCSTRING,
ALBERT_START_DOCSTRING,
AlbertModel,
AlbertPreTrainedModel,
AlbertTransformer,
)
logger = logging.getLogger(__name__)
class AlbertTransformerWithPabee(AlbertTransformer):
def adaptive_forward(self, hidden_states, current_layer, attention_mask=None, head_mask=None):
if current_layer == 0:
hidden_states = self.embedding_hidden_mapping_in(hidden_states)
else:
hidden_states = hidden_states[0]
layers_per_group = int(self.config.num_hidden_layers / self.config.num_hidden_groups)
# Index of the hidden group
group_idx = int(current_layer / (self.config.num_hidden_layers / self.config.num_hidden_groups))
layer_group_output = self.albert_layer_groups[group_idx](
hidden_states,
attention_mask,
head_mask[group_idx * layers_per_group : (group_idx + 1) * layers_per_group],
)
hidden_states = layer_group_output[0]
return (hidden_states,)
@add_start_docstrings(
"The bare ALBERT Model transformer with PABEE outputting raw hidden-states without any specific head on top.",
ALBERT_START_DOCSTRING,
)
class AlbertModelWithPabee(AlbertModel):
def __init__(self, config):
super().__init__(config)
self.encoder = AlbertTransformerWithPabee(config)
self.init_weights()
self.patience = 0
self.inference_instances_num = 0
self.inference_layers_num = 0
self.regression_threshold = 0
def set_regression_threshold(self, threshold):
self.regression_threshold = threshold
def set_patience(self, patience):
self.patience = patience
def reset_stats(self):
self.inference_instances_num = 0
self.inference_layers_num = 0
def log_stats(self):
avg_inf_layers = self.inference_layers_num / self.inference_instances_num
message = (
f"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up ="
f" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***"
)
print(message)
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
output_dropout=None,
output_layers=None,
regression=False,
):
r"""
Return:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`):
Last layer hidden-state of the first token of the sequence (classification token)
further processed by a Linear layer and a Tanh activation function. The Linear
layer weights are trained from the next sentence prediction (classification)
objective during pre-training.
This output is usually *not* a good summary
of the semantic content of the input, you're often better with averaging or pooling
the sequence of hidden-states for the whole input sequence.
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if attention_mask is None:
attention_mask = torch.ones(input_shape, device=device)
if token_type_ids is None:
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
)
encoder_outputs = embedding_output
if self.training:
res = []
for i in range(self.config.num_hidden_layers):
encoder_outputs = self.encoder.adaptive_forward(
encoder_outputs,
current_layer=i,
attention_mask=extended_attention_mask,
head_mask=head_mask,
)
pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0]))
logits = output_layers[i](output_dropout(pooled_output))
res.append(logits)
elif self.patience == 0: # Use all layers for inference
encoder_outputs = self.encoder(encoder_outputs, extended_attention_mask, head_mask=head_mask)
pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0]))
res = [output_layers[self.config.num_hidden_layers - 1](pooled_output)]
else:
patient_counter = 0
patient_result = None
calculated_layer_num = 0
for i in range(self.config.num_hidden_layers):
calculated_layer_num += 1
encoder_outputs = self.encoder.adaptive_forward(
encoder_outputs,
current_layer=i,
attention_mask=extended_attention_mask,
head_mask=head_mask,
)
pooled_output = self.pooler_activation(self.pooler(encoder_outputs[0][:, 0]))
logits = output_layers[i](pooled_output)
if regression:
labels = logits.detach()
if patient_result is not None:
patient_labels = patient_result.detach()
if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold:
patient_counter += 1
else:
patient_counter = 0
else:
labels = logits.detach().argmax(dim=1)
if patient_result is not None:
patient_labels = patient_result.detach().argmax(dim=1)
if (patient_result is not None) and torch.all(labels.eq(patient_labels)):
patient_counter += 1
else:
patient_counter = 0
patient_result = logits
if patient_counter == self.patience:
break
res = [patient_result]
self.inference_layers_num += calculated_layer_num
self.inference_instances_num += 1
return res
@add_start_docstrings(
"""Albert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of
the pooled output) e.g. for GLUE tasks. """,
ALBERT_START_DOCSTRING,
)
class AlbertForSequenceClassificationWithPabee(AlbertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.albert = AlbertModelWithPabee(config)
self.dropout = nn.Dropout(config.classifier_dropout_prob)
self.classifiers = nn.ModuleList(
[nn.Linear(config.hidden_size, self.config.num_labels) for _ in range(config.num_hidden_layers)]
)
self.init_weights()
@add_start_docstrings_to_model_forward(ALBERT_INPUTS_DOCSTRING)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
head_mask=None,
inputs_embeds=None,
labels=None,
):
r"""
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
Labels for computing the sequence classification/regression loss.
Indices should be in ``[0, ..., config.num_labels - 1]``.
If ``config.num_labels == 1`` a regression loss is computed (Mean-Square loss),
If ``config.num_labels > 1`` a classification loss is computed (Cross-Entropy).
Returns:
:obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.AlbertConfig`) and inputs:
loss (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Classification (or regression if config.num_labels==1) loss.
logits ``torch.FloatTensor`` of shape ``(batch_size, config.num_labels)``
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
Examples::
from transformers import AlbertTokenizer
from pabee import AlbertForSequenceClassificationWithPabee
from torch import nn
import torch
tokenizer = AlbertTokenizer.from_pretrained('albert/albert-base-v2')
model = AlbertForSequenceClassificationWithPabee.from_pretrained('albert/albert-base-v2')
input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0) # Batch size 1
labels = torch.tensor([1]).unsqueeze(0) # Batch size 1
outputs = model(input_ids, labels=labels)
loss, logits = outputs[:2]
"""
logits = self.albert(
input_ids=input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_dropout=self.dropout,
output_layers=self.classifiers,
regression=self.num_labels == 1,
)
outputs = (logits[-1],)
if labels is not None:
total_loss = None
total_weights = 0
for ix, logits_item in enumerate(logits):
if self.num_labels == 1:
# We are doing regression
loss_fct = MSELoss()
loss = loss_fct(logits_item.view(-1), labels.view(-1))
else:
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits_item.view(-1, self.num_labels), labels.view(-1))
if total_loss is None:
total_loss = loss
else:
total_loss += loss * (ix + 1)
total_weights += ix + 1
outputs = (total_loss / total_weights,) + outputs
return outputs
|
transformers/examples/research_projects/bert-loses-patience/pabee/modeling_pabee_albert.py/0
|
{
"file_path": "transformers/examples/research_projects/bert-loses-patience/pabee/modeling_pabee_albert.py",
"repo_id": "transformers",
"token_count": 6317
}
| 67 |
#!/usr/bin/env python3
"""This script is adapted from the Bertology pruning code (https://github.com/huggingface/transformers/blob/783d7d2629e97c5f0c5f9ef01b8c66410275c204/examples/research_projects/bertology/run_bertology.py)
to prune GPT-like models. The author is @altsoph.
"""
import argparse
import logging
import os
from datetime import datetime
import numpy as np
import torch
from torch import nn
from torch.utils.data import DataLoader, RandomSampler, TensorDataset
from tqdm import tqdm
from transformers import GPT2LMHeadModel
logger = logging.getLogger(__name__)
def save_model(model, dirpath):
# save results
if os.path.exists(dirpath):
if os.path.exists(os.path.join(dirpath, "config.json")) and os.path.isfile(
os.path.join(dirpath, "config.json")
):
os.remove(os.path.join(dirpath, "config.json"))
if os.path.exists(os.path.join(dirpath, "pytorch_model.bin")) and os.path.isfile(
os.path.join(dirpath, "pytorch_model.bin")
):
os.remove(os.path.join(dirpath, "pytorch_model.bin"))
else:
os.makedirs(dirpath)
model.save_pretrained(dirpath)
def entropy(p, unlogit=False):
"""Compute the entropy of a probability distribution"""
exponent = 2
if unlogit:
p = torch.pow(p, exponent)
plogp = p * torch.log(p)
plogp[p == 0] = 0
return -plogp.sum(dim=-1)
def print_2d_tensor(tensor):
"""Print a 2D tensor"""
logger.info("lv, h >\t" + "\t".join(f"{x + 1}" for x in range(len(tensor))))
for row in range(len(tensor)):
if tensor.dtype != torch.long:
logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:.5f}" for x in tensor[row].cpu().data))
else:
logger.info(f"layer {row + 1}:\t" + "\t".join(f"{x:d}" for x in tensor[row].cpu().data))
def compute_heads_importance(
args, model, eval_dataloader, compute_entropy=True, compute_importance=True, head_mask=None, actually_pruned=False
):
"""This method shows how to compute:
- head attention entropy
- head importance scores according to http://arxiv.org/abs/1905.10650
"""
# Prepare our tensors
n_layers, n_heads = model.config.num_hidden_layers, model.config.num_attention_heads
head_importance = torch.zeros(n_layers, n_heads).to(args.device)
attn_entropy = torch.zeros(n_layers, n_heads).to(args.device)
if head_mask is None:
head_mask = torch.ones(n_layers, n_heads).to(args.device)
head_mask.requires_grad_(requires_grad=True)
# If actually pruned attention multi-head, set head mask to None to avoid shape mismatch
if actually_pruned:
head_mask = None
tot_tokens = 0.0
total_loss = 0.0
for step, inputs in enumerate(tqdm(eval_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0])):
inputs = tuple(t.to(args.device) for t in inputs)
(input_ids,) = inputs
# Do a forward pass (not with torch.no_grad() since we need gradients for importance score - see below)
outputs = model(input_ids, labels=input_ids, head_mask=head_mask)
# (loss), lm_logits, presents, (all hidden_states), (attentions)
loss, _, all_attentions = (
outputs[0],
outputs[1],
outputs[-1],
) # Loss and logits are the first, attention the last
loss.backward() # Backpropagate to populate the gradients in the head mask
total_loss += loss.detach().cpu().numpy()
if compute_entropy:
for layer, attn in enumerate(all_attentions):
masked_entropy = entropy(attn.detach(), True)
attn_entropy[layer] += masked_entropy.sum(-1).sum(0).sum(0).detach()
if compute_importance:
head_importance += head_mask.grad.abs().detach()
tot_tokens += torch.ones_like(input_ids).float().detach().sum().data
# Normalize
attn_entropy /= tot_tokens
head_importance /= tot_tokens
# Layerwise importance normalization
if not args.dont_normalize_importance_by_layer:
exponent = 2
norm_by_layer = torch.pow(torch.pow(head_importance, exponent).sum(-1), 1 / exponent)
head_importance /= norm_by_layer.unsqueeze(-1) + 1e-20
if not args.dont_normalize_global_importance:
head_importance = (head_importance - head_importance.min()) / (head_importance.max() - head_importance.min())
# Print matrices
if compute_entropy:
logger.info("Attention entropies")
print_2d_tensor(attn_entropy)
if compute_importance:
logger.info("Head importance scores")
print_2d_tensor(head_importance)
logger.info("Head ranked by importance scores")
head_ranks = torch.zeros(head_importance.numel(), dtype=torch.long, device=args.device)
head_ranks[head_importance.view(-1).sort(descending=True)[1]] = torch.arange(
head_importance.numel(), device=args.device
)
head_ranks = head_ranks.view_as(head_importance)
print_2d_tensor(head_ranks)
return attn_entropy, head_importance, total_loss
def mask_heads(args, model, eval_dataloader):
"""This method shows how to mask head (set some heads to zero), to test the effect on the network,
based on the head importance scores, as described in Michel et al. (http://arxiv.org/abs/1905.10650)
"""
_, head_importance, loss = compute_heads_importance(args, model, eval_dataloader, compute_entropy=False)
original_score = 1 / loss # instead of downsteam score use the LM loss
logger.info("Pruning: original score: %f, threshold: %f", original_score, original_score * args.masking_threshold)
new_head_mask = torch.ones_like(head_importance)
num_to_mask = max(1, int(new_head_mask.numel() * args.masking_amount))
current_score = original_score
while current_score >= original_score * args.masking_threshold:
head_mask = new_head_mask.clone().detach() # save current head mask
# heads from least important to most - keep only not-masked heads
head_importance[head_mask == 0.0] = float("Inf")
current_heads_to_mask = head_importance.view(-1).sort()[1]
if len(current_heads_to_mask) <= num_to_mask:
print("BREAK BY num_to_mask")
break
# mask heads
current_heads_to_mask = current_heads_to_mask[:num_to_mask]
logger.info("Heads to mask: %s", str(current_heads_to_mask.tolist()))
new_head_mask = new_head_mask.view(-1)
new_head_mask[current_heads_to_mask] = 0.0
new_head_mask = new_head_mask.view_as(head_mask)
new_head_mask = new_head_mask.clone().detach()
print_2d_tensor(new_head_mask)
# Compute metric and head importance again
_, head_importance, loss = compute_heads_importance(
args, model, eval_dataloader, compute_entropy=False, head_mask=new_head_mask
)
current_score = 1 / loss
logger.info(
"Masking: current score: %f, remaining heads %d (%.1f percents)",
current_score,
new_head_mask.sum(),
new_head_mask.sum() / new_head_mask.numel() * 100,
)
logger.info("Final head mask")
print_2d_tensor(head_mask)
np.save(os.path.join(args.output_dir, "head_mask.npy"), head_mask.detach().cpu().numpy())
return head_mask
def prune_heads(args, model, eval_dataloader, head_mask):
"""This method shows how to prune head (remove heads weights) based on
the head importance scores as described in Michel et al. (http://arxiv.org/abs/1905.10650)
"""
# Try pruning and test time speedup
# Pruning is like masking but we actually remove the masked weights
before_time = datetime.now()
_, _, loss = compute_heads_importance(
args, model, eval_dataloader, compute_entropy=False, compute_importance=False, head_mask=head_mask
)
score_masking = 1 / loss
original_time = datetime.now() - before_time
original_num_params = sum(p.numel() for p in model.parameters())
heads_to_prune = {
layer: (1 - head_mask[layer].long()).nonzero().squeeze().tolist() for layer in range(len(head_mask))
}
for k, v in heads_to_prune.items():
if isinstance(v, int):
heads_to_prune[k] = [
v,
]
assert sum(len(h) for h in heads_to_prune.values()) == (1 - head_mask.long()).sum().item()
model.prune_heads(heads_to_prune)
pruned_num_params = sum(p.numel() for p in model.parameters())
before_time = datetime.now()
_, _, loss = compute_heads_importance(
args,
model,
eval_dataloader,
compute_entropy=False,
compute_importance=False,
head_mask=None,
actually_pruned=True,
)
score_pruning = 1 / loss
new_time = datetime.now() - before_time
logger.info(
"Pruning: original num of params: %.2e, after pruning %.2e (%.1f percents)",
original_num_params,
pruned_num_params,
pruned_num_params / original_num_params * 100,
)
logger.info("Pruning: score with masking: %f score with pruning: %f", score_masking, score_pruning)
logger.info("Pruning: speed ratio (original timing / new timing): %f percents", original_time / new_time * 100)
save_model(model, args.output_dir)
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.",
)
parser.add_argument(
"--model_name_or_path",
default=None,
type=str,
required=True,
help="Path to pretrained model or model identifier from huggingface.co/models",
)
parser.add_argument(
"--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.",
)
# Other parameters
parser.add_argument(
"--config_name",
default="",
type=str,
help="Pretrained config name or path if not the same as model_name_or_path",
)
parser.add_argument(
"--tokenizer_name",
default="",
type=str,
help="Pretrained tokenizer name or path if not the same as model_name_or_path",
)
parser.add_argument(
"--cache_dir",
default=None,
type=str,
help="Where do you want to store the pre-trained models downloaded from s3",
)
parser.add_argument(
"--data_subset", type=int, default=-1, help="If > 0: limit the data to a subset of data_subset instances."
)
parser.add_argument(
"--overwrite_output_dir", action="store_true", help="Whether to overwrite data in output directory"
)
parser.add_argument(
"--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets"
)
parser.add_argument(
"--dont_normalize_importance_by_layer", action="store_true", help="Don't normalize importance score by layers"
)
parser.add_argument(
"--dont_normalize_global_importance",
action="store_true",
help="Don't normalize all importance scores between 0 and 1",
)
parser.add_argument(
"--try_masking", action="store_true", help="Whether to try to mask head until a threshold of accuracy."
)
parser.add_argument(
"--masking_threshold",
default=0.9,
type=float,
help="masking threshold in term of metrics (stop masking when metric < threshold * original metric value).",
)
parser.add_argument(
"--masking_amount", default=0.1, type=float, help="Amount to heads to masking at each masking step."
)
parser.add_argument("--metric_name", default="acc", type=str, help="Metric to use for head masking.")
parser.add_argument(
"--max_seq_length",
default=128,
type=int,
help=(
"The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, sequences shorter padded."
),
)
parser.add_argument("--batch_size", default=1, type=int, help="Batch size.")
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--local_rank", type=int, default=-1, help="local_rank for distributed training on gpus")
parser.add_argument("--no_cuda", action="store_true", help="Whether not to use CUDA when available")
parser.add_argument("--server_ip", type=str, default="", help="Can be used for distant debugging.")
parser.add_argument("--server_port", type=str, default="", help="Can be used for distant debugging.")
args = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
# Setup devices and distributed training
if args.local_rank == -1 or args.no_cuda:
args.device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
args.n_gpu = 0 if args.no_cuda else torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
args.device = torch.device("cuda", args.local_rank)
args.n_gpu = 1
torch.distributed.init_process_group(backend="nccl") # Initializes the distributed backend
# Setup logging
logging.basicConfig(level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.info("device: {} n_gpu: {}, distributed: {}".format(args.device, args.n_gpu, bool(args.local_rank != -1)))
model = GPT2LMHeadModel.from_pretrained(args.model_name_or_path)
# Distributed and parallel training
model.to(args.device)
if args.local_rank != -1:
model = nn.parallel.DistributedDataParallel(
model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True
)
elif args.n_gpu > 1:
model = nn.DataParallel(model)
# Print/save training arguments
os.makedirs(args.output_dir, exist_ok=True)
torch.save(args, os.path.join(args.output_dir, "run_args.bin"))
logger.info("Training/evaluation parameters %s", args)
# Prepare dataset
numpy_data = np.concatenate(
[
np.loadtxt(args.data_dir, dtype=np.int64),
]
)
train_tensor_dataset = (torch.from_numpy(numpy_data),)
train_data = TensorDataset(*train_tensor_dataset)
train_sampler = RandomSampler(train_data)
eval_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.batch_size)
# Compute head entropy and importance score
compute_heads_importance(args, model, eval_dataloader)
# Try head masking (set heads to zero until the score goes under a threshole)
# and head pruning (remove masked heads and see the effect on the network)
if args.try_masking and args.masking_threshold > 0.0 and args.masking_threshold < 1.0:
head_mask = mask_heads(args, model, eval_dataloader)
prune_heads(args, model, eval_dataloader, head_mask)
if __name__ == "__main__":
main()
|
transformers/examples/research_projects/bertology/run_prune_gpt.py/0
|
{
"file_path": "transformers/examples/research_projects/bertology/run_prune_gpt.py",
"repo_id": "transformers",
"token_count": 6338
}
| 68 |
import logging
import torch
from accelerate import Accelerator
from arguments import EvaluationArguments
from datasets import load_dataset
from torch.utils.data import IterableDataset
from torch.utils.data.dataloader import DataLoader
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
class ConstantLengthDataset(IterableDataset):
def __init__(self, tokenizer, dataset, seq_length=1024, num_of_sequences=1024, chars_per_token=3.6):
self.tokenizer = tokenizer
self.concat_token_id = tokenizer.bos_token_id
self.dataset = dataset
self.seq_length = seq_length
self.input_characters = seq_length * chars_per_token * num_of_sequences
def __iter__(self):
iterator = iter(self.dataset)
more_examples = True
while more_examples:
buffer, buffer_len = [], 0
while True:
if buffer_len >= self.input_characters:
break
try:
buffer.append(next(iterator)["content"])
buffer_len += len(buffer[-1])
except StopIteration:
more_examples = False
break
tokenized_inputs = tokenizer(buffer, truncation=False)["input_ids"]
all_token_ids = []
for tokenized_input in tokenized_inputs:
all_token_ids.extend(tokenized_input + [self.concat_token_id])
for i in range(0, len(all_token_ids), self.seq_length):
input_ids = all_token_ids[i : i + self.seq_length]
if len(input_ids) == self.seq_length:
yield torch.tensor(input_ids)
def create_dataloader(args):
ds_kwargs = {"streaming": True}
valid_data = load_dataset(args.dataset_name, split="train", **ds_kwargs)
valid_dataset = ConstantLengthDataset(tokenizer, valid_data, seq_length=args.seq_length)
eval_dataloader = DataLoader(valid_dataset, batch_size=args.batch_size)
return eval_dataloader
def evaluate(args):
model.eval()
losses = []
for step, batch in enumerate(eval_dataloader):
with torch.no_grad():
outputs = model(batch, labels=batch)
loss = outputs.loss.repeat(args.batch_size)
losses.append(accelerator.gather(loss))
if args.max_eval_steps > 0 and step >= args.max_eval_steps:
break
loss = torch.mean(torch.cat(losses))
try:
perplexity = torch.exp(loss)
except OverflowError:
perplexity = float("inf")
return loss.item(), perplexity.item()
# Setup Accelerator
accelerator = Accelerator()
# Parse configuration
parser = HfArgumentParser(EvaluationArguments)
args = parser.parse_args()
set_seed(args.seed)
# Logging
logger = logging.getLogger(__name__)
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO
)
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(args.model_ckpt)
tokenizer = AutoTokenizer.from_pretrained(args.model_ckpt)
# Load dataset and dataloader
eval_dataloader = create_dataloader(args)
# Prepare everything with our `accelerator`.
model, eval_dataloader = accelerator.prepare(model, eval_dataloader)
# Evaluate and save the last checkpoint
logger.info("Evaluating and saving model after training")
eval_loss, perplexity = evaluate(args)
logger.info(f"loss/eval: {eval_loss}, perplexity: {perplexity}")
|
transformers/examples/research_projects/codeparrot/scripts/validation_loss.py/0
|
{
"file_path": "transformers/examples/research_projects/codeparrot/scripts/validation_loss.py",
"repo_id": "transformers",
"token_count": 1471
}
| 69 |
# coding=utf-8
# Copyright 2019-present, the HuggingFace Inc. team and Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dataset to distilled models
adapted in part from Facebook, Inc XLM model (https://github.com/facebookresearch/XLM)
"""
import numpy as np
import torch
from torch.utils.data import Dataset
from utils import logger
class LmSeqsDataset(Dataset):
"""Custom Dataset wrapping language modeling sequences.
Each sample will be retrieved by indexing the list of token_ids and their corresponding lengths.
Input:
------
params: `NameSpace` parameters
data: `List[np.array[int]]
"""
def __init__(self, params, data):
self.params = params
self.token_ids = np.array(data)
self.lengths = np.array([len(t) for t in data])
self.check()
self.remove_long_sequences()
self.remove_empty_sequences()
self.remove_unknown_sequences()
self.check()
self.print_statistics()
def __getitem__(self, index):
return (self.token_ids[index], self.lengths[index])
def __len__(self):
return len(self.lengths)
def check(self):
"""
Some sanity checks
"""
assert len(self.token_ids) == len(self.lengths)
assert all(self.lengths[i] == len(self.token_ids[i]) for i in range(len(self.lengths)))
def remove_long_sequences(self):
"""
Sequences that are too long are split by chunk of max_model_input_size.
"""
max_len = self.params.max_model_input_size
indices = self.lengths > max_len
logger.info(f"Splitting {sum(indices)} too long sequences.")
def divide_chunks(l, n):
return [l[i : i + n] for i in range(0, len(l), n)]
new_tok_ids = []
new_lengths = []
if self.params.mlm:
cls_id, sep_id = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"]
else:
cls_id, sep_id = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"]
for seq_, len_ in zip(self.token_ids, self.lengths):
assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_
if len_ <= max_len:
new_tok_ids.append(seq_)
new_lengths.append(len_)
else:
sub_seqs = []
for sub_s in divide_chunks(seq_, max_len - 2):
if sub_s[0] != cls_id:
sub_s = np.insert(sub_s, 0, cls_id)
if sub_s[-1] != sep_id:
sub_s = np.insert(sub_s, len(sub_s), sep_id)
assert len(sub_s) <= max_len
assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s
sub_seqs.append(sub_s)
new_tok_ids.extend(sub_seqs)
new_lengths.extend([len(l) for l in sub_seqs])
self.token_ids = np.array(new_tok_ids)
self.lengths = np.array(new_lengths)
def remove_empty_sequences(self):
"""
Too short sequences are simply removed. This could be tuned.
"""
init_size = len(self)
indices = self.lengths > 11
self.token_ids = self.token_ids[indices]
self.lengths = self.lengths[indices]
new_size = len(self)
logger.info(f"Remove {init_size - new_size} too short (<=11 tokens) sequences.")
def remove_unknown_sequences(self):
"""
Remove sequences with a (too) high level of unknown tokens.
"""
if "unk_token" not in self.params.special_tok_ids:
return
else:
unk_token_id = self.params.special_tok_ids["unk_token"]
init_size = len(self)
unk_occs = np.array([np.count_nonzero(a == unk_token_id) for a in self.token_ids])
indices = (unk_occs / self.lengths) < 0.5
self.token_ids = self.token_ids[indices]
self.lengths = self.lengths[indices]
new_size = len(self)
logger.info(f"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).")
def print_statistics(self):
"""
Print some statistics on the corpus. Only the master process.
"""
if not self.params.is_master:
return
logger.info(f"{len(self)} sequences")
# data_len = sum(self.lengths)
# nb_unique_tokens = len(Counter(list(chain(*self.token_ids))))
# logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)')
# unk_idx = self.params.special_tok_ids['unk_token']
# nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids])
# logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)')
def batch_sequences(self, batch):
"""
Do the padding and transform into torch.tensor.
"""
token_ids = [t[0] for t in batch]
lengths = [t[1] for t in batch]
assert len(token_ids) == len(lengths)
# Max for paddings
max_seq_len_ = max(lengths)
# Pad token ids
if self.params.mlm:
pad_idx = self.params.special_tok_ids["pad_token"]
else:
pad_idx = self.params.special_tok_ids["unk_token"]
tk_ = [list(t.astype(int)) + [pad_idx] * (max_seq_len_ - len(t)) for t in token_ids]
assert len(tk_) == len(token_ids)
assert all(len(t) == max_seq_len_ for t in tk_)
tk_t = torch.tensor(tk_) # (bs, max_seq_len_)
lg_t = torch.tensor(lengths) # (bs)
return tk_t, lg_t
|
transformers/examples/research_projects/distillation/lm_seqs_dataset.py/0
|
{
"file_path": "transformers/examples/research_projects/distillation/lm_seqs_dataset.py",
"repo_id": "transformers",
"token_count": 2820
}
| 70 |
import os
import jsonlines
import numpy as np
from tqdm import tqdm
DOC_STRIDE = 2048
MAX_LENGTH = 4096
SEED = 42
PROCESS_TRAIN = os.environ.pop("PROCESS_TRAIN", "false")
CATEGORY_MAPPING = {"null": 0, "short": 1, "long": 2, "yes": 3, "no": 4}
def _get_single_answer(example):
def choose_first(answer, is_long_answer=False):
assert isinstance(answer, list)
if len(answer) == 1:
answer = answer[0]
return {k: [answer[k]] for k in answer} if is_long_answer else answer
for a in answer:
if is_long_answer:
a = {k: [a[k]] for k in a}
if len(a["start_token"]) > 0:
break
return a
answer = {"id": example["id"]}
annotation = example["annotations"]
yes_no_answer = annotation["yes_no_answer"]
if 0 in yes_no_answer or 1 in yes_no_answer:
answer["category"] = ["yes"] if 1 in yes_no_answer else ["no"]
answer["start_token"] = answer["end_token"] = []
answer["start_byte"] = answer["end_byte"] = []
answer["text"] = ["<cls>"]
else:
answer["category"] = ["short"]
out = choose_first(annotation["short_answers"])
if len(out["start_token"]) == 0:
# answer will be long if short is not available
answer["category"] = ["long"]
out = choose_first(annotation["long_answer"], is_long_answer=True)
out["text"] = []
answer.update(out)
# disregard some samples
if len(answer["start_token"]) > 1 or answer["start_token"] == answer["end_token"]:
answer["remove_it"] = True
else:
answer["remove_it"] = False
cols = ["start_token", "end_token", "start_byte", "end_byte", "text"]
if not all(isinstance(answer[k], list) for k in cols):
raise ValueError("Issue in ID", example["id"])
return answer
def get_context_and_ans(example, assertion=False):
"""Gives new context after removing <html> & new answer tokens as per new context"""
answer = _get_single_answer(example)
# bytes are of no use
del answer["start_byte"]
del answer["end_byte"]
# handle yes_no answers explicitly
if answer["category"][0] in ["yes", "no"]: # category is list with one element
doc = example["document"]["tokens"]
context = []
for i in range(len(doc["token"])):
if not doc["is_html"][i]:
context.append(doc["token"][i])
return {
"context": " ".join(context),
"answer": {
"start_token": -100, # ignore index in cross-entropy
"end_token": -100, # ignore index in cross-entropy
"category": answer["category"],
"span": answer["category"], # extra
},
}
# later, help in removing all no answers
if answer["start_token"] == [-1]:
return {
"context": "None",
"answer": {
"start_token": -1,
"end_token": -1,
"category": "null",
"span": "None", # extra
},
}
# handling normal samples
cols = ["start_token", "end_token"]
answer.update({k: answer[k][0] if len(answer[k]) > 0 else answer[k] for k in cols}) # e.g. [10] == 10
doc = example["document"]["tokens"]
start_token = answer["start_token"]
end_token = answer["end_token"]
context = []
for i in range(len(doc["token"])):
if not doc["is_html"][i]:
context.append(doc["token"][i])
else:
if answer["start_token"] > i:
start_token -= 1
if answer["end_token"] > i:
end_token -= 1
new = " ".join(context[start_token:end_token])
# checking above code
if assertion:
"""checking if above code is working as expected for all the samples"""
is_html = doc["is_html"][answer["start_token"] : answer["end_token"]]
old = doc["token"][answer["start_token"] : answer["end_token"]]
old = " ".join([old[i] for i in range(len(old)) if not is_html[i]])
if new != old:
print("ID:", example["id"])
print("New:", new, end="\n")
print("Old:", old, end="\n\n")
return {
"context": " ".join(context),
"answer": {
"start_token": start_token,
"end_token": end_token - 1, # this makes it inclusive
"category": answer["category"], # either long or short
"span": new, # extra
},
}
def get_strided_contexts_and_ans(example, tokenizer, doc_stride=2048, max_length=4096, assertion=True):
# overlap will be of doc_stride - q_len
out = get_context_and_ans(example, assertion=assertion)
answer = out["answer"]
# later, removing these samples
if answer["start_token"] == -1:
return {
"example_id": example["id"],
"input_ids": [[-1]],
"labels": {
"start_token": [-1],
"end_token": [-1],
"category": ["null"],
},
}
input_ids = tokenizer(example["question"]["text"], out["context"]).input_ids
q_len = input_ids.index(tokenizer.sep_token_id) + 1
# return yes/no
if answer["category"][0] in ["yes", "no"]: # category is list with one element
inputs = []
category = []
q_indices = input_ids[:q_len]
doc_start_indices = range(q_len, len(input_ids), max_length - doc_stride)
for i in doc_start_indices:
end_index = i + max_length - q_len
slice = input_ids[i:end_index]
inputs.append(q_indices + slice)
category.append(answer["category"][0])
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": [-100] * len(category),
"end_token": [-100] * len(category),
"category": category,
},
}
splitted_context = out["context"].split()
complete_end_token = splitted_context[answer["end_token"]]
answer["start_token"] = len(
tokenizer(
" ".join(splitted_context[: answer["start_token"]]),
add_special_tokens=False,
).input_ids
)
answer["end_token"] = len(
tokenizer(" ".join(splitted_context[: answer["end_token"]]), add_special_tokens=False).input_ids
)
answer["start_token"] += q_len
answer["end_token"] += q_len
# fixing end token
num_sub_tokens = len(tokenizer(complete_end_token, add_special_tokens=False).input_ids)
if num_sub_tokens > 1:
answer["end_token"] += num_sub_tokens - 1
old = input_ids[answer["start_token"] : answer["end_token"] + 1] # right & left are inclusive
start_token = answer["start_token"]
end_token = answer["end_token"]
if assertion:
"""This won't match exactly because of extra gaps => visaully inspect everything"""
new = tokenizer.decode(old)
if answer["span"] != new:
print("ISSUE IN TOKENIZATION")
print("OLD:", answer["span"])
print("NEW:", new, end="\n\n")
if len(input_ids) <= max_length:
return {
"example_id": example["id"],
"input_ids": [input_ids],
"labels": {
"start_token": [answer["start_token"]],
"end_token": [answer["end_token"]],
"category": answer["category"],
},
}
q_indices = input_ids[:q_len]
doc_start_indices = range(q_len, len(input_ids), max_length - doc_stride)
inputs = []
answers_start_token = []
answers_end_token = []
answers_category = [] # null, yes, no, long, short
for i in doc_start_indices:
end_index = i + max_length - q_len
slice = input_ids[i:end_index]
inputs.append(q_indices + slice)
assert len(inputs[-1]) <= max_length, "Issue in truncating length"
if start_token >= i and end_token <= end_index - 1:
start_token = start_token - i + q_len
end_token = end_token - i + q_len
answers_category.append(answer["category"][0]) # ["short"] -> "short"
else:
start_token = -100
end_token = -100
answers_category.append("null")
new = inputs[-1][start_token : end_token + 1]
answers_start_token.append(start_token)
answers_end_token.append(end_token)
if assertion:
"""checking if above code is working as expected for all the samples"""
if new != old and new != [tokenizer.cls_token_id]:
print("ISSUE in strided for ID:", example["id"])
print("New:", tokenizer.decode(new))
print("Old:", tokenizer.decode(old), end="\n\n")
if slice[-1] == tokenizer.sep_token_id:
break
return {
"example_id": example["id"],
"input_ids": inputs,
"labels": {
"start_token": answers_start_token,
"end_token": answers_end_token,
"category": answers_category,
},
}
def prepare_inputs(example, tokenizer, doc_stride=2048, max_length=4096, assertion=False):
example = get_strided_contexts_and_ans(
example,
tokenizer,
doc_stride=doc_stride,
max_length=max_length,
assertion=assertion,
)
return example
def save_to_disk(hf_data, file_name):
with jsonlines.open(file_name, "a") as writer:
for example in tqdm(hf_data, total=len(hf_data), desc="Saving samples ... "):
labels = example["labels"]
for ids, start, end, cat in zip(
example["input_ids"],
labels["start_token"],
labels["end_token"],
labels["category"],
):
if start == -1 and end == -1:
continue # leave waste samples with no answer
if cat == "null" and np.random.rand() < 0.6:
continue # removing 50 % samples
writer.write(
{
"input_ids": ids,
"start_token": start,
"end_token": end,
"category": CATEGORY_MAPPING[cat],
}
)
if __name__ == "__main__":
"""Running area"""
from datasets import load_dataset
from transformers import BigBirdTokenizer
data = load_dataset("natural_questions")
tokenizer = BigBirdTokenizer.from_pretrained("google/bigbird-roberta-base")
data = data["train" if PROCESS_TRAIN == "true" else "validation"]
fn_kwargs = {
"tokenizer": tokenizer,
"doc_stride": DOC_STRIDE,
"max_length": MAX_LENGTH,
"assertion": False,
}
data = data.map(prepare_inputs, fn_kwargs=fn_kwargs)
data = data.remove_columns(["annotations", "document", "id", "question"])
print(data)
np.random.seed(SEED)
cache_file_name = "nq-training.jsonl" if PROCESS_TRAIN == "true" else "nq-validation.jsonl"
save_to_disk(data, file_name=cache_file_name)
|
transformers/examples/research_projects/jax-projects/big_bird/prepare_natural_questions.py/0
|
{
"file_path": "transformers/examples/research_projects/jax-projects/big_bird/prepare_natural_questions.py",
"repo_id": "transformers",
"token_count": 5324
}
| 71 |
<!---
Copyright 2022 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Token classification with LayoutLMv3 (PyTorch version)
This directory contains a script, `run_funsd_cord.py`, that can be used to fine-tune (or evaluate) LayoutLMv3 on form understanding datasets, such as [FUNSD](https://guillaumejaume.github.io/FUNSD/) and [CORD](https://github.com/clovaai/cord).
The script `run_funsd_cord.py` leverages the 🤗 Datasets library and the Trainer API. You can easily customize it to your needs.
## Fine-tuning on FUNSD
Fine-tuning LayoutLMv3 for token classification on [FUNSD](https://guillaumejaume.github.io/FUNSD/) can be done as follows:
```bash
python run_funsd_cord.py \
--model_name_or_path microsoft/layoutlmv3-base \
--dataset_name funsd \
--output_dir layoutlmv3-test \
--do_train \
--do_eval \
--max_steps 1000 \
--eval_strategy steps \
--eval_steps 100 \
--learning_rate 1e-5 \
--load_best_model_at_end \
--metric_for_best_model "eval_f1" \
--push_to_hub \
--push_to_hub°model_id layoutlmv3-finetuned-funsd
```
👀 The resulting model can be found here: https://huggingface.co/nielsr/layoutlmv3-finetuned-funsd. By specifying the `push_to_hub` flag, the model gets uploaded automatically to the hub (regularly), together with a model card, which includes metrics such as precision, recall and F1. Note that you can easily update the model card, as it's just a README file of the respective repo on the hub.
There's also the "Training metrics" [tab](https://huggingface.co/nielsr/layoutlmv3-finetuned-funsd/tensorboard), which shows Tensorboard logs over the course of training. Pretty neat, huh?
## Fine-tuning on CORD
Fine-tuning LayoutLMv3 for token classification on [CORD](https://github.com/clovaai/cord) can be done as follows:
```bash
python run_funsd_cord.py \
--model_name_or_path microsoft/layoutlmv3-base \
--dataset_name cord \
--output_dir layoutlmv3-test \
--do_train \
--do_eval \
--max_steps 1000 \
--eval_strategy steps \
--eval_steps 100 \
--learning_rate 5e-5 \
--load_best_model_at_end \
--metric_for_best_model "eval_f1" \
--push_to_hub \
--push_to_hub°model_id layoutlmv3-finetuned-cord
```
👀 The resulting model can be found here: https://huggingface.co/nielsr/layoutlmv3-finetuned-cord. Note that a model card gets generated automatically in case you specify the `push_to_hub` flag.
|
transformers/examples/research_projects/layoutlmv3/README.md/0
|
{
"file_path": "transformers/examples/research_projects/layoutlmv3/README.md",
"repo_id": "transformers",
"token_count": 967
}
| 72 |
"""
coding=utf-8
Copyright 2018, Antonio Mendoza Hao Tan, Mohit Bansal, Huggingface team :)
Adapted From Facebook Inc, Detectron2
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.import copy
"""
import copy
import fnmatch
import json
import os
import pickle as pkl
import shutil
import sys
import tarfile
import tempfile
from collections import OrderedDict
from contextlib import contextmanager
from functools import partial
from io import BytesIO
from pathlib import Path
from urllib.parse import urlparse
from zipfile import ZipFile, is_zipfile
import cv2
import numpy as np
import requests
import wget
from filelock import FileLock
from huggingface_hub.utils import insecure_hashlib
from PIL import Image
from tqdm.auto import tqdm
from yaml import Loader, dump, load
try:
import torch
_torch_available = True
except ImportError:
_torch_available = False
try:
from torch.hub import _get_torch_home
torch_cache_home = _get_torch_home()
except ImportError:
torch_cache_home = os.path.expanduser(
os.getenv("TORCH_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "torch"))
)
default_cache_path = os.path.join(torch_cache_home, "transformers")
CLOUDFRONT_DISTRIB_PREFIX = "https://cdn.huggingface.co"
S3_BUCKET_PREFIX = "https://s3.amazonaws.com/models.huggingface.co/bert"
PATH = "/".join(str(Path(__file__).resolve()).split("/")[:-1])
CONFIG = os.path.join(PATH, "config.yaml")
ATTRIBUTES = os.path.join(PATH, "attributes.txt")
OBJECTS = os.path.join(PATH, "objects.txt")
PYTORCH_PRETRAINED_BERT_CACHE = os.getenv("PYTORCH_PRETRAINED_BERT_CACHE", default_cache_path)
PYTORCH_TRANSFORMERS_CACHE = os.getenv("PYTORCH_TRANSFORMERS_CACHE", PYTORCH_PRETRAINED_BERT_CACHE)
TRANSFORMERS_CACHE = os.getenv("TRANSFORMERS_CACHE", PYTORCH_TRANSFORMERS_CACHE)
WEIGHTS_NAME = "pytorch_model.bin"
CONFIG_NAME = "config.yaml"
def load_labels(objs=OBJECTS, attrs=ATTRIBUTES):
vg_classes = []
with open(objs) as f:
for object in f.readlines():
vg_classes.append(object.split(",")[0].lower().strip())
vg_attrs = []
with open(attrs) as f:
for object in f.readlines():
vg_attrs.append(object.split(",")[0].lower().strip())
return vg_classes, vg_attrs
def load_checkpoint(ckp):
r = OrderedDict()
with open(ckp, "rb") as f:
ckp = pkl.load(f)["model"]
for k in copy.deepcopy(list(ckp.keys())):
v = ckp.pop(k)
if isinstance(v, np.ndarray):
v = torch.tensor(v)
else:
assert isinstance(v, torch.tensor), type(v)
r[k] = v
return r
class Config:
_pointer = {}
def __init__(self, dictionary: dict, name: str = "root", level=0):
self._name = name
self._level = level
d = {}
for k, v in dictionary.items():
if v is None:
raise ValueError()
k = copy.deepcopy(k)
v = copy.deepcopy(v)
if isinstance(v, dict):
v = Config(v, name=k, level=level + 1)
d[k] = v
setattr(self, k, v)
self._pointer = d
def __repr__(self):
return str(list((self._pointer.keys())))
def __setattr__(self, key, val):
self.__dict__[key] = val
self.__dict__[key.upper()] = val
levels = key.split(".")
last_level = len(levels) - 1
pointer = self._pointer
if len(levels) > 1:
for i, l in enumerate(levels):
if hasattr(self, l) and isinstance(getattr(self, l), Config):
setattr(getattr(self, l), ".".join(levels[i:]), val)
if l == last_level:
pointer[l] = val
else:
pointer = pointer[l]
def to_dict(self):
return self._pointer
def dump_yaml(self, data, file_name):
with open(f"{file_name}", "w") as stream:
dump(data, stream)
def dump_json(self, data, file_name):
with open(f"{file_name}", "w") as stream:
json.dump(data, stream)
@staticmethod
def load_yaml(config):
with open(config) as stream:
data = load(stream, Loader=Loader)
return data
def __str__(self):
t = " "
if self._name != "root":
r = f"{t * (self._level-1)}{self._name}:\n"
else:
r = ""
level = self._level
for i, (k, v) in enumerate(self._pointer.items()):
if isinstance(v, Config):
r += f"{t * (self._level)}{v}\n"
self._level += 1
else:
r += f"{t * (self._level)}{k}: {v} ({type(v).__name__})\n"
self._level = level
return r[:-1]
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs):
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
return cls(config_dict)
@classmethod
def get_config_dict(cls, pretrained_model_name_or_path: str, **kwargs):
cache_dir = kwargs.pop("cache_dir", None)
force_download = kwargs.pop("force_download", False)
resume_download = kwargs.pop("resume_download", False)
proxies = kwargs.pop("proxies", None)
local_files_only = kwargs.pop("local_files_only", False)
if os.path.isdir(pretrained_model_name_or_path):
config_file = os.path.join(pretrained_model_name_or_path, CONFIG_NAME)
elif os.path.isfile(pretrained_model_name_or_path) or is_remote_url(pretrained_model_name_or_path):
config_file = pretrained_model_name_or_path
else:
config_file = hf_bucket_url(pretrained_model_name_or_path, filename=CONFIG_NAME, use_cdn=False)
try:
# Load from URL or cache if already cached
resolved_config_file = cached_path(
config_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
)
# Load config dict
if resolved_config_file is None:
raise EnvironmentError
config_file = Config.load_yaml(resolved_config_file)
except EnvironmentError:
msg = "Can't load config for"
raise EnvironmentError(msg)
if resolved_config_file == config_file:
print("loading configuration file from path")
else:
print("loading configuration file cache")
return Config.load_yaml(resolved_config_file), kwargs
# quick compare tensors
def compare(in_tensor):
out_tensor = torch.load("dump.pt", map_location=in_tensor.device)
n1 = in_tensor.numpy()
n2 = out_tensor.numpy()[0]
print(n1.shape, n1[0, 0, :5])
print(n2.shape, n2[0, 0, :5])
assert np.allclose(n1, n2, rtol=0.01, atol=0.1), (
f"{sum([1 for x in np.isclose(n1, n2, rtol=0.01, atol=0.1).flatten() if x is False])/len(n1.flatten())*100:.4f} %"
" element-wise mismatch"
)
raise Exception("tensors are all good")
# Hugging face functions below
def is_remote_url(url_or_filename):
parsed = urlparse(url_or_filename)
return parsed.scheme in ("http", "https")
def hf_bucket_url(model_id: str, filename: str, use_cdn=True) -> str:
endpoint = CLOUDFRONT_DISTRIB_PREFIX if use_cdn else S3_BUCKET_PREFIX
legacy_format = "/" not in model_id
if legacy_format:
return f"{endpoint}/{model_id}-{filename}"
else:
return f"{endpoint}/{model_id}/{filename}"
def http_get(
url,
temp_file,
proxies=None,
resume_size=0,
user_agent=None,
):
ua = "python/{}".format(sys.version.split()[0])
if _torch_available:
ua += "; torch/{}".format(torch.__version__)
if isinstance(user_agent, dict):
ua += "; " + "; ".join("{}/{}".format(k, v) for k, v in user_agent.items())
elif isinstance(user_agent, str):
ua += "; " + user_agent
headers = {"user-agent": ua}
if resume_size > 0:
headers["Range"] = "bytes=%d-" % (resume_size,)
response = requests.get(url, stream=True, proxies=proxies, headers=headers)
if response.status_code == 416: # Range not satisfiable
return
content_length = response.headers.get("Content-Length")
total = resume_size + int(content_length) if content_length is not None else None
progress = tqdm(
unit="B",
unit_scale=True,
total=total,
initial=resume_size,
desc="Downloading",
)
for chunk in response.iter_content(chunk_size=1024):
if chunk: # filter out keep-alive new chunks
progress.update(len(chunk))
temp_file.write(chunk)
progress.close()
def get_from_cache(
url,
cache_dir=None,
force_download=False,
proxies=None,
etag_timeout=10,
resume_download=False,
user_agent=None,
local_files_only=False,
):
if cache_dir is None:
cache_dir = TRANSFORMERS_CACHE
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
os.makedirs(cache_dir, exist_ok=True)
etag = None
if not local_files_only:
try:
response = requests.head(url, allow_redirects=True, proxies=proxies, timeout=etag_timeout)
if response.status_code == 200:
etag = response.headers.get("ETag")
except (EnvironmentError, requests.exceptions.Timeout):
# etag is already None
pass
filename = url_to_filename(url, etag)
# get cache path to put the file
cache_path = os.path.join(cache_dir, filename)
# etag is None = we don't have a connection, or url doesn't exist, or is otherwise inaccessible.
# try to get the last downloaded one
if etag is None:
if os.path.exists(cache_path):
return cache_path
else:
matching_files = [
file
for file in fnmatch.filter(os.listdir(cache_dir), filename + ".*")
if not file.endswith(".json") and not file.endswith(".lock")
]
if len(matching_files) > 0:
return os.path.join(cache_dir, matching_files[-1])
else:
# If files cannot be found and local_files_only=True,
# the models might've been found if local_files_only=False
# Notify the user about that
if local_files_only:
raise ValueError(
"Cannot find the requested files in the cached path and outgoing traffic has been"
" disabled. To enable model look-ups and downloads online, set 'local_files_only'"
" to False."
)
return None
# From now on, etag is not None.
if os.path.exists(cache_path) and not force_download:
return cache_path
# Prevent parallel downloads of the same file with a lock.
lock_path = cache_path + ".lock"
with FileLock(lock_path):
# If the download just completed while the lock was activated.
if os.path.exists(cache_path) and not force_download:
# Even if returning early like here, the lock will be released.
return cache_path
if resume_download:
incomplete_path = cache_path + ".incomplete"
@contextmanager
def _resumable_file_manager():
with open(incomplete_path, "a+b") as f:
yield f
temp_file_manager = _resumable_file_manager
if os.path.exists(incomplete_path):
resume_size = os.stat(incomplete_path).st_size
else:
resume_size = 0
else:
temp_file_manager = partial(tempfile.NamedTemporaryFile, dir=cache_dir, delete=False)
resume_size = 0
# Download to temporary file, then copy to cache dir once finished.
# Otherwise you get corrupt cache entries if the download gets interrupted.
with temp_file_manager() as temp_file:
print(
"%s not found in cache or force_download set to True, downloading to %s",
url,
temp_file.name,
)
http_get(
url,
temp_file,
proxies=proxies,
resume_size=resume_size,
user_agent=user_agent,
)
os.replace(temp_file.name, cache_path)
meta = {"url": url, "etag": etag}
meta_path = cache_path + ".json"
with open(meta_path, "w") as meta_file:
json.dump(meta, meta_file)
return cache_path
def url_to_filename(url, etag=None):
url_bytes = url.encode("utf-8")
url_hash = insecure_hashlib.sha256(url_bytes)
filename = url_hash.hexdigest()
if etag:
etag_bytes = etag.encode("utf-8")
etag_hash = insecure_hashlib.sha256(etag_bytes)
filename += "." + etag_hash.hexdigest()
if url.endswith(".h5"):
filename += ".h5"
return filename
def cached_path(
url_or_filename,
cache_dir=None,
force_download=False,
proxies=None,
resume_download=False,
user_agent=None,
extract_compressed_file=False,
force_extract=False,
local_files_only=False,
):
if cache_dir is None:
cache_dir = TRANSFORMERS_CACHE
if isinstance(url_or_filename, Path):
url_or_filename = str(url_or_filename)
if isinstance(cache_dir, Path):
cache_dir = str(cache_dir)
if is_remote_url(url_or_filename):
# URL, so get it from the cache (downloading if necessary)
output_path = get_from_cache(
url_or_filename,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
user_agent=user_agent,
local_files_only=local_files_only,
)
elif os.path.exists(url_or_filename):
# File, and it exists.
output_path = url_or_filename
elif urlparse(url_or_filename).scheme == "":
# File, but it doesn't exist.
raise EnvironmentError("file {} not found".format(url_or_filename))
else:
# Something unknown
raise ValueError("unable to parse {} as a URL or as a local path".format(url_or_filename))
if extract_compressed_file:
if not is_zipfile(output_path) and not tarfile.is_tarfile(output_path):
return output_path
# Path where we extract compressed archives
# We avoid '.' in dir name and add "-extracted" at the end: "./model.zip" => "./model-zip-extracted/"
output_dir, output_file = os.path.split(output_path)
output_extract_dir_name = output_file.replace(".", "-") + "-extracted"
output_path_extracted = os.path.join(output_dir, output_extract_dir_name)
if os.path.isdir(output_path_extracted) and os.listdir(output_path_extracted) and not force_extract:
return output_path_extracted
# Prevent parallel extractions
lock_path = output_path + ".lock"
with FileLock(lock_path):
shutil.rmtree(output_path_extracted, ignore_errors=True)
os.makedirs(output_path_extracted)
if is_zipfile(output_path):
with ZipFile(output_path, "r") as zip_file:
zip_file.extractall(output_path_extracted)
zip_file.close()
elif tarfile.is_tarfile(output_path):
tar_file = tarfile.open(output_path)
tar_file.extractall(output_path_extracted)
tar_file.close()
else:
raise EnvironmentError("Archive format of {} could not be identified".format(output_path))
return output_path_extracted
return output_path
def get_data(query, delim=","):
assert isinstance(query, str)
if os.path.isfile(query):
with open(query) as f:
data = eval(f.read())
else:
req = requests.get(query)
try:
data = requests.json()
except Exception:
data = req.content.decode()
assert data is not None, "could not connect"
try:
data = eval(data)
except Exception:
data = data.split("\n")
req.close()
return data
def get_image_from_url(url):
response = requests.get(url)
img = np.array(Image.open(BytesIO(response.content)))
return img
# to load legacy frcnn checkpoint from detectron
def load_frcnn_pkl_from_url(url):
fn = url.split("/")[-1]
if fn not in os.listdir(os.getcwd()):
wget.download(url)
with open(fn, "rb") as stream:
weights = pkl.load(stream)
model = weights.pop("model")
new = {}
for k, v in model.items():
new[k] = torch.from_numpy(v)
if "running_var" in k:
zero = torch.tensor([0])
k2 = k.replace("running_var", "num_batches_tracked")
new[k2] = zero
return new
def get_demo_path():
print(f"{os.path.abspath(os.path.join(PATH, os.pardir))}/demo.ipynb")
def img_tensorize(im, input_format="RGB"):
assert isinstance(im, str)
if os.path.isfile(im):
img = cv2.imread(im)
else:
img = get_image_from_url(im)
assert img is not None, f"could not connect to: {im}"
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if input_format == "RGB":
img = img[:, :, ::-1]
return img
def chunk(images, batch=1):
return (images[i : i + batch] for i in range(0, len(images), batch))
|
transformers/examples/research_projects/lxmert/utils.py/0
|
{
"file_path": "transformers/examples/research_projects/lxmert/utils.py",
"repo_id": "transformers",
"token_count": 8363
}
| 73 |
from .binarizer import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer
from .masked_nn import MaskedLinear
|
transformers/examples/research_projects/movement-pruning/emmental/modules/__init__.py/0
|
{
"file_path": "transformers/examples/research_projects/movement-pruning/emmental/modules/__init__.py",
"repo_id": "transformers",
"token_count": 35
}
| 74 |
# End-to-End finetuning of RAG (including DPR retriever) for Question Answering.
This finetuning script is actively maintained by [Shamane Siri](https://github.com/shamanez). Feel free to ask questions on the [Forum](https://discuss.huggingface.co/) or post an issue on [GitHub](https://github.com/huggingface/transformers/issues/new/choose) and tag @shamanez.
Others that helped out: Patrick von Platen (@patrickvonplaten), Quentin Lhoest (@lhoestq), and Rivindu Weerasekera (@rivinduw)
The original RAG implementation is able to train the question encoder and generator end-to-end.
This extension enables complete end-to-end training of RAG including the context encoder in the retriever component.
Please read the [accompanying blog post](https://shamanesiri.medium.com/how-to-finetune-the-entire-rag-architecture-including-dpr-retriever-4b4385322552) for details on this implementation.
The original RAG code has also been modified to work with the latest versions of pytorch lightning (version 1.2.10) and RAY (version 1.3.0). All other implementation details remain the same as the [original RAG code](https://github.com/huggingface/transformers/tree/main/examples/research_projects/rag).
Read more about RAG at https://arxiv.org/abs/2005.11401.
This code can be modified to experiment with other research on retrival augmented models which include training of the retriever (e.g. [REALM](https://arxiv.org/abs/2002.08909) and [MARGE](https://arxiv.org/abs/2006.15020)).
To start training, use the bash script (finetune_rag_ray_end2end.sh) in this folder. This script also includes descriptions on each command-line argument used.
# Latest Update
⚠️ Updated the rag-end2end-retriever to be compatible with PL==1.6.4 and RAY==1.13.0 (latest versions to the date 2022-June-11)
# Note
⚠️ This project should be run with pytorch-lightning==1.3.1 which has a potential security vulnerability
# Testing
The following two bash scripts can be used to quickly test the implementation.
1. sh ./test_run/test_finetune.sh script
- Tests the full end-to-end fine-tuning ability with a dummy knowlendge-base and dummy training dataset (check test_dir directory).
- Users can replace the dummy dataset and knowledge-base with their own to do their own finetuning.
- Please read the comments in the test_finetune.sh file.
2. sh ./test_run/test_rag_new_features.sh
- Tests the newly added functions (set_context_encoder and set_context_encoder_tokenizer) related to modeling rag.
- This is sufficient to check the model's ability to use the set functions correctly.
# Comparison of end2end RAG (including DPR finetuning) VS original-RAG
We conducted a simple experiment to investigate the effectiveness of this end2end training extension using the SQuAD dataset. Please execute the following steps to reproduce the results.
- Create a knowledge-base using all the context passages in the SQuAD dataset with their respective titles.
- Use the question-answer pairs as training data.
- Train the system for 10 epochs.
- Test the Exact Match (EM) score with the SQuAD dataset's validation set.
- Training dataset, the knowledge-base, and hyperparameters used in experiments can be accessed from [here](https://drive.google.com/drive/folders/1qyzV-PaEARWvaU_jjpnU_NUS3U_dSjtG?usp=sharing).
# Results
- We train both models for 10 epochs.
| Model Type | EM-Score|
| --------------------| --------|
| RAG-original | 28.12 |
| RAG-end2end with DPR| 40.02 |
|
transformers/examples/research_projects/rag-end2end-retriever/README.md/0
|
{
"file_path": "transformers/examples/research_projects/rag-end2end-retriever/README.md",
"repo_id": "transformers",
"token_count": 1044
}
| 75 |
# Add parent directory to python path to access lightning_base.py
export PYTHONPATH="../":"${PYTHONPATH}"
#creates the custom knowlegebase
python use_own_knowledge_dataset.py
# Start a single-node Ray cluster.
ray start --head
# A sample finetuning run, you need to specify data_dir, output_dir and model_name_or_path
# run ./examples/rag/finetune_rag_ray.sh --help to see all the possible options
python finetune_rag.py \
--model_name_or_path facebook/rag-token-base \
--model_type rag_token \
--fp16 \
--gpus 2 \
--profile \
--do_train \
--end2end \
--do_predict \
--n_val -1 \
--train_batch_size 1 \
--eval_batch_size 1 \
--max_source_length 128 \
--max_target_length 25 \
--val_max_target_length 25 \
--test_max_target_length 25 \
--label_smoothing 0.1 \
--dropout 0.1 \
--attention_dropout 0.1 \
--weight_decay 0.001 \
--adam_epsilon 1e-08 \
--max_grad_norm 0.1 \
--lr_scheduler polynomial \
--learning_rate 3e-05 \
--num_train_epochs 10 \
--warmup_steps 500 \
--gradient_accumulation_steps 1 \
--distributed_retriever ray \
--num_retrieval_workers 4 \
--index_name custom \
--context_encoder_name facebook/dpr-ctx_encoder-multiset-base \
--index_gpus 2 \
--gpu_order [2,3,4,5,6,7,8,9,0,1] \
--indexing_freq 5
# Stop the Ray cluster.
ray stop
#CUDA_VISIBLE_DEVICES=2,3,4,5,6,7,8,9,0,1 sh ./test_run/test_finetune.sh
#Make sure --gpu_order is same.
|
transformers/examples/research_projects/rag-end2end-retriever/test_run/test_finetune.sh/0
|
{
"file_path": "transformers/examples/research_projects/rag-end2end-retriever/test_run/test_finetune.sh",
"repo_id": "transformers",
"token_count": 651
}
| 76 |
"""
This script reads DPR retriever training data and parses each datapoint. We save a line per datapoint.
Each line consists of the query followed by a tab-separated list of Wikipedia page titles constituting
positive contexts for a given query.
"""
import argparse
import json
from tqdm import tqdm
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--src_path",
type=str,
default="biencoder-nq-dev.json",
help="Path to raw DPR training data",
)
parser.add_argument(
"--evaluation_set",
type=str,
help="where to store parsed evaluation_set file",
)
parser.add_argument(
"--gold_data_path",
type=str,
help="where to store parsed gold_data_path file",
)
args = parser.parse_args()
with open(args.src_path, "r") as src_file, open(args.evaluation_set, "w") as eval_file, open(
args.gold_data_path, "w"
) as gold_file:
dpr_records = json.load(src_file)
for dpr_record in tqdm(dpr_records):
question = dpr_record["question"]
contexts = [context["title"] for context in dpr_record["positive_ctxs"]]
eval_file.write(question + "\n")
gold_file.write("\t".join(contexts) + "\n")
if __name__ == "__main__":
main()
|
transformers/examples/research_projects/rag/parse_dpr_relevance_data.py/0
|
{
"file_path": "transformers/examples/research_projects/rag/parse_dpr_relevance_data.py",
"repo_id": "transformers",
"token_count": 559
}
| 77 |
#!/usr/bin/env python
import argparse
import os
import sys
from unittest.mock import patch
import pytorch_lightning as pl
import timeout_decorator
import torch
from distillation import SummarizationDistiller, distill_main
from finetune import SummarizationModule, main
from transformers import MarianMTModel
from transformers.file_utils import cached_path
from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow
from utils import load_json
MARIAN_MODEL = "sshleifer/mar_enro_6_3_student"
class TestMbartCc25Enro(TestCasePlus):
def setUp(self):
super().setUp()
data_cached = cached_path(
"https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz",
extract_compressed_file=True,
)
self.data_dir = f"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k"
@slow
@require_torch_gpu
def test_model_download(self):
"""This warms up the cache so that we can time the next test without including download time, which varies between machines."""
MarianMTModel.from_pretrained(MARIAN_MODEL)
# @timeout_decorator.timeout(1200)
@slow
@require_torch_gpu
def test_train_mbart_cc25_enro_script(self):
env_vars_to_replace = {
"$MAX_LEN": 64,
"$BS": 64,
"$GAS": 1,
"$ENRO_DIR": self.data_dir,
"facebook/mbart-large-cc25": MARIAN_MODEL,
# "val_check_interval=0.25": "val_check_interval=1.0",
"--learning_rate=3e-5": "--learning_rate 3e-4",
"--num_train_epochs 6": "--num_train_epochs 1",
}
# Clean up bash script
bash_script = (self.test_file_dir / "train_mbart_cc25_enro.sh").open().read().split("finetune.py")[1].strip()
bash_script = bash_script.replace("\\\n", "").strip().replace('"$@"', "")
for k, v in env_vars_to_replace.items():
bash_script = bash_script.replace(k, str(v))
output_dir = self.get_auto_remove_tmp_dir()
# bash_script = bash_script.replace("--fp16 ", "")
args = f"""
--output_dir {output_dir}
--tokenizer_name Helsinki-NLP/opus-mt-en-ro
--sortish_sampler
--do_predict
--gpus 1
--freeze_encoder
--n_train 40000
--n_val 500
--n_test 500
--fp16_opt_level O1
--num_sanity_val_steps 0
--eval_beams 2
""".split()
# XXX: args.gpus > 1 : handle multi_gpu in the future
testargs = ["finetune.py"] + bash_script.split() + args
with patch.object(sys, "argv", testargs):
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = SummarizationModule.add_model_specific_args(parser, os.getcwd())
args = parser.parse_args()
model = main(args)
# Check metrics
metrics = load_json(model.metrics_save_path)
first_step_stats = metrics["val"][0]
last_step_stats = metrics["val"][-1]
self.assertEqual(len(metrics["val"]), (args.max_epochs / args.val_check_interval))
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
self.assertGreater(last_step_stats["val_avg_gen_time"], 0.01)
# model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?)
self.assertLessEqual(last_step_stats["val_avg_gen_time"], 1.0)
# test learning requirements:
# 1. BLEU improves over the course of training by more than 2 pts
self.assertGreater(last_step_stats["val_avg_bleu"] - first_step_stats["val_avg_bleu"], 2)
# 2. BLEU finishes above 17
self.assertGreater(last_step_stats["val_avg_bleu"], 17)
# 3. test BLEU and val BLEU within ~1.1 pt.
self.assertLess(abs(metrics["val"][-1]["val_avg_bleu"] - metrics["test"][-1]["test_avg_bleu"]), 1.1)
# check lightning ckpt can be loaded and has a reasonable statedict
contents = os.listdir(output_dir)
ckpt_path = [x for x in contents if x.endswith(".ckpt")][0]
full_path = os.path.join(args.output_dir, ckpt_path)
ckpt = torch.load(full_path, map_location="cpu")
expected_key = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight"
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.float32
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
contents = {os.path.basename(p) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics["test"]) == 1
class TestDistilMarianNoTeacher(TestCasePlus):
@timeout_decorator.timeout(600)
@slow
@require_torch_gpu
def test_opus_mt_distill_script(self):
data_dir = f"{self.test_file_dir_str}/test_data/wmt_en_ro"
env_vars_to_replace = {
"--fp16_opt_level=O1": "",
"$MAX_LEN": 128,
"$BS": 16,
"$GAS": 1,
"$ENRO_DIR": data_dir,
"$m": "sshleifer/student_marian_en_ro_6_1",
"val_check_interval=0.25": "val_check_interval=1.0",
}
# Clean up bash script
bash_script = (
(self.test_file_dir / "distil_marian_no_teacher.sh").open().read().split("distillation.py")[1].strip()
)
bash_script = bash_script.replace("\\\n", "").strip().replace('"$@"', "")
bash_script = bash_script.replace("--fp16 ", " ")
for k, v in env_vars_to_replace.items():
bash_script = bash_script.replace(k, str(v))
output_dir = self.get_auto_remove_tmp_dir()
bash_script = bash_script.replace("--fp16", "")
epochs = 6
testargs = (
["distillation.py"]
+ bash_script.split()
+ [
f"--output_dir={output_dir}",
"--gpus=1",
"--learning_rate=1e-3",
f"--num_train_epochs={epochs}",
"--warmup_steps=10",
"--val_check_interval=1.0",
"--do_predict",
]
)
with patch.object(sys, "argv", testargs):
parser = argparse.ArgumentParser()
parser = pl.Trainer.add_argparse_args(parser)
parser = SummarizationDistiller.add_model_specific_args(parser, os.getcwd())
args = parser.parse_args()
# assert args.gpus == gpus THIS BREAKS for multi_gpu
model = distill_main(args)
# Check metrics
metrics = load_json(model.metrics_save_path)
first_step_stats = metrics["val"][0]
last_step_stats = metrics["val"][-1]
assert len(metrics["val"]) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check
assert last_step_stats["val_avg_gen_time"] >= 0.01
assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing
assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved.
assert isinstance(last_step_stats[f"val_avg_{model.val_metric}"], float)
# check lightning ckpt can be loaded and has a reasonable statedict
contents = os.listdir(output_dir)
ckpt_path = [x for x in contents if x.endswith(".ckpt")][0]
full_path = os.path.join(args.output_dir, ckpt_path)
ckpt = torch.load(full_path, map_location="cpu")
expected_key = "model.model.decoder.layers.0.encoder_attn_layer_norm.weight"
assert expected_key in ckpt["state_dict"]
assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.float32
# TODO: turn on args.do_predict when PL bug fixed.
if args.do_predict:
contents = {os.path.basename(p) for p in contents}
assert "test_generations.txt" in contents
assert "test_results.txt" in contents
# assert len(metrics["val"]) == desired_n_evals
assert len(metrics["test"]) == 1
|
transformers/examples/research_projects/seq2seq-distillation/_test_bash_script.py/0
|
{
"file_path": "transformers/examples/research_projects/seq2seq-distillation/_test_bash_script.py",
"repo_id": "transformers",
"token_count": 3934
}
| 78 |
import warnings
from pathlib import Path
from typing import List, Tuple, Union
import fire
from torch import nn
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, PreTrainedModel
from transformers.utils import logging
logger = logging.get_logger(__name__)
def copy_layers(src_layers: nn.ModuleList, dest_layers: nn.ModuleList, layers_to_copy: List[int]) -> None:
layers_to_copy = nn.ModuleList([src_layers[i] for i in layers_to_copy])
assert len(dest_layers) == len(layers_to_copy), f"{len(dest_layers)} != {len(layers_to_copy)}"
dest_layers.load_state_dict(layers_to_copy.state_dict())
LAYERS_TO_COPY = {
# maps num layers in teacher -> num_layers in student -> which teacher layers to copy.
# 12: bart, 16: pegasus, 6: marian/Helsinki-NLP
12: {
1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher
2: [0, 6],
3: [0, 6, 11],
4: [0, 4, 8, 11],
6: [0, 2, 4, 7, 9, 11],
9: [0, 1, 2, 4, 5, 7, 9, 10, 11],
12: list(range(12)),
},
16: { # maps num layers in student -> which teacher layers to copy
1: [0],
2: [0, 15],
3: [0, 8, 15],
4: [0, 5, 10, 15],
6: [0, 3, 6, 9, 12, 15],
8: [0, 2, 4, 6, 8, 10, 12, 15],
9: [0, 1, 3, 5, 7, 9, 11, 13, 15],
12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15],
16: list(range(16)),
},
6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))},
}
LAYERS_TO_SUPERVISE = {
# maps num layers in student -> which teacher layers to copy.
6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]},
12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]},
16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]},
}
def pick_layers_to_copy(n_student, n_teacher):
try:
val = LAYERS_TO_COPY[n_teacher][n_student]
return val
except KeyError:
if n_student != n_teacher:
warnings.warn(
f"no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first"
f" {n_student}"
)
return list(range(n_student))
def get_layers_to_supervise(n_student, n_teacher) -> List[int]:
"""Used or the --supervise_forward kwarg"""
if n_student > n_teacher:
raise ValueError(f"Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}")
elif n_teacher == n_student:
return list(range(n_teacher))
elif n_student == 1:
return [n_teacher - 1]
else:
return LAYERS_TO_SUPERVISE[n_teacher][n_student]
def create_student_by_copying_alternating_layers(
teacher: Union[str, PreTrainedModel],
save_path: Union[str, Path] = "student",
e: Union[int, None] = None,
d: Union[int, None] = None,
copy_first_teacher_layers=False,
e_layers_to_copy=None,
d_layers_to_copy=None,
**extra_config_kwargs,
) -> Tuple[PreTrainedModel, List[int], List[int]]:
"""Make a student by copying alternating layers from a teacher, save it to save_path.
Args:
teacher: str or PreTrainedModel if str, this will call AutoModelForSeq2SeqLM.from_pretrained(teacher) before
copying layers
save_path: where to save the student, defaults to student directory.
e: how many Encoder layers should the student have, default is fully copy of teacher
d: how many Decoder layers should the student have, default is fully copy of teacher
copy_first_teacher_layers: [bool] dont copy alternating layers, just the first e/d.
**extra_config_kwargs: extra kwargs to pass to the student, by default the teacher config is used.
Returns:
student: new, smaller model. (Also saves it to save_path)
e_layers_to_copy: list of which teacher encoder layers were used
d_layers_to_copy: list of which teacher decoder layers were used
"""
_msg = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher."
assert (e is not None) or (d is not None), _msg
if isinstance(teacher, str):
AutoTokenizer.from_pretrained(teacher).save_pretrained(save_path) # purely for convenience
teacher = AutoModelForSeq2SeqLM.from_pretrained(teacher).eval()
else:
assert isinstance(teacher, PreTrainedModel), f"teacher must be a model or string got type {type(teacher)}"
init_kwargs = teacher.config.to_diff_dict()
try:
teacher_e, teacher_d = teacher.config.encoder_layers, teacher.config.decoder_layers
if e is None:
e = teacher_e
if d is None:
d = teacher_d
init_kwargs.update({"encoder_layers": e, "decoder_layers": d})
except AttributeError: # T5
if hasattr(teacher.config, "num_encoder_layers"):
teacher_e, teacher_d = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers
else:
teacher_e, teacher_d = teacher.config.num_layers, teacher.config.num_decoder_layers
if e is None:
e = teacher_e
if d is None:
d = teacher_d
if hasattr(teacher.config, "num_encoder_layers"):
init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d})
else:
init_kwargs.update({"num_layers": e, "num_decoder_layers": d})
# Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs
init_kwargs.update(extra_config_kwargs)
# Copy weights
student_cfg = teacher.config_class(**init_kwargs)
student = AutoModelForSeq2SeqLM.from_config(student_cfg)
# Start by copying the full teacher state dict this will copy the first N teacher layers to the student.
info = student.load_state_dict(teacher.state_dict(), strict=False)
assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys.
if copy_first_teacher_layers: # Our copying is done. We just log and save
e_layers_to_copy, d_layers_to_copy = list(range(e)), list(range(d))
logger.info(
f"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to"
f" {save_path}"
)
student.save_pretrained(save_path)
return student, e_layers_to_copy, d_layers_to_copy
# Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer.
if e_layers_to_copy is None:
e_layers_to_copy: List[int] = pick_layers_to_copy(e, teacher_e)
if d_layers_to_copy is None:
d_layers_to_copy: List[int] = pick_layers_to_copy(d, teacher_d)
try:
if hasattr(
teacher, "prophetnet"
): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers
copy_layers(teacher.prophetnet.encoder.layers, student.prophetnet.encoder.layers, e_layers_to_copy)
copy_layers(teacher.prophetnet.decoder.layers, student.prophetnet.decoder.layers, d_layers_to_copy)
else:
copy_layers(teacher.model.encoder.layers, student.model.encoder.layers, e_layers_to_copy)
copy_layers(teacher.model.decoder.layers, student.model.decoder.layers, d_layers_to_copy)
except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block
copy_layers(teacher.encoder.block, student.encoder.block, e_layers_to_copy)
copy_layers(teacher.decoder.block, student.decoder.block, d_layers_to_copy)
logger.info(
f"Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}"
)
student.config.init_metadata = {
"teacher_type": teacher.config.model_type,
"copied_encoder_layers": e_layers_to_copy,
"copied_decoder_layers": d_layers_to_copy,
}
student.save_pretrained(save_path)
# Save information about copying for easier reproducibility
return student, e_layers_to_copy, d_layers_to_copy
if __name__ == "__main__":
fire.Fire(create_student_by_copying_alternating_layers)
|
transformers/examples/research_projects/seq2seq-distillation/make_student.py/0
|
{
"file_path": "transformers/examples/research_projects/seq2seq-distillation/make_student.py",
"repo_id": "transformers",
"token_count": 3522
}
| 79 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2022 The Microsoft and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for tapex on table-based question answering tasks.
Adapted from script: https://github.com/huggingface/transformers/blob/master/examples/pytorch/summarization/run_summarization.py
"""
import logging
import os
import sys
from collections import defaultdict
from copy import deepcopy
from dataclasses import dataclass, field
from functools import partial
from typing import List, Optional
import nltk # Here to have a nice missing dependency error message early on
import numpy as np
import pandas as pd
from datasets import load_dataset
from filelock import FileLock
from wikisql_utils import _TYPE_CONVERTER, retrieve_wikisql_query_answer_tapas
import transformers
from transformers import (
AutoConfig,
BartForConditionalGeneration,
DataCollatorForSeq2Seq,
HfArgumentParser,
Seq2SeqTrainer,
Seq2SeqTrainingArguments,
TapexTokenizer,
set_seed,
)
from transformers.file_utils import is_offline_mode
from transformers.trainer_utils import get_last_checkpoint, is_main_process
from transformers.utils import check_min_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.17.0.dev0")
logger = logging.getLogger(__name__)
try:
nltk.data.find("tokenizers/punkt")
except (LookupError, OSError):
if is_offline_mode():
raise LookupError(
"Offline mode: run this script without TRANSFORMERS_OFFLINE first to download nltk data files"
)
with FileLock(".lock") as lock:
nltk.download("punkt", quiet=True)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={
"help": (
"Pretrained tokenizer name or path if not the same as model_name. "
"By default we use BART-large tokenizer for TAPEX-large."
)
},
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
use_auth_token: bool = field(
default=False,
metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
dataset_name: Optional[str] = field(
default="wikisql", metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={
"help": (
"An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
)
},
)
test_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_source_length: Optional[int] = field(
default=1024,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
max_target_length: Optional[int] = field(
default=128,
metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
val_max_target_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. "
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
num_beams: Optional[int] = field(
default=None,
metadata={
"help": (
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
"which is used during ``evaluate`` and ``predict``."
)
},
)
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
},
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if self.val_max_target_length is None:
self.val_max_target_length = self.max_target_length
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
# Log on each process the small summary:
logger.warning(
f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
)
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank):
transformers.utils.logging.set_verbosity_info()
logger.info(f"Training/evaluation parameters {training_args}")
# Set seed before initializing model.
set_seed(training_args.seed)
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
datasets = load_dataset(data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
if data_args.test_file is not None:
data_files["test"] = data_args.test_file
extension = data_args.test_file.split(".")[-1]
datasets = load_dataset(extension, data_files=data_files, cache_dir=model_args.cache_dir)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
)
# IMPORTANT: the initial BART model's decoding is penalized by no_repeat_ngram_size, and thus
# we should disable it here to avoid problematic generation
config.no_repeat_ngram_size = 0
config.max_length = 1024
config.early_stopping = False
# load tapex tokenizer
tokenizer = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
add_prefix_space=True,
)
# load Bart based Tapex model (default tapex-large)
model = BartForConditionalGeneration.from_pretrained(
model_args.model_name_or_path,
from_tf=bool(".ckpt" in model_args.model_name_or_path),
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=True if model_args.use_auth_token else None,
)
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
# Preprocessing the datasets.
# We need to tokenize inputs and targets.
if training_args.do_train:
column_names = datasets["train"].column_names
elif training_args.do_eval:
column_names = datasets["validation"].column_names
elif training_args.do_predict:
column_names = datasets["test"].column_names
else:
logger.info("There is nothing to do. Please pass `do_train`, `do_eval` and/or `do_predict`.")
return
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
padding = "max_length" if data_args.pad_to_max_length else False
if training_args.label_smoothing_factor > 0 and not hasattr(model, "prepare_decoder_input_ids_from_labels"):
logger.warning(
"label_smoothing is enabled but the `prepare_decoder_input_ids_from_labels` method is not defined for "
f"`{model.__class__.__name__}`. This will lead to loss being calculated twice and will take up more memory"
)
def preprocess_tableqa_function(examples, is_training=False):
"""
The is_training FLAG is used to identify if we could use the supervision
to truncate the table content if it is required.
"""
# this function is specific for WikiSQL since the util function need the data structure
# to retrieve the WikiSQL answer for each question
def _convert_table_types(_table):
"""Runs the type converter over the table cells."""
ret_table = deepcopy(_table)
types = ret_table["types"]
ret_table["real_rows"] = ret_table["rows"]
typed_rows = []
for row in ret_table["rows"]:
typed_row = []
for column, cell_value in enumerate(row):
typed_row.append(_TYPE_CONVERTER[types[column]](cell_value))
typed_rows.append(typed_row)
ret_table["rows"] = typed_rows
return ret_table
questions = [question.lower() for question in examples["question"]]
example_tables = examples["table"]
example_sqls = examples["sql"]
tables = [
pd.DataFrame.from_records(example_table["rows"], columns=example_table["header"])
for example_table in example_tables
]
# using tapas utils to obtain wikisql answer
answers = []
for example_sql, example_table in zip(example_sqls, example_tables):
tapas_table = _convert_table_types(example_table)
answer_list: List[str] = retrieve_wikisql_query_answer_tapas(tapas_table, example_sql)
# you can choose other delimiters to split each answer
answers.append(answer_list)
# IMPORTANT: we cannot pass by answers during evaluation, answers passed during training are used to
# truncate large tables in the train set!
if is_training:
model_inputs = tokenizer(
table=tables,
query=questions,
answer=answers,
max_length=data_args.max_source_length,
padding=padding,
truncation=True,
)
else:
model_inputs = tokenizer(
table=tables, query=questions, max_length=data_args.max_source_length, padding=padding, truncation=True
)
labels = tokenizer(
answer=[", ".join(answer) for answer in answers],
max_length=max_target_length,
padding=padding,
truncation=True,
)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
labels["input_ids"] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
return model_inputs
# in training, we can use the answer as extra information to truncate large tables
preprocess_tableqa_function_training = partial(preprocess_tableqa_function, is_training=True)
if training_args.do_train:
if "train" not in datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = datasets["train"]
if data_args.max_train_samples is not None:
train_dataset = train_dataset.select(range(data_args.max_train_samples))
train_dataset = train_dataset.map(
preprocess_tableqa_function_training,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
if training_args.do_eval:
max_target_length = data_args.val_max_target_length
if "validation" not in datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = datasets["validation"]
if data_args.max_eval_samples is not None:
eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
eval_dataset = eval_dataset.map(
preprocess_tableqa_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
if training_args.do_predict:
max_target_length = data_args.val_max_target_length
if "test" not in datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = datasets["test"]
if data_args.max_predict_samples is not None:
predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
predict_dataset = predict_dataset.map(
preprocess_tableqa_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
)
# Data collator
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=8 if training_args.fp16 else None,
)
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [label.strip() for label in labels]
return preds, labels
def compute_metrics(eval_preds):
preds, labels = eval_preds
if isinstance(preds, tuple):
preds = preds[0]
decoded_preds = tokenizer.batch_decode(preds, skip_special_tokens=True)
if data_args.ignore_pad_token_for_loss:
# Replace -100 in the labels as we can't decode them.
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
# Some simple post-processing
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
delimiter = ", "
# define example evaluation
def evaluate_example(predict_str: str, ground_str: str):
predict_spans = predict_str.split(delimiter)
ground_spans = ground_str.split(delimiter)
predict_values = defaultdict(lambda: 0)
ground_values = defaultdict(lambda: 0)
for span in predict_spans:
try:
predict_values[float(span)] += 1
except ValueError:
predict_values[span.strip()] += 1
for span in ground_spans:
try:
ground_values[float(span)] += 1
except ValueError:
ground_values[span.strip()] += 1
is_correct = predict_values == ground_values
return is_correct
def get_denotation_accuracy(predictions: List[str], references: List[str]):
assert len(predictions) == len(references)
correct_num = 0
for predict_str, ground_str in zip(predictions, references):
is_correct = evaluate_example(predict_str.lower(), ground_str.lower())
if is_correct:
correct_num += 1
return correct_num / len(predictions)
accuracy = get_denotation_accuracy(decoded_preds, decoded_labels)
result = {"denotation_accuracy": accuracy}
return result
# Initialize our Trainer
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
tokenizer=tokenizer,
data_collator=data_collator,
compute_metrics=compute_metrics if training_args.predict_with_generate else None,
)
if training_args.do_train:
checkpoint = None
if training_args.resume_from_checkpoint is not None:
checkpoint = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
checkpoint = last_checkpoint
train_result = trainer.train(resume_from_checkpoint=checkpoint)
trainer.save_model() # Saves the tokenizer too for easy upload
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation
results = {}
if training_args.do_eval:
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(
max_length=data_args.val_max_target_length, num_beams=data_args.num_beams, metric_key_prefix="eval"
)
max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
predict_results = trainer.predict(
predict_dataset,
metric_key_prefix="predict",
max_length=data_args.val_max_target_length,
num_beams=data_args.num_beams,
)
metrics = predict_results.metrics
max_predict_samples = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
)
metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
if trainer.is_world_process_zero():
if training_args.predict_with_generate:
predictions = tokenizer.batch_decode(
predict_results.predictions, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
predictions = [pred.strip() for pred in predictions]
output_prediction_file = os.path.join(training_args.output_dir, "tapex_predictions.txt")
with open(output_prediction_file, "w") as writer:
writer.write("\n".join(predictions))
return results
def _mp_fn(index):
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
|
transformers/examples/research_projects/tapex/run_wikisql_with_tapex.py/0
|
{
"file_path": "transformers/examples/research_projects/tapex/run_wikisql_with_tapex.py",
"repo_id": "transformers",
"token_count": 11008
}
| 80 |
import importlib
import torch
import yaml
from omegaconf import OmegaConf
from taming.models.vqgan import VQModel
def load_config(config_path, display=False):
config = OmegaConf.load(config_path)
if display:
print(yaml.dump(OmegaConf.to_container(config)))
return config
def load_vqgan(device, conf_path=None, ckpt_path=None):
if conf_path is None:
conf_path = "./model_checkpoints/vqgan_only.yaml"
config = load_config(conf_path, display=False)
model = VQModel(**config.model.params)
if ckpt_path is None:
ckpt_path = "./model_checkpoints/vqgan_only.pt"
sd = torch.load(ckpt_path, map_location=device)
if ".ckpt" in ckpt_path:
sd = sd["state_dict"]
model.load_state_dict(sd, strict=True)
model.to(device)
del sd
return model
def reconstruct_with_vqgan(x, model):
z, _, [_, _, indices] = model.encode(x)
print(f"VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}")
xrec = model.decode(z)
return xrec
def get_obj_from_str(string, reload=False):
module, cls = string.rsplit(".", 1)
if reload:
module_imp = importlib.import_module(module)
importlib.reload(module_imp)
return getattr(importlib.import_module(module, package=None), cls)
def instantiate_from_config(config):
if "target" not in config:
raise KeyError("Expected key `target` to instantiate.")
return get_obj_from_str(config["target"])(**config.get("params", {}))
def load_model_from_config(config, sd, gpu=True, eval_mode=True):
model = instantiate_from_config(config)
if sd is not None:
model.load_state_dict(sd)
if gpu:
model.cuda()
if eval_mode:
model.eval()
return {"model": model}
def load_model(config, ckpt, gpu, eval_mode):
# load the specified checkpoint
if ckpt:
pl_sd = torch.load(ckpt, map_location="cpu")
global_step = pl_sd["global_step"]
print(f"loaded model from global step {global_step}.")
else:
pl_sd = {"state_dict": None}
global_step = None
model = load_model_from_config(config.model, pl_sd["state_dict"], gpu=gpu, eval_mode=eval_mode)["model"]
return model, global_step
|
transformers/examples/research_projects/vqgan-clip/loaders.py/0
|
{
"file_path": "transformers/examples/research_projects/vqgan-clip/loaders.py",
"repo_id": "transformers",
"token_count": 926
}
| 81 |
#!/usr/bin/env python3
import logging
import pathlib
import re
import sys
from dataclasses import dataclass, field
from typing import Any, Callable, Dict, List, Optional, Set, Union
import datasets
import librosa
import numpy as np
import torch
from lang_trans import arabic
from packaging import version
from torch import nn
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
Wav2Vec2CTCTokenizer,
Wav2Vec2FeatureExtractor,
Wav2Vec2ForCTC,
Wav2Vec2Processor,
is_apex_available,
trainer_utils,
)
if is_apex_available():
from apex import amp
if version.parse(version.parse(torch.__version__).base_version) >= version.parse("1.6"):
_is_native_amp_available = True
from torch.cuda.amp import autocast
logger = logging.getLogger(__name__)
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
)
freeze_feature_extractor: Optional[bool] = field(
default=True, metadata={"help": "Whether to freeze the feature extractor layers of the model."}
)
verbose_logging: Optional[bool] = field(
default=False,
metadata={"help": "Whether to log verbose messages or not."},
)
def configure_logger(model_args: ModelArguments, training_args: TrainingArguments):
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logging_level = logging.WARNING
if model_args.verbose_logging:
logging_level = logging.DEBUG
elif trainer_utils.is_main_process(training_args.local_rank):
logging_level = logging.INFO
logger.setLevel(logging_level)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
Using `HfArgumentParser` we can turn this class
into argparse arguments to be able to specify them on
the command line.
"""
dataset_name: str = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_split_name: Optional[str] = field(
default="train",
metadata={
"help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
},
)
validation_split_name: Optional[str] = field(
default="validation",
metadata={
"help": (
"The name of the validation data set split to use (via the datasets library). Defaults to 'validation'"
)
},
)
target_text_column: Optional[str] = field(
default="text",
metadata={"help": "Column in the dataset that contains label (target text). Defaults to 'text'"},
)
speech_file_column: Optional[str] = field(
default="file",
metadata={"help": "Column in the dataset that contains speech file path. Defaults to 'file'"},
)
target_feature_extractor_sampling_rate: Optional[bool] = field(
default=False,
metadata={"help": "Resample loaded audio to target feature extractor's sampling rate or not."},
)
max_duration_in_seconds: Optional[float] = field(
default=None,
metadata={"help": "Filters out examples longer than specified. Defaults to no filtering."},
)
orthography: Optional[str] = field(
default="librispeech",
metadata={
"help": (
"Orthography used for normalization and tokenization: 'librispeech' (default), 'timit', or"
" 'buckwalter'."
)
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
@dataclass
class Orthography:
"""
Orthography scheme used for text normalization and tokenization.
Args:
do_lower_case (:obj:`bool`, `optional`, defaults to :obj:`False`):
Whether or not to accept lowercase input and lowercase the output when decoding.
vocab_file (:obj:`str`, `optional`):
File containing the vocabulary.
word_delimiter_token (:obj:`str`, `optional`, defaults to :obj:`"|"`):
The token used for delimiting words; it needs to be in the vocabulary.
translation_table (:obj:`Dict[str, str]`, `optional`, defaults to :obj:`{}`):
Table to use with `str.translate()` when preprocessing text (e.g., "-" -> " ").
words_to_remove (:obj:`Set[str]`, `optional`, defaults to :obj:`set()`):
Words to remove when preprocessing text (e.g., "sil").
untransliterator (:obj:`Callable[[str], str]`, `optional`):
Function that untransliterates text back into native writing system.
"""
do_lower_case: bool = False
vocab_file: Optional[str] = None
word_delimiter_token: Optional[str] = "|"
translation_table: Optional[Dict[str, str]] = field(default_factory=dict)
words_to_remove: Optional[Set[str]] = field(default_factory=set)
untransliterator: Optional[Callable[[str], str]] = None
@classmethod
def from_name(cls, name: str):
if name == "librispeech":
return cls()
if name == "timit":
return cls(
do_lower_case=True,
# break compounds like "quarter-century-old" and replace pauses "--"
translation_table=str.maketrans({"-": " "}),
)
if name == "buckwalter":
translation_table = {
"-": " ", # sometimes used to represent pauses
"^": "v", # fixing "tha" in arabic_speech_corpus dataset
}
return cls(
vocab_file=pathlib.Path(__file__).parent.joinpath("vocab/buckwalter.json"),
word_delimiter_token="/", # "|" is Arabic letter alef with madda above
translation_table=str.maketrans(translation_table),
words_to_remove={"sil"}, # fixing "sil" in arabic_speech_corpus dataset
untransliterator=arabic.buckwalter.untransliterate,
)
raise ValueError(f"Unsupported orthography: '{name}'.")
def preprocess_for_training(self, text: str) -> str:
# TODO(elgeish) return a pipeline (e.g., from jiwer) instead? Or rely on branch predictor as is
if len(self.translation_table) > 0:
text = text.translate(self.translation_table)
if len(self.words_to_remove) == 0:
text = " ".join(text.split()) # clean up whitespaces
else:
text = " ".join(w for w in text.split() if w not in self.words_to_remove) # and clean up whilespaces
return text
def create_processor(self, model_args: ModelArguments) -> Wav2Vec2Processor:
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(
model_args.model_name_or_path, cache_dir=model_args.cache_dir
)
if self.vocab_file:
tokenizer = Wav2Vec2CTCTokenizer(
self.vocab_file,
cache_dir=model_args.cache_dir,
do_lower_case=self.do_lower_case,
word_delimiter_token=self.word_delimiter_token,
)
else:
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
do_lower_case=self.do_lower_case,
word_delimiter_token=self.word_delimiter_token,
)
return Wav2Vec2Processor(feature_extractor, tokenizer)
@dataclass
class DataCollatorCTCWithPadding:
"""
Data collator that will dynamically pad the inputs received.
Args:
processor (:class:`~transformers.Wav2Vec2Processor`)
The processor used for proccessing the data.
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
among:
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
sequence if provided).
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
maximum acceptable input length for the model if that argument is not provided.
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
different lengths).
max_length (:obj:`int`, `optional`):
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
max_length_labels (:obj:`int`, `optional`):
Maximum length of the ``labels`` returned list and optionally padding length (see above).
pad_to_multiple_of (:obj:`int`, `optional`):
If set will pad the sequence to a multiple of the provided value.
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
7.5 (Volta).
"""
processor: Wav2Vec2Processor
padding: Union[bool, str] = True
max_length: Optional[int] = None
max_length_labels: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
pad_to_multiple_of_labels: Optional[int] = None
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
# split inputs and labels since they have to be of different lengths and need
# different padding methods
input_features = [{"input_values": feature["input_values"]} for feature in features]
label_features = [{"input_ids": feature["labels"]} for feature in features]
batch = self.processor.pad(
input_features,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors="pt",
)
labels_batch = self.processor.pad(
labels=label_features,
padding=self.padding,
max_length=self.max_length_labels,
pad_to_multiple_of=self.pad_to_multiple_of_labels,
return_tensors="pt",
)
# replace padding with -100 to ignore loss correctly
labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
batch["labels"] = labels
return batch
class CTCTrainer(Trainer):
def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
"""
Perform a training step on a batch of inputs.
Subclass and override to inject custom behavior.
Args:
model (:obj:`nn.Module`):
The model to train.
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
The inputs and targets of the model.
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
argument :obj:`labels`. Check your model's documentation for all accepted arguments.
Return:
:obj:`torch.Tensor`: The tensor with training loss on this batch.
"""
model.train()
inputs = self._prepare_inputs(inputs)
if self.use_amp:
with autocast():
loss = self.compute_loss(model, inputs)
else:
loss = self.compute_loss(model, inputs)
if self.args.n_gpu > 1:
if model.module.config.ctc_loss_reduction == "mean":
loss = loss.mean()
elif model.module.config.ctc_loss_reduction == "sum":
loss = loss.sum() / (inputs["labels"] >= 0).sum()
else:
raise ValueError(f"{model.config.ctc_loss_reduction} is not valid. Choose one of ['mean', 'sum']")
if self.args.gradient_accumulation_steps > 1:
loss = loss / self.args.gradient_accumulation_steps
if self.use_amp:
self.scaler.scale(loss).backward()
elif self.use_apex:
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
scaled_loss.backward()
elif self.deepspeed:
self.deepspeed.backward(loss)
else:
loss.backward()
return loss.detach()
def main():
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
configure_logger(model_args, training_args)
orthography = Orthography.from_name(data_args.orthography.lower())
processor = orthography.create_processor(model_args)
model = Wav2Vec2ForCTC.from_pretrained(
model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
gradient_checkpointing=training_args.gradient_checkpointing,
vocab_size=len(processor.tokenizer),
)
train_dataset = datasets.load_dataset(
data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name
)
val_dataset = datasets.load_dataset(
data_args.dataset_name, data_args.dataset_config_name, split=data_args.validation_split_name
)
wer_metric = datasets.load_metric("wer")
target_sr = processor.feature_extractor.sampling_rate if data_args.target_feature_extractor_sampling_rate else None
vocabulary_chars_str = "".join(t for t in processor.tokenizer.get_vocab().keys() if len(t) == 1)
vocabulary_text_cleaner = re.compile( # remove characters not in vocabulary
rf"[^\s{re.escape(vocabulary_chars_str)}]", # allow space in addition to chars in vocabulary
flags=re.IGNORECASE if processor.tokenizer.do_lower_case else 0,
)
text_updates = []
def prepare_example(example): # TODO(elgeish) make use of multiprocessing?
example["speech"], example["sampling_rate"] = librosa.load(example[data_args.speech_file_column], sr=target_sr)
if data_args.max_duration_in_seconds is not None:
example["duration_in_seconds"] = len(example["speech"]) / example["sampling_rate"]
# Normalize and clean up text; order matters!
updated_text = orthography.preprocess_for_training(example[data_args.target_text_column])
updated_text = vocabulary_text_cleaner.sub("", updated_text)
if updated_text != example[data_args.target_text_column]:
text_updates.append((example[data_args.target_text_column], updated_text))
example[data_args.target_text_column] = updated_text
return example
train_dataset = train_dataset.map(prepare_example, remove_columns=[data_args.speech_file_column])
val_dataset = val_dataset.map(prepare_example, remove_columns=[data_args.speech_file_column])
if data_args.max_duration_in_seconds is not None:
def filter_by_max_duration(example):
return example["duration_in_seconds"] <= data_args.max_duration_in_seconds
old_train_size = len(train_dataset)
old_val_size = len(val_dataset)
train_dataset = train_dataset.filter(filter_by_max_duration, remove_columns=["duration_in_seconds"])
val_dataset = val_dataset.filter(filter_by_max_duration, remove_columns=["duration_in_seconds"])
if len(train_dataset) > old_train_size:
logger.warning(
f"Filtered out {len(train_dataset) - old_train_size} train example(s) longer than"
f" {data_args.max_duration_in_seconds} second(s)."
)
if len(val_dataset) > old_val_size:
logger.warning(
f"Filtered out {len(val_dataset) - old_val_size} validation example(s) longer than"
f" {data_args.max_duration_in_seconds} second(s)."
)
logger.info(f"Split sizes: {len(train_dataset)} train and {len(val_dataset)} validation.")
logger.warning(f"Updated {len(text_updates)} transcript(s) using '{data_args.orthography}' orthography rules.")
if logger.isEnabledFor(logging.DEBUG):
for original_text, updated_text in text_updates:
logger.debug(f'Updated text: "{original_text}" -> "{updated_text}"')
text_updates = None
def prepare_dataset(batch):
# check that all files have the correct sampling rate
assert (
len(set(batch["sampling_rate"])) == 1
), f"Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}."
processed_batch = processor(
audio=batch["speech"], text=batch[data_args.target_text_column], sampling_rate=batch["sampling_rate"][0]
)
batch.update(processed_batch)
return batch
train_dataset = train_dataset.map(
prepare_dataset,
batch_size=training_args.per_device_train_batch_size,
batched=True,
num_proc=data_args.preprocessing_num_workers,
)
val_dataset = val_dataset.map(
prepare_dataset,
batch_size=training_args.per_device_train_batch_size,
batched=True,
num_proc=data_args.preprocessing_num_workers,
)
data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)
def compute_metrics(pred):
pred_logits = pred.predictions
pred_ids = np.argmax(pred_logits, axis=-1)
pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id
pred_str = processor.batch_decode(pred_ids)
# we do not want to group tokens when computing the metrics
label_str = processor.batch_decode(pred.label_ids, group_tokens=False)
if logger.isEnabledFor(logging.DEBUG):
for reference, predicted in zip(label_str, pred_str):
logger.debug(f'reference: "{reference}"')
logger.debug(f'predicted: "{predicted}"')
if orthography.untransliterator is not None:
logger.debug(f'reference (untransliterated): "{orthography.untransliterator(reference)}"')
logger.debug(f'predicted (untransliterated): "{orthography.untransliterator(predicted)}"')
wer = wer_metric.compute(predictions=pred_str, references=label_str)
return {"wer": wer}
if model_args.freeze_feature_extractor:
model.freeze_feature_extractor()
trainer = CTCTrainer(
model=model,
data_collator=data_collator,
args=training_args,
compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=processor.feature_extractor,
)
trainer.train()
if __name__ == "__main__":
main()
|
transformers/examples/research_projects/wav2vec2/run_asr.py/0
|
{
"file_path": "transformers/examples/research_projects/wav2vec2/run_asr.py",
"repo_id": "transformers",
"token_count": 8256
}
| 82 |
<!---
Copyright 2023 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
# Image classification examples
This directory contains 2 scripts that showcase how to fine-tune any model supported by the [`TFAutoModelForImageClassification` API](https://huggingface.co/docs/transformers/main/en/model_doc/auto#transformers.TFAutoModelForImageClassification) (such as [ViT](https://huggingface.co/docs/transformers/main/en/model_doc/vit), [ConvNeXT](https://huggingface.co/docs/transformers/main/en/model_doc/convnext), [ResNet](https://huggingface.co/docs/transformers/main/en/model_doc/resnet), [Swin Transformer](https://huggingface.co/docs/transformers/main/en/model_doc/swin)...) using TensorFlow. They can be used to fine-tune models on both [datasets from the hub](#using-datasets-from-hub) as well as on [your own custom data](#using-your-own-data).
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/image_classification_inference_widget.png" height="400" />
Try out the inference widget here: https://huggingface.co/google/vit-base-patch16-224
## TensorFlow
Based on the script [`run_image_classification.py`](https://github.com/huggingface/transformers/blob/main/examples/tensorflow/image-classification/run_image_classification.py).
### Using datasets from Hub
Here we show how to fine-tune a Vision Transformer (`ViT`) on the [beans](https://huggingface.co/datasets/beans) dataset, to classify the disease type of bean leaves. The following will train a model and push it to the `amyeroberts/vit-base-beans` repo.
```bash
python run_image_classification.py \
--dataset_name beans \
--output_dir ./beans_outputs/ \
--remove_unused_columns False \
--do_train \
--do_eval \
--push_to_hub \
--hub_model_id amyeroberts/vit-base-beans \
--learning_rate 2e-5 \
--num_train_epochs 5 \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 8 \
--logging_strategy steps \
--logging_steps 10 \
--eval_strategy epoch \
--save_strategy epoch \
--load_best_model_at_end True \
--save_total_limit 3 \
--seed 1337
```
👀 See the results here: [amyeroberts/vit-base-beans](https://huggingface.co/amyeroberts/vit-base-beans).
Note that you can replace the model and dataset by simply setting the `model_name_or_path` and `dataset_name` arguments respectively, with any model or dataset from the [hub](https://huggingface.co/). For an overview of all possible arguments, we refer to the [docs](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments) of the `TrainingArguments`, which can be passed as flags.
> If your model classification head dimensions do not fit the number of labels in the dataset, you can specify `--ignore_mismatched_sizes` to adapt it.
### Using your own data
To use your own dataset, there are 2 ways:
- you can either provide your own folders as `--train_dir` and/or `--validation_dir` arguments
- you can upload your dataset to the hub (possibly as a private repo, if you prefer so), and simply pass the `--dataset_name` argument.
Below, we explain both in more detail.
#### Provide them as folders
If you provide your own folders with images, the script expects the following directory structure:
```bash
root/dog/xxx.png
root/dog/xxy.png
root/dog/[...]/xxz.png
root/cat/123.png
root/cat/nsdf3.png
root/cat/[...]/asd932_.png
```
In other words, you need to organize your images in subfolders, based on their class. You can then run the script like this:
```bash
python run_image_classification.py \
--train_dir <path-to-train-root> \
--output_dir ./outputs/ \
--remove_unused_columns False \
--do_train \
--do_eval
```
Internally, the script will use the [`ImageFolder`](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) feature which will automatically turn the folders into 🤗 Dataset objects.
##### 💡 The above will split the train dir into training and evaluation sets
- To control the split amount, use the `--train_val_split` flag.
- To provide your own validation split in its own directory, you can pass the `--validation_dir <path-to-val-root>` flag.
#### Upload your data to the hub, as a (possibly private) repo
To upload your image dataset to the hub you can use the [`ImageFolder`](https://huggingface.co/docs/datasets/v2.0.0/en/image_process#imagefolder) feature available in 🤗 Datasets. Simply do the following:
```python
from datasets import load_dataset
# example 1: local folder
dataset = load_dataset("imagefolder", data_dir="path_to_your_folder")
# example 2: local files (supported formats are tar, gzip, zip, xz, rar, zstd)
dataset = load_dataset("imagefolder", data_files="path_to_zip_file")
# example 3: remote files (supported formats are tar, gzip, zip, xz, rar, zstd)
dataset = load_dataset("imagefolder", data_files="https://download.microsoft.com/download/3/E/1/3E1C3F21-ECDB-4869-8368-6DEBA77B919F/kagglecatsanddogs_3367a.zip")
# example 4: providing several splits
dataset = load_dataset("imagefolder", data_files={"train": ["path/to/file1", "path/to/file2"], "test": ["path/to/file3", "path/to/file4"]})
```
`ImageFolder` will create a `label` column, and the label name is based on the directory name.
Next, push it to the hub!
```python
# assuming you have ran the huggingface-cli login command in a terminal
dataset.push_to_hub("name_of_your_dataset")
# if you want to push to a private repo, simply pass private=True:
dataset.push_to_hub("name_of_your_dataset", private=True)
```
and that's it! You can now train your model by simply setting the `--dataset_name` argument to the name of your dataset on the hub (as explained in [Using datasets from the 🤗 hub](#using-datasets-from-hub)).
More on this can also be found in [this blog post](https://huggingface.co/blog/image-search-datasets).
### Sharing your model on 🤗 Hub
0. If you haven't already, [sign up](https://huggingface.co/join) for a 🤗 account
1. Make sure you have `git-lfs` installed and git set up.
```bash
$ apt install git-lfs
$ git config --global user.email "you@example.com"
$ git config --global user.name "Your Name"
```
2. Log in with your HuggingFace account credentials using `huggingface-cli`:
```bash
$ huggingface-cli login
# ...follow the prompts
```
3. When running the script, pass the following arguments:
```bash
python run_image_classification.py \
--push_to_hub \
--push_to_hub_model_id <name-your-model> \
...
```
|
transformers/examples/tensorflow/image-classification/README.md/0
|
{
"file_path": "transformers/examples/tensorflow/image-classification/README.md",
"repo_id": "transformers",
"token_count": 2316
}
| 83 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for translation.
"""
# You can also adapt this script on your own sequence to sequence task. Pointers for this are left as comments.
import json
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import numpy as np
import tensorflow as tf
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoTokenizer,
DataCollatorForSeq2Seq,
HfArgumentParser,
KerasMetricCallback,
M2M100Tokenizer,
MBart50Tokenizer,
MBart50TokenizerFast,
MBartTokenizer,
MBartTokenizerFast,
PushToHubCallback,
TFAutoModelForSeq2SeqLM,
TFTrainingArguments,
create_optimizer,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# region Dependencies and constants
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.49.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/summarization/requirements.txt")
logger = logging.getLogger(__name__)
MULTILINGUAL_TOKENIZERS = [MBartTokenizer, MBartTokenizerFast, MBart50Tokenizer, MBart50TokenizerFast, M2M100Tokenizer]
# endregion
# region Arguments
@dataclass
class ModelArguments:
"""
Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
"""
model_name_or_path: str = field(
metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
)
config_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
)
tokenizer_name: Optional[str] = field(
default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
)
cache_dir: Optional[str] = field(
default=None,
metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"},
)
use_fast_tokenizer: bool = field(
default=True,
metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
)
model_revision: str = field(
default="main",
metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
)
token: str = field(
default=None,
metadata={
"help": (
"The token to use as HTTP bearer authorization for remote files. If not specified, will use the token "
"generated when running `huggingface-cli login` (stored in `~/.huggingface`)."
)
},
)
trust_remote_code: bool = field(
default=False,
metadata={
"help": (
"Whether to trust the execution of code from datasets/models defined on the Hub."
" This option should only be set to `True` for repositories you trust and in which you have read the"
" code, as it will execute code present on the Hub on your local machine."
)
},
)
@dataclass
class DataTrainingArguments:
"""
Arguments pertaining to what data we are going to input our model for training and eval.
"""
source_lang: str = field(default=None, metadata={"help": "Source language id for translation."})
target_lang: str = field(default=None, metadata={"help": "Target language id for translation."})
dataset_name: Optional[str] = field(
default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."}
)
dataset_config_name: Optional[str] = field(
default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
)
train_file: Optional[str] = field(
default=None, metadata={"help": "The input training data file (a jsonlines or csv file)."}
)
validation_file: Optional[str] = field(
default=None,
metadata={
"help": (
"An optional input evaluation data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
)
},
)
test_file: Optional[str] = field(
default=None,
metadata={
"help": "An optional input test data file to evaluate the metrics (rouge) on (a jsonlines or csv file)."
},
)
overwrite_cache: bool = field(
default=False, metadata={"help": "Overwrite the cached training and evaluation sets"}
)
preprocessing_num_workers: Optional[int] = field(
default=None,
metadata={"help": "The number of processes to use for the preprocessing."},
)
max_source_length: Optional[int] = field(
default=1024,
metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
max_target_length: Optional[int] = field(
default=128,
metadata={
"help": (
"The maximum total sequence length for target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
},
)
val_max_target_length: Optional[int] = field(
default=None,
metadata={
"help": (
"The maximum total sequence length for validation target text after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded. Will default to `max_target_length`. "
"This argument is also used to override the ``max_length`` param of ``model.generate``, which is used "
"during ``evaluate`` and ``predict``."
)
},
)
pad_to_max_length: bool = field(
default=False,
metadata={
"help": (
"Whether to pad all samples to model maximum sentence length. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch. More "
"efficient on GPU but very bad for TPU."
)
},
)
max_train_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
},
)
max_eval_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
},
)
max_predict_samples: Optional[int] = field(
default=None,
metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
},
)
num_beams: Optional[int] = field(
default=1,
metadata={
"help": (
"Number of beams to use for evaluation. This argument will be passed to ``model.generate``, "
"which is used during ``evaluate`` and ``predict``."
)
},
)
ignore_pad_token_for_loss: bool = field(
default=True,
metadata={
"help": "Whether to ignore the tokens corresponding to padded labels in the loss computation or not."
},
)
source_prefix: Optional[str] = field(
default=None, metadata={"help": "A prefix to add before every source text (useful for T5 models)."}
)
forced_bos_token: Optional[str] = field(
default=None,
metadata={
"help": (
"The token to force as the first generated token after the :obj:`decoder_start_token_id`.Useful for"
" multilingual models like :doc:`mBART <../model_doc/mbart>` where the first generated token needs to"
" be the target language token.(Usually it is the target language token)"
)
},
)
def __post_init__(self):
if self.dataset_name is None and self.train_file is None and self.validation_file is None:
raise ValueError("Need either a dataset name or a training/validation file.")
else:
if self.train_file is not None:
extension = self.train_file.split(".")[-1]
assert extension in ["csv", "json"], "`train_file` should be a csv or a json file."
if self.validation_file is not None:
extension = self.validation_file.split(".")[-1]
assert extension in ["csv", "json"], "`validation_file` should be a csv or a json file."
if self.val_max_target_length is None:
self.val_max_target_length = self.max_target_length
# endregion
def main():
# region Argument parsing
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments))
if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
else:
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_translation", model_args, data_args, framework="tensorflow")
# endregion
# region Logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
handlers=[logging.StreamHandler(sys.stdout)],
)
logger.setLevel(logging.INFO)
datasets.utils.logging.set_verbosity(logging.INFO)
transformers.utils.logging.set_verbosity(logging.INFO)
# Log on each process the small summary:
logger.info(f"Training/evaluation parameters {training_args}")
# endregion
# region Detecting last checkpoint
last_checkpoint = None
if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
last_checkpoint = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
raise ValueError(
f"Output directory ({training_args.output_dir}) already exists and is not empty. "
"Use --overwrite_output_dir to overcome."
)
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
)
# endregion
# Set seed before initializing model.
set_seed(training_args.seed)
# region Load datasets
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files this script will use the first column for the full texts and the second column for the
# summaries (unless you specify column names for this with the `text_column` and `summary_column` arguments).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
else:
data_files = {}
if data_args.train_file is not None:
data_files["train"] = data_args.train_file
extension = data_args.train_file.split(".")[-1]
if data_args.validation_file is not None:
data_files["validation"] = data_args.validation_file
extension = data_args.validation_file.split(".")[-1]
raw_datasets = load_dataset(
extension,
data_files=data_files,
cache_dir=model_args.cache_dir,
token=model_args.token,
)
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading
# endregion
# region Load model config and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
prefix = data_args.source_prefix if data_args.source_prefix is not None else ""
# endregion
# region Dataset preprocessing
# We need to tokenize inputs and targets.
if training_args.do_train:
column_names = raw_datasets["train"].column_names
elif training_args.do_eval:
column_names = raw_datasets["validation"].column_names
else:
logger.info("There is nothing to do. Please pass `do_train`, and/or `do_eval`.")
return
column_names = raw_datasets["train"].column_names
# For translation we set the codes of our source and target languages (only useful for mBART, the others will
# ignore those attributes).
if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
assert data_args.target_lang is not None and data_args.source_lang is not None, (
f"{tokenizer.__class__.__name__} is a multilingual tokenizer which requires --source_lang and "
"--target_lang arguments."
)
tokenizer.src_lang = data_args.source_lang
tokenizer.tgt_lang = data_args.target_lang
forced_bos_token_id = (
tokenizer.lang_code_to_id[data_args.forced_bos_token] if data_args.forced_bos_token is not None else None
)
# Get the language codes for input/target.
source_lang = data_args.source_lang.split("_")[0]
target_lang = data_args.target_lang.split("_")[0]
padding = "max_length" if data_args.pad_to_max_length else False
# Temporarily set max_target_length for training.
max_target_length = data_args.max_target_length
padding = "max_length" if data_args.pad_to_max_length else False
def preprocess_function(examples):
inputs = [ex[source_lang] for ex in examples["translation"]]
targets = [ex[target_lang] for ex in examples["translation"]]
inputs = [prefix + inp for inp in inputs]
model_inputs = tokenizer(inputs, max_length=data_args.max_source_length, padding=padding, truncation=True)
# Tokenize targets with the `text_target` keyword argument
labels = tokenizer(text_target=targets, max_length=max_target_length, padding=padding, truncation=True)
# If we are padding here, replace all tokenizer.pad_token_id in the labels by -100 when we want to ignore
# padding in the loss.
if padding == "max_length" and data_args.ignore_pad_token_for_loss:
labels["input_ids"] = [
[(l if l != tokenizer.pad_token_id else -100) for l in label] for label in labels["input_ids"]
]
model_inputs["labels"] = labels["input_ids"]
return model_inputs
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on train dataset",
)
else:
train_dataset = None
if training_args.do_eval:
max_target_length = data_args.val_max_target_length
if "validation" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=data_args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on validation dataset",
)
else:
eval_dataset = None
# endregion
with training_args.strategy.scope():
# region Prepare model
model = TFAutoModelForSeq2SeqLM.from_pretrained(
model_args.model_name_or_path,
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
token=model_args.token,
trust_remote_code=model_args.trust_remote_code,
)
# We resize the embeddings only when necessary to avoid index errors. If you are creating a model from scratch
# on a small vocab and want a smaller embedding size, remove this test.
embeddings = model.get_input_embeddings()
# Matt: This is a temporary workaround as we transition our models to exclusively using Keras embeddings.
# As soon as the transition is complete, all embeddings should be keras.Embeddings layers, and
# the weights will always be in embeddings.embeddings.
if hasattr(embeddings, "embeddings"):
embedding_size = embeddings.embeddings.shape[0]
else:
embedding_size = embeddings.weight.shape[0]
if len(tokenizer) > embedding_size:
model.resize_token_embeddings(len(tokenizer))
if isinstance(tokenizer, tuple(MULTILINGUAL_TOKENIZERS)):
model.config.forced_bos_token_id = forced_bos_token_id
# endregion
# region Set decoder_start_token_id
if model.config.decoder_start_token_id is None and isinstance(tokenizer, (MBartTokenizer, MBartTokenizerFast)):
assert (
data_args.target_lang is not None and data_args.source_lang is not None
), "mBart requires --target_lang and --source_lang"
if isinstance(tokenizer, MBartTokenizer):
model.config.decoder_start_token_id = tokenizer.lang_code_to_id[data_args.target_lang]
else:
model.config.decoder_start_token_id = tokenizer.convert_tokens_to_ids(data_args.target_lang)
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined")
# endregion
# region Prepare TF Dataset objects
label_pad_token_id = -100 if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=label_pad_token_id,
pad_to_multiple_of=64, # Reduce the number of unique shapes for XLA, especially for generation
return_tensors="np",
)
num_replicas = training_args.strategy.num_replicas_in_sync
total_train_batch_size = training_args.per_device_train_batch_size * num_replicas
total_eval_batch_size = training_args.per_device_eval_batch_size * num_replicas
dataset_options = tf.data.Options()
dataset_options.experimental_distribute.auto_shard_policy = tf.data.experimental.AutoShardPolicy.OFF
# model.prepare_tf_dataset() wraps a Hugging Face dataset in a tf.data.Dataset which is ready to use in
# training. This is the recommended way to use a Hugging Face dataset when training with Keras. You can also
# use the lower-level dataset.to_tf_dataset() method, but you will have to specify things like column names
# yourself if you use this method, whereas they are automatically inferred from the model input names when
# using model.prepare_tf_dataset()
# For more info see the docs:
# https://huggingface.co/docs/transformers/main/en/main_classes/model#transformers.TFPreTrainedModel.prepare_tf_dataset
# https://huggingface.co/docs/datasets/main/en/package_reference/main_classes#datasets.Dataset.to_tf_dataset
tf_train_dataset = model.prepare_tf_dataset(
train_dataset,
collate_fn=data_collator,
batch_size=total_train_batch_size,
shuffle=True,
).with_options(dataset_options)
tf_eval_dataset = model.prepare_tf_dataset(
eval_dataset, collate_fn=data_collator, batch_size=total_eval_batch_size, shuffle=False
).with_options(dataset_options)
# endregion
# region Optimizer and LR scheduling
num_train_steps = int(len(tf_train_dataset) * training_args.num_train_epochs)
if training_args.warmup_steps > 0:
num_warmup_steps = training_args.warmup_steps
elif training_args.warmup_ratio > 0:
num_warmup_steps = int(num_train_steps * training_args.warmup_ratio)
else:
num_warmup_steps = 0
if training_args.do_train:
optimizer, lr_schedule = create_optimizer(
init_lr=training_args.learning_rate,
num_train_steps=num_train_steps,
num_warmup_steps=num_warmup_steps,
adam_beta1=training_args.adam_beta1,
adam_beta2=training_args.adam_beta2,
adam_epsilon=training_args.adam_epsilon,
weight_decay_rate=training_args.weight_decay,
adam_global_clipnorm=training_args.max_grad_norm,
)
else:
optimizer = "sgd" # Just write anything because we won't be using it
# endregion
# region Metric and postprocessing
if training_args.do_eval:
metric = evaluate.load("sacrebleu", cache_dir=model_args.cache_dir)
if data_args.val_max_target_length is None:
data_args.val_max_target_length = data_args.max_target_length
gen_kwargs = {
"max_length": data_args.val_max_target_length,
"num_beams": data_args.num_beams,
"no_repeat_ngram_size": 0, # Not supported under XLA right now, and some models set it by default
}
def postprocess_text(preds, labels):
preds = [pred.strip() for pred in preds]
labels = [[label.strip()] for label in labels]
return preds, labels
def compute_metrics(preds):
predictions, labels = preds
if isinstance(predictions, tuple):
predictions = predictions[0]
decoded_preds = tokenizer.batch_decode(predictions, skip_special_tokens=True)
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
metrics = metric.compute(predictions=decoded_preds, references=decoded_labels)
return {"bleu": metrics["score"]}
# The KerasMetricCallback allows metrics that are too complex to write as standard Keras metrics
# to be computed each epoch. Any Python code can be included in the metric_fn. This is especially
# useful for metrics like BLEU and ROUGE that perform string comparisons on decoded model outputs.
# For more information, see the docs at
# https://huggingface.co/docs/transformers/main_classes/keras_callbacks#transformers.KerasMetricCallback
metric_callback = KerasMetricCallback(
metric_fn=compute_metrics,
eval_dataset=tf_eval_dataset,
predict_with_generate=True,
use_xla_generation=True,
generate_kwargs=gen_kwargs,
)
callbacks = [metric_callback]
else:
callbacks = []
# endregion
# region Preparing push_to_hub and model card
push_to_hub_model_id = training_args.push_to_hub_model_id
model_name = model_args.model_name_or_path.split("/")[-1]
if not push_to_hub_model_id:
push_to_hub_model_id = f"{model_name}-finetuned-{data_args.source_lang}-{data_args.target_lang}"
model_card_kwargs = {"finetuned_from": model_args.model_name_or_path, "tasks": "translation"}
if data_args.dataset_name is not None:
model_card_kwargs["dataset_tags"] = data_args.dataset_name
if data_args.dataset_config_name is not None:
model_card_kwargs["dataset_args"] = data_args.dataset_config_name
model_card_kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}"
else:
model_card_kwargs["dataset"] = data_args.dataset_name
languages = [l for l in [data_args.source_lang, data_args.target_lang] if l is not None]
if len(languages) > 0:
model_card_kwargs["language"] = languages
if training_args.push_to_hub:
# Because this training can be quite long, we save once per epoch.
callbacks.append(
PushToHubCallback(
output_dir=training_args.output_dir,
hub_model_id=push_to_hub_model_id,
hub_token=training_args.push_to_hub_token,
tokenizer=tokenizer,
**model_card_kwargs,
)
)
# endregion
# region Training
eval_metrics = None
# Transformers models compute the right loss for their task by default when labels are passed, and will
# use this for training unless you specify your own loss function in compile().
model.compile(optimizer=optimizer, jit_compile=training_args.xla)
if training_args.do_train:
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {training_args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {training_args.per_device_train_batch_size}")
logger.info(f" Total train batch size = {total_train_batch_size}")
logger.info(f" Total optimization steps = {num_train_steps}")
if training_args.xla and not data_args.pad_to_max_length:
logger.warning(
"XLA training may be slow at first when --pad_to_max_length is not set "
"until all possible shapes have been compiled."
)
history = model.fit(tf_train_dataset, epochs=int(training_args.num_train_epochs), callbacks=callbacks)
eval_metrics = {key: val[-1] for key, val in history.history.items()}
# endregion
# region Validation
if training_args.do_eval and not training_args.do_train:
# Compiling generation with XLA yields enormous speedups, see https://huggingface.co/blog/tf-xla-generate
@tf.function(jit_compile=True)
def generate(**kwargs):
return model.generate(**kwargs)
if training_args.do_eval:
logger.info("Evaluation...")
for batch, labels in tf_eval_dataset:
batch.update(gen_kwargs)
generated_tokens = generate(**batch)
if isinstance(generated_tokens, tuple):
generated_tokens = generated_tokens[0]
decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
labels = np.where(labels != -100, labels, tokenizer.pad_token_id)
decoded_labels = tokenizer.batch_decode(labels, skip_special_tokens=True)
decoded_preds, decoded_labels = postprocess_text(decoded_preds, decoded_labels)
metric.add_batch(predictions=decoded_preds, references=decoded_labels)
eval_metrics = metric.compute()
logger.info({"bleu": eval_metrics["score"]})
# endregion
if training_args.output_dir is not None and eval_metrics is not None:
output_eval_file = os.path.join(training_args.output_dir, "all_results.json")
with open(output_eval_file, "w") as writer:
writer.write(json.dumps(eval_metrics))
if training_args.output_dir is not None and not training_args.push_to_hub:
# If we're not pushing to hub, at least save a local copy when we're done
model.save_pretrained(training_args.output_dir)
if __name__ == "__main__":
main()
|
transformers/examples/tensorflow/translation/run_translation.py/0
|
{
"file_path": "transformers/examples/tensorflow/translation/run_translation.py",
"repo_id": "transformers",
"token_count": 13321
}
| 84 |
## 🔥 Model cards now live inside each huggingface.co model repo 🔥
For consistency, ease of use and scalability, `README.md` model cards now live directly inside each model repo on the HuggingFace model hub.
### How to update a model card
You can directly update a model card inside any model repo you have **write access** to, i.e.:
- a model under your username namespace
- a model under any organization you are a part of.
You can either:
- update it, commit and push using your usual git workflow (command line, GUI, etc.)
- or edit it directly from the website's UI.
**What if you want to create or update a model card for a model you don't have write access to?**
In that case, you can open a [Hub pull request](https://huggingface.co/docs/hub/repositories-pull-requests-discussions)! Check out the [announcement](https://huggingface.co/blog/community-update) of this feature for more details 🤗.
### What happened to the model cards here?
We migrated every model card from the repo to its corresponding huggingface.co model repo. Individual commits were preserved, and they link back to the original commit on GitHub.
|
transformers/model_cards/README.md/0
|
{
"file_path": "transformers/model_cards/README.md",
"repo_id": "transformers",
"token_count": 296
}
| 85 |
#!/usr/bin/env python
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Usage:
# ./gen-card-allenai-wmt19.py
import os
from pathlib import Path
def write_model_card(model_card_dir, src_lang, tgt_lang, model_name):
texts = {
"en": "Machine learning is great, isn't it?",
"ru": "Машинное обучение - это здорово, не так ли?",
"de": "Maschinelles Lernen ist großartig, nicht wahr?",
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
scores = {
"wmt19-de-en-6-6-base": [0, 38.37],
"wmt19-de-en-6-6-big": [0, 39.90],
}
pair = f"{src_lang}-{tgt_lang}"
readme = f"""
---
language:
- {src_lang}
- {tgt_lang}
thumbnail:
tags:
- translation
- wmt19
- allenai
license: apache-2.0
datasets:
- wmt19
metrics:
- bleu
---
# FSMT
## Model description
This is a ported version of fairseq-based [wmt19 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}.
For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369).
2 models are available:
* [wmt19-de-en-6-6-big](https://huggingface.co/allenai/wmt19-de-en-6-6-big)
* [wmt19-de-en-6-6-base](https://huggingface.co/allenai/wmt19-de-en-6-6-base)
## Intended uses & limitations
#### How to use
```python
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
mname = "allenai/{model_name}"
tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)
input = "{texts[src_lang]}"
input_ids = tokenizer.encode(input, return_tensors="pt")
outputs = model.generate(input_ids)
decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(decoded) # {texts[tgt_lang]}
```
#### Limitations and bias
## Training data
Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369).
## Eval results
Here are the BLEU scores:
model | transformers
-------|---------
{model_name} | {scores[model_name][1]}
The score was calculated using this code:
```bash
git clone https://github.com/huggingface/transformers
cd transformers
export PAIR={pair}
export DATA_DIR=data/$PAIR
export SAVE_DIR=data/$PAIR
export BS=8
export NUM_BEAMS=5
mkdir -p $DATA_DIR
sacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source
sacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target
echo $PAIR
PYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS
```
## Data Sources
- [training, etc.](http://www.statmt.org/wmt19/)
- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)
### BibTeX entry and citation info
```
@misc{{kasai2020deep,
title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}},
author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}},
year={{2020}},
eprint={{2006.10369}},
archivePrefix={{arXiv}},
primaryClass={{cs.CL}}
}}
```
"""
model_card_dir.mkdir(parents=True, exist_ok=True)
path = os.path.join(model_card_dir, "README.md")
print(f"Generating {path}")
with open(path, "w", encoding="utf-8") as f:
f.write(readme)
# make sure we are under the root of the project
repo_dir = Path(__file__).resolve().parent.parent.parent
model_cards_dir = repo_dir / "model_cards"
for model_name in ["wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big"]:
model_card_dir = model_cards_dir / "allenai" / model_name
write_model_card(model_card_dir, src_lang="de", tgt_lang="en", model_name=model_name)
|
transformers/scripts/fsmt/gen-card-allenai-wmt19.py/0
|
{
"file_path": "transformers/scripts/fsmt/gen-card-allenai-wmt19.py",
"repo_id": "transformers",
"token_count": 1729
}
| 86 |
#!/usr/bin/env python
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
import numpy as np
import torch
from ..models.auto import AutoProcessor
from ..models.vision_encoder_decoder import VisionEncoderDecoderModel
from ..utils import is_vision_available
from .tools import PipelineTool
if is_vision_available():
from PIL import Image
class DocumentQuestionAnsweringTool(PipelineTool):
default_checkpoint = "naver-clova-ix/donut-base-finetuned-docvqa"
description = "This is a tool that answers a question about an document (pdf). It returns a string that contains the answer to the question."
name = "document_qa"
pre_processor_class = AutoProcessor
model_class = VisionEncoderDecoderModel
inputs = {
"document": {
"type": "image",
"description": "The image containing the information. Can be a PIL Image or a string path to the image.",
},
"question": {"type": "string", "description": "The question in English"},
}
output_type = "string"
def __init__(self, *args, **kwargs):
if not is_vision_available():
raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool.")
super().__init__(*args, **kwargs)
def encode(self, document: "Image", question: str):
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
prompt = task_prompt.replace("{user_input}", question)
decoder_input_ids = self.pre_processor.tokenizer(
prompt, add_special_tokens=False, return_tensors="pt"
).input_ids
if isinstance(document, str):
img = Image.open(document).convert("RGB")
img_array = np.array(img).transpose(2, 0, 1)
document = torch.from_numpy(img_array)
pixel_values = self.pre_processor(document, return_tensors="pt").pixel_values
return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values}
def forward(self, inputs):
return self.model.generate(
inputs["pixel_values"].to(self.device),
decoder_input_ids=inputs["decoder_input_ids"].to(self.device),
max_length=self.model.decoder.config.max_position_embeddings,
early_stopping=True,
pad_token_id=self.pre_processor.tokenizer.pad_token_id,
eos_token_id=self.pre_processor.tokenizer.eos_token_id,
use_cache=True,
num_beams=1,
bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]],
return_dict_in_generate=True,
).sequences
def decode(self, outputs):
sequence = self.pre_processor.batch_decode(outputs)[0]
sequence = sequence.replace(self.pre_processor.tokenizer.eos_token, "")
sequence = sequence.replace(self.pre_processor.tokenizer.pad_token, "")
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
sequence = self.pre_processor.token2json(sequence)
return sequence["answer"]
|
transformers/src/transformers/agents/document_question_answering.py/0
|
{
"file_path": "transformers/src/transformers/agents/document_question_answering.py",
"repo_id": "transformers",
"token_count": 1374
}
| 87 |
# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import json
import os
import platform
import re
import time
from argparse import ArgumentParser, Namespace
from dataclasses import dataclass, field
from threading import Thread
from typing import Optional
import torch
import yaml
from rich.console import Console
from rich.live import Live
from rich.markdown import Markdown
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
from . import BaseTransformersCLICommand
if platform.system() != "Windows":
import pwd
HELP_STRING = """\
**TRANSFORMERS CHAT INTERFACE**
The chat interface is a simple tool to try out a chat model.
Besides talking to the model there are several commands:
- **help**: show this help message
- **clear**: clears the current conversation and start a new one
- **example {NAME}**: load example named `{NAME}` from the config and use it as the user input
- **set {SETTING_NAME}={SETTING_VALUE};**: change the system prompt or generation settings (multiple settings are separated by a ';').
- **reset**: same as clear but also resets the generation configs to defaults if they have been changed by **set**
- **save {SAVE_NAME} (optional)**: save the current chat and settings to file by default to `./chat_history/{MODEL_NAME}/chat_{DATETIME}.yaml` or `{SAVE_NAME}` if provided
- **exit**: closes the interface
"""
SUPPORTED_GENERATION_KWARGS = [
"max_new_tokens",
"do_sample",
"num_beams",
"temperature",
"top_p",
"top_k",
"repetition_penalty",
]
SETTING_RE = r"^set\s+[A-Za-z\s_]+=[A-Za-z\d\s.!\"#$%&'()*+,-/:<=>?@\[\]^_`{|}~]+(?:;\s*[A-Za-z\s_]+=[A-Za-z\d\s.!\"#$%&'()*+,-/:<=>?@\[\]^_`{|}~]+)*$"
DEFAULT_EXAMPLES = {
"llama": {"text": "There is a Llama in my lawn, how can I get rid of it?"},
"code": {
"text": "Write a Python function that integrates any Python function f(x) numerically over an arbitrary interval [x_start, x_end]."
},
"helicopter": {"text": "How many helicopters can a human eat in one sitting?"},
"numbers": {"text": "Count to 10 but skip every number ending with an 'e'"},
"birds": {"text": "Why aren't birds real?"},
"socks": {"text": "Why is it important to eat socks after meditating?"},
}
def get_username():
if platform.system() == "Windows":
return os.getlogin()
else:
return pwd.getpwuid(os.getuid()).pw_name
def create_default_filename(model_name):
time_str = time.strftime("%Y-%m-%d_%H-%M-%S")
return f"{model_name}/chat_{time_str}.json"
def save_chat(chat, args, filename):
output_dict = {}
output_dict["settings"] = vars(args)
output_dict["chat_history"] = chat
folder = args.save_folder
if filename is None:
filename = create_default_filename(args.model_name_or_path)
filename = os.path.join(folder, filename)
os.makedirs(os.path.dirname(filename), exist_ok=True)
with open(filename, "w") as f:
json.dump(output_dict, f, indent=4)
return os.path.abspath(filename)
def clear_chat_history(system_prompt):
if system_prompt is None:
chat = []
else:
chat = [{"role": "system", "content": system_prompt}]
return chat
def parse_settings(user_input, current_args, interface):
settings = user_input[4:].strip().split(";")
settings = [(setting.split("=")[0], setting[len(setting.split("=")[0]) + 1 :]) for setting in settings]
settings = dict(settings)
error = False
for name in settings:
if hasattr(current_args, name):
try:
if isinstance(getattr(current_args, name), bool):
if settings[name] == "True":
settings[name] = True
elif settings[name] == "False":
settings[name] = False
else:
raise ValueError
else:
settings[name] = type(getattr(current_args, name))(settings[name])
except ValueError:
interface.print_red(
f"Cannot cast setting {name} (={settings[name]}) to {type(getattr(current_args, name))}."
)
else:
interface.print_red(f"There is no '{name}' setting.")
if error:
interface.print_red("There was an issue parsing the settings. No settings have been changed.")
return current_args, False
else:
for name in settings:
setattr(current_args, name, settings[name])
interface.print_green(f"Set {name} to {settings[name]}.")
time.sleep(1.5) # so the user has time to read the changes
return current_args, True
def get_quantization_config(model_args) -> Optional[BitsAndBytesConfig]:
if model_args.load_in_4bit:
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=model_args.torch_dtype, # For consistency with model weights, we use the same value as `torch_dtype`
bnb_4bit_quant_type=model_args.bnb_4bit_quant_type,
bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant,
bnb_4bit_quant_storage=model_args.torch_dtype,
)
elif model_args.load_in_8bit:
quantization_config = BitsAndBytesConfig(
load_in_8bit=True,
)
else:
quantization_config = None
return quantization_config
def load_model_and_tokenizer(args):
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
revision=args.model_revision,
trust_remote_code=args.trust_remote_code,
)
torch_dtype = args.torch_dtype if args.torch_dtype in ["auto", None] else getattr(torch, args.torch_dtype)
quantization_config = get_quantization_config(args)
model_kwargs = {
"revision": args.model_revision,
"attn_implementation": args.attn_implementation,
"torch_dtype": torch_dtype,
"device_map": "auto",
"quantization_config": quantization_config,
}
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path, trust_remote_code=args.trust_remote_code, **model_kwargs
)
if getattr(model, "hf_device_map", None) is None:
model = model.to(args.device)
return model, tokenizer
def parse_eos_tokens(tokenizer, eos_tokens, eos_token_ids):
if tokenizer.pad_token_id is None:
pad_token_id = tokenizer.eos_token_id
else:
pad_token_id = tokenizer.pad_token_id
all_eos_token_ids = []
if eos_tokens is not None:
all_eos_token_ids.extend(tokenizer.convert_tokens_to_ids(eos_tokens.split(",")))
if eos_token_ids is not None:
all_eos_token_ids.extend([int(token_id) for token_id in eos_token_ids.split(",")])
if len(all_eos_token_ids) == 0:
all_eos_token_ids.append(tokenizer.eos_token_id)
return pad_token_id, all_eos_token_ids
class RichInterface:
def __init__(self, model_name=None, user_name=None):
self._console = Console()
if model_name is None:
self.model_name = "assistant"
else:
self.model_name = model_name
if user_name is None:
self.user_name = "user"
else:
self.user_name = user_name
def stream_output(self, output_stream):
"""Stream output from a role."""
# This method is originally from the FastChat CLI: https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/cli.py
# Create a Live context for updating the console output
text = ""
self._console.print(f"[bold blue]<{self.model_name}>:")
with Live(console=self._console, refresh_per_second=4) as live:
# Read lines from the stream
for i, outputs in enumerate(output_stream):
if not outputs or i == 0:
continue
text += outputs
# Render the accumulated text as Markdown
# NOTE: this is a workaround for the rendering "unstandard markdown"
# in rich. The chatbots output treat "\n" as a new line for
# better compatibility with real-world text. However, rendering
# in markdown would break the format. It is because standard markdown
# treat a single "\n" in normal text as a space.
# Our workaround is adding two spaces at the end of each line.
# This is not a perfect solution, as it would
# introduce trailing spaces (only) in code block, but it works well
# especially for console output, because in general the console does not
# care about trailing spaces.
lines = []
for line in text.splitlines():
lines.append(line)
if line.startswith("```"):
# Code block marker - do not add trailing spaces, as it would
# break the syntax highlighting
lines.append("\n")
else:
lines.append(" \n")
markdown = Markdown("".join(lines).strip(), code_theme="github-dark")
# Update the Live console output
live.update(markdown)
self._console.print()
return text
def input(self):
input = self._console.input(f"[bold red]<{self.user_name}>:\n")
self._console.print()
return input
def clear(self):
self._console.clear()
def print_user_message(self, text):
self._console.print(f"[bold red]<{self.user_name}>:[/ bold red]\n{text}")
self._console.print()
def print_green(self, text):
self._console.print(f"[bold green]{text}")
self._console.print()
def print_red(self, text):
self._console.print(f"[bold red]{text}")
self._console.print()
def print_help(self):
self._console.print(Markdown(HELP_STRING))
self._console.print()
@dataclass
class ChatArguments:
r"""
Arguments for the chat script.
Args:
model_name_or_path (`str`):
Name of the pre-trained model.
user (`str` or `None`, *optional*, defaults to `None`):
Username to display in chat interface.
system_prompt (`str` or `None`, *optional*, defaults to `None`):
System prompt.
save_folder (`str`, *optional*, defaults to `"./chat_history/"`):
Folder to save chat history.
device (`str`, *optional*, defaults to `"cpu"`):
Device to use for inference.
examples_path (`str` or `None`, *optional*, defaults to `None`):
Path to a yaml file with examples.
max_new_tokens (`int`, *optional*, defaults to `256`):
Maximum number of tokens to generate.
do_sample (`bool`, *optional*, defaults to `True`):
Whether to sample outputs during generation.
num_beams (`int`, *optional*, defaults to `1`):
Number of beams for beam search.
temperature (`float`, *optional*, defaults to `1.0`):
Temperature parameter for generation.
top_k (`int`, *optional*, defaults to `50`):
Value of k for top-k sampling.
top_p (`float`, *optional*, defaults to `1.0`):
Value of p for nucleus sampling.
repetition_penalty (`float`, *optional*, defaults to `1.0`):
Repetition penalty.
eos_tokens (`str` or `None`, *optional*, defaults to `None`):
EOS tokens to stop the generation. If multiple they should be comma separated.
eos_token_ids (`str` or `None`, *optional*, defaults to `None`):
EOS token IDs to stop the generation. If multiple they should be comma separated.
model_revision (`str`, *optional*, defaults to `"main"`):
Specific model version to use (can be a branch name, tag name or commit id).
torch_dtype (`str` or `None`, *optional*, defaults to `None`):
Override the default `torch.dtype` and load the model under this dtype. If `'auto'` is passed, the dtype
will be automatically derived from the model's weights.
trust_remote_code (`bool`, *optional*, defaults to `False`):
Whether to trust remote code when loading a model.
attn_implementation (`str` or `None`, *optional*, defaults to `None`):
Which attention implementation to use; you can run --attn_implementation=flash_attention_2, in which case
you must install this manually by running `pip install flash-attn --no-build-isolation`.
load_in_8bit (`bool`, *optional*, defaults to `False`):
Whether to use 8 bit precision for the base model - works only with LoRA.
load_in_4bit (`bool`, *optional*, defaults to `False`):
Whether to use 4 bit precision for the base model - works only with LoRA.
bnb_4bit_quant_type (`str`, *optional*, defaults to `"nf4"`):
Quantization type.
use_bnb_nested_quant (`bool`, *optional*, defaults to `False`):
Whether to use nested quantization.
"""
# General settings
model_name_or_path: str = field(metadata={"help": "Name of the pre-trained model."})
user: Optional[str] = field(default=None, metadata={"help": "Username to display in chat interface."})
system_prompt: Optional[str] = field(default=None, metadata={"help": "System prompt."})
save_folder: str = field(default="./chat_history/", metadata={"help": "Folder to save chat history."})
device: str = field(default="cpu", metadata={"help": "Device to use for inference."})
examples_path: Optional[str] = field(default=None, metadata={"help": "Path to a yaml file with examples."})
# Generation settings
max_new_tokens: int = field(default=256, metadata={"help": "Maximum number of tokens to generate."})
do_sample: bool = field(default=True, metadata={"help": "Whether to sample outputs during generation."})
num_beams: int = field(default=1, metadata={"help": "Number of beams for beam search."})
temperature: float = field(default=1.0, metadata={"help": "Temperature parameter for generation."})
top_k: int = field(default=50, metadata={"help": "Value of k for top-k sampling."})
top_p: float = field(default=1.0, metadata={"help": "Value of p for nucleus sampling."})
repetition_penalty: float = field(default=1.0, metadata={"help": "Repetition penalty."})
eos_tokens: Optional[str] = field(
default=None,
metadata={"help": "EOS tokens to stop the generation. If multiple they should be comma separated."},
)
eos_token_ids: Optional[str] = field(
default=None,
metadata={"help": "EOS token IDs to stop the generation. If multiple they should be comma separated."},
)
# Model loading
model_revision: str = field(
default="main",
metadata={"help": "Specific model version to use (can be a branch name, tag name or commit id)."},
)
torch_dtype: Optional[str] = field(
default="auto",
metadata={
"help": "Override the default `torch.dtype` and load the model under this dtype. If `'auto'` is passed, "
"the dtype will be automatically derived from the model's weights.",
"choices": ["auto", "bfloat16", "float16", "float32"],
},
)
trust_remote_code: bool = field(
default=False, metadata={"help": "Whether to trust remote code when loading a model."}
)
attn_implementation: Optional[str] = field(
default=None,
metadata={
"help": "Which attention implementation to use; you can run --attn_implementation=flash_attention_2, in "
"which case you must install this manually by running `pip install flash-attn --no-build-isolation`."
},
)
load_in_8bit: bool = field(
default=False,
metadata={"help": "Whether to use 8 bit precision for the base model - works only with LoRA."},
)
load_in_4bit: bool = field(
default=False,
metadata={"help": "Whether to use 4 bit precision for the base model - works only with LoRA."},
)
bnb_4bit_quant_type: str = field(default="nf4", metadata={"help": "Quantization type.", "choices": ["fp4", "nf4"]})
use_bnb_nested_quant: bool = field(default=False, metadata={"help": "Whether to use nested quantization."})
def chat_command_factory(args: Namespace):
"""
Factory function used to chat with a local model.
"""
return ChatCommand(args)
class ChatCommand(BaseTransformersCLICommand):
@staticmethod
def register_subcommand(parser: ArgumentParser):
"""
Register this command to argparse so it's available for the transformer-cli
Args:
parser: Root parser to register command-specific arguments
"""
dataclass_types = (ChatArguments,)
chat_parser = parser.add_parser("chat", help=HELP_STRING, dataclass_types=dataclass_types)
chat_parser.set_defaults(func=chat_command_factory)
def __init__(self, args):
self.args = args
def run(self):
args = self.args
if args.examples_path is None:
examples = DEFAULT_EXAMPLES
else:
with open(args.examples_path) as f:
examples = yaml.safe_load(f)
current_args = copy.deepcopy(args)
if args.user is None:
user = get_username()
else:
user = args.user
model, tokenizer = load_model_and_tokenizer(args)
generation_streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True)
pad_token_id, eos_token_ids = parse_eos_tokens(tokenizer, args.eos_tokens, args.eos_token_ids)
interface = RichInterface(model_name=args.model_name_or_path, user_name=user)
interface.clear()
chat = clear_chat_history(current_args.system_prompt)
while True:
try:
user_input = interface.input()
if user_input == "clear":
chat = clear_chat_history(current_args.system_prompt)
interface.clear()
continue
if user_input == "help":
interface.print_help()
continue
if user_input == "exit":
break
if user_input == "reset":
interface.clear()
current_args = copy.deepcopy(args)
chat = clear_chat_history(current_args.system_prompt)
continue
if user_input.startswith("save") and len(user_input.split()) < 2:
split_input = user_input.split()
if len(split_input) == 2:
filename = split_input[1]
else:
filename = None
filename = save_chat(chat, current_args, filename)
interface.print_green(f"Chat saved in {filename}!")
continue
if re.match(SETTING_RE, user_input):
current_args, success = parse_settings(user_input, current_args, interface)
if success:
chat = []
interface.clear()
continue
if user_input.startswith("example") and len(user_input.split()) == 2:
example_name = user_input.split()[1]
if example_name in examples:
interface.clear()
chat = []
interface.print_user_message(examples[example_name]["text"])
user_input = examples[example_name]["text"]
else:
interface.print_red(
f"Example {example_name} not found in list of available examples: {list(examples.keys())}."
)
continue
chat.append({"role": "user", "content": user_input})
inputs = tokenizer.apply_chat_template(chat, return_tensors="pt", add_generation_prompt=True).to(
model.device
)
attention_mask = torch.ones_like(inputs)
generation_kwargs = {
"inputs": inputs,
"attention_mask": attention_mask,
"streamer": generation_streamer,
"max_new_tokens": current_args.max_new_tokens,
"do_sample": current_args.do_sample,
"num_beams": current_args.num_beams,
"temperature": current_args.temperature,
"top_k": current_args.top_k,
"top_p": current_args.top_p,
"repetition_penalty": current_args.repetition_penalty,
"pad_token_id": pad_token_id,
"eos_token_id": eos_token_ids,
}
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
model_output = interface.stream_output(generation_streamer)
thread.join()
chat.append({"role": "assistant", "content": model_output})
except KeyboardInterrupt:
break
|
transformers/src/transformers/commands/chat.py/0
|
{
"file_path": "transformers/src/transformers/commands/chat.py",
"repo_id": "transformers",
"token_count": 9559
}
| 88 |
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .data_collator import (
DataCollatorForLanguageModeling,
DataCollatorForPermutationLanguageModeling,
DataCollatorForSeq2Seq,
DataCollatorForSOP,
DataCollatorForTokenClassification,
DataCollatorForWholeWordMask,
DataCollatorWithFlattening,
DataCollatorWithPadding,
DefaultDataCollator,
default_data_collator,
)
from .metrics import glue_compute_metrics, xnli_compute_metrics
from .processors import (
DataProcessor,
InputExample,
InputFeatures,
SingleSentenceClassificationProcessor,
SquadExample,
SquadFeatures,
SquadV1Processor,
SquadV2Processor,
glue_convert_examples_to_features,
glue_output_modes,
glue_processors,
glue_tasks_num_labels,
squad_convert_examples_to_features,
xnli_output_modes,
xnli_processors,
xnli_tasks_num_labels,
)
|
transformers/src/transformers/data/__init__.py/0
|
{
"file_path": "transformers/src/transformers/data/__init__.py",
"repo_id": "transformers",
"token_count": 494
}
| 89 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities to dynamically load objects from the Hub."""
import filecmp
import hashlib
import importlib
import importlib.util
import os
import re
import shutil
import signal
import sys
import threading
import typing
import warnings
from pathlib import Path
from types import ModuleType
from typing import Any, Dict, List, Optional, Union
from huggingface_hub import try_to_load_from_cache
from .utils import (
HF_MODULES_CACHE,
TRANSFORMERS_DYNAMIC_MODULE_NAME,
cached_file,
extract_commit_hash,
is_offline_mode,
logging,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
_HF_REMOTE_CODE_LOCK = threading.Lock()
def init_hf_modules():
"""
Creates the cache directory for modules with an init, and adds it to the Python path.
"""
# This function has already been executed if HF_MODULES_CACHE already is in the Python path.
if HF_MODULES_CACHE in sys.path:
return
sys.path.append(HF_MODULES_CACHE)
os.makedirs(HF_MODULES_CACHE, exist_ok=True)
init_path = Path(HF_MODULES_CACHE) / "__init__.py"
if not init_path.exists():
init_path.touch()
importlib.invalidate_caches()
def create_dynamic_module(name: Union[str, os.PathLike]) -> None:
"""
Creates a dynamic module in the cache directory for modules.
Args:
name (`str` or `os.PathLike`):
The name of the dynamic module to create.
"""
init_hf_modules()
dynamic_module_path = (Path(HF_MODULES_CACHE) / name).resolve()
# If the parent module does not exist yet, recursively create it.
if not dynamic_module_path.parent.exists():
create_dynamic_module(dynamic_module_path.parent)
os.makedirs(dynamic_module_path, exist_ok=True)
init_path = dynamic_module_path / "__init__.py"
if not init_path.exists():
init_path.touch()
# It is extremely important to invalidate the cache when we change stuff in those modules, or users end up
# with errors about module that do not exist. Same for all other `invalidate_caches` in this file.
importlib.invalidate_caches()
def get_relative_imports(module_file: Union[str, os.PathLike]) -> List[str]:
"""
Get the list of modules that are relatively imported in a module file.
Args:
module_file (`str` or `os.PathLike`): The module file to inspect.
Returns:
`List[str]`: The list of relative imports in the module.
"""
with open(module_file, "r", encoding="utf-8") as f:
content = f.read()
# Imports of the form `import .xxx`
relative_imports = re.findall(r"^\s*import\s+\.(\S+)\s*$", content, flags=re.MULTILINE)
# Imports of the form `from .xxx import yyy`
relative_imports += re.findall(r"^\s*from\s+\.(\S+)\s+import", content, flags=re.MULTILINE)
# Unique-ify
return list(set(relative_imports))
def get_relative_import_files(module_file: Union[str, os.PathLike]) -> List[str]:
"""
Get the list of all files that are needed for a given module. Note that this function recurses through the relative
imports (if a imports b and b imports c, it will return module files for b and c).
Args:
module_file (`str` or `os.PathLike`): The module file to inspect.
Returns:
`List[str]`: The list of all relative imports a given module needs (recursively), which will give us the list
of module files a given module needs.
"""
no_change = False
files_to_check = [module_file]
all_relative_imports = []
# Let's recurse through all relative imports
while not no_change:
new_imports = []
for f in files_to_check:
new_imports.extend(get_relative_imports(f))
module_path = Path(module_file).parent
new_import_files = [str(module_path / m) for m in new_imports]
new_import_files = [f for f in new_import_files if f not in all_relative_imports]
files_to_check = [f"{f}.py" for f in new_import_files]
no_change = len(new_import_files) == 0
all_relative_imports.extend(files_to_check)
return all_relative_imports
def get_imports(filename: Union[str, os.PathLike]) -> List[str]:
"""
Extracts all the libraries (not relative imports this time) that are imported in a file.
Args:
filename (`str` or `os.PathLike`): The module file to inspect.
Returns:
`List[str]`: The list of all packages required to use the input module.
"""
with open(filename, "r", encoding="utf-8") as f:
content = f.read()
# filter out try/except block so in custom code we can have try/except imports
content = re.sub(r"\s*try\s*:.*?except.*?:", "", content, flags=re.DOTALL)
# filter out imports under is_flash_attn_2_available block for avoid import issues in cpu only environment
content = re.sub(
r"if is_flash_attn[a-zA-Z0-9_]+available\(\):\s*(from flash_attn\s*.*\s*)+", "", content, flags=re.MULTILINE
)
# Imports of the form `import xxx`
imports = re.findall(r"^\s*import\s+(\S+)\s*$", content, flags=re.MULTILINE)
# Imports of the form `from xxx import yyy`
imports += re.findall(r"^\s*from\s+(\S+)\s+import", content, flags=re.MULTILINE)
# Only keep the top-level module
imports = [imp.split(".")[0] for imp in imports if not imp.startswith(".")]
return list(set(imports))
def check_imports(filename: Union[str, os.PathLike]) -> List[str]:
"""
Check if the current Python environment contains all the libraries that are imported in a file. Will raise if a
library is missing.
Args:
filename (`str` or `os.PathLike`): The module file to check.
Returns:
`List[str]`: The list of relative imports in the file.
"""
imports = get_imports(filename)
missing_packages = []
for imp in imports:
try:
importlib.import_module(imp)
except ImportError as exception:
logger.warning(f"Encountered exception while importing {imp}: {exception}")
# Some packages can fail with an ImportError because of a dependency issue.
# This check avoids hiding such errors.
# See https://github.com/huggingface/transformers/issues/33604
if "No module named" in str(exception):
missing_packages.append(imp)
else:
raise
if len(missing_packages) > 0:
raise ImportError(
"This modeling file requires the following packages that were not found in your environment: "
f"{', '.join(missing_packages)}. Run `pip install {' '.join(missing_packages)}`"
)
return get_relative_imports(filename)
def get_class_in_module(
class_name: str,
module_path: Union[str, os.PathLike],
*,
force_reload: bool = False,
) -> typing.Type:
"""
Import a module on the cache directory for modules and extract a class from it.
Args:
class_name (`str`): The name of the class to import.
module_path (`str` or `os.PathLike`): The path to the module to import.
force_reload (`bool`, *optional*, defaults to `False`):
Whether to reload the dynamic module from file if it already exists in `sys.modules`.
Otherwise, the module is only reloaded if the file has changed.
Returns:
`typing.Type`: The class looked for.
"""
name = os.path.normpath(module_path)
if name.endswith(".py"):
name = name[:-3]
name = name.replace(os.path.sep, ".")
module_file: Path = Path(HF_MODULES_CACHE) / module_path
with _HF_REMOTE_CODE_LOCK:
if force_reload:
sys.modules.pop(name, None)
importlib.invalidate_caches()
cached_module: Optional[ModuleType] = sys.modules.get(name)
module_spec = importlib.util.spec_from_file_location(name, location=module_file)
# Hash the module file and all its relative imports to check if we need to reload it
module_files: List[Path] = [module_file] + sorted(map(Path, get_relative_import_files(module_file)))
module_hash: str = hashlib.sha256(b"".join(bytes(f) + f.read_bytes() for f in module_files)).hexdigest()
module: ModuleType
if cached_module is None:
module = importlib.util.module_from_spec(module_spec)
# insert it into sys.modules before any loading begins
sys.modules[name] = module
else:
module = cached_module
# reload in both cases, unless the module is already imported and the hash hits
if getattr(module, "__transformers_module_hash__", "") != module_hash:
module_spec.loader.exec_module(module)
module.__transformers_module_hash__ = module_hash
return getattr(module, class_name)
def get_cached_module_file(
pretrained_model_name_or_path: Union[str, os.PathLike],
module_file: str,
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
resume_download: Optional[bool] = None,
proxies: Optional[Dict[str, str]] = None,
token: Optional[Union[bool, str]] = None,
revision: Optional[str] = None,
local_files_only: bool = False,
repo_type: Optional[str] = None,
_commit_hash: Optional[str] = None,
**deprecated_kwargs,
) -> str:
"""
Prepares Downloads a module from a local folder or a distant repo and returns its path inside the cached
Transformers module.
Args:
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
huggingface.co.
- a path to a *directory* containing a configuration file saved using the
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
module_file (`str`):
The name of the module file containing the class to look for.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the configuration files and override the cached versions if they
exist.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or *bool*, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, will only try to load the tokenizer configuration from local files.
repo_type (`str`, *optional*):
Specify the repo type (useful when downloading from a space for instance).
<Tip>
Passing `token=True` is required when you want to use a private model.
</Tip>
Returns:
`str`: The path to the module inside the cache.
"""
use_auth_token = deprecated_kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
token = use_auth_token
if is_offline_mode() and not local_files_only:
logger.info("Offline mode: forcing local_files_only=True")
local_files_only = True
# Download and cache module_file from the repo `pretrained_model_name_or_path` of grab it if it's a local file.
pretrained_model_name_or_path = str(pretrained_model_name_or_path)
is_local = os.path.isdir(pretrained_model_name_or_path)
if is_local:
submodule = os.path.basename(pretrained_model_name_or_path)
else:
submodule = pretrained_model_name_or_path.replace("/", os.path.sep)
cached_module = try_to_load_from_cache(
pretrained_model_name_or_path, module_file, cache_dir=cache_dir, revision=_commit_hash, repo_type=repo_type
)
new_files = []
try:
# Load from URL or cache if already cached
resolved_module_file = cached_file(
pretrained_model_name_or_path,
module_file,
cache_dir=cache_dir,
force_download=force_download,
proxies=proxies,
resume_download=resume_download,
local_files_only=local_files_only,
token=token,
revision=revision,
repo_type=repo_type,
_commit_hash=_commit_hash,
)
if not is_local and cached_module != resolved_module_file:
new_files.append(module_file)
except EnvironmentError:
logger.error(f"Could not locate the {module_file} inside {pretrained_model_name_or_path}.")
raise
# Check we have all the requirements in our environment
modules_needed = check_imports(resolved_module_file)
# Now we move the module inside our cached dynamic modules.
full_submodule = TRANSFORMERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule
create_dynamic_module(full_submodule)
submodule_path = Path(HF_MODULES_CACHE) / full_submodule
if submodule == os.path.basename(pretrained_model_name_or_path):
# We copy local files to avoid putting too many folders in sys.path. This copy is done when the file is new or
# has changed since last copy.
if not (submodule_path / module_file).exists() or not filecmp.cmp(
resolved_module_file, str(submodule_path / module_file)
):
shutil.copy(resolved_module_file, submodule_path / module_file)
importlib.invalidate_caches()
for module_needed in modules_needed:
module_needed = f"{module_needed}.py"
module_needed_file = os.path.join(pretrained_model_name_or_path, module_needed)
if not (submodule_path / module_needed).exists() or not filecmp.cmp(
module_needed_file, str(submodule_path / module_needed)
):
shutil.copy(module_needed_file, submodule_path / module_needed)
importlib.invalidate_caches()
else:
# Get the commit hash
commit_hash = extract_commit_hash(resolved_module_file, _commit_hash)
# The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the
# benefit of versioning.
submodule_path = submodule_path / commit_hash
full_submodule = full_submodule + os.path.sep + commit_hash
create_dynamic_module(full_submodule)
if not (submodule_path / module_file).exists():
shutil.copy(resolved_module_file, submodule_path / module_file)
importlib.invalidate_caches()
# Make sure we also have every file with relative
for module_needed in modules_needed:
if not (submodule_path / f"{module_needed}.py").exists():
get_cached_module_file(
pretrained_model_name_or_path,
f"{module_needed}.py",
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
token=token,
revision=revision,
local_files_only=local_files_only,
_commit_hash=commit_hash,
)
new_files.append(f"{module_needed}.py")
if len(new_files) > 0 and revision is None:
new_files = "\n".join([f"- {f}" for f in new_files])
repo_type_str = "" if repo_type is None else f"{repo_type}s/"
url = f"https://huggingface.co/{repo_type_str}{pretrained_model_name_or_path}"
logger.warning(
f"A new version of the following files was downloaded from {url}:\n{new_files}"
"\n. Make sure to double-check they do not contain any added malicious code. To avoid downloading new "
"versions of the code file, you can pin a revision."
)
return os.path.join(full_submodule, module_file)
def get_class_from_dynamic_module(
class_reference: str,
pretrained_model_name_or_path: Union[str, os.PathLike],
cache_dir: Optional[Union[str, os.PathLike]] = None,
force_download: bool = False,
resume_download: Optional[bool] = None,
proxies: Optional[Dict[str, str]] = None,
token: Optional[Union[bool, str]] = None,
revision: Optional[str] = None,
local_files_only: bool = False,
repo_type: Optional[str] = None,
code_revision: Optional[str] = None,
**kwargs,
) -> typing.Type:
"""
Extracts a class from a module file, present in the local folder or repository of a model.
<Tip warning={true}>
Calling this function will execute the code in the module file found locally or downloaded from the Hub. It should
therefore only be called on trusted repos.
</Tip>
Args:
class_reference (`str`):
The full name of the class to load, including its module and optionally its repo.
pretrained_model_name_or_path (`str` or `os.PathLike`):
This can be either:
- a string, the *model id* of a pretrained model configuration hosted inside a model repo on
huggingface.co.
- a path to a *directory* containing a configuration file saved using the
[`~PreTrainedTokenizer.save_pretrained`] method, e.g., `./my_model_directory/`.
This is used when `class_reference` does not specify another repo.
module_file (`str`):
The name of the module file containing the class to look for.
class_name (`str`):
The name of the class to import in the module.
cache_dir (`str` or `os.PathLike`, *optional*):
Path to a directory in which a downloaded pretrained model configuration should be cached if the standard
cache should not be used.
force_download (`bool`, *optional*, defaults to `False`):
Whether or not to force to (re-)download the configuration files and override the cached versions if they
exist.
resume_download:
Deprecated and ignored. All downloads are now resumed by default when possible.
Will be removed in v5 of Transformers.
proxies (`Dict[str, str]`, *optional*):
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request.
token (`str` or `bool`, *optional*):
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated
when running `huggingface-cli login` (stored in `~/.huggingface`).
revision (`str`, *optional*, defaults to `"main"`):
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
identifier allowed by git.
local_files_only (`bool`, *optional*, defaults to `False`):
If `True`, will only try to load the tokenizer configuration from local files.
repo_type (`str`, *optional*):
Specify the repo type (useful when downloading from a space for instance).
code_revision (`str`, *optional*, defaults to `"main"`):
The specific revision to use for the code on the Hub, if the code leaves in a different repository than the
rest of the model. It can be a branch name, a tag name, or a commit id, since we use a git-based system for
storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git.
<Tip>
Passing `token=True` is required when you want to use a private model.
</Tip>
Returns:
`typing.Type`: The class, dynamically imported from the module.
Examples:
```python
# Download module `modeling.py` from huggingface.co and cache then extract the class `MyBertModel` from this
# module.
cls = get_class_from_dynamic_module("modeling.MyBertModel", "sgugger/my-bert-model")
# Download module `modeling.py` from a given repo and cache then extract the class `MyBertModel` from this
# module.
cls = get_class_from_dynamic_module("sgugger/my-bert-model--modeling.MyBertModel", "sgugger/another-bert-model")
```"""
use_auth_token = kwargs.pop("use_auth_token", None)
if use_auth_token is not None:
warnings.warn(
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
FutureWarning,
)
if token is not None:
raise ValueError("`token` and `use_auth_token` are both specified. Please set only the argument `token`.")
token = use_auth_token
# Catch the name of the repo if it's specified in `class_reference`
if "--" in class_reference:
repo_id, class_reference = class_reference.split("--")
else:
repo_id = pretrained_model_name_or_path
module_file, class_name = class_reference.split(".")
if code_revision is None and pretrained_model_name_or_path == repo_id:
code_revision = revision
# And lastly we get the class inside our newly created module
final_module = get_cached_module_file(
repo_id,
module_file + ".py",
cache_dir=cache_dir,
force_download=force_download,
resume_download=resume_download,
proxies=proxies,
token=token,
revision=code_revision,
local_files_only=local_files_only,
repo_type=repo_type,
)
return get_class_in_module(class_name, final_module, force_reload=force_download)
def custom_object_save(obj: Any, folder: Union[str, os.PathLike], config: Optional[Dict] = None) -> List[str]:
"""
Save the modeling files corresponding to a custom model/configuration/tokenizer etc. in a given folder. Optionally
adds the proper fields in a config.
Args:
obj (`Any`): The object for which to save the module files.
folder (`str` or `os.PathLike`): The folder where to save.
config (`PretrainedConfig` or dictionary, `optional`):
A config in which to register the auto_map corresponding to this custom object.
Returns:
`List[str]`: The list of files saved.
"""
if obj.__module__ == "__main__":
logger.warning(
f"We can't save the code defining {obj} in {folder} as it's been defined in __main__. You should put "
"this code in a separate module so we can include it in the saved folder and make it easier to share via "
"the Hub."
)
return
def _set_auto_map_in_config(_config):
module_name = obj.__class__.__module__
last_module = module_name.split(".")[-1]
full_name = f"{last_module}.{obj.__class__.__name__}"
# Special handling for tokenizers
if "Tokenizer" in full_name:
slow_tokenizer_class = None
fast_tokenizer_class = None
if obj.__class__.__name__.endswith("Fast"):
# Fast tokenizer: we have the fast tokenizer class and we may have the slow one has an attribute.
fast_tokenizer_class = f"{last_module}.{obj.__class__.__name__}"
if getattr(obj, "slow_tokenizer_class", None) is not None:
slow_tokenizer = getattr(obj, "slow_tokenizer_class")
slow_tok_module_name = slow_tokenizer.__module__
last_slow_tok_module = slow_tok_module_name.split(".")[-1]
slow_tokenizer_class = f"{last_slow_tok_module}.{slow_tokenizer.__name__}"
else:
# Slow tokenizer: no way to have the fast class
slow_tokenizer_class = f"{last_module}.{obj.__class__.__name__}"
full_name = (slow_tokenizer_class, fast_tokenizer_class)
if isinstance(_config, dict):
auto_map = _config.get("auto_map", {})
auto_map[obj._auto_class] = full_name
_config["auto_map"] = auto_map
elif getattr(_config, "auto_map", None) is not None:
_config.auto_map[obj._auto_class] = full_name
else:
_config.auto_map = {obj._auto_class: full_name}
# Add object class to the config auto_map
if isinstance(config, (list, tuple)):
for cfg in config:
_set_auto_map_in_config(cfg)
elif config is not None:
_set_auto_map_in_config(config)
result = []
# Copy module file to the output folder.
object_file = sys.modules[obj.__module__].__file__
dest_file = Path(folder) / (Path(object_file).name)
shutil.copy(object_file, dest_file)
result.append(dest_file)
# Gather all relative imports recursively and make sure they are copied as well.
for needed_file in get_relative_import_files(object_file):
dest_file = Path(folder) / (Path(needed_file).name)
shutil.copy(needed_file, dest_file)
result.append(dest_file)
return result
def _raise_timeout_error(signum, frame):
raise ValueError(
"Loading this model requires you to execute custom code contained in the model repository on your local "
"machine. Please set the option `trust_remote_code=True` to permit loading of this model."
)
TIME_OUT_REMOTE_CODE = 15
def resolve_trust_remote_code(trust_remote_code, model_name, has_local_code, has_remote_code):
if trust_remote_code is None:
if has_local_code:
trust_remote_code = False
elif has_remote_code and TIME_OUT_REMOTE_CODE > 0:
prev_sig_handler = None
try:
prev_sig_handler = signal.signal(signal.SIGALRM, _raise_timeout_error)
signal.alarm(TIME_OUT_REMOTE_CODE)
while trust_remote_code is None:
answer = input(
f"The repository for {model_name} contains custom code which must be executed to correctly "
f"load the model. You can inspect the repository content at https://hf.co/{model_name}.\n"
f"You can avoid this prompt in future by passing the argument `trust_remote_code=True`.\n\n"
f"Do you wish to run the custom code? [y/N] "
)
if answer.lower() in ["yes", "y", "1"]:
trust_remote_code = True
elif answer.lower() in ["no", "n", "0", ""]:
trust_remote_code = False
signal.alarm(0)
except Exception:
# OS which does not support signal.SIGALRM
raise ValueError(
f"The repository for {model_name} contains custom code which must be executed to correctly "
f"load the model. You can inspect the repository content at https://hf.co/{model_name}.\n"
f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
)
finally:
if prev_sig_handler is not None:
signal.signal(signal.SIGALRM, prev_sig_handler)
signal.alarm(0)
elif has_remote_code:
# For the CI which puts the timeout at 0
_raise_timeout_error(None, None)
if has_remote_code and not has_local_code and not trust_remote_code:
raise ValueError(
f"Loading {model_name} requires you to execute the configuration file in that"
" repo on your local machine. Make sure you have read the code there to avoid malicious use, then"
" set the option `trust_remote_code=True` to remove this error."
)
return trust_remote_code
|
transformers/src/transformers/dynamic_module_utils.py/0
|
{
"file_path": "transformers/src/transformers/dynamic_module_utils.py",
"repo_id": "transformers",
"token_count": 11943
}
| 90 |
# coding=utf-8
# Copyright 2020 The Google AI Language Team Authors, Facebook AI Research authors and The HuggingFace Inc. team.
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import inspect
import os
import warnings
from dataclasses import dataclass
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
import torch.distributed as dist
from torch import nn
from torch.nn import functional as F
from ..cache_utils import (
Cache,
DynamicCache,
EncoderDecoderCache,
OffloadedCache,
QuantizedCacheConfig,
StaticCache,
)
from ..configuration_utils import PretrainedConfig
from ..integrations.deepspeed import is_deepspeed_zero3_enabled
from ..integrations.fsdp import is_fsdp_managed_module
from ..modeling_outputs import CausalLMOutputWithPast, Seq2SeqLMOutput
from ..pytorch_utils import isin_mps_friendly
from ..tokenization_utils import ExtensionsTrie
from ..utils import (
ModelOutput,
is_accelerate_available,
is_hqq_available,
is_optimum_quanto_available,
is_torchdynamo_compiling,
logging,
)
from .beam_constraints import DisjunctiveConstraint, PhrasalConstraint
from .beam_search import BeamScorer, BeamSearchScorer, ConstrainedBeamSearchScorer
from .candidate_generator import (
AssistedCandidateGenerator,
AssistedCandidateGeneratorDifferentTokenizers,
CandidateGenerator,
EarlyExitCandidateGenerator,
PromptLookupCandidateGenerator,
_crop_past_key_values,
_prepare_attention_mask,
_prepare_token_type_ids,
)
from .configuration_utils import (
NEED_SETUP_CACHE_CLASSES_MAPPING,
QUANT_BACKEND_CLASSES_MAPPING,
GenerationConfig,
GenerationMode,
)
from .logits_process import (
EncoderNoRepeatNGramLogitsProcessor,
EncoderRepetitionPenaltyLogitsProcessor,
EpsilonLogitsWarper,
EtaLogitsWarper,
ExponentialDecayLengthPenalty,
ForcedBOSTokenLogitsProcessor,
ForcedEOSTokenLogitsProcessor,
HammingDiversityLogitsProcessor,
InfNanRemoveLogitsProcessor,
LogitNormalization,
LogitsProcessorList,
MinLengthLogitsProcessor,
MinNewTokensLengthLogitsProcessor,
MinPLogitsWarper,
NoBadWordsLogitsProcessor,
NoRepeatNGramLogitsProcessor,
PrefixConstrainedLogitsProcessor,
RepetitionPenaltyLogitsProcessor,
SequenceBiasLogitsProcessor,
SuppressTokensAtBeginLogitsProcessor,
SuppressTokensLogitsProcessor,
TemperatureLogitsWarper,
TopKLogitsWarper,
TopPLogitsWarper,
TypicalLogitsWarper,
UnbatchedClassifierFreeGuidanceLogitsProcessor,
)
from .stopping_criteria import (
ConfidenceCriteria,
EosTokenCriteria,
MaxLengthCriteria,
MaxTimeCriteria,
StoppingCriteria,
StoppingCriteriaList,
StopStringCriteria,
)
if TYPE_CHECKING:
from ..modeling_utils import PreTrainedModel
from ..tokenization_utils_base import PreTrainedTokenizerBase
from .streamers import BaseStreamer
logger = logging.get_logger(__name__)
if is_accelerate_available():
from accelerate.hooks import AlignDevicesHook, add_hook_to_module
@dataclass
class GenerateDecoderOnlyOutput(ModelOutput):
"""
Outputs of decoder-only generation models, when using non-beam methods.
Args:
sequences (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True`):
Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True`):
Returns the model cache, used to speed up decoding. Different models have a different cache format, check
the model's documentation. Usually, a [`~cache_utils.Cache`] instance.
"""
sequences: torch.LongTensor = None
scores: Optional[Tuple[torch.FloatTensor]] = None
logits: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
@dataclass
class GenerateEncoderDecoderOutput(ModelOutput):
"""
Outputs of encoder-decoder generation models, when using non-beam methods.
Args:
sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True`):
Processed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True`):
Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, generated_length, hidden_size)`.
past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Returns the model cache, used to speed up decoding. Different models have a different cache format, check
the model's documentation. Usually, a [`~cache_utils.Cache`] instance.
"""
sequences: torch.LongTensor = None
scores: Optional[Tuple[torch.FloatTensor]] = None
logits: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
@dataclass
class GenerateBeamDecoderOnlyOutput(ModelOutput):
"""
Outputs of decoder-only generation models, when using beam methods.
Args:
sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True`):
Final beam scores of the generated `sequences`.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True`):
Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True`):
Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True`):
Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
`(batch_size*num_return_sequences, sequence_length)`.
attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size*num_beams, num_heads, generated_length, sequence_length)`.
hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True`):
Returns the model cache, used to speed up decoding. Different models have a different cache format, check
the model's documentation. Usually, a [`~cache_utils.Cache`] instance.
"""
sequences: torch.LongTensor = None
sequences_scores: Optional[torch.FloatTensor] = None
scores: Optional[Tuple[torch.FloatTensor]] = None
logits: Optional[Tuple[torch.FloatTensor]] = None
beam_indices: Optional[torch.LongTensor] = None
attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
@dataclass
class GenerateBeamEncoderDecoderOutput(ModelOutput):
"""
Outputs of encoder-decoder generation models, when using beam methods.
Args:
sequences (`torch.LongTensor` of shape `(batch_size*num_return_sequences, sequence_length)`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or shorter
if all batches finished early due to the `eos_token_id`.
sequences_scores (`torch.FloatTensor` of shape `(batch_size*num_return_sequences)`, *optional*, returned when `output_scores=True`):
Final beam scores of the generated `sequences`.
scores (`tuple(torch.FloatTensor)` *optional*, returned when `output_scores=True`):
Beam transition scores for each vocabulary token at each generation step. Beam transition scores consisting
of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
logits (`tuple(torch.FloatTensor)` *optional*, returned when `output_logits=True`):
Unprocessed prediction scores of the language modeling head (scores for each vocabulary token before SoftMax)
at each generation step. Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for
each generated token), with each tensor of shape `(batch_size, config.vocab_size)`.
beam_indices (`torch.LongTensor`, *optional*, returned when `output_scores=True`):
Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
`(batch_size*num_return_sequences, sequence_length)`.
encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer of the decoder) of shape `(batch_size, num_heads,
sequence_length, sequence_length)`.
encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size*num_beams*num_return_sequences, sequence_length, hidden_size)`.
decoder_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, num_heads, generated_length,
sequence_length)`.
cross_attentions (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_attentions=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size, num_heads, generated_length, sequence_length)`.
decoder_hidden_states (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `output_hidden_states=True`):
Tuple (one element for each generated token) of tuples (one element for each layer of the decoder) of
`torch.FloatTensor` of shape `(batch_size*num_beams*num_return_sequences, generated_length, hidden_size)`.
past_key_values (`tuple(tuple(torch.FloatTensor)))`, *optional*, returned when `use_cache=True`):
Returns the model cache, used to speed up decoding. Different models have a different cache format, check
the model's documentation. Usually, a [`~cache_utils.Cache`] instance.
"""
sequences: torch.LongTensor = None
sequences_scores: Optional[torch.FloatTensor] = None
scores: Optional[Tuple[torch.FloatTensor]] = None
logits: Optional[Tuple[torch.FloatTensor]] = None
beam_indices: Optional[torch.LongTensor] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
cross_attentions: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
decoder_hidden_states: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
past_key_values: Optional[Tuple[Tuple[Tuple[torch.FloatTensor]]]] = None
# TODO (joao): remove the equivalent classes and typing shortcuts below in v5
# Equivalent classes (kept for retrocompatibility purposes)
GreedySearchDecoderOnlyOutput = GenerateDecoderOnlyOutput
ContrastiveSearchDecoderOnlyOutput = GenerateDecoderOnlyOutput
SampleDecoderOnlyOutput = GenerateDecoderOnlyOutput
ContrastiveSearchEncoderDecoderOutput = GenerateEncoderDecoderOutput
GreedySearchEncoderDecoderOutput = GenerateEncoderDecoderOutput
SampleEncoderDecoderOutput = GenerateEncoderDecoderOutput
BeamSearchDecoderOnlyOutput = GenerateBeamDecoderOnlyOutput
BeamSampleDecoderOnlyOutput = GenerateBeamDecoderOnlyOutput
BeamSearchEncoderDecoderOutput = GenerateBeamEncoderDecoderOutput
BeamSampleEncoderDecoderOutput = GenerateBeamEncoderDecoderOutput
GreedySearchOutput = Union[GreedySearchEncoderDecoderOutput, GreedySearchDecoderOnlyOutput]
SampleOutput = Union[SampleEncoderDecoderOutput, SampleDecoderOnlyOutput]
BeamSearchOutput = Union[BeamSearchEncoderDecoderOutput, BeamSearchDecoderOnlyOutput]
BeamSampleOutput = Union[BeamSampleEncoderDecoderOutput, BeamSampleDecoderOnlyOutput]
ContrastiveSearchOutput = Union[ContrastiveSearchEncoderDecoderOutput, ContrastiveSearchDecoderOnlyOutput]
# Typing shortcuts
GenerateNonBeamOutput = Union[GenerateDecoderOnlyOutput, GenerateEncoderDecoderOutput]
GenerateBeamOutput = Union[GenerateBeamDecoderOnlyOutput, GenerateBeamEncoderDecoderOutput]
GenerateOutput = Union[GenerateNonBeamOutput, GenerateBeamOutput]
class GenerationMixin:
"""
A class containing all functions for auto-regressive text generation, to be used as a mixin in [`PreTrainedModel`].
The class exposes [`~generation.GenerationMixin.generate`], which can be used for:
- *greedy decoding* if `num_beams=1` and `do_sample=False`
- *contrastive search* if `penalty_alpha>0` and `top_k>1`
- *multinomial sampling* if `num_beams=1` and `do_sample=True`
- *beam-search decoding* if `num_beams>1` and `do_sample=False`
- *beam-search multinomial sampling* if `num_beams>1` and `do_sample=True`
- *diverse beam-search decoding* if `num_beams>1` and `num_beam_groups>1`
- *constrained beam-search decoding* if `constraints!=None` or `force_words_ids!=None`
- *assisted decoding* if `assistant_model` or `prompt_lookup_num_tokens` is passed to `.generate()`
To learn more about decoding strategies refer to the [text generation strategies guide](../generation_strategies).
"""
def prepare_inputs_for_generation(
self,
input_ids: torch.LongTensor,
past_key_values: Optional[Cache] = None,
attention_mask: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs,
):
"""
Prepare the model inputs for generation. In includes operations like computing the 4D attention mask or
slicing inputs given the existing cache.
See the forward pass in the model documentation for expected arguments (different models might have different
requirements for e.g. `past_key_values`). This function should work as is for most LLMs.
"""
# 1. Handle BC:
model_inputs = {}
# - some models don't have `Cache` support (which implies they don't expect `cache_position` in `forward`)
if self._supports_cache_class:
model_inputs["cache_position"] = cache_position
# - `cache_position` was not a mandatory input in `prepare_inputs_for_generation` for those models, and this
# function may be called outside of `generate`. Handle most use cases by creating `cache_position` on the fly
# (this alternative is not as robust as calling `generate` and letting it create `cache_position`)
elif cache_position is None:
past_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
cache_position = torch.arange(past_length, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
# 2. Generic cache-dependent input preparation
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
# Exception 3: with synced GPUs cache_position may go out of bounds, but we only want dummy token in that case.
# (we can't check exception 3 while compiling)
if past_key_values is not None:
model_inputs["past_key_values"] = past_key_values
if (
inputs_embeds is not None # Exception 1
or (is_torchdynamo_compiling() or cache_position[-1] >= input_ids.shape[1]) # Exception 3
):
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
# 3. Prepare base model inputs
input_ids_key = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if not self.config.is_encoder_decoder:
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs[input_ids_key] = None
model_inputs["inputs_embeds"] = inputs_embeds
else:
# `clone` calls in this function ensure a consistent stride. See #32227
model_inputs[input_ids_key] = input_ids.clone(memory_format=torch.contiguous_format)
model_inputs["inputs_embeds"] = None
else:
model_inputs[input_ids_key] = input_ids.clone(memory_format=torch.contiguous_format)
# 4. Create missing `position_ids` on the fly
if (
attention_mask is not None
and kwargs.get("position_ids") is None
and "position_ids" in set(inspect.signature(self.forward).parameters.keys())
):
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
kwargs["position_ids"] = position_ids # placed in kwargs for further processing (see below)
# 5. Slice model inputs if it's an input that should have the same length as `input_ids`
for model_input_name in ["position_ids", "token_type_ids"]:
model_input = kwargs.get(model_input_name)
if model_input is not None:
if past_key_values is not None:
current_input_length = (
model_inputs["inputs_embeds"].shape[1]
if model_inputs["inputs_embeds"] is not None
else model_inputs[input_ids_key].shape[1]
)
model_input = model_input[:, -current_input_length:]
model_input = model_input.clone(memory_format=torch.contiguous_format)
model_inputs[model_input_name] = model_input
# 6. Create 4D attention mask is we are using a `StaticCache` (important for performant compiled forward pass)
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
if model_inputs["inputs_embeds"] is not None:
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
device = model_inputs["inputs_embeds"].device
else:
batch_size, sequence_length = model_inputs[input_ids_key].shape
device = model_inputs[input_ids_key].device
# Create the causal mask with fixed shape in advance, to reduce recompilations. If the function to create
# the 4D causal mask exists, it should be present in the base model (XXXModel class).
base_model = getattr(self, self.base_model_prefix, None)
if base_model is None:
causal_mask_creation_function = getattr(
self, "_prepare_4d_causal_attention_mask_with_cache_position", None
)
else:
causal_mask_creation_function = getattr(
base_model, "_prepare_4d_causal_attention_mask_with_cache_position", None
)
if causal_mask_creation_function is None:
logger.warning_once(
f"{self.__class__.__name__} has no `_prepare_4d_causal_attention_mask_with_cache_position` method "
"defined in its base modeling class. Compiled forward passes will be sub-optimal. If you're "
"writing code, see Llama for an example implementation. If you're a user, please report this "
"issue on GitHub."
)
else:
attention_mask = causal_mask_creation_function(
attention_mask,
sequence_length=sequence_length,
target_length=past_key_values.get_max_cache_shape(),
dtype=self.dtype,
device=device,
cache_position=cache_position,
batch_size=batch_size,
config=self.config,
past_key_values=past_key_values,
)
if attention_mask is not None:
model_inputs["attention_mask"] = attention_mask
# 7. Forward ALL kwargs that are uninitialized (e.g. `use_cache`).
for key, value in kwargs.items():
if key not in model_inputs:
model_inputs[key] = value
# 8. Remove unexpected `generate` inputs (TODO @joao: fix trainer and examples)
model_inputs.pop("labels", None)
return model_inputs
def _prepare_model_inputs(
self,
inputs: Optional[torch.Tensor] = None,
bos_token_id: Optional[torch.Tensor] = None,
model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> Tuple[torch.Tensor, Optional[str], Dict[str, torch.Tensor]]:
"""
This function extracts the model-specific `inputs` for generation.
"""
# 1. retrieve all kwargs that are non-None or non-model input related.
# some encoder-decoder models have different names for model and encoder
if (
self.config.is_encoder_decoder
and hasattr(self, "encoder")
and self.encoder.main_input_name != self.main_input_name
):
input_name = self.encoder.main_input_name
else:
input_name = self.main_input_name
model_kwargs = {k: v for k, v in model_kwargs.items() if v is not None or k != input_name}
# 2. check whether model_input_name is passed as kwarg
# if yes and `inputs` is None use kwarg inputs
inputs_kwarg = model_kwargs.pop(input_name, None)
if inputs_kwarg is not None and inputs is not None:
raise ValueError(
f"`inputs`: {inputs}` were passed alongside {input_name} which is not allowed. "
f"Make sure to either pass {inputs} or {input_name}=..."
)
elif inputs_kwarg is not None:
inputs = inputs_kwarg
# 3. In the presence of `inputs_embeds` for text models:
# - decoder-only models should complain if the user attempts to pass `inputs_embeds`, but the model
# doesn't have its forwarding implemented. `inputs_embeds` is kept in `model_kwargs` and can coexist with
# input_ids (`inputs_embeds` will be used in the 1st generation step, as opposed to `input_ids`)
# - encoder-decoder models should complain if the user attempts to pass `inputs_embeds` and `input_ids`, and
# pull the former to inputs. It will be used in place of `input_ids` to get the encoder hidden states.
if input_name == "input_ids" and "inputs_embeds" in model_kwargs:
if not self.config.is_encoder_decoder:
has_inputs_embeds_forwarding = "inputs_embeds" in set(
inspect.signature(self.prepare_inputs_for_generation).parameters.keys()
)
if not has_inputs_embeds_forwarding:
raise ValueError(
f"You passed `inputs_embeds` to `.generate()`, but the model class {self.__class__.__name__} "
"doesn't have its forwarding implemented. See the GPT2 implementation for an example "
"(https://github.com/huggingface/transformers/pull/21405), and feel free to open a PR with it!"
)
# In this case, `input_ids` is moved to the `model_kwargs`, so a few automations (like the creation of
# the attention mask) can rely on the actual model input.
model_kwargs["input_ids"] = self._maybe_initialize_input_ids_for_generation(
inputs, bos_token_id, model_kwargs=model_kwargs
)
else:
if inputs is not None:
raise ValueError("You passed `inputs_embeds` and `input_ids` to `.generate()`. Please pick one.")
inputs, input_name = model_kwargs["inputs_embeds"], "inputs_embeds"
# 4. if `inputs` is still None, try to create `input_ids` from BOS token
inputs = self._maybe_initialize_input_ids_for_generation(inputs, bos_token_id, model_kwargs)
return inputs, input_name, model_kwargs
def _maybe_initialize_input_ids_for_generation(
self,
inputs: Optional[torch.Tensor] = None,
bos_token_id: Optional[torch.Tensor] = None,
model_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.LongTensor:
"""Initializes input ids for generation, if necessary."""
if inputs is not None:
return inputs
encoder_outputs = model_kwargs.get("encoder_outputs")
if self.config.is_encoder_decoder and encoder_outputs is not None:
# make dummy input_ids with value -100, as a sanity check ensuring that they won't be used for encoding
shape = encoder_outputs.last_hidden_state.size()[:-1]
return torch.ones(shape, dtype=torch.long, device=self.device) * -100
# If there is some tensor in `model_kwargs`, we can infer the batch size from it. This is helpful with
# soft-prompting or in multimodal implementations built on top of decoder-only language models.
batch_size = 1
for value in model_kwargs.values():
if isinstance(value, torch.Tensor):
batch_size = value.shape[0]
break
if "inputs_embeds" in model_kwargs:
return torch.ones((batch_size, 0), dtype=torch.long, device=self.device)
if bos_token_id is None:
raise ValueError("`bos_token_id` has to be defined when no `input_ids` are provided.")
return torch.ones((batch_size, 1), dtype=torch.long, device=self.device) * bos_token_id
def _prepare_attention_mask_for_generation(
self,
inputs_tensor: torch.Tensor,
generation_config: GenerationConfig,
model_kwargs: Dict[str, Any],
) -> torch.LongTensor:
pad_token_id = generation_config._pad_token_tensor
eos_token_id = generation_config._eos_token_tensor
# `input_ids` may be present in the model kwargs, instead of being the main input (e.g. multimodal model)
if "input_ids" in model_kwargs and model_kwargs["input_ids"].shape[1] > 0:
inputs_tensor = model_kwargs["input_ids"]
# No information for attention mask inference -> return default attention mask
default_attention_mask = torch.ones(inputs_tensor.shape[:2], dtype=torch.long, device=inputs_tensor.device)
if pad_token_id is None:
return default_attention_mask
is_input_ids = len(inputs_tensor.shape) == 2 and inputs_tensor.dtype in [torch.int, torch.long]
if not is_input_ids:
return default_attention_mask
is_pad_token_in_inputs = (pad_token_id is not None) and (
isin_mps_friendly(elements=inputs_tensor, test_elements=pad_token_id).any()
)
is_pad_token_not_equal_to_eos_token_id = (eos_token_id is None) or ~(
isin_mps_friendly(elements=eos_token_id, test_elements=pad_token_id).any()
)
can_infer_attention_mask = is_pad_token_in_inputs * is_pad_token_not_equal_to_eos_token_id
attention_mask_from_padding = inputs_tensor.ne(pad_token_id).long()
attention_mask = (
attention_mask_from_padding * can_infer_attention_mask + default_attention_mask * ~can_infer_attention_mask
)
return attention_mask
def _prepare_encoder_decoder_kwargs_for_generation(
self,
inputs_tensor: torch.Tensor,
model_kwargs,
model_input_name: Optional[str],
generation_config: GenerationConfig,
) -> Dict[str, Any]:
# 1. get encoder
encoder = self.get_encoder()
# Compatibility with Accelerate big model inference: we need the encoder to outputs stuff on the same device
# as the inputs.
if hasattr(self, "hf_device_map"):
if hasattr(encoder, "_hf_hook"):
encoder._hf_hook.io_same_device = True
else:
add_hook_to_module(encoder, AlignDevicesHook(io_same_device=True))
# 2. Prepare encoder args and encoder kwargs from model kwargs and generation config.
irrelevant_prefix = ["decoder_", "cross_attn", "use_cache"]
encoder_kwargs = {
argument: value
for argument, value in model_kwargs.items()
if not any(argument.startswith(p) for p in irrelevant_prefix)
}
encoder_signature = set(inspect.signature(encoder.forward).parameters)
encoder_accepts_wildcard = "kwargs" in encoder_signature or "model_kwargs" in encoder_signature
if not encoder_accepts_wildcard:
encoder_kwargs = {
argument: value for argument, value in encoder_kwargs.items() if argument in encoder_signature
}
encoder_kwargs["output_attentions"] = generation_config.output_attentions
encoder_kwargs["output_hidden_states"] = generation_config.output_hidden_states
# 3. make sure that encoder returns `ModelOutput`
model_input_name = model_input_name if model_input_name is not None else self.main_input_name
encoder_kwargs["return_dict"] = True
encoder_kwargs[model_input_name] = inputs_tensor
model_kwargs["encoder_outputs"]: ModelOutput = encoder(**encoder_kwargs) # type: ignore
return model_kwargs
def _prepare_decoder_input_ids_for_generation(
self,
batch_size: int,
model_input_name: str,
model_kwargs: Dict[str, torch.Tensor],
decoder_start_token_id: torch.Tensor,
device: torch.device = None,
) -> Tuple[torch.LongTensor, Dict[str, torch.Tensor]]:
"""Prepares `decoder_input_ids` for generation with encoder-decoder models"""
# 1. Check whether the user has defined `decoder_input_ids` manually. To facilitate in terms of input naming,
# we also allow the user to pass it under `input_ids`, if the encoder does not use it as the main input.
if model_kwargs is not None and "decoder_input_ids" in model_kwargs:
decoder_input_ids = model_kwargs.pop("decoder_input_ids")
elif "input_ids" in model_kwargs and model_input_name != "input_ids":
decoder_input_ids = model_kwargs.pop("input_ids")
else:
decoder_input_ids = None
# 2. `decoder_start_token_id` must have shape (batch_size, 1)
if device is None:
device = self.device
if decoder_start_token_id.ndim == 1:
if decoder_start_token_id.shape[0] != batch_size:
raise ValueError(
f"`decoder_start_token_id` expected to have length {batch_size} but got {decoder_start_token_id.shape[0]}"
)
decoder_start_token_id = decoder_start_token_id.view(-1, 1)
else:
decoder_start_token_id = (
torch.ones((batch_size, 1), dtype=torch.long, device=device) * decoder_start_token_id
)
# 3. Encoder-decoder models expect the `decoder_input_ids` to start with a special token. Let's ensure that.
# no user input -> use decoder_start_token_id as decoder_input_ids
if decoder_input_ids is None:
decoder_input_ids = decoder_start_token_id
# exception: Donut checkpoints have task-specific decoder starts and don't expect a BOS token. Note that the
# original checkpoints can't be detected through `self.__class__.__name__.lower()`, needing custom logic.
# See: https://github.com/huggingface/transformers/pull/31470
elif "donut" in self.__class__.__name__.lower() or (
self.config.model_type == "vision-encoder-decoder" and "donut" in self.config.encoder.model_type.lower()
):
pass
elif self.config.model_type in ["whisper"]:
pass
# user input but doesn't start with decoder_start_token_id -> prepend decoder_start_token_id (and adjust
# decoder_attention_mask if provided)
elif (decoder_input_ids[:, 0] != decoder_start_token_id[:, 0]).all().item():
decoder_input_ids = torch.cat([decoder_start_token_id, decoder_input_ids], dim=-1)
if "decoder_attention_mask" in model_kwargs:
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
decoder_attention_mask = torch.cat(
(torch.ones_like(decoder_attention_mask)[:, :1], decoder_attention_mask),
dim=-1,
)
model_kwargs["decoder_attention_mask"] = decoder_attention_mask
return decoder_input_ids, model_kwargs
@staticmethod
def _expand_inputs_for_generation(
expand_size: int = 1,
is_encoder_decoder: bool = False,
input_ids: Optional[torch.LongTensor] = None,
**model_kwargs,
) -> Tuple[torch.LongTensor, Dict[str, Any]]:
"""Expands tensors from [batch_size, ...] to [batch_size * expand_size, ...]"""
# Do not call torch.repeat_interleave if expand_size is 1 because it clones
# the input tensor and thus requires more memory although no change is applied
if expand_size == 1:
return input_ids, model_kwargs
def _expand_dict_for_generation(dict_to_expand):
for key in dict_to_expand:
if (
key != "cache_position"
and dict_to_expand[key] is not None
and isinstance(dict_to_expand[key], torch.Tensor)
):
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
return dict_to_expand
if input_ids is not None:
input_ids = input_ids.repeat_interleave(expand_size, dim=0)
model_kwargs = _expand_dict_for_generation(model_kwargs)
if is_encoder_decoder:
if model_kwargs.get("encoder_outputs") is None:
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
return input_ids, model_kwargs
def _extract_past_from_model_output(self, outputs: ModelOutput):
past_key_values = None
cache_name = "past_key_values"
if "past_key_values" in outputs:
past_key_values = outputs.past_key_values
elif "mems" in outputs:
past_key_values = outputs.mems
elif "past_buckets_states" in outputs:
past_key_values = outputs.past_buckets_states
elif "cache_params" in outputs:
past_key_values = outputs.cache_params
cache_name = "cache_params"
return cache_name, past_key_values
def _update_model_kwargs_for_generation(
self,
outputs: ModelOutput,
model_kwargs: Dict[str, Any],
is_encoder_decoder: bool = False,
num_new_tokens: int = 1,
) -> Dict[str, Any]:
# update past_key_values keeping its naming used in model code
cache_name, cache = self._extract_past_from_model_output(outputs)
model_kwargs[cache_name] = cache
if getattr(outputs, "state", None) is not None:
model_kwargs["state"] = outputs.state
# update token_type_ids with last value
if "token_type_ids" in model_kwargs:
token_type_ids = model_kwargs["token_type_ids"]
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, token_type_ids[:, -1].unsqueeze(-1)], dim=-1)
if not is_encoder_decoder:
# update attention mask
if "attention_mask" in model_kwargs:
attention_mask = model_kwargs["attention_mask"]
model_kwargs["attention_mask"] = torch.cat(
[attention_mask, attention_mask.new_ones((attention_mask.shape[0], 1))], dim=-1
)
else:
# update decoder attention mask
if "decoder_attention_mask" in model_kwargs:
decoder_attention_mask = model_kwargs["decoder_attention_mask"]
model_kwargs["decoder_attention_mask"] = torch.cat(
[decoder_attention_mask, decoder_attention_mask.new_ones((decoder_attention_mask.shape[0], 1))],
dim=-1,
)
if model_kwargs.get("use_cache", True):
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + num_new_tokens
else:
past_positions = model_kwargs.pop("cache_position")
new_positions = torch.arange(
past_positions[-1] + 1, past_positions[-1] + num_new_tokens + 1, dtype=past_positions.dtype
).to(past_positions.device)
model_kwargs["cache_position"] = torch.cat((past_positions, new_positions))
return model_kwargs
def _reorder_cache(self, past_key_values, beam_idx):
raise NotImplementedError(
f"Make sure that a `_reorder_cache` function is correctly implemented in {self.__class__.__module__} to"
f" enable beam search for {self.__class__}"
)
def _get_candidate_generator(
self,
generation_config: GenerationConfig,
input_ids: torch.LongTensor,
inputs_tensor: torch.Tensor,
assistant_model: "PreTrainedModel",
logits_processor: LogitsProcessorList,
target_tokenizer: "PreTrainedTokenizerBase",
assistant_tokenizer: "PreTrainedTokenizerBase",
model_kwargs: Dict,
) -> CandidateGenerator:
"""
Returns the candidate generator to be used in `assisted_generation`
"""
different_tokenizers = all(v is not None for v in (assistant_model, target_tokenizer, assistant_tokenizer))
if generation_config.assistant_early_exit is not None:
candidate_generator = EarlyExitCandidateGenerator(
input_ids=input_ids,
assistant_model=self,
generation_config=generation_config,
model_kwargs=model_kwargs,
inputs_tensor=inputs_tensor,
logits_processor=logits_processor,
)
elif generation_config.prompt_lookup_num_tokens is not None:
candidate_generator = PromptLookupCandidateGenerator(
eos_token_id=generation_config._eos_token_tensor,
num_output_tokens=generation_config.prompt_lookup_num_tokens,
max_matching_ngram_size=generation_config.max_matching_ngram_size,
max_length=generation_config.max_length,
)
elif different_tokenizers:
candidate_generator = AssistedCandidateGeneratorDifferentTokenizers(
input_ids=input_ids,
assistant_model=assistant_model,
generation_config=generation_config,
model_kwargs=model_kwargs,
inputs_tensor=inputs_tensor,
logits_processor=logits_processor,
target_tokenizer=target_tokenizer,
assistant_tokenizer=assistant_tokenizer,
)
else:
candidate_generator = AssistedCandidateGenerator(
input_ids=input_ids,
assistant_model=assistant_model,
generation_config=generation_config,
model_kwargs=model_kwargs,
inputs_tensor=inputs_tensor,
logits_processor=logits_processor,
)
return candidate_generator
def _get_logits_processor(
self,
generation_config: GenerationConfig,
input_ids_seq_length: int,
encoder_input_ids: torch.LongTensor,
prefix_allowed_tokens_fn: Callable[[int, torch.Tensor], List[int]],
logits_processor: Optional[LogitsProcessorList],
device: str = None,
model_kwargs: Optional[Dict[str, Any]] = None,
negative_prompt_ids: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
) -> LogitsProcessorList:
"""
This class returns a [`LogitsProcessorList`] list object that contains all relevant [`LogitsProcessor`]
instances used to modify the scores of the language model head.
"""
# instantiate processors list
processors = LogitsProcessorList()
if generation_config.guidance_scale is not None and generation_config.guidance_scale != 1:
processors.append(
UnbatchedClassifierFreeGuidanceLogitsProcessor(
generation_config.guidance_scale,
self,
unconditional_ids=negative_prompt_ids,
unconditional_attention_mask=negative_prompt_attention_mask,
use_cache=generation_config.use_cache,
)
)
if generation_config.sequence_bias is not None:
processors.append(SequenceBiasLogitsProcessor(sequence_bias=generation_config.sequence_bias))
if generation_config.diversity_penalty is not None and generation_config.diversity_penalty > 0.0:
processors.append(
HammingDiversityLogitsProcessor(
diversity_penalty=generation_config.diversity_penalty,
num_beams=generation_config.num_beams,
num_beam_groups=generation_config.num_beam_groups,
)
)
if (
generation_config.encoder_repetition_penalty is not None
and generation_config.encoder_repetition_penalty != 1.0
):
if len(encoder_input_ids.shape) == 2:
processors.append(
EncoderRepetitionPenaltyLogitsProcessor(
penalty=generation_config.encoder_repetition_penalty,
encoder_input_ids=encoder_input_ids,
)
)
else:
warnings.warn(
"Passing `encoder_repetition_penalty` requires some form of `input_ids` to be passed to "
"`generate`, ignoring the argument.",
UserWarning,
)
if generation_config.repetition_penalty is not None and generation_config.repetition_penalty != 1.0:
processors.append(RepetitionPenaltyLogitsProcessor(penalty=generation_config.repetition_penalty))
if generation_config.no_repeat_ngram_size is not None and generation_config.no_repeat_ngram_size > 0:
processors.append(NoRepeatNGramLogitsProcessor(generation_config.no_repeat_ngram_size))
if (
generation_config.encoder_no_repeat_ngram_size is not None
and generation_config.encoder_no_repeat_ngram_size > 0
):
if len(encoder_input_ids.shape) == 2:
processors.append(
EncoderNoRepeatNGramLogitsProcessor(
generation_config.encoder_no_repeat_ngram_size,
encoder_input_ids,
)
)
else:
warnings.warn(
"Passing `encoder_no_repeat_ngram_size` requires some form of `input_ids` to be passed to "
"`generate`, ignoring the argument.",
UserWarning,
)
if generation_config.bad_words_ids is not None:
processors.append(
NoBadWordsLogitsProcessor(
generation_config.bad_words_ids,
generation_config._eos_token_tensor,
)
)
if (
generation_config.min_length is not None
and generation_config._eos_token_tensor is not None
and generation_config.min_length > 0
):
processors.append(
MinLengthLogitsProcessor(
generation_config.min_length,
generation_config._eos_token_tensor,
device=device,
)
)
if (
generation_config.min_new_tokens is not None
and generation_config._eos_token_tensor is not None
and generation_config.min_new_tokens > 0
):
processors.append(
MinNewTokensLengthLogitsProcessor(
input_ids_seq_length,
generation_config.min_new_tokens,
generation_config._eos_token_tensor,
device=device,
)
)
if prefix_allowed_tokens_fn is not None:
processors.append(
PrefixConstrainedLogitsProcessor(
prefix_allowed_tokens_fn,
generation_config.num_beams // generation_config.num_beam_groups,
)
)
if generation_config.forced_bos_token_id is not None:
processors.append(
ForcedBOSTokenLogitsProcessor(
generation_config.forced_bos_token_id,
)
)
if generation_config.forced_eos_token_id is not None:
processors.append(
ForcedEOSTokenLogitsProcessor(
generation_config.max_length,
generation_config.forced_eos_token_id,
device=device,
)
)
if generation_config.remove_invalid_values is True:
processors.append(InfNanRemoveLogitsProcessor())
if generation_config.exponential_decay_length_penalty is not None:
processors.append(
ExponentialDecayLengthPenalty(
generation_config.exponential_decay_length_penalty,
generation_config._eos_token_tensor,
input_ids_seq_length,
)
)
if generation_config.suppress_tokens is not None:
processors.append(
SuppressTokensLogitsProcessor(
generation_config.suppress_tokens,
device=device,
)
)
if generation_config.begin_suppress_tokens is not None:
begin_index = input_ids_seq_length
begin_index = (
begin_index
if (input_ids_seq_length > 1 or generation_config.forced_bos_token_id is None)
else begin_index + 1
)
processors.append(
SuppressTokensAtBeginLogitsProcessor(
generation_config.begin_suppress_tokens,
begin_index,
device=device,
)
)
if generation_config.forced_decoder_ids is not None:
# TODO (sanchit): move this exception to GenerationConfig.validate() when TF & FLAX are aligned with PT
raise ValueError(
"You have explicitly specified `forced_decoder_ids`. Please remove the `forced_decoder_ids` argument "
"in favour of `input_ids` or `decoder_input_ids` respectively.",
)
# TODO (joao): find a strategy to specify the order of the processors
processors = self._merge_criteria_processor_list(processors, logits_processor)
# Processors previously known as `LogitsWarpers`, only applied with sampling strategies
if generation_config.do_sample:
# In beam methods, we need to keep at least one non-eos token to explore continuations that might have a
# better score (i.e. keep len(list(generation_config._eos_token_tensor)) + 1)
if generation_config.num_beams > 1:
if isinstance(generation_config._eos_token_tensor, list):
min_tokens_to_keep = len(generation_config._eos_token_tensor) + 1
elif isinstance(generation_config._eos_token_tensor, torch.Tensor):
min_tokens_to_keep = generation_config._eos_token_tensor.shape[0] + 1
else:
min_tokens_to_keep = 2
else:
min_tokens_to_keep = 1
# the following idea is largely copied from this PR: https://github.com/huggingface/transformers/pull/5420/files
# all samplers can be found in `generation_utils_samplers.py`
if generation_config.temperature is not None and generation_config.temperature != 1.0:
processors.append(TemperatureLogitsWarper(generation_config.temperature))
if generation_config.top_k is not None and generation_config.top_k != 0:
processors.append(
TopKLogitsWarper(top_k=generation_config.top_k, min_tokens_to_keep=min_tokens_to_keep)
)
if generation_config.top_p is not None and generation_config.top_p < 1.0:
processors.append(
TopPLogitsWarper(top_p=generation_config.top_p, min_tokens_to_keep=min_tokens_to_keep)
)
if generation_config.min_p is not None:
# Applied after temperature scaling (see https://github.com/ggerganov/llama.cpp/pull/3841#issuecomment-2073826084)
processors.append(
MinPLogitsWarper(min_p=generation_config.min_p, min_tokens_to_keep=min_tokens_to_keep)
)
if generation_config.typical_p is not None and generation_config.typical_p < 1.0:
processors.append(
TypicalLogitsWarper(mass=generation_config.typical_p, min_tokens_to_keep=min_tokens_to_keep)
)
if generation_config.epsilon_cutoff is not None and 0.0 < generation_config.epsilon_cutoff < 1.0:
processors.append(
EpsilonLogitsWarper(
epsilon=generation_config.epsilon_cutoff, min_tokens_to_keep=min_tokens_to_keep
)
)
if generation_config.eta_cutoff is not None and 0.0 < generation_config.eta_cutoff < 1.0:
processors.append(
EtaLogitsWarper(
epsilon=generation_config.eta_cutoff, min_tokens_to_keep=min_tokens_to_keep, device=device
)
)
# Watermarking should be after all logits processing is finished (see #34630)
if generation_config.watermarking_config is not None:
processors.append(
generation_config.watermarking_config.construct_processor(self.config.vocab_size, device)
)
# `LogitNormalization` should always be the last logit processor, when present
if generation_config.renormalize_logits is True:
processors.append(LogitNormalization())
return processors
def _get_stopping_criteria(
self,
generation_config: GenerationConfig,
stopping_criteria: Optional[StoppingCriteriaList],
tokenizer: Optional["PreTrainedTokenizerBase"] = None,
**kwargs,
) -> StoppingCriteriaList:
criteria = StoppingCriteriaList()
if generation_config.max_length is not None:
max_position_embeddings = getattr(self.config, "max_position_embeddings", None)
criteria.append(
MaxLengthCriteria(
max_length=generation_config.max_length,
max_position_embeddings=max_position_embeddings,
)
)
if generation_config.max_time is not None:
criteria.append(MaxTimeCriteria(max_time=generation_config.max_time))
if generation_config.stop_strings is not None:
if tokenizer is None:
raise ValueError(
"There are one or more stop strings, either in the arguments to `generate` or in the "
"model's generation config, but we could not locate a tokenizer. When generating with "
"stop strings, you must pass the model's tokenizer to the `tokenizer` argument of `generate`."
)
criteria.append(StopStringCriteria(stop_strings=generation_config.stop_strings, tokenizer=tokenizer))
if generation_config._eos_token_tensor is not None:
criteria.append(EosTokenCriteria(eos_token_id=generation_config._eos_token_tensor))
if (
generation_config.is_assistant
and generation_config.assistant_confidence_threshold is not None
and generation_config.assistant_confidence_threshold > 0
):
criteria.append(
ConfidenceCriteria(assistant_confidence_threshold=generation_config.assistant_confidence_threshold)
)
criteria = self._merge_criteria_processor_list(criteria, stopping_criteria)
return criteria
def _merge_criteria_processor_list(
self,
default_list: Union[LogitsProcessorList, StoppingCriteriaList],
custom_list: Union[LogitsProcessorList, StoppingCriteriaList],
) -> Union[LogitsProcessorList, StoppingCriteriaList]:
if len(custom_list) == 0:
return default_list
for default in default_list:
for custom in custom_list:
if type(custom) is type(default):
object_type = "stopping criteria" if isinstance(custom, StoppingCriteria) else "logits processor"
raise ValueError(
f"A custom {object_type} of type {type(custom)} with values {custom} has been passed to"
f" `.generate()`, but it has already been created with the values {default}. {default} has been"
" created by passing the corresponding arguments to generate or by the model's config default"
f" values. If you just want to change the default values of {object_type} consider passing"
f" them as arguments to `.generate()` instead of using a custom {object_type}."
)
default_list.extend(custom_list)
return default_list
def compute_transition_scores(
self,
sequences: torch.Tensor,
scores: Tuple[torch.Tensor],
beam_indices: Optional[torch.Tensor] = None,
normalize_logits: bool = False,
) -> torch.Tensor:
"""
Computes the transition scores of sequences given the generation scores (and beam indices, if beam search was
used). This is a convenient method to quicky obtain the scores of the selected tokens at generation time.
Parameters:
sequences (`torch.LongTensor`):
The generated sequences. The second dimension (sequence_length) is either equal to `max_length` or
shorter if all batches finished early due to the `eos_token_id`.
scores (`tuple(torch.FloatTensor)`):
Transition scores for each vocabulary token at each generation step. Beam transition scores consisting
of log probabilities of tokens conditioned on log softmax of previously generated tokens in this beam.
Tuple of `torch.FloatTensor` with up to `max_new_tokens` elements (one element for each generated token),
with each tensor of shape `(batch_size*num_beams, config.vocab_size)`.
beam_indices (`torch.LongTensor`, *optional*):
Beam indices of generated token id at each generation step. `torch.LongTensor` of shape
`(batch_size*num_return_sequences, sequence_length)`. Only required if a `num_beams>1` at
generate-time.
normalize_logits (`bool`, *optional*, defaults to `False`):
Whether to normalize the logits (which, for legacy reasons, may be unnormalized).
Return:
`torch.Tensor`: A `torch.Tensor` of shape `(batch_size*num_return_sequences, sequence_length)` containing
the transition scores (logits)
Examples:
```python
>>> from transformers import GPT2Tokenizer, AutoModelForCausalLM
>>> import numpy as np
>>> tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
>>> model = AutoModelForCausalLM.from_pretrained("openai-community/gpt2")
>>> tokenizer.pad_token_id = tokenizer.eos_token_id
>>> inputs = tokenizer(["Today is"], return_tensors="pt")
>>> # Example 1: Print the scores for each token generated with Greedy Search
>>> outputs = model.generate(**inputs, max_new_tokens=5, return_dict_in_generate=True, output_scores=True)
>>> transition_scores = model.compute_transition_scores(
... outputs.sequences, outputs.scores, normalize_logits=True
... )
>>> # input_length is the length of the input prompt for decoder-only models, like the GPT family, and 1 for
>>> # encoder-decoder models, like BART or T5.
>>> input_length = 1 if model.config.is_encoder_decoder else inputs.input_ids.shape[1]
>>> generated_tokens = outputs.sequences[:, input_length:]
>>> for tok, score in zip(generated_tokens[0], transition_scores[0]):
... # | token | token string | log probability | probability
... print(f"| {tok:5d} | {tokenizer.decode(tok):8s} | {score.numpy():.3f} | {np.exp(score.numpy()):.2%}")
| 262 | the | -1.414 | 24.33%
| 1110 | day | -2.609 | 7.36%
| 618 | when | -2.010 | 13.40%
| 356 | we | -1.859 | 15.58%
| 460 | can | -2.508 | 8.14%
>>> # Example 2: Reconstruct the sequence scores from Beam Search
>>> outputs = model.generate(
... **inputs,
... max_new_tokens=5,
... num_beams=4,
... num_return_sequences=4,
... return_dict_in_generate=True,
... output_scores=True,
... )
>>> transition_scores = model.compute_transition_scores(
... outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False
... )
>>> # If you sum the generated tokens' scores and apply the length penalty, you'll get the sequence scores.
>>> # Tip 1: recomputing the scores is only guaranteed to match with `normalize_logits=False`. Depending on the
>>> # use case, you might want to recompute it with `normalize_logits=True`.
>>> # Tip 2: the output length does NOT include the input length
>>> output_length = np.sum(transition_scores.numpy() < 0, axis=1)
>>> length_penalty = model.generation_config.length_penalty
>>> reconstructed_scores = transition_scores.sum(axis=1) / (output_length**length_penalty)
>>> print(np.allclose(outputs.sequences_scores, reconstructed_scores))
True
```"""
# 1. In absence of `beam_indices`, we can assume that we come from e.g. greedy search, which is equivalent
# to a beam search approach were the first (and only) beam is always selected
if beam_indices is None:
beam_indices = torch.arange(scores[0].shape[0]).view(-1, 1).to(sequences.device)
beam_indices = beam_indices.expand(-1, len(scores))
# 2. reshape scores as [batch_size*vocab_size, # generation steps] with # generation steps being
# seq_len - input_length
scores = torch.stack(scores).reshape(len(scores), -1).transpose(0, 1)
# 3. Optionally normalize the logits (across the vocab dimension)
if normalize_logits:
scores = scores.reshape(-1, self.config.vocab_size, scores.shape[-1])
scores = torch.nn.functional.log_softmax(scores, dim=1)
scores = scores.reshape(-1, scores.shape[-1])
# 4. cut beam_indices to longest beam length
beam_indices_mask = beam_indices < 0
max_beam_length = (1 - beam_indices_mask.long()).sum(-1).max()
beam_indices = beam_indices.clone()[:, :max_beam_length]
beam_indices_mask = beam_indices_mask[:, :max_beam_length]
# 5. Set indices of beams that finished early to 0; such indices will be masked correctly afterwards
beam_indices[beam_indices_mask] = 0
# 6. multiply beam_indices with vocab size to gather correctly from scores
beam_sequence_indices = beam_indices * self.config.vocab_size
# 7. Define which indices contributed to scores
cut_idx = sequences.shape[-1] - max_beam_length
indices = sequences[:, cut_idx:] + beam_sequence_indices
# 8. Compute scores
transition_scores = scores.gather(0, indices)
# 9. Mask out transition_scores of beams that stopped early
transition_scores[beam_indices_mask] = 0
return transition_scores
def _validate_model_class(self):
"""
Confirms that the model class is compatible with generation. If not, raises an exception that points to the
right class to use.
"""
# TODO(joao): remove this function in v4.50, i.e. when we remove the inheritance of `GenerationMixin` from
# `PreTrainedModel`. With that inheritance removed, all model classes inheriting from `GenerationMixin` can
# safely call `GenerationMixin.generate`
if not is_torchdynamo_compiling() and not self.can_generate():
terminations_with_generation_support = [
"ForCausalLM",
"ForConditionalGeneration",
"ForSpeechSeq2Seq",
"ForVision2Seq",
]
raise TypeError(
f"The current model class ({self.__class__.__name__}) is not compatible with `.generate()`, as "
"it doesn't have a language model head. Classes that support generation often end in one of these "
f"names: {terminations_with_generation_support}."
)
def _validate_assistant(self, assistant_model, tokenizer, assistant_tokenizer):
if assistant_model is None:
return
if self.config.is_encoder_decoder and not assistant_model.config.is_encoder_decoder:
attributes_to_check = ["encoder_attention_heads", "encoder_ffn_dim", "encoder_layers"]
attributes_to_check = [attr for attr in dir(assistant_model.config) if attr in attributes_to_check]
are_equal = all(
getattr(self.config, attr) == getattr(assistant_model.config, attr) for attr in attributes_to_check
)
if not are_equal:
raise ValueError(
"The main model and the assistant don't have compatible encoder-dependent input shapes. "
"Ensure you load the assistant with the correct encoder-decoder class, e.g. `AutoModelForSpeechSeq2Seq` for Whisper."
)
doc_reference = (
"(see https://huggingface.co/docs/transformers/en/generation_strategies#universal-assisted-decoding)"
)
if self.config.get_text_config().vocab_size == assistant_model.config.get_text_config().vocab_size:
if assistant_tokenizer is not None:
raise ValueError(
f"`assistant_tokenizer` is not required when the main and assistant models use the same tokenizer. Please omit `assistant_tokenizer` from `generate()` {doc_reference}."
)
else:
if tokenizer is None or assistant_tokenizer is None:
raise ValueError(
f"The main and assistant moedels have different tokenizers. Please provide `tokenizer` and `assistant_tokenizer` to `generate()` {doc_reference}."
)
def _validate_model_kwargs(self, model_kwargs: Dict[str, Any]):
"""Validates model kwargs for generation. Generate argument typos will also be caught here."""
# If a `Cache` instance is passed, checks whether the model is compatible with it
if isinstance(model_kwargs.get("past_key_values", None), Cache) and not self._supports_cache_class:
raise ValueError(
f"{self.__class__.__name__} does not support an instance of `Cache` as `past_key_values`. Please "
"check the model documentation for supported cache formats."
)
# Excludes arguments that are handled before calling any model function
if self.config.is_encoder_decoder:
for key in ["decoder_input_ids"]:
model_kwargs.pop(key, None)
unused_model_args = []
model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters)
# `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If
# `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;)
if "kwargs" in model_args or "model_kwargs" in model_args:
model_args |= set(inspect.signature(self.forward).parameters)
# Encoder-Decoder models may also need Encoder arguments from `model_kwargs`
if self.config.is_encoder_decoder:
base_model = getattr(self, self.base_model_prefix, None)
# allow encoder kwargs
encoder = getattr(self, "encoder", None)
# `MusicgenForConditionalGeneration` has `text_encoder` and `audio_encoder`.
# Also, it has `base_model_prefix = "encoder_decoder"` but there is no `self.encoder_decoder`
# TODO: A better way to handle this.
if encoder is None and base_model is not None:
encoder = getattr(base_model, "encoder", None)
if encoder is not None:
encoder_model_args = set(inspect.signature(encoder.forward).parameters)
model_args |= encoder_model_args
# allow decoder kwargs
decoder = getattr(self, "decoder", None)
if decoder is None and base_model is not None:
decoder = getattr(base_model, "decoder", None)
if decoder is not None:
decoder_model_args = set(inspect.signature(decoder.forward).parameters)
model_args |= {f"decoder_{x}" for x in decoder_model_args}
# allow assistant_encoder_outputs to be passed if we're doing assisted generating
if "assistant_encoder_outputs" in model_kwargs:
model_args |= {"assistant_encoder_outputs"}
for key, value in model_kwargs.items():
if value is not None and key not in model_args:
unused_model_args.append(key)
if unused_model_args:
raise ValueError(
f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the"
" generate arguments will also show up in this list)"
)
def _validate_generated_length(self, generation_config, input_ids_length, has_default_max_length):
"""Performs validation related to the resulting generated length"""
# Can't throw warnings/exceptions during compilation
if is_torchdynamo_compiling():
return
# 1. Max length warnings related to poor parameterization
if has_default_max_length and generation_config.max_new_tokens is None and generation_config.max_length == 20:
# 20 is the default max_length of the generation config
warnings.warn(
f"Using the model-agnostic default `max_length` (={generation_config.max_length}) to control the "
"generation length. We recommend setting `max_new_tokens` to control the maximum length of the "
"generation.",
UserWarning,
)
if input_ids_length >= generation_config.max_length:
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
raise ValueError(
f"Input length of {input_ids_string} is {input_ids_length}, but `max_length` is set to"
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
" increasing `max_length` or, better yet, setting `max_new_tokens`."
)
# 2. Min length warnings due to unfeasible parameter combinations
min_length_error_suffix = (
" Generation will stop at the defined maximum length. You should decrease the minimum length and/or "
"increase the maximum length."
)
if has_default_max_length:
min_length_error_suffix += (
f" Note that `max_length` is set to {generation_config.max_length}, its default value."
)
if generation_config.min_length is not None and generation_config.min_length > generation_config.max_length:
warnings.warn(
f"Unfeasible length constraints: `min_length` ({generation_config.min_length}) is larger than"
f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix,
UserWarning,
)
if generation_config.min_new_tokens is not None:
min_length = generation_config.min_new_tokens + input_ids_length
if min_length > generation_config.max_length:
warnings.warn(
f"Unfeasible length constraints: `min_new_tokens` ({generation_config.min_new_tokens}), when "
f"added to the prompt length ({input_ids_length}), is larger than"
f" the maximum possible length ({generation_config.max_length})." + min_length_error_suffix,
UserWarning,
)
def _prepare_generated_length(
self,
generation_config,
has_default_max_length,
has_default_min_length,
model_input_name,
input_ids_length,
inputs_tensor,
):
"""Prepared max and min length in generation configs to avoid clashes between similar attributes"""
if generation_config.max_new_tokens is not None:
if not has_default_max_length and generation_config.max_length is not None:
logger.warning(
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
"Please refer to the documentation for more information. "
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
)
generation_config.max_length = generation_config.max_new_tokens + input_ids_length
# if both `inputs_embeds` and `input_ids` are passed, we do not correct the length
# otherwise we need total length [inputs-embeds-len + new-tokens-len] to not go beyond indicated `max_length``
elif (
model_input_name == "inputs_embeds"
and input_ids_length != inputs_tensor.shape[1]
and input_ids_length != 0
and not self.config.is_encoder_decoder
):
generation_config.max_length -= inputs_tensor.shape[1]
elif has_default_max_length: # by default let's always generate 20 new tokens
if generation_config.max_length == GenerationConfig().max_length:
generation_config.max_length = generation_config.max_length + input_ids_length
max_position_embeddings = getattr(self.config, "max_position_embeddings", None)
if max_position_embeddings is not None:
generation_config.max_length = min(generation_config.max_length, max_position_embeddings)
# same for min length
if generation_config.min_new_tokens is not None:
if not has_default_min_length:
logger.warning(
f"Both `min_new_tokens` (={generation_config.min_new_tokens}) and `min_length`(="
f"{generation_config.min_length}) seem to have been set. `min_new_tokens` will take precedence. "
"Please refer to the documentation for more information. "
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)"
)
generation_config.min_length = generation_config.min_new_tokens + input_ids_length
elif (
model_input_name == "inputs_embeds"
and input_ids_length != inputs_tensor.shape[1]
and not self.config.is_encoder_decoder
):
generation_config.min_length = max(generation_config.min_length - inputs_tensor.shape[1], 0)
return generation_config
def _prepare_generation_config(
self, generation_config: Optional[GenerationConfig], **kwargs: Dict
) -> Tuple[GenerationConfig, Dict]:
"""
Prepares the base generation config, then applies any generation configuration options from kwargs. This
function handles retrocompatibility with respect to configuration files.
"""
# TODO joao: when we can detect `fullgraph=True` in `torch.compile` (https://github.com/pytorch/pytorch/pull/120400)
# replace `is_torchdynamo_compiling` by the corresponding check. As it is, we are being too restrictive with
# the parameterization in `fullgraph=False` so as to enable `fullgraph=True`.
# priority: `generation_config` argument > `model.generation_config` (the default generation config)
using_model_generation_config = False
if generation_config is None:
# legacy: users may modify the model configuration to control generation. To trigger this legacy behavior,
# the following conditions must be met
# 1) the generation config must have been created from the model config (`_from_model_config` field);
# 2) the generation config must have seen no modification since its creation (the hash is the same);
# 3) there are non-default generation parameters in the model config.
# 4) the user must have set new generation parameters in the model config.
# NOTE: `torch.compile` can't compile `hash`, this legacy support is disabled with compilation.
if (
not is_torchdynamo_compiling()
and self.generation_config._from_model_config # 1)
and self.generation_config._original_object_hash == hash(self.generation_config) # 2)
and len(self.config._get_non_default_generation_parameters()) > 0 # 3)
):
new_generation_config = GenerationConfig.from_model_config(self.config)
if new_generation_config != self.generation_config: # 4)
warnings.warn(
"You have modified the pretrained model configuration to control generation. This is a"
" deprecated strategy to control generation and will be removed in v5."
" Please use and modify the model generation configuration (see"
" https://huggingface.co/docs/transformers/generation_strategies#default-text-generation-configuration )",
UserWarning,
)
self.generation_config = new_generation_config
generation_config = self.generation_config
using_model_generation_config = True
# `torch.compile` can't compile `copy.deepcopy`, arguments in `kwargs` that are part of `generation_config`
# will mutate the object with `.update`. As such, passing these arguments through `kwargs` is disabled -- an
# exception will be raised in `_validate_model_kwargs`
if not is_torchdynamo_compiling():
generation_config = copy.deepcopy(generation_config)
model_kwargs = generation_config.update(**kwargs)
# If `generation_config` is provided, let's fallback ALL special tokens to the default values for the model
if not using_model_generation_config:
if generation_config.bos_token_id is None:
generation_config.bos_token_id = self.generation_config.bos_token_id
if generation_config.eos_token_id is None:
generation_config.eos_token_id = self.generation_config.eos_token_id
if generation_config.pad_token_id is None:
generation_config.pad_token_id = self.generation_config.pad_token_id
if generation_config.decoder_start_token_id is None:
generation_config.decoder_start_token_id = self.generation_config.decoder_start_token_id
else:
model_kwargs = kwargs
return generation_config, model_kwargs
def _get_initial_cache_position(self, input_ids, model_kwargs):
"""Calculates `cache_position` for the pre-fill stage based on `input_ids` and optionally past length"""
# `torch.compile`-friendly `torch.arange` from a shape -- the lines below are equivalent to `torch.arange`
if "inputs_embeds" in model_kwargs and not self.config.is_encoder_decoder:
cache_position = torch.ones_like(model_kwargs["inputs_embeds"][0, :, 0], dtype=torch.int64).cumsum(0) - 1
elif "decoder_inputs_embeds" in model_kwargs and self.config.is_encoder_decoder:
cache_position = (
torch.ones_like(model_kwargs["decoder_inputs_embeds"][0, :, 0], dtype=torch.int64).cumsum(0) - 1
)
else:
cache_position = torch.ones_like(input_ids[0, :], dtype=torch.int64).cumsum(0) - 1
past_length = 0
if model_kwargs.get("past_key_values") is not None:
cache = model_kwargs["past_key_values"]
past_length = 0
if not isinstance(cache, Cache):
past_length = cache[0][0].shape[2]
elif hasattr(cache, "get_seq_length") and cache.get_seq_length() is not None:
past_length = cache.get_seq_length()
# TODO(joao): this is not torch.compile-friendly, find a work-around. If the cache is not empty,
# end-to-end compilation will yield bad results because `cache_position` will be incorrect.
if not is_torchdynamo_compiling():
cache_position = cache_position[past_length:]
model_kwargs["cache_position"] = cache_position
return model_kwargs
def _get_cache(
self, cache_implementation: str, batch_size: int, max_cache_len: int, device: torch.device, model_kwargs
) -> Cache:
"""
Sets a cache for `generate`, that will persist across calls. A new cache will only be initialized a
new `generate` call requires a larger cache or uses a different batch size.
Returns the resulting cache object.
"""
cache_cls: Cache = NEED_SETUP_CACHE_CLASSES_MAPPING[cache_implementation]
requires_cross_attention_cache = (
self.config.is_encoder_decoder or model_kwargs.get("encoder_outputs") is not None
)
if hasattr(self, "_cache"):
cache_to_check = self._cache.self_attention_cache if requires_cross_attention_cache else self._cache
if cache_implementation == "sliding_window":
max_cache_len = min(self.config.sliding_window, max_cache_len)
need_new_cache = (
not hasattr(self, "_cache")
or (not isinstance(cache_to_check, cache_cls))
or cache_to_check.max_batch_size != batch_size
)
if cache_implementation != "mamba":
need_new_cache = need_new_cache or cache_to_check.max_cache_len < max_cache_len
if requires_cross_attention_cache and hasattr(self, "_cache"):
need_new_cache = (
need_new_cache
or self._cache.cross_attention_cache.max_cache_len != model_kwargs["encoder_outputs"][0].shape[1]
)
if need_new_cache:
if hasattr(self.config, "_pre_quantization_dtype"):
cache_dtype = self.config._pre_quantization_dtype
else:
if not is_torchdynamo_compiling():
cache_dtype = self.dtype
else:
# NOTE: self.dtype is not compatible with torch.compile, as it calls `self.parameters()`.
# Workaround: trust the lm_head, whose attribute name is somewhat consistent across generative
# models. May cause trobles with non-text modalities.
cache_dtype = self.get_output_embeddings().weight.dtype
cache_kwargs = {
"config": self.config.get_text_config(),
"max_batch_size": batch_size,
"max_cache_len": max_cache_len,
"dtype": cache_dtype,
"device": device if cache_implementation == "offloaded_static" else None,
}
self._cache = cache_cls(**cache_kwargs)
if requires_cross_attention_cache:
encoder_kwargs = cache_kwargs.copy()
encoder_kwargs["max_cache_len"] = model_kwargs["encoder_outputs"][0].shape[1]
self._cache = EncoderDecoderCache(self._cache, cache_cls(**encoder_kwargs))
else:
self._cache.reset()
return self._cache
def _supports_default_dynamic_cache(self) -> bool:
"""
Return `True` if current model can use a `DynamicCache` instance when initializing the `past_key_values`.
This is mostly the same as `_supports_cache_class` attribute, but add exception for `Jamba` model which
uses its own `HybridMambaAttentionDynamicCache` and do not need to initialize the Cache in advance in
order to save memory (because no back and forth `to_legacy_cache` and `from_legacy_cache` will be performed
for `HybridMambaAttentionDynamicCache`).
"""
return (
self._supports_cache_class
and "jamba" not in self.__class__.__name__.lower()
and "zamba" not in self.__class__.__name__.lower()
and "bamba" not in self.__class__.__name__.lower()
)
def _prepare_cache_for_generation(
self,
generation_config: GenerationConfig,
model_kwargs: Dict,
assistant_model: "PreTrainedModel",
batch_size: int,
max_cache_length: int,
device: torch.device,
) -> bool:
"""
Prepares the cache for generation (if applicable), given `generate`'s parameterization. If a cache is
instantiated, writes it to `model_kwargs`, under the name expected by the model.
"""
cache_name = "past_key_values" if "mamba" not in self.__class__.__name__.lower() else "cache_params"
requires_cross_attention_cache = (
self.config.is_encoder_decoder or model_kwargs.get("encoder_outputs") is not None
)
# Quick escape route 1: if the user specifies a cache, we only need to:
# a) check for conflicting `generate` arguments
# b) convert to the new cache format (if the user passes a legacy cache and model supports it)
user_defined_cache = model_kwargs.get(cache_name)
if user_defined_cache is not None:
if generation_config.cache_implementation is not None:
raise ValueError(
f"Passing both `cache_implementation` (used to initialize certain caches) and `{cache_name}` (a "
"Cache object) is unsupported. Please use only one of the two."
)
if isinstance(user_defined_cache, tuple) and self._supports_default_dynamic_cache():
model_kwargs[cache_name] = (
DynamicCache.from_legacy_cache(user_defined_cache)
if not requires_cross_attention_cache
else EncoderDecoderCache.from_legacy_cache(user_defined_cache)
)
return
# Quick escape route 2: if the user specifies no cache is to be used. (conflicting arguments are handled in
# `generation_config.validate()`)
if generation_config.use_cache is False:
return
# Quick escape route 3: model that only supports legacy caches = nothing to prepare
if not self._supports_default_dynamic_cache():
if generation_config.cache_implementation is not None:
warnings.warn(
"This model does not support `Cache` instances, it only supports the legacy cache format (tuple "
f"of tuples). `cache_implementation` (set to {generation_config.cache_implementation}) will be "
"ignored.",
UserWarning,
)
return
# Otherwise we NEED to prepare a cache, based on `generation_config.cache_implementation`
# TODO(joao): support static caches in assisted generation. assisted generation needs to roll back caches,
# which is only supported in dynamic caches atm
if assistant_model is not None and generation_config.cache_implementation is not None:
logger.warning_once(
"An assistant model is provided, using a dynamic cache instead of a cache of type="
f"'{generation_config.cache_implementation}'."
)
generation_config.cache_implementation = None
if generation_config.cache_implementation is not None:
if generation_config.cache_implementation in NEED_SETUP_CACHE_CLASSES_MAPPING:
if generation_config.cache_implementation == "static" and not self._supports_static_cache:
raise ValueError(
"This model does not support `cache_implementation='static'`. Please check the following "
"issue: https://github.com/huggingface/transformers/issues/28981"
)
model_kwargs[cache_name] = self._get_cache(
cache_implementation=generation_config.cache_implementation,
batch_size=max(generation_config.num_beams, generation_config.num_return_sequences) * batch_size,
max_cache_len=max_cache_length,
device=device,
model_kwargs=model_kwargs,
)
elif generation_config.cache_implementation == "quantized":
if not self._supports_quantized_cache:
raise ValueError(
"This model does not support the quantized cache. If you want your model to support quantized "
"cache, please open an issue and tag @zucchini-nlp."
)
cache_config = (
generation_config.cache_config
if generation_config.cache_config is not None
else QuantizedCacheConfig()
)
cache_class = QUANT_BACKEND_CLASSES_MAPPING[cache_config.backend]
if cache_config.backend == "quanto" and not is_optimum_quanto_available():
raise ImportError(
"You need to install optimum-quanto in order to use KV cache quantization with optimum-quanto backend. "
"Please install it via with `pip install optimum-quanto`"
)
elif cache_config.backend == "HQQ" and not is_hqq_available():
raise ImportError(
"You need to install `HQQ` in order to use KV cache quantization with HQQ backend. "
"Please install it via with `pip install hqq`"
)
model_kwargs[cache_name] = cache_class(cache_config)
elif generation_config.cache_implementation == "offloaded":
model_kwargs[cache_name] = OffloadedCache()
# Use DynamicCache() instance by default. This will avoid back and forth from legacy format that
# keeps copying the cache thus using much more memory
else:
model_kwargs[cache_name] = (
DynamicCache()
if not requires_cross_attention_cache
else EncoderDecoderCache(DynamicCache(), DynamicCache())
)
def _supports_logits_to_keep(self) -> bool:
"""
Return True if the current model supports the keyword argument `logits_to_keep` in forward()
to save memory. Checking it in this way allows to avoid using a new model attribute.
"""
return "logits_to_keep" in set(inspect.signature(self.forward).parameters.keys())
def _prepare_special_tokens(
self,
generation_config: GenerationConfig,
kwargs_has_attention_mask: Optional[bool] = None,
device: Optional[Union[torch.device, str]] = None,
):
"""
Prepares the special tokens for generation, overwriting the generation config with their processed versions
converted to tensor.
Note that `generation_config` is changed in place and stops being serializable after this method is called.
That is no problem if called within `generate` (`generation_config` is a local copy that doesn't leave the
function). However, if called outside `generate`, consider creating a copy of `generation_config` first.
"""
# Convert special tokens to tensors
def _tensor_or_none(token, device=None):
if token is None:
return token
device = device if device is not None else self.device
if isinstance(token, torch.Tensor):
return token.to(device)
return torch.tensor(token, device=device, dtype=torch.long)
bos_token_tensor = _tensor_or_none(generation_config.bos_token_id, device=device)
eos_token_tensor = _tensor_or_none(generation_config.eos_token_id, device=device)
pad_token_tensor = _tensor_or_none(generation_config.pad_token_id, device=device)
decoder_start_token_tensor = _tensor_or_none(generation_config.decoder_start_token_id, device=device)
# for BC we also try to get `decoder_start_token_id` or `bos_token_id` (#30892)
if self.config.is_encoder_decoder:
decoder_start_token_tensor = (
decoder_start_token_tensor if decoder_start_token_tensor is not None else bos_token_tensor
)
# We can have more than one eos token. Always treat it as a 1D tensor (when it exists).
if eos_token_tensor is not None and eos_token_tensor.ndim == 0:
eos_token_tensor = eos_token_tensor.unsqueeze(0)
# Set pad token if unset (and there are conditions to do so)
if pad_token_tensor is None and eos_token_tensor is not None:
if not is_torchdynamo_compiling():
if kwargs_has_attention_mask is not None and not kwargs_has_attention_mask:
logger.warning(
"The attention mask and the pad token id were not set. As a consequence, you may observe "
"unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results."
)
pad_token_tensor = eos_token_tensor[0]
logger.warning(f"Setting `pad_token_id` to `eos_token_id`:{pad_token_tensor} for open-end generation.")
# Sanity checks/warnings
if self.config.is_encoder_decoder and decoder_start_token_tensor is None:
raise ValueError(
"`decoder_start_token_id` or `bos_token_id` has to be defined for encoder-decoder generation."
)
if not is_torchdynamo_compiling(): # Checks that depend on tensor-dependent control flow
if (
eos_token_tensor is not None
and isin_mps_friendly(elements=eos_token_tensor, test_elements=pad_token_tensor).any()
):
if kwargs_has_attention_mask is not None and not kwargs_has_attention_mask:
logger.warning_once(
"The attention mask is not set and cannot be inferred from input because pad token is same as "
"eos token. As a consequence, you may observe unexpected behavior. Please pass your input's "
"`attention_mask` to obtain reliable results."
)
if eos_token_tensor is not None and (
torch.is_floating_point(eos_token_tensor) or (eos_token_tensor < 0).any()
):
logger.warning(
f"`eos_token_id` should consist of positive integers, but is {eos_token_tensor}. Your generation "
"will not stop until the maximum length is reached. Depending on other flags, it may even crash."
)
# Update generation config with the updated special tokens tensors
# NOTE: this must be written into a different attribute name than the one holding the original special tokens
# (in their non-tensor form), in order to enable end-to-end compilation. See
# https://pytorch.org/docs/stable/torch.compiler_cudagraph_trees.html#limitations
generation_config._bos_token_tensor = bos_token_tensor
generation_config._eos_token_tensor = eos_token_tensor
generation_config._pad_token_tensor = pad_token_tensor
generation_config._decoder_start_token_tensor = decoder_start_token_tensor
@torch.no_grad()
def generate(
self,
inputs: Optional[torch.Tensor] = None,
generation_config: Optional[GenerationConfig] = None,
logits_processor: Optional[LogitsProcessorList] = None,
stopping_criteria: Optional[StoppingCriteriaList] = None,
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
synced_gpus: Optional[bool] = None,
assistant_model: Optional["PreTrainedModel"] = None,
streamer: Optional["BaseStreamer"] = None,
negative_prompt_ids: Optional[torch.Tensor] = None,
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[GenerateOutput, torch.LongTensor]:
r"""
Generates sequences of token ids for models with a language modeling head.
<Tip warning={true}>
Most generation-controlling parameters are set in `generation_config` which, if not passed, will be set to the
model's default generation configuration. You can override any `generation_config` by passing the corresponding
parameters to generate(), e.g. `.generate(inputs, num_beams=4, do_sample=True)`.
For an overview of generation strategies and code examples, check out the [following
guide](../generation_strategies).
</Tip>
Parameters:
inputs (`torch.Tensor` of varying shape depending on the modality, *optional*):
The sequence used as a prompt for the generation or as model inputs to the encoder. If `None` the
method initializes it with `bos_token_id` and a batch size of 1. For decoder-only models `inputs`
should be in the format of `input_ids`. For encoder-decoder models *inputs* can represent any of
`input_ids`, `input_values`, `input_features`, or `pixel_values`.
generation_config ([`~generation.GenerationConfig`], *optional*):
The generation configuration to be used as base parametrization for the generation call. `**kwargs`
passed to generate matching the attributes of `generation_config` will override them. If
`generation_config` is not provided, the default will be used, which has the following loading
priority: 1) from the `generation_config.json` model file, if it exists; 2) from the model
configuration. Please note that unspecified parameters will inherit [`~generation.GenerationConfig`]'s
default values, whose documentation should be checked to parameterize generation.
logits_processor (`LogitsProcessorList`, *optional*):
Custom logits processors that complement the default logits processors built from arguments and
generation config. If a logit processor is passed that is already created with the arguments or a
generation config an error is thrown. This feature is intended for advanced users.
stopping_criteria (`StoppingCriteriaList`, *optional*):
Custom stopping criteria that complements the default stopping criteria built from arguments and a
generation config. If a stopping criteria is passed that is already created with the arguments or a
generation config an error is thrown. If your stopping criteria depends on the `scores` input, make
sure you pass `return_dict_in_generate=True, output_scores=True` to `generate`. This feature is
intended for advanced users.
prefix_allowed_tokens_fn (`Callable[[int, torch.Tensor], List[int]]`, *optional*):
If provided, this function constraints the beam search to allowed tokens only at each step. If not
provided no constraint is applied. This function takes 2 arguments: the batch ID `batch_id` and
`input_ids`. It has to return a list with the allowed tokens for the next generation step conditioned
on the batch ID `batch_id` and the previously generated tokens `inputs_ids`. This argument is useful
for constrained generation conditioned on the prefix, as described in [Autoregressive Entity
Retrieval](https://arxiv.org/abs/2010.00904).
synced_gpus (`bool`, *optional*):
Whether to continue running the while loop until max_length. Unless overridden, this flag will be set
to `True` if using `FullyShardedDataParallel` or DeepSpeed ZeRO Stage 3 with multiple GPUs to avoid
deadlocking if one GPU finishes generating before other GPUs. Otherwise, defaults to `False`.
assistant_model (`PreTrainedModel`, *optional*):
An assistant model that can be used to accelerate generation. The assistant model must have the exact
same tokenizer. The acceleration is achieved when forecasting candidate tokens with the assistant model
is much faster than running generation with the model you're calling generate from. As such, the
assistant model should be much smaller.
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
negative_prompt_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
The negative prompt needed for some processors such as CFG. The batch size must match the input batch
size. This is an experimental feature, subject to breaking API changes in future versions.
negative_prompt_attention_mask (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Attention_mask for `negative_prompt_ids`.
kwargs (`Dict[str, Any]`, *optional*):
Ad hoc parametrization of `generation_config` and/or additional model-specific kwargs that will be
forwarded to the `forward` function of the model. If the model is an encoder-decoder model, encoder
specific kwargs should not be prefixed and decoder specific kwargs should be prefixed with *decoder_*.
Return:
[`~utils.ModelOutput`] or `torch.LongTensor`: A [`~utils.ModelOutput`] (if `return_dict_in_generate=True`
or when `config.return_dict_in_generate=True`) or a `torch.LongTensor`.
If the model is *not* an encoder-decoder model (`model.config.is_encoder_decoder=False`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateDecoderOnlyOutput`],
- [`~generation.GenerateBeamDecoderOnlyOutput`]
If the model is an encoder-decoder model (`model.config.is_encoder_decoder=True`), the possible
[`~utils.ModelOutput`] types are:
- [`~generation.GenerateEncoderDecoderOutput`],
- [`~generation.GenerateBeamEncoderDecoderOutput`]
"""
# 1. Handle `generation_config` and kwargs that might update it, and validate the `.generate()` call
self._validate_model_class()
tokenizer = kwargs.pop("tokenizer", None) # Pull this out first, we only use it for stopping criteria
assistant_tokenizer = kwargs.pop("assistant_tokenizer", None) # only used for assisted generation
generation_config, model_kwargs = self._prepare_generation_config(generation_config, **kwargs)
self._validate_model_kwargs(model_kwargs.copy())
self._validate_assistant(assistant_model, tokenizer, assistant_tokenizer)
# 2. Set generation parameters if not already defined
if synced_gpus is None:
synced_gpus = (is_deepspeed_zero3_enabled() or is_fsdp_managed_module(self)) and dist.get_world_size() > 1
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
accepts_attention_mask = "attention_mask" in set(inspect.signature(self.forward).parameters.keys())
requires_attention_mask = "encoder_outputs" not in model_kwargs
kwargs_has_attention_mask = model_kwargs.get("attention_mask", None) is not None
# 3. Define model inputs
inputs_tensor, model_input_name, model_kwargs = self._prepare_model_inputs(
inputs, generation_config.bos_token_id, model_kwargs
)
batch_size = inputs_tensor.shape[0]
device = inputs_tensor.device
self._prepare_special_tokens(generation_config, kwargs_has_attention_mask, device=device)
# decoder-only models must use left-padding for batched generation.
if not self.config.is_encoder_decoder and not is_torchdynamo_compiling():
# If `input_ids` was given, check if the last id in any sequence is `pad_token_id`
# Note: If using, `inputs_embeds` this check does not work, because we want to be more hands-off.
if (
generation_config._pad_token_tensor is not None
and batch_size > 1
and len(inputs_tensor.shape) == 2
and torch.sum(inputs_tensor[:, -1] == generation_config._pad_token_tensor) > 0
):
logger.warning(
"A decoder-only architecture is being used, but right-padding was detected! For correct "
"generation results, please set `padding_side='left'` when initializing the tokenizer."
)
# 4. Define other model kwargs
# decoder-only models with inputs_embeds forwarding must use caching (otherwise we can't detect whether we are
# generating the first new token or not, and we only want to use the embeddings for the first new token)
if not self.config.is_encoder_decoder and model_input_name == "inputs_embeds":
generation_config.use_cache = True
if not kwargs_has_attention_mask and requires_attention_mask and accepts_attention_mask:
model_kwargs["attention_mask"] = self._prepare_attention_mask_for_generation(
inputs_tensor, generation_config, model_kwargs
)
elif kwargs_has_attention_mask:
# TODO (joao): generalize this check with other types of inputs
if model_input_name == "input_ids" and len(model_kwargs["attention_mask"].shape) > 2:
raise ValueError("`attention_mask` passed to `generate` must be 2D.")
if self.config.is_encoder_decoder and "encoder_outputs" not in model_kwargs:
# if model is encoder decoder encoder_outputs are created and added to `model_kwargs`
model_kwargs = self._prepare_encoder_decoder_kwargs_for_generation(
inputs_tensor, model_kwargs, model_input_name, generation_config
)
# 5. Prepare `input_ids` which will be used for auto-regressive generation
if self.config.is_encoder_decoder:
input_ids, model_kwargs = self._prepare_decoder_input_ids_for_generation(
batch_size=batch_size,
model_input_name=model_input_name,
model_kwargs=model_kwargs,
decoder_start_token_id=generation_config._decoder_start_token_tensor,
device=inputs_tensor.device,
)
else:
input_ids = inputs_tensor if model_input_name == "input_ids" else model_kwargs.pop("input_ids")
if generation_config.token_healing:
input_ids = self.heal_tokens(input_ids, tokenizer)
if streamer is not None:
streamer.put(input_ids.cpu())
# 6. Prepare `max_length` depending on other stopping criteria.
input_ids_length = input_ids.shape[-1]
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
has_default_min_length = kwargs.get("min_length") is None and generation_config.min_length is not None
generation_config = self._prepare_generated_length(
generation_config=generation_config,
has_default_max_length=has_default_max_length,
has_default_min_length=has_default_min_length,
model_input_name=model_input_name,
inputs_tensor=inputs_tensor,
input_ids_length=input_ids_length,
)
# If the model supports `logits_to_keep` in forward(), set it to 1 to avoid computing the whole
# logit matrix. This can save a lot of memory during the first forward pass. Note that assisted decoding
# dynamically overrides this value as it can need more than the last token logits
if self._supports_logits_to_keep() and "logits_to_keep" not in model_kwargs:
model_kwargs["logits_to_keep"] = 1
self._validate_generated_length(generation_config, input_ids_length, has_default_max_length)
# 7. Prepare the cache.
# - `model_kwargs` may be updated in place with a cache as defined by the parameters in `generation_config`.
# - different models have a different cache name expected by the model (default = "past_key_values")
# - `max_length`, prepared above, is used to determine the maximum cache length
max_cache_length = generation_config.max_length
if (
inputs_tensor.shape[1] != input_ids_length
and model_input_name == "inputs_embeds"
and not self.config.is_encoder_decoder
):
max_cache_length += inputs_tensor.shape[1]
self._prepare_cache_for_generation(
generation_config, model_kwargs, assistant_model, batch_size, max_cache_length, device
)
# 8. determine generation mode
generation_mode = generation_config.get_generation_mode(assistant_model)
if streamer is not None and (generation_config.num_beams > 1):
raise ValueError(
"`streamer` cannot be used with beam search (yet!). Make sure that `num_beams` is set to 1."
)
if not is_torchdynamo_compiling() and self.device.type != input_ids.device.type:
warnings.warn(
"You are calling .generate() with the `input_ids` being on a device type different"
f" than your model's device. `input_ids` is on {input_ids.device.type}, whereas the model"
f" is on {self.device.type}. You may experience unexpected behaviors or slower generation."
" Please make sure that you have put `input_ids` to the"
f" correct device by calling for example input_ids = input_ids.to('{self.device.type}') before"
" running `.generate()`.",
UserWarning,
)
# 9. prepare logits processors and stopping criteria
prepared_logits_processor = self._get_logits_processor(
generation_config=generation_config,
input_ids_seq_length=input_ids_length,
encoder_input_ids=inputs_tensor,
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
logits_processor=logits_processor,
device=inputs_tensor.device,
model_kwargs=model_kwargs,
negative_prompt_ids=negative_prompt_ids,
negative_prompt_attention_mask=negative_prompt_attention_mask,
)
prepared_stopping_criteria = self._get_stopping_criteria(
generation_config=generation_config, stopping_criteria=stopping_criteria, tokenizer=tokenizer, **kwargs
)
# Set model_kwargs `use_cache` so we can use it later in forward runs
model_kwargs["use_cache"] = generation_config.use_cache
# 10. go into different generation modes
if generation_mode == GenerationMode.ASSISTED_GENERATION:
if generation_config.num_return_sequences > 1:
raise ValueError(
"num_return_sequences has to be 1 when doing assisted generate, "
f"but is {generation_config.num_return_sequences}."
)
if batch_size > 1:
raise ValueError("assisted generate is only supported for batch_size = 1")
if not model_kwargs["use_cache"]:
raise ValueError("assisted generate requires `use_cache=True`")
if generation_config.cache_implementation in ["static", "hybrid", "sliding_window"]:
raise ValueError("assisted generate is not supported with Static cache classes`")
if self._is_stateful:
# In assisted generation we need the ability to confirm whether the model would pick certain tokens,
# which is not possible with stateful models (they can't reset to a previous subset of generated text)
raise ValueError(
f"assisted generation is not supported with stateful models, such as {self.__class__.__name__}"
)
# 11. Get the candidate generator, given the parameterization
candidate_generator = self._get_candidate_generator(
generation_config=generation_config,
input_ids=input_ids,
inputs_tensor=inputs_tensor,
assistant_model=assistant_model,
logits_processor=logits_processor,
target_tokenizer=tokenizer,
assistant_tokenizer=assistant_tokenizer,
model_kwargs=model_kwargs,
)
# 12. run assisted generate
result = self._assisted_decoding(
input_ids,
candidate_generator=candidate_generator,
logits_processor=prepared_logits_processor,
stopping_criteria=prepared_stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
elif generation_mode == GenerationMode.DOLA_GENERATION:
if self._is_stateful:
# DoLa decoding was not designed for stateful models, and would require some changes
raise ValueError(
f"dola decoding is not supported with stateful models, such as {self.__class__.__name__}"
)
result = self._dola_decoding(
input_ids,
dola_layers=generation_config.dola_layers,
logits_processor=prepared_logits_processor,
stopping_criteria=prepared_stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
elif generation_mode == GenerationMode.CONTRASTIVE_SEARCH:
if not model_kwargs["use_cache"]:
raise ValueError("Contrastive search requires `use_cache=True`")
if self._is_stateful:
# Just like assisted generation, we need to be able to rollback to a previous state (see comment above)
raise ValueError(
f"contrastive search is not supported with stateful models, such as {self.__class__.__name__}"
)
result = self._contrastive_search(
input_ids,
logits_processor=prepared_logits_processor,
stopping_criteria=prepared_stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
elif generation_mode in (GenerationMode.SAMPLE, GenerationMode.GREEDY_SEARCH):
# 11. expand input_ids with `num_return_sequences` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_return_sequences,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 12. run sample (it degenerates to greedy search when `generation_config.do_sample=False`)
result = self._sample(
input_ids,
logits_processor=prepared_logits_processor,
stopping_criteria=prepared_stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
streamer=streamer,
**model_kwargs,
)
elif generation_mode in (GenerationMode.BEAM_SAMPLE, GenerationMode.BEAM_SEARCH):
# 11. prepare beam search scorer
beam_scorer = BeamSearchScorer(
batch_size=batch_size,
num_beams=generation_config.num_beams,
device=inputs_tensor.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
num_beam_hyps_to_keep=generation_config.num_return_sequences,
max_length=generation_config.max_length,
)
# 12. interleave input_ids with `num_beams` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run beam sample
result = self._beam_search(
input_ids,
beam_scorer,
logits_processor=prepared_logits_processor,
stopping_criteria=prepared_stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif generation_mode == GenerationMode.GROUP_BEAM_SEARCH:
# 11. prepare beam search scorer
beam_scorer = BeamSearchScorer(
batch_size=batch_size,
num_beams=generation_config.num_beams,
device=inputs_tensor.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
num_beam_hyps_to_keep=generation_config.num_return_sequences,
num_beam_groups=generation_config.num_beam_groups,
max_length=generation_config.max_length,
)
# 12. interleave input_ids with `num_beams` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run beam search
result = self._group_beam_search(
input_ids,
beam_scorer,
logits_processor=prepared_logits_processor,
stopping_criteria=prepared_stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
**model_kwargs,
)
elif generation_mode == GenerationMode.CONSTRAINED_BEAM_SEARCH:
final_constraints = []
if generation_config.constraints is not None:
final_constraints = generation_config.constraints
if generation_config.force_words_ids is not None:
def typeerror():
raise ValueError(
"`force_words_ids` has to either be a `List[List[List[int]]]` or `List[List[int]]` "
f"of positive integers, but is {generation_config.force_words_ids}."
)
if (
not isinstance(generation_config.force_words_ids, list)
or len(generation_config.force_words_ids) == 0
):
typeerror()
for word_ids in generation_config.force_words_ids:
if isinstance(word_ids[0], list):
if not isinstance(word_ids, list) or len(word_ids) == 0:
typeerror()
if any(not isinstance(token_ids, list) for token_ids in word_ids):
typeerror()
if any(
any((not isinstance(token_id, int) or token_id < 0) for token_id in token_ids)
for token_ids in word_ids
):
typeerror()
constraint = DisjunctiveConstraint(word_ids)
else:
if not isinstance(word_ids, list) or len(word_ids) == 0:
typeerror()
if any((not isinstance(token_id, int) or token_id < 0) for token_id in word_ids):
typeerror()
constraint = PhrasalConstraint(word_ids)
final_constraints.append(constraint)
# 11. prepare beam search scorer
constrained_beam_scorer = ConstrainedBeamSearchScorer(
constraints=final_constraints,
batch_size=batch_size,
num_beams=generation_config.num_beams,
device=inputs_tensor.device,
length_penalty=generation_config.length_penalty,
do_early_stopping=generation_config.early_stopping,
num_beam_hyps_to_keep=generation_config.num_return_sequences,
max_length=generation_config.max_length,
)
# 12. interleave input_ids with `num_beams` additional sequences per batch
input_ids, model_kwargs = self._expand_inputs_for_generation(
input_ids=input_ids,
expand_size=generation_config.num_beams,
is_encoder_decoder=self.config.is_encoder_decoder,
**model_kwargs,
)
# 13. run beam search
result = self._constrained_beam_search(
input_ids,
constrained_beam_scorer=constrained_beam_scorer,
logits_processor=prepared_logits_processor,
stopping_criteria=prepared_stopping_criteria,
generation_config=generation_config,
synced_gpus=synced_gpus,
**model_kwargs,
)
# Convert to legacy cache format if requested
if (
generation_config.return_legacy_cache is True
and not is_torchdynamo_compiling()
and hasattr(result, "past_key_values")
and getattr(result.past_key_values, "to_legacy_cache") is not None
):
result.past_key_values = result.past_key_values.to_legacy_cache()
return result
def _has_unfinished_sequences(
self,
this_peer_finished: bool,
synced_gpus: bool,
device: torch.device,
cur_len: Optional[int] = None,
max_length: Optional[int] = None,
) -> bool:
"""
Returns whether there are still unfinished sequences in the device. The existence of unfinished sequences is
fed through `this_peer_finished`. ZeRO stage 3-friendly.
"""
# torch.compile does not support data-dependent control flow. This is a workaround to allow torch.compile,
# although we lose the ability to stop when all sequences return an EOS token (and other stopping criteria)
# TODO (joao): remove this when torch's support for control flow is not experimental (https://pytorch.org/docs/stable/generated/torch.cond.html)
if is_torchdynamo_compiling():
return cur_len < max_length
else:
if synced_gpus:
# Under synced_gpus the `forward` call must continue until all gpus complete their sequence.
# The following logic allows an early break if all peers finished generating their sequence
this_peer_finished_flag = torch.tensor(0.0 if this_peer_finished else 1.0).to(device)
# send 0.0 if we finished, 1.0 otherwise
dist.all_reduce(this_peer_finished_flag, op=dist.ReduceOp.SUM)
# did all peers finish? the reduced sum will be 0.0 then
if this_peer_finished_flag.item() == 0.0:
return False
elif this_peer_finished:
return False
return True
def heal_tokens(
self, input_ids: torch.LongTensor, tokenizer: Optional["PreTrainedTokenizerBase"] = None
) -> torch.LongTensor:
r"""
Generates sequences of token ids for models with a language modeling head.
Parameters:
input_ids (`torch.LongTensor`): The sequence used as a prompt for the generation.
tokenizer (`PreTrainedTokenizerBase`, *optional*): The tokenizer used to decode the input ids.
Return:
`torch.LongTensor` where each sequence has its tail token replaced with its appropriate extension.
"""
if tokenizer is None:
raise ValueError(
" When generating with token healing, you must pass the model's tokenizer to the `tokenizer` "
"argument of `generate`."
)
bos_token_id, pad_token_id = tokenizer.bos_token_id, tokenizer.pad_token_id
vocab_trie = ExtensionsTrie(tokenizer.get_vocab())
generation_config = GenerationConfig(max_new_tokens=1, pad_token_id=pad_token_id)
# assumption: leading/trailing whitespace is not meaningful, so the prompts are
# stripped before re-tokenizing to desensitize generation to whitespace artefacts
prompts = [p.strip() for p in tokenizer.batch_decode(input_ids, skip_special_tokens=True)]
input_ids = tokenizer(
prompts,
return_tensors="pt",
padding=True,
).input_ids.to(input_ids.device)
# replace bos with pad to not condition healing on it
input_ids = torch.where(input_ids == bos_token_id, pad_token_id, input_ids)
"""
the latter code assumes the input_ids is not empty,
input_id has to be checked if contains elements
"""
if input_ids.numel() == 0:
return input_ids
tail_ids = input_ids[:, -1].tolist()
space_tok = tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids(" "))[0]
# tail tokens are used for a prefix search, thus, whitespaces are replaced with
# their tokenization (e.g. 'Ġ') to enable search for tokens prefixed with a whitespace
tail_toks = (tokenizer.decode(t).replace(" ", space_tok) for t in tail_ids)
for batch_idx, (tail_id, tail_tok) in enumerate(zip(tail_ids, tail_toks)):
batch_ids = input_ids[batch_idx]
if torch.all(batch_ids == pad_token_id).item():
continue # skip empty sequences (all pad ids)
# apply bias for alternatives (extensions) to the tail token
"""
seq_bias key has to be tuple with int so have to use
tokenizer function to convert str to int
"""
seq_bias = {
(tokenizer.convert_tokens_to_ids(alt_tok),): 10.0 for alt_tok in vocab_trie.extensions(prefix=tail_tok)
}
if len(seq_bias) == 1:
continue # skip if there are no token alternatives to heal with
# slightly favor original token to limit aggressive healing e.g. 'http' -> 'https'
seq_bias[(tail_id,)] += 1.0
generation_config.update(sequence_bias=seq_bias)
trimmed_ids = batch_ids[:-1]
"""
the latter code assumes trimmed_ids is not empty
so have to check the its element count
"""
if trimmed_ids.numel() == 0:
continue
# if the prompt is a single (non-pad) token, regenerate from bos
if len(batch_ids[batch_ids != pad_token_id]) == 1:
trimmed_ids[-1] = bos_token_id
input_ids[batch_idx] = self.generate(trimmed_ids.unsqueeze(0), generation_config=generation_config)
return input_ids
def _dola_decoding(
self,
input_ids: torch.LongTensor,
dola_layers: Union[str, List[int]],
logits_processor: LogitsProcessorList,
stopping_criteria: StoppingCriteriaList,
generation_config: GenerationConfig,
synced_gpus: bool,
streamer: "BaseStreamer",
**model_kwargs,
) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
r"""
Generates sequences of token ids for models with a language modeling head using **dola decoding** and can be
used for decoder-only text models.
The method is based on the paper "DoLa: Decoding by Contrasting Layers Improves Factuality in Large Language
Models" (https://arxiv.org/abs/2309.03883) in ICLR 2024.
Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
dola_layers (`Union[str, List[int]]`):
The candidate layers used in contrasting layers of DoLa. It can be either 1) 'low' or 'high', which
means the lower part or higher part of the model layers, respectively, or 2) a list of layer indices
to be used for candidate layers. The 0-th layer is the word embedding layer of the model.
logits_processor (`LogitsProcessorList`):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
stopping_criteria (`StoppingCriteriaList`, *optional*):
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
used to tell if the generation loop should stop.
generation_config ([`~generation.GenerationConfig`]):
The generation configuration to be used as parametrization of the decoding method.
synced_gpus (`bool`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
model_kwargs:
Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
If model is an encoder-decoder model the kwargs should include `encoder_outputs`.
Return:
[`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`]
or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
[`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
`return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
`model.config.is_encoder_decoder=True`.
"""
if self.config.is_encoder_decoder:
raise ValueError("DoLa decoding is only available for decoder-only models.")
# init values
pad_token_id = generation_config._pad_token_tensor
output_attentions = generation_config.output_attentions
output_hidden_states = generation_config.output_hidden_states
output_scores = generation_config.output_scores
output_logits = generation_config.output_logits
return_dict_in_generate = generation_config.return_dict_in_generate
has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
do_sample = generation_config.do_sample
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
raw_logits = () if (return_dict_in_generate and output_logits) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# keep track of which sequences are already finished
batch_size = input_ids.shape[0]
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
this_peer_finished = False
# prepare layers for DoLa decoding
final_layer = self.config.get_text_config().num_hidden_layers
# if the model has tied word embeddings, we skip the word embeddings (0-th) layer and start from the 2nd layer,
# as the early exit from word embeddings will become identity function
# if the model is really shallow (<=2 layers), we use the 1st layer if it's not the final layer and the 0-th
# layer otherwise. Notice that DoLa does not help shallow models much.
if not self.config.tie_word_embeddings:
start_layer = 0
elif final_layer > 2:
start_layer = 2
elif final_layer == 2:
start_layer = 1
else:
start_layer = 0
# For `N`-layer models with `N <= 40` layers, the layers of `range(0, N // 2, 2)` and `range(N // 2, N, 2)`
# are used for `'low'` and `'high'` layers, respectively.
# For models with `N > 40` layers, the layers of `range(0, 20, 2)` and `range(N - 20, N, 2)` are used for
# `'low'` and `'high'` layers, respectively.
if isinstance(dola_layers, str) and dola_layers == "low":
if start_layer == final_layer // 2:
candidate_premature_layers = [start_layer]
else:
candidate_premature_layers = (
list(range(start_layer, final_layer // 2, 2))
if final_layer <= 40
else list(range(start_layer, 20, 2))
)
elif isinstance(dola_layers, str) and dola_layers == "high":
candidate_premature_layers = (
list(range(final_layer // 2, final_layer, 2))
if final_layer <= 40
else list(range(final_layer - 20, final_layer, 2))
)
# Set the `dola_layers` to a list of integers for layer indices to contrast manually specified layers.
elif isinstance(dola_layers, list):
candidate_premature_layers = [i for i in dola_layers if i < final_layer]
else:
raise ValueError("dola_layers must be either 'low', 'high' or a list of integers.")
lm_head = self.get_output_embeddings()
if lm_head is None:
raise ValueError("DoLa is not supported for models that don't have output embeddings.")
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
# prepare model inputs
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
# forward pass to get next token
outputs = self(
**model_inputs,
return_dict=True,
output_attentions=output_attentions,
output_hidden_states=True,
)
# .float() is needed to retain precision for later logits manipulations
final_layer_next_token_logits = outputs.logits[:, -1, :].detach().clone().float()
final_logits = outputs.logits[:, -1, :].float()
candidate_premature_logits = {}
for candidate_premature_layer in candidate_premature_layers:
candidate_premature_logits[candidate_premature_layer] = lm_head(
outputs.hidden_states[candidate_premature_layer][:, -1, :]
).to(final_logits.device)
# synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping
model_kwargs = self._update_model_kwargs_for_generation(
outputs,
model_kwargs,
is_encoder_decoder=self.config.is_encoder_decoder,
)
if synced_gpus and this_peer_finished:
continue
next_token_logits = _dola_select_contrast(
candidate_premature_layers, candidate_premature_logits, final_logits
)
next_token_logits = next_token_logits.to(input_ids.device)
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores,)
if output_logits:
raw_logits += (final_layer_next_token_logits,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
)
if self.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.config.is_encoder_decoder
else (outputs.hidden_states,)
)
if do_sample: # sample
probs = nn.functional.softmax(next_token_scores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else: # argmax
next_tokens = torch.argmax(next_token_scores, dim=-1)
# finished sentences should have their next token be a padding token
if has_eos_stopping_criteria:
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
if streamer is not None:
streamer.put(next_tokens.cpu())
# stop when each sentence is finished
unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
this_peer_finished = unfinished_sequences.max() == 0
if streamer is not None:
streamer.end()
if return_dict_in_generate:
return GenerateDecoderOnlyOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return input_ids
@torch.no_grad()
def _contrastive_search(
self,
input_ids: torch.LongTensor,
logits_processor: LogitsProcessorList,
stopping_criteria: StoppingCriteriaList,
generation_config: GenerationConfig,
synced_gpus: bool,
streamer: Optional["BaseStreamer"],
**model_kwargs,
) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
r"""
Generates sequences of token ids for models with a language modeling head using **contrastive search** and can
be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
logits_processor (`LogitsProcessorList`):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
stopping_criteria (`StoppingCriteriaList`):
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
used to tell if the generation loop should stop.
generation_config ([`~generation.GenerationConfig`]):
The generation configuration to be used as parametrization of the decoding method.
synced_gpus (`bool`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
model_kwargs:
Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
If model is an encoder-decoder model the kwargs should include `encoder_outputs`.
Return:
[`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`]
or `torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
[`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
`return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
`model.config.is_encoder_decoder=True`.
"""
# init values
has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
top_k = generation_config.top_k
penalty_alpha = generation_config.penalty_alpha
pad_token_id = generation_config._pad_token_tensor
output_attentions = generation_config.output_attentions
output_hidden_states = generation_config.output_hidden_states
output_scores = generation_config.output_scores
output_logits = generation_config.output_logits
return_dict_in_generate = generation_config.return_dict_in_generate
sequential = generation_config.low_memory
# init attention / hidden states / scores tuples
raw_logits = () if (return_dict_in_generate and output_logits) else None
scores = () if (return_dict_in_generate and output_scores) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and self.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
# keep track of which sequences are already finished
batch_size = input_ids.shape[0]
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
# Create cosine_matrix_mask based on the attention_mask
cosine_matrix_mask = torch.ones_like(input_ids, dtype=torch.long)
if self.config.is_encoder_decoder:
if "decoder_attention_mask" in model_kwargs and model_kwargs["decoder_attention_mask"] is not None:
cosine_matrix_mask = model_kwargs["decoder_attention_mask"]
else:
cosine_matrix_mask = model_kwargs["attention_mask"]
cosine_matrix_mask = cosine_matrix_mask.repeat_interleave(top_k, dim=0)
this_peer_finished = False
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
# if the first step in the loop, encode all the prefix and obtain: (1) past_key_values;
# (2) last_hidden_states; (3) logit_for_next_step; (4) update model kwargs for the next step
if model_kwargs.get("past_key_values") is None or (
isinstance(model_kwargs["past_key_values"], (Cache, EncoderDecoderCache))
and model_kwargs["past_key_values"].get_seq_length() == 0
):
# prepare inputs
model_kwargs["use_cache"] = True
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
# encode the given prefix and prepare model inputs; encoder-decoder model process the prefix and save
# the `encoder_outputs`
outputs = self(
**model_inputs, return_dict=True, output_hidden_states=True, output_attentions=output_attentions
)
# last decoder hidden states will be used to compute the degeneration penalty (cosine similarity with
# previous tokens)
if self.config.is_encoder_decoder:
last_hidden_states = outputs.decoder_hidden_states[-1]
else:
last_hidden_states = outputs.hidden_states[-1]
# next logit for contrastive search to select top-k candidate tokens
# Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for this first iteration
# (the clone itself is always small)
# .float() is needed to retain precision for later logits manipulations
logit_for_next_step = outputs.logits[:, -1, :].clone().float()
logit_for_next_step = logit_for_next_step.to(input_ids.device)
model_kwargs = self._update_model_kwargs_for_generation(
outputs,
model_kwargs,
is_encoder_decoder=self.config.is_encoder_decoder,
)
if not sequential:
# Expands model inputs top_k times, for batched forward passes (akin to beam search).
_, model_kwargs = self._expand_inputs_for_generation(
expand_size=top_k, is_encoder_decoder=self.config.is_encoder_decoder, **model_kwargs
)
past_key_values = model_kwargs.get("past_key_values")
if past_key_values is None:
raise ValueError(
f"{self.__class__.__name__} does not support caching and therefore **can't** be used "
"for contrastive search."
)
elif (
not isinstance(past_key_values[0], (tuple, torch.Tensor))
or past_key_values[0][0].shape[0] != batch_size
):
raise ValueError(
f"{self.__class__.__name__} does not have a standard cache format and therefore **can't** be "
"used for contrastive search without further modifications."
)
# contrastive_search main logic start:
# contrastive search decoding consists of two steps: (1) candidate tokens recall; (2) candidate re-rank by
# degeneration penalty
processed_logit_for_next_step = logits_processor(input_ids, logit_for_next_step)
next_probs = nn.functional.softmax(processed_logit_for_next_step, dim=-1)
top_k_probs, top_k_ids = torch.topk(next_probs, dim=-1, k=top_k)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_logits:
raw_logits += (logit_for_next_step,)
if output_scores:
scores += (processed_logit_for_next_step,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
)
if self.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.config.is_encoder_decoder
else (outputs.hidden_states,)
)
# This is needed to properly delete outputs.logits which may be very large for this first iteration
# Otherwise a reference to outputs.logits is kept all along until after the next call to self.forward()
del outputs
if not sequential:
# Replicates the new past_key_values to match the `top_k` candidates
past = model_kwargs["past_key_values"]
# If it is a static cache, modify it in-place layer after layer to save memory
if isinstance(past, DynamicCache) or (
isinstance(past, EncoderDecoderCache) and isinstance(past.self_attention_cache, DynamicCache)
):
past.batch_repeat_interleave(top_k)
else:
new_key_values = []
for layer in past:
items = []
# item is either the key or the value matrix
for item in layer:
items.append(item.repeat_interleave(top_k, dim=0))
new_key_values.append(tuple(items))
past = tuple(new_key_values)
model_kwargs["past_key_values"] = past
if sequential:
all_outputs = []
for i in range(top_k):
# compute the candidate tokens by the language model and collect their hidden_states
next_model_inputs = self.prepare_inputs_for_generation(top_k_ids[:, i].view(-1, 1), **model_kwargs)
outputs = self(
**next_model_inputs,
return_dict=True,
output_hidden_states=True,
output_attentions=output_attentions,
)
if isinstance(outputs["past_key_values"], DynamicCache) or (
isinstance(outputs["past_key_values"], EncoderDecoderCache)
and isinstance(outputs["past_key_values"].self_attention_cache, DynamicCache)
):
# Remove past K-V from output since we don't need to stack later
outputs["past_key_values"] = None
# Remove last token from past K-V since we don't want to append it at this point
model_kwargs["past_key_values"].crop(-1)
all_outputs.append(outputs)
outputs = stack_model_outputs(all_outputs, self.config.get_text_config())
else:
# compute the candidate tokens by the language model and collect their hidden_states
# assembles top_k_ids into batch of size k
next_model_inputs = self.prepare_inputs_for_generation(top_k_ids.view(-1, 1), **model_kwargs)
outputs = self(
**next_model_inputs,
return_dict=True,
output_hidden_states=True,
output_attentions=output_attentions,
)
# This is essential to avoid having a last reference to the big past K-V and double the necessary memory
# in the next loop
del next_model_inputs
# name is different for encoder-decoder and decoder-only models
if self.config.is_encoder_decoder:
next_hidden = outputs.decoder_hidden_states[-1]
full_hidden_states = outputs.decoder_hidden_states
else:
next_hidden = outputs.hidden_states[-1]
full_hidden_states = outputs.hidden_states
# .float() is needed to retain precision for later logits manipulations
logits = outputs.logits[:, -1, :].float()
context_hidden = last_hidden_states.repeat_interleave(top_k, dim=0)
# compute the degeneration penalty and re-rank the candidates based on the degeneration penalty and the
# model confidence. Keeping `selected_idx` on CPU enables multi-device contrastive search and doesn't
# introduce (noticeable) slowdowns on single-device runs.
selected_idx = _ranking_fast(
context_hidden, next_hidden, top_k_probs, cosine_matrix_mask, penalty_alpha, top_k
)
cosine_matrix_mask = torch.cat(
[cosine_matrix_mask, cosine_matrix_mask.new_ones((cosine_matrix_mask.shape[0], 1))], dim=-1
)
selected_idx = selected_idx.to("cpu")
# This will be used instead of the previous inneficient torch.stack(torch.split())
augmented_idx = torch.tensor([x + i * top_k for i, x in enumerate(selected_idx)])
# prepare for the next step: (1) next token_id; (2) past_key_values; (3) last_hidden_states for computing
# the degeneration penalty; (4) logits for selecting next top-k candidates; (5) selected tokens scores
# (model confidence minus degeneration penalty); (6) decoder hidden_states
next_tokens = top_k_ids[range(len(top_k_ids)), selected_idx]
next_hidden = torch.stack(torch.split(next_hidden.squeeze(dim=1), top_k))
next_hidden = next_hidden[range(batch_size), selected_idx, :]
last_hidden_states = torch.cat([last_hidden_states, next_hidden.unsqueeze(1)], dim=1)
next_decoder_hidden_states = ()
for layer in full_hidden_states:
layer = torch.stack(torch.split(layer, top_k))[range(batch_size), selected_idx, :]
next_decoder_hidden_states += (layer,)
# generate past_key_values cache of only the selected token
if sequential:
next_model_input = self.prepare_inputs_for_generation(
top_k_ids[:, selected_idx].view(-1, 1), **model_kwargs
)
selected_outputs = self(
**next_model_input,
return_dict=True,
output_hidden_states=False,
output_attentions=False,
)
next_past_key_values = selected_outputs["past_key_values"]
else:
_, next_past_key_values = self._extract_past_from_model_output(outputs)
# Do it in-place layer per layer to save memory
if isinstance(next_past_key_values, DynamicCache) or (
isinstance(next_past_key_values, EncoderDecoderCache)
and isinstance(next_past_key_values.self_attention_cache, DynamicCache)
):
next_past_key_values.batch_select_indices(augmented_idx)
else:
new_key_values = []
for layer in next_past_key_values:
items = []
# item is either the key or the value matrix
for item in layer:
items.append(item[augmented_idx, ...])
new_key_values.append(tuple(items))
next_past_key_values = tuple(new_key_values)
logit_for_next_step = torch.stack(torch.split(logits, top_k))[range(batch_size), selected_idx, :]
logit_for_next_step = logit_for_next_step.to(input_ids.device)
# Rebuilds the relevant parts of the model output for the selected token, for use in the next iteration
if self.config.is_encoder_decoder:
next_step_cross_attentions = ()
next_step_decoder_attentions = ()
if output_attentions:
for layer in outputs.cross_attentions:
layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
next_step_cross_attentions += (layer,)
for layer in outputs.decoder_attentions:
layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
next_step_decoder_attentions += (layer,)
outputs = Seq2SeqLMOutput(
past_key_values=next_past_key_values,
decoder_hidden_states=next_decoder_hidden_states,
decoder_attentions=next_step_decoder_attentions or None,
cross_attentions=next_step_cross_attentions or None,
)
else:
next_step_attentions = ()
if output_attentions:
for layer in outputs.attentions:
layer = torch.stack(torch.split(layer, top_k, dim=0))[range(batch_size), selected_idx, ...]
next_step_attentions += (layer,)
outputs = CausalLMOutputWithPast(
past_key_values=next_past_key_values,
hidden_states=next_decoder_hidden_states,
attentions=next_step_attentions or None,
)
# contrastive_search main logic end
# synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping
model_kwargs = self._update_model_kwargs_for_generation(
outputs,
model_kwargs,
is_encoder_decoder=self.config.is_encoder_decoder,
)
if synced_gpus and this_peer_finished:
continue
# finished sentences should have their next token be a padding token
if has_eos_stopping_criteria:
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
if streamer is not None:
streamer.put(next_tokens.cpu())
# stop when each sentence is finished
unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
this_peer_finished = unfinished_sequences.max() == 0
if streamer is not None:
streamer.end()
if return_dict_in_generate:
# Contrastive search works by forward looking at the next token, so we need to exclude it from
# `past_key_values` to be consistent with the other decoding methods
if model_kwargs.get("past_key_values") is not None:
if isinstance(model_kwargs["past_key_values"], DynamicCache) or (
isinstance(model_kwargs["past_key_values"], EncoderDecoderCache)
and isinstance(model_kwargs["past_key_values"].self_attention_cache, DynamicCache)
):
model_kwargs["past_key_values"].crop(-1)
else:
past_key_values = []
for layer in model_kwargs["past_key_values"]:
layer_past_key_values = []
for item in layer:
layer_past_key_values.append(item[..., :-1, :])
past_key_values.append(tuple(layer_past_key_values))
model_kwargs["past_key_values"] = tuple(past_key_values)
if self.config.is_encoder_decoder:
return GenerateEncoderDecoderOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return GenerateDecoderOnlyOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return input_ids
def _sample(
self,
input_ids: torch.LongTensor,
logits_processor: LogitsProcessorList,
stopping_criteria: StoppingCriteriaList,
generation_config: GenerationConfig,
synced_gpus: bool,
streamer: Optional["BaseStreamer"],
**model_kwargs,
) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
r"""
Generates sequences of token ids for models with a language modeling head using **multinomial sampling** and
can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
logits_processor (`LogitsProcessorList`):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
stopping_criteria (`StoppingCriteriaList`):
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
used to tell if the generation loop should stop.
generation_config ([`~generation.GenerationConfig`]):
The generation configuration to be used as parametrization of the decoding method.
synced_gpus (`bool`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
model_kwargs:
Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
an encoder-decoder model the kwargs should include `encoder_outputs`.
Return:
[`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or `torch.LongTensor`:
A `torch.LongTensor` containing the generated tokens (default behaviour) or a
[`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
`return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
`model.config.is_encoder_decoder=True`.
"""
# init values
pad_token_id = generation_config._pad_token_tensor
output_attentions = generation_config.output_attentions
output_hidden_states = generation_config.output_hidden_states
output_scores = generation_config.output_scores
output_logits = generation_config.output_logits
return_dict_in_generate = generation_config.return_dict_in_generate
max_length = generation_config.max_length
has_eos_stopping_criteria = any(hasattr(criteria, "eos_token_id") for criteria in stopping_criteria)
do_sample = generation_config.do_sample
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
raw_logits = () if (return_dict_in_generate and output_logits) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and self.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
# keep track of which sequences are already finished
batch_size, cur_len = input_ids.shape
this_peer_finished = False
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
model_forward = self.__call__
if isinstance(model_kwargs.get("past_key_values"), StaticCache):
if self.device.type == "cuda":
logger.warning_once("Using `torch.compile`.")
os.environ["TOKENIZERS_PARALLELISM"] = "0"
model_forward = self.get_compiled_call(generation_config.compile_config)
is_prefill = True
while self._has_unfinished_sequences(
this_peer_finished, synced_gpus, device=input_ids.device, cur_len=cur_len, max_length=max_length
):
# prepare model inputs
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
# prepare variable output controls (note: some models won't accept all output controls)
model_inputs.update({"output_attentions": output_attentions} if output_attentions else {})
model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {})
if is_prefill:
outputs = self(**model_inputs, return_dict=True)
is_prefill = False
else:
outputs = model_forward(**model_inputs, return_dict=True)
# synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping
model_kwargs = self._update_model_kwargs_for_generation(
outputs,
model_kwargs,
is_encoder_decoder=self.config.is_encoder_decoder,
)
if synced_gpus and this_peer_finished:
continue
# Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration
# (the clone itself is always small)
next_token_logits = outputs.logits[:, -1, :].clone().float()
next_token_logits = next_token_logits.to(input_ids.device)
# pre-process distribution
next_token_scores = logits_processor(input_ids, next_token_logits)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores,)
if output_logits:
raw_logits += (next_token_logits,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
)
if self.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.config.is_encoder_decoder
else (outputs.hidden_states,)
)
# token selection
if do_sample:
probs = nn.functional.softmax(next_token_scores, dim=-1)
# TODO (joao): this OP throws "skipping cudagraphs due to ['incompatible ops']", find solution
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
else:
next_tokens = torch.argmax(next_token_scores, dim=-1)
# finished sentences should have their next token be a padding token
if has_eos_stopping_criteria:
next_tokens = next_tokens * unfinished_sequences + pad_token_id * (1 - unfinished_sequences)
# update generated ids, model inputs, and length for next step
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
if streamer is not None:
streamer.put(next_tokens.cpu())
unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
this_peer_finished = unfinished_sequences.max() == 0
cur_len += 1
# This is needed to properly delete outputs.logits which may be very large for first iteration
# Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration
del outputs
if streamer is not None:
streamer.end()
if return_dict_in_generate:
if self.config.is_encoder_decoder:
return GenerateEncoderDecoderOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return GenerateDecoderOnlyOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return input_ids
def _temporary_reorder_cache(self, past_key_values, beam_idx):
"""
Temporary function to handle the different types of cache reordering processes while we roll out `Cache`.
TODO: standardize cache formats and make all models compatible with `Cache`. It would remove the need
for this function, with `Cache.reorder_cache` being the sole remaining code path
"""
model_class = self.__class__.__name__.lower()
# Exception 1: code path for models using the legacy cache format
if isinstance(past_key_values, (tuple, list)):
past_key_values = self._reorder_cache(past_key_values, beam_idx)
# Exception 2: models with different cache formats. These are limited to `DynamicCache` until their
# cache format is standardized, to avoid adding complexity to the codebase.
elif "gptbigcode" in model_class:
if not isinstance(past_key_values, (DynamicCache, EncoderDecoderCache)):
raise ValueError(
f"Using an unsupported cache format with {model_class}. Currently, it only supports the "
"legacy tuple format or `DynamicCache`"
)
past_key_values = self._reorder_cache(past_key_values, beam_idx)
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
# Standard code path: use the `Cache.reorder_cache`
else:
past_key_values.reorder_cache(beam_idx)
return past_key_values
def _beam_search(
self,
input_ids: torch.LongTensor,
beam_scorer: BeamScorer,
logits_processor: LogitsProcessorList,
stopping_criteria: StoppingCriteriaList,
generation_config: GenerationConfig,
synced_gpus: bool,
**model_kwargs,
) -> Union[GenerateBeamOutput, torch.LongTensor]:
r"""
Generates sequences of token ids for models with a language modeling head using **beam search decoding** and
can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
beam_scorer (`BeamScorer`):
An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
logits_processor (`LogitsProcessorList`):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
stopping_criteria (`StoppingCriteriaList`:
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
used to tell if the generation loop should stop.
generation_config ([`~generation.GenerationConfig`]):
The generation configuration to be used as parametrization of the decoding method.
synced_gpus (`bool`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
model_kwargs:
Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
an encoder-decoder model the kwargs should include `encoder_outputs`.
Return:
[`generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
`torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
[`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
`return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
`model.config.is_encoder_decoder=True`.
"""
# init values
pad_token_id = generation_config._pad_token_tensor
eos_token_id = generation_config._eos_token_tensor
output_attentions = generation_config.output_attentions
output_hidden_states = generation_config.output_hidden_states
output_scores = generation_config.output_scores
output_logits = generation_config.output_logits
return_dict_in_generate = generation_config.return_dict_in_generate
sequential = generation_config.low_memory
do_sample = generation_config.do_sample
batch_size = len(beam_scorer._beam_hyps)
num_beams = beam_scorer.num_beams
batch_beam_size, cur_len = input_ids.shape
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
if num_beams * batch_size != batch_beam_size:
raise ValueError(
f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
)
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
raw_logits = () if (return_dict_in_generate and output_logits) else None
beam_indices = (
tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
)
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and self.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
# initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
# of the first beam are considered to avoid sampling the exact same tokens across all beams.
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
beam_scores[:, 1:] = -1e9
beam_scores = beam_scores.view((batch_size * num_beams,))
this_peer_finished = False
decoder_prompt_len = input_ids.shape[-1] # record the prompt length of decoder
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
# prepare variable output controls (note: some models won't accept all output controls)
model_inputs.update({"output_attentions": output_attentions} if output_attentions else {})
model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {})
# if sequential is True, split the input to batches of batch_size and run sequentially
if sequential:
if any(
model_name in self.__class__.__name__.lower()
for model_name in [
"fsmt",
"reformer",
"ctrl",
"gpt_bigcode",
"transo_xl",
"xlnet",
"cpm",
"jamba",
]
):
raise RuntimeError(
f"Currently generation for {self.__class__.__name__} is not supported "
f"for `low_memory beam_search`. Please open an issue on GitHub if you need this feature."
)
inputs_per_sub_batches = _split_model_inputs(
model_inputs,
split_size=batch_size,
full_batch_size=batch_beam_size,
config=self.config.get_text_config(),
)
outputs_per_sub_batch = [
self(**inputs_per_sub_batch, return_dict=True) for inputs_per_sub_batch in inputs_per_sub_batches
]
outputs = stack_model_outputs(outputs_per_sub_batch, self.config.get_text_config())
else: # Unchanged original behavior
outputs = self(**model_inputs, return_dict=True)
# synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping
model_kwargs = self._update_model_kwargs_for_generation(
outputs,
model_kwargs,
is_encoder_decoder=self.config.is_encoder_decoder,
)
if synced_gpus and this_peer_finished:
cur_len = cur_len + 1
continue
# Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration
# (the clone itself is always small)
# .float() is needed to retain precision for later logits manipulations
next_token_logits = outputs.logits[:, -1, :].clone().float()
next_token_logits = next_token_logits.to(input_ids.device)
next_token_scores = nn.functional.log_softmax(
next_token_logits, dim=-1
) # (batch_size * num_beams, vocab_size)
next_token_scores_processed = logits_processor(input_ids, next_token_scores)
next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
next_token_scores_processed
)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores_processed,)
if output_logits:
raw_logits += (next_token_logits,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
)
if self.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.config.is_encoder_decoder
else (outputs.hidden_states,)
)
# reshape for beam search
vocab_size = next_token_scores.shape[-1]
next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
# Beam token selection: pick 1 + eos_token_id.shape[0] next tokens for each beam so we have at least 1
# non eos token per beam.
n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
n_tokens_to_keep = max(2, 1 + n_eos_tokens) * num_beams
if do_sample:
probs = nn.functional.softmax(next_token_scores, dim=-1)
next_tokens = torch.multinomial(probs, num_samples=n_tokens_to_keep)
next_token_scores = torch.gather(next_token_scores, -1, next_tokens)
next_token_scores, _indices = torch.sort(next_token_scores, descending=True, dim=1)
next_tokens = torch.gather(next_tokens, -1, _indices)
else:
next_token_scores, next_tokens = torch.topk(
next_token_scores, n_tokens_to_keep, dim=1, largest=True, sorted=True
)
next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
next_tokens = next_tokens % vocab_size
# stateless
beam_outputs = beam_scorer.process(
input_ids,
next_token_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
beam_indices=beam_indices,
decoder_prompt_len=decoder_prompt_len,
)
beam_scores = beam_outputs["next_beam_scores"]
beam_next_tokens = beam_outputs["next_beam_tokens"]
beam_idx = beam_outputs["next_beam_indices"]
input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
# This is needed to properly delete outputs.logits which may be very large for first iteration
# Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration
# IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory
# (that way the memory peak does not include outputs.logits)
del outputs
if model_kwargs.get("past_key_values", None) is not None:
model_kwargs["past_key_values"] = self._temporary_reorder_cache(
model_kwargs["past_key_values"], beam_idx
)
if return_dict_in_generate and output_scores:
beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))
# increase cur_len
cur_len = cur_len + 1
if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
this_peer_finished = True
sequence_outputs = beam_scorer.finalize(
input_ids,
beam_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
max_length=stopping_criteria.max_length,
beam_indices=beam_indices,
decoder_prompt_len=decoder_prompt_len,
)
if return_dict_in_generate:
if not output_scores:
sequence_outputs["sequence_scores"] = None
if self.config.is_encoder_decoder:
return GenerateBeamEncoderDecoderOutput(
sequences=sequence_outputs["sequences"],
sequences_scores=sequence_outputs["sequence_scores"],
scores=scores,
logits=raw_logits,
beam_indices=sequence_outputs["beam_indices"],
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return GenerateBeamDecoderOnlyOutput(
sequences=sequence_outputs["sequences"],
sequences_scores=sequence_outputs["sequence_scores"],
scores=scores,
logits=raw_logits,
beam_indices=sequence_outputs["beam_indices"],
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return sequence_outputs["sequences"]
def _group_beam_search(
self,
input_ids: torch.LongTensor,
beam_scorer: BeamScorer,
logits_processor: LogitsProcessorList,
stopping_criteria: StoppingCriteriaList,
generation_config: GenerationConfig,
synced_gpus: bool,
**model_kwargs,
):
r"""
Generates sequences of token ids for models with a language modeling head using **diverse beam search
decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
beam_scorer (`BeamScorer`):
An derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
sorted during generation. For more information, the documentation of [`BeamScorer`] should be read.
logits_processor (`LogitsProcessorList`):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
stopping_criteria (`StoppingCriteriaList`):
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
used to tell if the generation loop should stop.
generation_config ([`~generation.GenerationConfig`]):
The generation configuration to be used as parametrization of the decoding method.
synced_gpus (`bool`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
model_kwargs:
Additional model specific kwargs that will be forwarded to the `forward` function of the model. If
model is an encoder-decoder model the kwargs should include `encoder_outputs`.
Return:
[`~generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
`torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
[`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
`return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
`model.config.is_encoder_decoder=True`.
"""
# init values
pad_token_id = generation_config._pad_token_tensor
eos_token_id = generation_config._eos_token_tensor
output_attentions = generation_config.output_attentions
output_hidden_states = generation_config.output_hidden_states
output_scores = generation_config.output_scores
output_logits = generation_config.output_logits
return_dict_in_generate = generation_config.return_dict_in_generate
num_beams = beam_scorer.num_beams
num_beam_groups = beam_scorer.num_beam_groups
num_sub_beams = num_beams // num_beam_groups
batch_size = len(beam_scorer._beam_hyps) // num_beam_groups
device = input_ids.device
batch_beam_size, cur_len = input_ids.shape
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
if return_dict_in_generate and output_scores:
beam_indices = [tuple(() for _ in range(num_sub_beams * batch_size)) for _ in range(num_beam_groups)]
else:
beam_indices = None
if num_beams * batch_size != batch_beam_size:
raise ValueError(
f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
)
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
raw_logits = () if (return_dict_in_generate and output_logits) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and self.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
# initialise score of first beam of each group with 0 and the rest with -1e9. This ensures that the beams in
# the same group don't produce same tokens every time.
beam_scores = torch.full((batch_size, num_beams), -1e9, dtype=torch.float, device=device)
beam_scores[:, ::num_sub_beams] = 0
beam_scores = beam_scores.view((batch_size * num_beams,))
this_peer_finished = False
decoder_prompt_len = input_ids.shape[-1] # record the prompt length of decoder
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
# predicted tokens in cur_len step
current_tokens = torch.zeros(batch_size * num_beams, dtype=input_ids.dtype, device=device)
# indices which will form the beams in the next time step
reordering_indices = torch.zeros(batch_size * num_beams, dtype=torch.long, device=device)
# do one decoder step on all beams of all sentences in batch
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
# prepare variable output controls (note: some models won't accept all output controls)
model_inputs.update({"output_attentions": output_attentions} if output_attentions else {})
model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {})
outputs = self(**model_inputs, return_dict=True)
# synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping
model_kwargs = self._update_model_kwargs_for_generation(
outputs,
model_kwargs,
is_encoder_decoder=self.config.is_encoder_decoder,
)
if synced_gpus and this_peer_finished:
cur_len = cur_len + 1
continue
if output_scores:
processed_score = torch.zeros_like(outputs.logits[:, -1, :])
if output_logits:
# Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration
# (the clone itself is always small)
raw_logit_score = outputs.logits[:, -1, :].clone()
raw_logit_score = raw_logit_score.to(input_ids.device)
for beam_group_idx in range(num_beam_groups):
group_start_idx = beam_group_idx * num_sub_beams
group_end_idx = min(group_start_idx + num_sub_beams, num_beams)
group_size = group_end_idx - group_start_idx
# indices of beams of current group among all sentences in batch
batch_group_indices = []
for batch_idx in range(batch_size):
batch_group_indices.extend(
[batch_idx * num_beams + idx for idx in range(group_start_idx, group_end_idx)]
)
group_input_ids = input_ids[batch_group_indices]
# select outputs of beams of current group only
# No need to clone() the logits here as they will not retain outputs.logits at the end of the loop
# .float() is needed to retain precision for later logits manipulations
next_token_logits = outputs.logits[batch_group_indices, -1, :].float()
next_token_logits = next_token_logits.to(input_ids.device)
next_token_scores = nn.functional.log_softmax(
next_token_logits, dim=-1
) # (batch_size * group_size, vocab_size)
vocab_size = next_token_scores.shape[-1]
next_token_scores_processed = logits_processor(
group_input_ids, next_token_scores, current_tokens=current_tokens, beam_group_idx=beam_group_idx
)
next_token_scores = next_token_scores_processed + beam_scores[batch_group_indices].unsqueeze(-1)
next_token_scores = next_token_scores.expand_as(next_token_scores_processed)
if output_scores:
processed_score[batch_group_indices] = next_token_scores_processed
# reshape for beam search
next_token_scores = next_token_scores.view(batch_size, group_size * vocab_size)
# Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
next_token_scores, next_tokens = torch.topk(
next_token_scores, max(2, 1 + n_eos_tokens) * group_size, dim=1, largest=True, sorted=True
)
next_indices = torch.div(next_tokens, vocab_size, rounding_mode="floor")
next_tokens = next_tokens % vocab_size
# stateless
process_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
beam_outputs = beam_scorer.process(
group_input_ids,
next_token_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
beam_indices=process_beam_indices,
group_index=beam_group_idx,
decoder_prompt_len=decoder_prompt_len,
)
beam_scores[batch_group_indices] = beam_outputs["next_beam_scores"]
beam_next_tokens = beam_outputs["next_beam_tokens"]
beam_idx = beam_outputs["next_beam_indices"]
if return_dict_in_generate and output_scores:
beam_indices[beam_group_idx] = tuple(
beam_indices[beam_group_idx][beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices[0]))
)
input_ids[batch_group_indices] = group_input_ids[beam_idx]
group_input_ids = torch.cat([group_input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
current_tokens[batch_group_indices] = group_input_ids[:, -1]
# (beam_idx // group_size) -> batch_idx
# (beam_idx % group_size) -> offset of idx inside the group
reordering_indices[batch_group_indices] = (
num_beams * torch.div(beam_idx, group_size, rounding_mode="floor")
+ group_start_idx
+ (beam_idx % group_size)
)
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (processed_score,)
if output_logits:
raw_logits += (raw_logit_score,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
)
if self.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.config.is_encoder_decoder
else (outputs.hidden_states,)
)
input_ids = torch.cat([input_ids, current_tokens.unsqueeze(-1)], dim=-1)
# This is needed to properly delete outputs.logits which may be very large for first iteration
# Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration
# IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory
# (that way the memory peak does not include outputs.logits)
del outputs
if model_kwargs.get("past_key_values", None) is not None:
model_kwargs["past_key_values"] = self._temporary_reorder_cache(
model_kwargs["past_key_values"], reordering_indices
)
# increase cur_len
cur_len = cur_len + 1
if beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
this_peer_finished = True
final_beam_indices = sum(beam_indices, ()) if beam_indices is not None else None
sequence_outputs = beam_scorer.finalize(
input_ids,
beam_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
max_length=stopping_criteria.max_length,
beam_indices=final_beam_indices,
decoder_prompt_len=decoder_prompt_len,
)
if return_dict_in_generate:
if not output_scores:
sequence_outputs["sequence_scores"] = None
if self.config.is_encoder_decoder:
return GenerateBeamEncoderDecoderOutput(
sequences=sequence_outputs["sequences"],
sequences_scores=sequence_outputs["sequence_scores"],
scores=scores,
logits=raw_logits,
beam_indices=sequence_outputs["beam_indices"],
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return GenerateBeamDecoderOnlyOutput(
sequences=sequence_outputs["sequences"],
sequences_scores=sequence_outputs["sequence_scores"],
scores=scores,
logits=raw_logits,
beam_indices=sequence_outputs["beam_indices"],
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return sequence_outputs["sequences"]
def _constrained_beam_search(
self,
input_ids: torch.LongTensor,
constrained_beam_scorer: ConstrainedBeamSearchScorer,
logits_processor: LogitsProcessorList,
stopping_criteria: StoppingCriteriaList,
generation_config: GenerationConfig,
synced_gpus: bool,
**model_kwargs,
) -> Union[GenerateBeamOutput, torch.LongTensor]:
r"""
Generates sequences of token ids for models with a language modeling head using **constrained beam search
decoding** and can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text models.
Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
constrained_beam_scorer (`ConstrainedBeamSearchScorer`):
A derived instance of [`BeamScorer`] that defines how beam hypotheses are constructed, stored and
sorted during generation, while satisfying a list of positive constraints. For more information, the
documentation of [`ConstrainedBeamSearchScorer`] should be read.
logits_processor (`LogitsProcessorList`):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
stopping_criteria (`StoppingCriteriaList`):
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
used to tell if the generation loop should stop.
generation_config ([`~generation.GenerationConfig`]):
The generation configuration to be used as parametrization of the decoding method.
synced_gpus (`bool`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
model_kwargs:
Additional model specific kwargs will be forwarded to the `forward` function of the model. If model is
an encoder-decoder model the kwargs should include `encoder_outputs`.
Return:
[`~generation.GenerateBeamDecoderOnlyOutput`], [`~generation.GenerateBeamEncoderDecoderOutput`] or
`torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
[`~generation.GenerateBeamDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
`return_dict_in_generate=True` or a [`~generation.GenerateBeamEncoderDecoderOutput`] if
`model.config.is_encoder_decoder=True`.
"""
# init values
pad_token_id = generation_config._pad_token_tensor
eos_token_id = generation_config._eos_token_tensor
output_attentions = generation_config.output_attentions
output_hidden_states = generation_config.output_hidden_states
output_scores = generation_config.output_scores
output_logits = generation_config.output_logits
return_dict_in_generate = generation_config.return_dict_in_generate
batch_size = len(constrained_beam_scorer._beam_hyps)
num_beams = constrained_beam_scorer.num_beams
batch_beam_size, cur_len = input_ids.shape
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
if num_beams * batch_size != batch_beam_size:
raise ValueError(
f"Batch dimension of `input_ids` should be {num_beams * batch_size}, but is {batch_beam_size}."
)
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
raw_logits = () if (return_dict_in_generate and output_logits) else None
beam_indices = (
tuple(() for _ in range(batch_beam_size)) if (return_dict_in_generate and output_scores) else None
)
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and self.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
# initialise score of first beam with 0 and the rest with -1e9. This makes sure that only tokens
# of the first beam are considered to avoid sampling the exact same tokens across all beams.
beam_scores = torch.zeros((batch_size, num_beams), dtype=torch.float, device=input_ids.device)
beam_scores[:, 1:] = -1e9
beam_scores = beam_scores.view((batch_size * num_beams,))
this_peer_finished = False
decoder_prompt_len = input_ids.shape[-1] # record the prompt length of decoder
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
# prepare variable output controls (note: some models won't accept all output controls)
model_inputs.update({"output_attentions": output_attentions} if output_attentions else {})
model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {})
outputs = self(**model_inputs, return_dict=True)
# synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping
model_kwargs = self._update_model_kwargs_for_generation(
outputs,
model_kwargs,
is_encoder_decoder=self.config.is_encoder_decoder,
)
if synced_gpus and this_peer_finished:
cur_len = cur_len + 1
continue
# Clone is needed to avoid keeping a hanging ref to outputs.logits which may be very large for first iteration
# (the clone itself is always small)
# .float() is needed to retain precision for later logits manipulations
next_token_logits = outputs.logits[:, -1, :].clone().float()
next_token_logits = next_token_logits.to(input_ids.device)
next_token_scores = nn.functional.log_softmax(
next_token_logits, dim=-1
) # (batch_size * num_beams, vocab_size)
next_token_scores_processed = logits_processor(input_ids, next_token_scores)
next_token_scores = next_token_scores_processed + beam_scores[:, None].expand_as(
next_token_scores_processed
)
scores_for_all_vocab = next_token_scores.clone()
# Store scores, attentions and hidden_states when required
if return_dict_in_generate:
if output_scores:
scores += (next_token_scores,)
if output_logits:
raw_logits += (next_token_logits,)
if output_attentions:
decoder_attentions += (
(outputs.decoder_attentions,) if self.config.is_encoder_decoder else (outputs.attentions,)
)
if self.config.is_encoder_decoder:
cross_attentions += (outputs.cross_attentions,)
if output_hidden_states:
decoder_hidden_states += (
(outputs.decoder_hidden_states,)
if self.config.is_encoder_decoder
else (outputs.hidden_states,)
)
# reshape for beam search
vocab_size = next_token_scores.shape[-1]
next_token_scores = next_token_scores.view(batch_size, num_beams * vocab_size)
# Sample 1 + len(eos_token_id) next tokens for each beam so we have at least 1 non eos token per beam.
n_eos_tokens = eos_token_id.shape[0] if eos_token_id is not None else 0
next_token_scores, next_tokens = torch.topk(
next_token_scores, max(2, 1 + n_eos_tokens) * num_beams, dim=1, largest=True, sorted=True
)
next_indices = (next_tokens / vocab_size).long()
next_tokens = next_tokens % vocab_size
# stateless
beam_outputs = constrained_beam_scorer.process(
input_ids,
next_token_scores,
next_tokens,
next_indices,
scores_for_all_vocab,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
beam_indices=beam_indices,
decoder_prompt_len=decoder_prompt_len,
)
beam_scores = beam_outputs["next_beam_scores"]
beam_next_tokens = beam_outputs["next_beam_tokens"]
beam_idx = beam_outputs["next_beam_indices"]
input_ids = torch.cat([input_ids[beam_idx, :], beam_next_tokens.unsqueeze(-1)], dim=-1)
# This is needed to properly delete outputs.logits which may be very large for first iteration
# Otherwise a reference to outputs is kept which keeps the logits alive in the next iteration
# IMPORTANT: Note that this should appear BEFORE the call to _reorder_cache() to save the maximum memory
# (that way the memory peak does not include outputs.logits)
del outputs
if model_kwargs.get("past_key_values", None) is not None:
model_kwargs["past_key_values"] = self._temporary_reorder_cache(
model_kwargs["past_key_values"], beam_idx
)
if return_dict_in_generate and output_scores:
beam_indices = tuple((beam_indices[beam_idx[i]] + (beam_idx[i],) for i in range(len(beam_indices))))
# increase cur_len
cur_len = cur_len + 1
if constrained_beam_scorer.is_done or all(stopping_criteria(input_ids, scores)):
this_peer_finished = True
sequence_outputs = constrained_beam_scorer.finalize(
input_ids,
beam_scores,
next_tokens,
next_indices,
pad_token_id=pad_token_id,
eos_token_id=eos_token_id,
max_length=stopping_criteria.max_length,
beam_indices=beam_indices,
decoder_prompt_len=decoder_prompt_len,
)
if return_dict_in_generate:
if not output_scores:
sequence_outputs["sequence_scores"] = None
if self.config.is_encoder_decoder:
return GenerateBeamEncoderDecoderOutput(
sequences=sequence_outputs["sequences"],
sequences_scores=sequence_outputs["sequence_scores"],
scores=scores,
logits=raw_logits,
beam_indices=sequence_outputs["beam_indices"],
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return GenerateBeamDecoderOnlyOutput(
sequences=sequence_outputs["sequences"],
sequences_scores=sequence_outputs["sequence_scores"],
scores=scores,
logits=raw_logits,
beam_indices=sequence_outputs["beam_indices"],
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return sequence_outputs["sequences"]
def _assisted_decoding(
self,
input_ids: torch.LongTensor,
candidate_generator: CandidateGenerator,
logits_processor: LogitsProcessorList,
stopping_criteria: StoppingCriteriaList,
generation_config: GenerationConfig,
synced_gpus: bool,
streamer: Optional["BaseStreamer"],
**model_kwargs,
) -> Union[GenerateNonBeamOutput, torch.LongTensor]:
r"""
Generates sequences of token ids for models with a language modeling head using **greedy decoding** or
**sample** (depending on `do_sample`), assisted by candidate sequences. Assisted generation is an example of a
candidate decoding strategy. Can be used for text-decoder, text-to-text, speech-to-text, and vision-to-text
models.
Parameters:
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
The sequence used as a prompt for the generation.
candidate_generator (`CandidateGenerator`):
A derived instance of [`CandidateGenerator`] that defines how candidate sequences are generated. For
more information, the documentation of [`CandidateGenerator`] should be read.
logits_processor (`LogitsProcessorList`):
An instance of [`LogitsProcessorList`]. List of instances of class derived from [`LogitsProcessor`]
used to modify the prediction scores of the language modeling head applied at each generation step.
stopping_criteria (`StoppingCriteriaList`):
An instance of [`StoppingCriteriaList`]. List of instances of class derived from [`StoppingCriteria`]
used to tell if the generation loop should stop.
generation_config ([`~generation.GenerationConfig`]):
The generation configuration to be used as parametrization of the decoding method.
synced_gpus (`bool`):
Whether to continue running the while loop until max_length (needed to avoid deadlocking with
`FullyShardedDataParallel` and DeepSpeed ZeRO Stage 3).
streamer (`BaseStreamer`, *optional*):
Streamer object that will be used to stream the generated sequences. Generated tokens are passed
through `streamer.put(token_ids)` and the streamer is responsible for any further processing.
model_kwargs:
Additional model specific keyword arguments will be forwarded to the `forward` function of the model.
If model is an encoder-decoder model the kwargs should include `encoder_outputs`.
Return:
[`~generation.GenerateDecoderOnlyOutput`], [`~generation.GenerateEncoderDecoderOutput`] or
`torch.LongTensor`: A `torch.LongTensor` containing the generated tokens (default behaviour) or a
[`~generation.GenerateDecoderOnlyOutput`] if `model.config.is_encoder_decoder=False` and
`return_dict_in_generate=True` or a [`~generation.GenerateEncoderDecoderOutput`] if
`model.config.is_encoder_decoder=True`.
"""
# init values
do_sample = generation_config.do_sample
output_attentions = generation_config.output_attentions
output_hidden_states = generation_config.output_hidden_states
output_scores = generation_config.output_scores
output_logits = generation_config.output_logits
return_dict_in_generate = generation_config.return_dict_in_generate
# init attention / hidden states / scores tuples
scores = () if (return_dict_in_generate and output_scores) else None
raw_logits = () if (return_dict_in_generate and output_logits) else None
decoder_attentions = () if (return_dict_in_generate and output_attentions) else None
cross_attentions = () if (return_dict_in_generate and output_attentions) else None
decoder_hidden_states = () if (return_dict_in_generate and output_hidden_states) else None
# if model is an encoder-decoder, retrieve encoder attention weights and hidden states
if return_dict_in_generate and self.config.is_encoder_decoder:
encoder_attentions = model_kwargs["encoder_outputs"].get("attentions") if output_attentions else None
encoder_hidden_states = (
model_kwargs["encoder_outputs"].get("hidden_states") if output_hidden_states else None
)
# keep track of which sequences are already finished
batch_size = input_ids.shape[0]
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
this_peer_finished = False
is_first_iteration = True # to preserve the same API in the output as other generation methods
while self._has_unfinished_sequences(this_peer_finished, synced_gpus, device=input_ids.device):
cur_len = input_ids.shape[-1]
# 1. Fetch candidate sequences from a `CandidateGenerator` and move to the correct device
candidate_input_ids, candidate_logits = candidate_generator.get_candidates(input_ids)
candidate_input_ids = candidate_input_ids.to(self.device)
if candidate_logits is not None:
candidate_logits = candidate_logits.to(self.device)
candidate_length = candidate_input_ids.shape[1] - input_ids.shape[1]
is_done_candidate = stopping_criteria(candidate_input_ids, None)
# 2. Use the original model to obtain the next token logits given the candidate sequence. We obtain
# `candidate_length + 1` relevant logits from this process: in the event that all candidates are correct,
# we use this forward pass to also pick the subsequent logits in the original model.
# 2.1. Prepare the model inputs
candidate_kwargs = copy.copy(model_kwargs)
candidate_kwargs = _prepare_attention_mask(
candidate_kwargs, candidate_input_ids.shape[1], self.config.is_encoder_decoder
)
candidate_kwargs = _prepare_token_type_ids(candidate_kwargs, candidate_input_ids.shape[1])
if "cache_position" in candidate_kwargs:
candidate_kwargs["cache_position"] = torch.cat(
(
candidate_kwargs["cache_position"],
torch.arange(cur_len, cur_len + candidate_length, device=input_ids.device, dtype=torch.long),
),
dim=0,
)
model_inputs = self.prepare_inputs_for_generation(candidate_input_ids, **candidate_kwargs)
if "logits_to_keep" in model_inputs:
model_inputs["logits_to_keep"] = candidate_length + 1
# 2.2. Run a forward pass on the candidate sequence
# prepare variable output controls (note: some models won't accept all output controls)
model_inputs.update({"output_attentions": output_attentions} if output_attentions else {})
model_inputs.update({"output_hidden_states": output_hidden_states} if output_hidden_states else {})
outputs = self(**model_inputs)
# 2.3. Process the new logits
# .float() is needed to retain precision for later logits manipulations
new_logits = outputs.logits[:, -candidate_length - 1 :].float() # excludes the input prompt if present
new_logits = new_logits.to(input_ids.device)
next_token_logits = new_logits.clone()
if len(logits_processor) > 0:
for i in range(candidate_length + 1):
new_logits[:, i, :] = logits_processor(candidate_input_ids[:, : cur_len + i], new_logits[:, i, :])
# 3. Select the accepted tokens. There are two possible cases:
# Case 1: `do_sample=True` and we have logits for the candidates (originally from speculative decoding)
# 👉 Apply algorithm 1 from the speculative decoding paper (https://arxiv.org/pdf/2211.17192.pdf).
if do_sample and candidate_logits is not None:
valid_tokens, n_matches = _speculative_sampling(
candidate_input_ids,
candidate_logits,
candidate_length,
new_logits,
is_done_candidate,
)
# Case 2: all other cases (originally from assisted generation) 👉 Compare the tokens selected from the
# original model logits with the candidate tokens. We can keep the candidate tokens until the first
# mismatch, or until the max length is reached.
else:
if do_sample:
probs = new_logits.softmax(dim=-1)
selected_tokens = torch.multinomial(probs[0, :, :], num_samples=1).squeeze(1)[None, :]
else:
selected_tokens = new_logits.argmax(dim=-1)
candidate_new_tokens = candidate_input_ids[:, cur_len:]
n_matches = ((~(candidate_new_tokens == selected_tokens[:, :-1])).cumsum(dim=-1) < 1).sum()
# Ensure we don't generate beyond max_len or an EOS token
if is_done_candidate and n_matches == candidate_length:
n_matches -= 1
valid_tokens = selected_tokens[:, : n_matches + 1]
# 4. Update variables according to the number of matching assistant tokens. Remember: the token generated
# by the model after the last candidate match is also valid, as it is generated from a correct sequence.
# Because of this last token, assisted generation search reduces to a normal greedy search/sample if there
# is no match.
# 4.1. Get the valid continuation, after the matching tokens
input_ids = torch.cat((input_ids, valid_tokens), dim=-1)
if streamer is not None:
streamer.put(valid_tokens.cpu())
new_cur_len = input_ids.shape[-1]
# 4.2. Discard past key values relative to unused assistant tokens
new_cache_size = new_cur_len - 1
outputs.past_key_values = _crop_past_key_values(self, outputs.past_key_values, new_cache_size)
# 5. Update the candidate generation strategy if needed
candidate_generator.update_candidate_strategy(input_ids, new_logits, n_matches)
# synced_gpus: don't waste resources running the code we don't need; kwargs must be updated before skipping
model_kwargs = self._update_model_kwargs_for_generation(
outputs,
model_kwargs,
is_encoder_decoder=self.config.is_encoder_decoder,
num_new_tokens=n_matches + 1,
)
if synced_gpus and this_peer_finished:
continue
# Store scores, attentions and hidden_states when required
# Assistant: modified to append one tuple element per token, as in the other generation methods.
if return_dict_in_generate:
newly_added_length = n_matches + 1
if output_scores:
scores += tuple(new_logits[:, i, :] for i in range(newly_added_length))
if output_logits:
raw_logits += tuple(next_token_logits[:, i, :] for i in range(newly_added_length))
newly_added_length = new_cur_len if is_first_iteration else newly_added_length
if output_attentions:
if self.config.is_encoder_decoder:
cross_attentions = _split_model_outputs(
cross_attentions, outputs.cross_attentions, cur_len, newly_added_length
)
decoder_attentions = _split_model_outputs(
decoder_attentions,
outputs.decoder_attentions,
cur_len,
newly_added_length,
is_decoder_attention=True,
)
# some (V)LLMs have hard requirement on SDPA and thus never return attn
elif outputs.attentions[0] is not None:
decoder_attentions = _split_model_outputs(
decoder_attentions,
outputs.attentions,
cur_len,
newly_added_length,
is_decoder_attention=True,
)
if output_hidden_states:
if self.config.is_encoder_decoder:
decoder_hidden_states = _split_model_outputs(
decoder_hidden_states, outputs.decoder_hidden_states, cur_len, newly_added_length
)
else:
decoder_hidden_states = _split_model_outputs(
decoder_hidden_states, outputs.hidden_states, cur_len, newly_added_length
)
unfinished_sequences = unfinished_sequences & ~stopping_criteria(input_ids, scores)
this_peer_finished = unfinished_sequences.max() == 0
is_first_iteration = False
if streamer is not None:
streamer.end()
if (
hasattr(candidate_generator, "assistant_model")
and candidate_generator.assistant_model.generation_config.num_assistant_tokens_schedule == "heuristic"
):
candidate_generator.assistant_model.generation_config.num_assistant_tokens = (
candidate_generator.num_assistant_tokens
)
if return_dict_in_generate:
if self.config.is_encoder_decoder:
return GenerateEncoderDecoderOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
encoder_attentions=encoder_attentions,
encoder_hidden_states=encoder_hidden_states,
decoder_attentions=decoder_attentions,
cross_attentions=cross_attentions,
decoder_hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return GenerateDecoderOnlyOutput(
sequences=input_ids,
scores=scores,
logits=raw_logits,
attentions=decoder_attentions,
hidden_states=decoder_hidden_states,
past_key_values=model_kwargs.get("past_key_values"),
)
else:
return input_ids
def _speculative_sampling(
candidate_input_ids,
candidate_logits,
candidate_length,
new_logits,
is_done_candidate,
):
"""
Applies sampling as in the speculative decoding paper (https://arxiv.org/pdf/2211.17192.pdf, algorithm 1). Returns
the selected tokens, as well as the number of candidate matches.
NOTE: Unless otherwise stated, the variable names match those in the paper.
"""
new_candidate_input_ids = candidate_input_ids[:, -candidate_length:]
# Gets the probabilities from the logits. q_i and p_i denote the assistant and model probabilities of the tokens
# selected by the assistant, respectively.
q = candidate_logits.softmax(dim=-1)
q_i = q[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(0, 1)
p = new_logits.softmax(dim=-1)
p_i = p[:, torch.arange(candidate_length), new_candidate_input_ids].squeeze(0, 1)
probability_ratio = p_i / q_i
# When probability_ratio > 1 (i.e. q_i(x) < p_i(x), or "assistant probability of the candidate token is smaller
# than the model probability for the same token"), keep the token. Otherwise reject with p = 1 - probability_ratio
# (= keep with p = probability_ratio). Keep all the tokens until the first rejection
r_i = torch.rand_like(probability_ratio)
is_accepted = r_i <= probability_ratio
n_matches = ((~is_accepted).cumsum(dim=-1) < 1).sum() # this is `n` in algorithm 1
# Ensure we don't generate beyond max_len or an EOS token (not in algorithm 1, but needed for correct behavior)
if is_done_candidate and n_matches == candidate_length:
# Output length is assumed to be `n_matches + 1`. Since we won't generate another token with the target model
# due to acceptance on EOS we fix `n_matches`
n_matches -= 1
valid_tokens = new_candidate_input_ids[:, : n_matches + 1]
else:
# Next token selection: if there is a rejection, adjust the distribution from the main model before sampling.
gamma = candidate_logits.shape[1]
p_n_plus_1 = p[:, n_matches, :]
if n_matches < gamma:
q_n_plus_1 = q[:, n_matches, :]
p_prime = torch.clamp((p_n_plus_1 - q_n_plus_1), min=0)
p_prime.div_(p_prime.sum())
else:
p_prime = p_n_plus_1
t = torch.multinomial(p_prime, num_samples=1).squeeze(1)[None, :]
# The selected tokens include the matches (if any) plus the next sampled tokens
if n_matches > 0:
valid_tokens = torch.cat((new_candidate_input_ids[:, :n_matches], t), dim=-1)
else:
valid_tokens = t
return valid_tokens, n_matches
def _split_model_outputs(outputs, new_outputs, cur_len, added_len, is_decoder_attention=False):
"""
Given the (decoder/cross attentions)/(decoder hidden states) for multiple generated tokens, splits it into a tuple
where each member corresponds to a single generated token.
"""
# Retrocompatibility: in our generation functions, the first iteration includes the attention/hidden states for the
# prompt.
if len(outputs) == 0:
new_tuple = ()
for layer in new_outputs:
last_dim_size = cur_len if is_decoder_attention else layer.shape[-1]
new_tuple += (layer[..., :cur_len, :last_dim_size],)
outputs += (new_tuple,)
# The first iteration contains the prompt + 1 generated token, let's update the length variables accordingly
cur_len += 1
added_len -= cur_len
for i in range(added_len):
new_tuple = ()
for layer in new_outputs:
last_dim_size = cur_len + i if is_decoder_attention else layer.shape[-1]
new_tuple += (layer[..., i : i + 1, :last_dim_size],)
outputs += (new_tuple,)
return outputs
def _ranking_fast(
context_hidden: torch.FloatTensor,
next_hidden: torch.FloatTensor,
next_top_k_probs: torch.FloatTensor,
cosine_matrix_mask: torch.LongTensor,
alpha: float,
beam_width: int,
) -> torch.FloatTensor:
"""
Reranks the top_k candidates based on a degeneration penalty (cosine similarity with previous tokens), as described
in the paper "A Contrastive Framework for Neural Text Generation". Returns the index of the best candidate for each
row in the batch.
"""
norm_context_hidden = context_hidden / context_hidden.norm(dim=2, keepdim=True)
norm_next_hidden = next_hidden / next_hidden.norm(dim=2, keepdim=True)
cosine_matrix = torch.matmul(norm_context_hidden, norm_next_hidden.transpose(1, 2)).squeeze(-1) # [B*K, S]
# Penalize cosine_matrix based on the cosine_matrix_mask (ignore padding positions)
# Using a large negative value for masked positions
cosine_matrix_mask = cosine_matrix_mask.to(dtype=cosine_matrix.dtype)
cosine_matrix_mask = (1 - cosine_matrix_mask) * torch.finfo(cosine_matrix.dtype).min
cosine_matrix = cosine_matrix + cosine_matrix_mask
degeneration_penalty, _ = torch.max(cosine_matrix, dim=-1) # [B*K]
next_top_k_probs = next_top_k_probs.view(-1) # [B*K]
contrastive_score = (1.0 - alpha) * next_top_k_probs - alpha * degeneration_penalty
contrastive_score = torch.stack(torch.split(contrastive_score, beam_width)) # [B, K]
_, selected_idx = contrastive_score.max(dim=-1) # [B]
return selected_idx
def _split(data, full_batch_size: int, num_hidden_layers: int, split_size: int = None):
"""
Takes care of three cases:
1. data is a tensor: e.g. last_hidden_state, pooler_output etc. split them on the batch_size dim
2. data is a tuple: e.g. hidden_states, attentions etc. Keep the tuple as it is and split each tensor in it and
return a list of tuples
3. data is a tuple of tuples, e.g. past_key_values. Keep the tuple as it is and split each tuple in it and
return a list of tuples of tuples
(see documentation of ModelOutput)
"""
if data is None:
return [None] * (full_batch_size // split_size)
if isinstance(data, torch.Tensor):
return [data[i : i + split_size] for i in range(0, full_batch_size, split_size)]
# New cache format
elif isinstance(data, DynamicCache) or (
isinstance(data, EncoderDecoderCache) and isinstance(data.self_attention_cache, DynamicCache)
):
return data.batch_split(full_batch_size, split_size, num_hidden_layers)
elif isinstance(data, tuple):
# If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example)
if isinstance(data[0], tuple):
return [
tuple(tuple(tensor[i : i + split_size] for tensor in inner_tuple) for inner_tuple in data)
for i in range(0, full_batch_size, split_size)
]
else:
return [
tuple(sub_tensor[i : i + split_size] for sub_tensor in data)
for i in range(0, full_batch_size, split_size)
]
else:
raise TypeError(f"Unexpected attribute type: {type(data)}")
def _split_model_inputs(
model_input: Union[ModelOutput, Dict], split_size: int, full_batch_size: int, config: PretrainedConfig
) -> List[Union[ModelOutput, Dict]]:
"""
Split a ModelOutput object (or its subclasses) or Dict into a list of same-class objects based on a specified split
size. The input object is dict when it was prepared for forward pass and ModelOutput when it was returned from
previous forward pass.
"""
# Edge case: if model_input is None, return a list of Nones
# this happens with Whisper where encoder_outputs is None
if model_input is None:
return [model_input] * (full_batch_size // split_size)
# Infer the class from the object
model_output_cls = type(model_input)
if (full_batch_size % split_size) != 0:
raise ValueError("`full_batch_size` must be divisible by `split_size`")
if split_size > full_batch_size:
raise ValueError("`split_size` must be smaller or equal to `full_batch_size`")
# Helper function to split tensors or tuples of tensors
# Find all the dataclass fields (e.g., last_hidden_state, pooler_output etc.) and split them
keys = (
model_input.__dataclass_fields__.keys() if hasattr(model_input, "__dataclass_fields__") else model_input.keys()
)
# We only keep keys that are in the model_input
keys = [k for k in keys if k in model_input]
# Here we can have four types of values: tensors, tuples of tensors and booleans, and encoder_outputs which is a
# ModelOutput object.
# bool should not be split but replicated for each split
bool_keys = [k for k in keys if isinstance(model_input[k], bool) or k == "cache_position"]
keys_to_ignore = ["cache_position", "encoder_outputs", "logits_to_keep"]
non_bool_keys = [k for k in keys if not isinstance(model_input[k], bool) and k not in keys_to_ignore]
num_hidden_layers = config.get_text_config().num_hidden_layers
# we split the tensors and tuples of tensors
data_split_list = [
{k: _split(model_input[k], full_batch_size, num_hidden_layers, split_size)[i] for k in non_bool_keys}
for i in range(full_batch_size // split_size)
]
# bool values are the same and replicated for each split
bool_data = {k: model_input[k] for k in bool_keys}
# encoder_outputs is a ModelOutput object and should be split by its own
if "encoder_outputs" in model_input:
encoder_outputs_split = _split_model_inputs(
model_input["encoder_outputs"], split_size, full_batch_size, config.get_text_config()
)
data_split_list = [
{**data_split, "encoder_outputs": encoder_outputs_split[i]} for i, data_split in enumerate(data_split_list)
]
# logits_to_keep should be replicated for each split, similar to bool values
if "logits_to_keep" in model_input:
data_split_list = [
{**data_split, "logits_to_keep": model_input["logits_to_keep"]} for data_split in data_split_list
]
# Convert each dictionary in the list to an object of the inferred class
split_model_inputs: List[Union[ModelOutput, Dict]] = [
model_output_cls(**data_split, **bool_data) for data_split in data_split_list
]
return split_model_inputs
def stack_model_outputs(model_outputs: List[ModelOutput], config: PretrainedConfig) -> ModelOutput:
"""
Stack a list of ModelOutput objects (or its subclasses) along the batch_size dimension. The function infers the
specific ModelOutput subclass from the list provided.
"""
if not model_outputs:
raise ValueError("Input list is empty.")
# Infer the class from the first object in the list
model_output_cls = type(model_outputs[0])
num_hidden_layers = config.get_text_config().num_hidden_layers
# Ensure all objects are of the same type
if not all(isinstance(obj, model_output_cls) for obj in model_outputs):
raise ValueError("All elements in the list should be of the same type.")
# Helper function to concat tensors or tuples of tensors
def _concat(data):
"""
Reverse of `_split` function above.
"""
if any(data is None for data in data):
return None
if isinstance(data[0], torch.Tensor):
return torch.cat(data, dim=0)
# New cache format
elif isinstance(data[0], DynamicCache):
return DynamicCache.from_batch_splits(data, num_hidden_layers=num_hidden_layers)
elif isinstance(data[0], EncoderDecoderCache):
return EncoderDecoderCache.from_batch_splits(data, num_hidden_layers=num_hidden_layers)
elif isinstance(data[0], tuple):
# If the elements of the tuple are also tuples (e.g., past_key_values in our earlier example)
if isinstance(data[0][0], tuple):
return tuple(
tuple(torch.cat([attr[i][j] for attr in data], dim=0) for j in range(len(data[0][0])))
for i in range(len(data[0]))
)
else:
return tuple(torch.cat([attr[i] for attr in data], dim=0) for i in range(len(data[0])))
elif isinstance(data[0], (int, float)):
# If the elements are integers or floats, return a tensor
return torch.tensor(data)
else:
raise TypeError(f"Unexpected attribute type: {type(data[0])}")
# Use a dictionary comprehension to gather attributes from all objects and concatenate them
concatenated_data = {
k: _concat([getattr(model_output, k) for model_output in model_outputs])
for k in model_output_cls.__dataclass_fields__.keys()
}
# Return a new object of the inferred class with the concatenated attributes
return model_output_cls(**concatenated_data)
def _relative_top_filter(
scores: torch.FloatTensor,
baseline_scores: torch.FloatTensor,
relative_top: float = 0.1,
filter_value: float = -float("Inf"),
base_filter_value=-1e-3,
min_tokens_to_keep: int = 1,
) -> torch.FloatTensor:
"""
Reference: https://github.com/XiangLi1999/ContrastiveDecoding/blob/170e9142e92159c1237d731e240f5eb14aabf428/transformers/src/transformers/generation_logits_process.py#L235
Apply filtering to only keep tokens with a probability above a certain threshold. The threshold is defined as `relative_top` * max probability in the distribution.
"""
scores_normalized = scores.log_softmax(dim=-1)
baseline_scores_normalized = baseline_scores.log_softmax(dim=-1)
sorted_logits, sorted_indices = torch.sort(scores_normalized, descending=True)
min_thresh = sorted_logits[..., min_tokens_to_keep - 1]
probs_max = torch.max(scores_normalized, dim=-1).values
probs_thresh = probs_max + np.log(relative_top)
probs_thresh = torch.min(min_thresh, probs_thresh)
probs_thresh = probs_thresh.unsqueeze(-1)
baseline_scores_normalized[scores_normalized < probs_thresh] = base_filter_value
scores_normalized[scores_normalized < probs_thresh] = filter_value
return scores_normalized, baseline_scores_normalized
def _dola_select_contrast(
candidate_premature_layers: List[int],
candidate_premature_logits: Dict[int, torch.FloatTensor],
final_logits: torch.FloatTensor,
) -> torch.FloatTensor:
if len(candidate_premature_layers) == 1:
base_logits = candidate_premature_logits[candidate_premature_layers[0]]
final_logits, base_logits = _relative_top_filter(final_logits, base_logits)
logits = final_logits - base_logits
return logits
# 1. Stacking all premature_layers into a new dimension
stacked_premature_layers = torch.stack([candidate_premature_logits[i] for i in candidate_premature_layers], dim=0)
# 2. Calculate the softmax values for mature_layer and all premature_layers
# shape: (batch_size, vocab_size)
softmax_mature_layer = F.softmax(final_logits, dim=-1)
# shape: (num_premature_layers, batch_size, vocab_size)
softmax_premature_layers = F.softmax(stacked_premature_layers, dim=-1)
# 3. Calculate the average distribution
# shape: (num_premature_layers, batch_size, vocab_size)
avg_dist = 0.5 * (softmax_mature_layer[None, :, :] + softmax_premature_layers)
# 4. Calculate log-softmax for the KL divergence
# shape: (batch_size, vocab_size)
log_softmax_mature_layer = F.log_softmax(final_logits, dim=-1)
# shape: (num_premature_layers, batch_size, vocab_size)
log_softmax_premature_layers = F.log_softmax(stacked_premature_layers, dim=-1)
# 5. Calculate the KL divergences and then the JS divergences
# shape: (num_premature_layers, batch_size)
kl1 = F.kl_div(log_softmax_mature_layer[None, :, :], avg_dist, reduction="none").mean(-1)
# shape: (num_premature_layers, batch_size)
kl2 = F.kl_div(log_softmax_premature_layers, avg_dist, reduction="none").mean(-1)
js_divs = 0.5 * (kl1 + kl2) # shape: (num_premature_layers, batch_size)
# 6. Reduce the batchmean
js_divs = js_divs.mean(-1) # shape: (num_premature_layers,)
premature_layer = candidate_premature_layers[int(js_divs.argmax().cpu().item())]
base_logits = candidate_premature_logits[premature_layer]
final_logits, base_logits = _relative_top_filter(final_logits, base_logits)
logits = final_logits - base_logits
return logits
|
transformers/src/transformers/generation/utils.py/0
|
{
"file_path": "transformers/src/transformers/generation/utils.py",
"repo_id": "transformers",
"token_count": 111179
}
| 91 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
# the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
# an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
import torch
from ..utils.import_utils import is_torch_available
if is_torch_available():
from transformers import (
PreTrainedModel,
StaticCache,
)
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_3
class TorchExportableModuleWithStaticCache(torch.nn.Module):
"""
A wrapper module designed to make a `PreTrainedModel` exportable with `torch.export`,
specifically for use with static caching. This module ensures that the exported model
is compatible with further lowering and execution in `ExecuTorch`.
Note:
This class is specifically designed to support export process using `torch.export`
in a way that ensures the model can be further lowered and run efficiently in `ExecuTorch`.
"""
def __init__(self, model: PreTrainedModel):
"""
Initializes the wrapper module with the pretrained model.
Args:
model (`PreTrainedModel`): The pretrained model to wrap. The model must have caching
enabled and use a 'static' caching implementation.
Raises:
AssertionError: If the pretrained model does not have caching enabled or if it does
not use a 'static' caching implementation in `model.generation_config`.
"""
super().__init__()
# Sanity checks
if model.generation_config is None:
raise AssertionError(
"The model must have a generation config to be exported with static caching. "
"Please set `generation_config`."
)
if not model.generation_config.use_cache:
raise AssertionError(
"The model must have caching enabled to be exported with static caching. "
"Please set `generation_config.use_cache=True`."
)
if model.generation_config.cache_implementation != "static":
raise AssertionError(
"The model must use a 'static' caching implementation to be exported with static caching. "
"Please set `generation_config.cache_implementation='static'`."
)
self.model = model
self.static_cache = StaticCache(
config=self.model.config,
batch_size=self.model.generation_config.cache_config.batch_size,
max_cache_len=self.model.generation_config.cache_config.max_cache_len,
dtype=self.model.dtype,
device=self.model.generation_config.cache_config.device,
)
self.is_causal = any("CausalLM" in arch for arch in self.model.config.architectures)
if self.is_causal:
causal_mask = torch.tril(
torch.ones(
self.static_cache.max_cache_len,
self.static_cache.max_cache_len,
dtype=torch.bool,
)
)
self.register_buffer("mask", causal_mask, persistent=False)
def forward(self, input_ids: torch.Tensor, cache_position: torch.Tensor):
"""
Forward pass of the module, which is compatible with the ExecuTorch runtime.
Args:
input_ids (`torch.Tensor`): Tensor representing current input token id to the module.
cache_position (`torch.Tensor`): Tensor representing current input position in the cache.
Returns:
torch.Tensor: Logits output from the model.
This forward adapter serves two primary purposes:
1. **Making the Model `torch.export`-Compatible**:
The adapter hides unsupported objects, such as the `Cache`, from the graph inputs and outputs,
enabling the model to be exportable using `torch.export` without encountering issues.
2. **Ensuring Compatibility with `ExecuTorch` runtime**:
The adapter matches the model's forward signature with that in `executorch/extension/llm/runner`,
ensuring that the exported model can be executed in `ExecuTorch` out-of-the-box.
"""
_, seqlen = input_ids.shape
attn_mask = self.mask[cache_position, :seqlen] if self.is_causal else None
outs = self.model(
input_ids=input_ids,
attention_mask=attn_mask,
position_ids=cache_position.unsqueeze(0),
cache_position=cache_position,
past_key_values=self.static_cache,
use_cache=True,
)
return outs.logits
@staticmethod
def generate(
exported_program: torch.export.ExportedProgram, prompt_token_ids: torch.Tensor, max_new_tokens: int
) -> torch.Tensor:
"""
Generate a sequence of tokens using an exported program.
This util function is designed to test exported models by simulating the generation process.
It processes the input prompt tokens sequentially (no parallel prefill).
This generate function is not intended to replace the original `generate` method, and the support
for leveraging the original `generate` is potentially planed!
Args:
exported_program (`torch.export.ExportedProgram`): The exported program generated via `torch.export`.
prompt_token_ids (`torch.Tensor`): Tensor representing the input prompt token IDs.
max_new_tokens (`int`): Maximum number of new tokens to generate. Note that the total generation
length is limited by both `max_new_tokens` and the model's cache size.
Returns:
torch.Tensor: A tensor containing the generated sequence of token IDs, including the original prompt tokens.
"""
prompt_token_len = prompt_token_ids.shape[-1]
max_generation_length = prompt_token_len + max_new_tokens
for buffer_name, buffer in exported_program.named_buffers():
if buffer_name.startswith("static_cache.key_cache"):
max_cache_len = buffer.shape[2]
max_generation_length = min(max_generation_length, max_cache_len)
break
response_tokens = []
for input_pos in range(min(max_generation_length, prompt_token_len)):
result = exported_program.module().forward(
input_ids=prompt_token_ids[:, input_pos : input_pos + 1],
cache_position=torch.tensor([input_pos], dtype=torch.long),
)
response_tokens.append(prompt_token_ids[0][input_pos].item())
current_token = torch.argmax(result[:, -1, :], dim=-1).item()
response_tokens.append(current_token)
while len(response_tokens) < max_generation_length:
result = exported_program.module().forward(
input_ids=torch.tensor([[current_token]], dtype=torch.long),
cache_position=torch.tensor([len(response_tokens)], dtype=torch.long),
)
current_token = torch.argmax(result[:, -1, :], dim=-1).item()
response_tokens.append(current_token)
return torch.tensor([response_tokens], dtype=torch.long)
def convert_and_export_with_cache(
model: PreTrainedModel,
example_input_ids: torch.Tensor = None,
example_cache_position: torch.Tensor = None,
):
"""
Convert a `PreTrainedModel` into an exportable module and export it using `torch.export`,
ensuring the exported model is compatible with `ExecuTorch`.
Args:
model (`PreTrainedModel`): The pretrained model to be exported.
example_input_ids (`torch.Tensor`): Example input token id used by `torch.export`.
example_cache_position (`torch.Tensor`): Example current cache position used by `torch.export`.
Returns:
Exported program (`torch.export.ExportedProgram`): The exported program generated via `torch.export`.
"""
if not is_torch_greater_or_equal_than_2_3:
raise ImportError("torch >= 2.3 is required.")
import torch.export._trace
with torch.no_grad():
# TODO: The default inputs only work for text models. We need to add support for vision/audio models.
example_input_ids = (
example_input_ids if example_input_ids is not None else torch.tensor([[1]], dtype=torch.long)
)
example_cache_position = (
example_cache_position if example_cache_position is not None else torch.tensor([0], dtype=torch.long)
)
# Due to issue https://github.com/pytorch/pytorch/issues/128394, we need to switch to use an internal
# export API and pre_dispatch=False. Switch to use the public API once the issue is included in 2.5 release.
exported_program = torch.export._trace._export(
TorchExportableModuleWithStaticCache(model),
args=(example_input_ids,),
kwargs={"cache_position": example_cache_position},
pre_dispatch=False,
strict=True,
)
return exported_program
|
transformers/src/transformers/integrations/executorch.py/0
|
{
"file_path": "transformers/src/transformers/integrations/executorch.py",
"repo_id": "transformers",
"token_count": 3741
}
| 92 |
/*!
**************************************************************************************************
* Deformable DETR
* Copyright (c) 2020 SenseTime. All Rights Reserved.
* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
**************************************************************************************************
* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
**************************************************************************************************
*/
#include "ms_deform_attn.h"
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
m.def("ms_deform_attn_forward", &ms_deform_attn_forward, "ms_deform_attn_forward");
m.def("ms_deform_attn_backward", &ms_deform_attn_backward, "ms_deform_attn_backward");
}
|
transformers/src/transformers/kernels/deta/vision.cpp/0
|
{
"file_path": "transformers/src/transformers/kernels/deta/vision.cpp",
"repo_id": "transformers",
"token_count": 220
}
| 93 |
// File from https://github.com/mlpen/YOSO/blob/main/encoders/backbones/efficient_attentions/yoso/yoso_v1/cuda/fast_lsh_cumulation_cuda.cu
#include "fast_lsh_cumulation_cuda.h"
#include "common_cuda_device.h"
#include "common_cuda.h"
#include "common.h"
#include <stdio.h>
//////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////
inline __device__ void fast_hadamard_transform(float *vector_buffer, int vector_dim, int dim_idx) {
int stride = vector_dim / 2;
while (stride > (WARP_SIZE / 2)) {
__syncthreads();
int sign = 1 - ((dim_idx / stride) % 2) * 2;
float val1 = vector_buffer[dim_idx];
float val2 = vector_buffer[dim_idx + sign * stride];
__syncthreads();
vector_buffer[dim_idx] = float(sign) * val1 + val2;
stride = stride / 2;
}
float val = vector_buffer[dim_idx];
#pragma unroll
for (stride = (WARP_SIZE / 2); stride > 0; stride = stride / 2) {
int sign = 1 - ((dim_idx / stride) % 2) * 2;
val = float(sign) * val + __shfl_xor_sync(FULL_MASK, val, stride);
}
vector_buffer[dim_idx] = val;
}
__global__ void fast_hash_ver1_cuda_kernel(
int *mask, // [batch_size, num_vector]
float *vector, // [batch_size, num_vector, vector_dim]
int *Dmat, // [batch_size, 3, num_part, vector_dim]
int *hash_code, // [batch_size, num_vector, num_hash_f]
int batch_size,
int num_vector,
int vector_dim,
int num_part,
int num_hash_f,
int hash_code_len
) {
int batch_idx = blockIdx.z;
int vector_idx = blockIdx.y;
int part_idx = blockIdx.x;
int dim_idx = threadIdx.x;
int batch_idx__vector_idx = batch_idx * num_vector + vector_idx;
if (mask[batch_idx__vector_idx] == 0) {
return;
}
extern __shared__ float buffer[];
float *vector_buffer = buffer;
vector_buffer[dim_idx] = vector[batch_idx__vector_idx * vector_dim + dim_idx];
vector_buffer[dim_idx] = vector_buffer[dim_idx] * (float)Dmat[((batch_idx * 3 + 0) * num_part + part_idx) * vector_dim + dim_idx];
fast_hadamard_transform(vector_buffer, vector_dim, dim_idx);
vector_buffer[dim_idx] = vector_buffer[dim_idx] * (float)Dmat[((batch_idx * 3 + 1) * num_part + part_idx) * vector_dim + dim_idx];
fast_hadamard_transform(vector_buffer, vector_dim, dim_idx);
vector_buffer[dim_idx] = vector_buffer[dim_idx] * (float)Dmat[((batch_idx * 3 + 2) * num_part + part_idx) * vector_dim + dim_idx];
fast_hadamard_transform(vector_buffer, vector_dim, dim_idx);
int num_hash_per_part = vector_dim / hash_code_len;
if (hash_code_len == 8 || hash_code_len == 16) {
int code = select(vector_buffer[dim_idx] > 0, 1 << (dim_idx % hash_code_len), 0);
for (int offset = 1; offset < hash_code_len; offset = offset * 2) {
code += __shfl_xor_sync(FULL_MASK, code, offset);
}
if (dim_idx % hash_code_len == 0) {
int hash_f_idx = part_idx * num_hash_per_part + dim_idx / hash_code_len;
if (hash_f_idx < num_hash_f) {
hash_code[batch_idx__vector_idx * num_hash_f + hash_f_idx] = code;
}
}
} else {
vector_buffer[dim_idx] = select(vector_buffer[dim_idx] > 0, 1 << (dim_idx % hash_code_len), 0);
__syncthreads();
if (dim_idx < num_hash_per_part) {
int code = 0;
for (int i = 0; i < hash_code_len; i++) {
code += vector_buffer[dim_idx * hash_code_len + i];
}
int hash_f_idx = part_idx * num_hash_per_part + dim_idx;
if (hash_f_idx < num_hash_f) {
hash_code[batch_idx__vector_idx * num_hash_f + hash_f_idx] = code;
}
}
}
}
__global__ void lsh_cumulation_ver1_step1_cuda_kernel(
int *key_mask, // [batch_size, num_key]
int *key_hash_code, // [batch_size, num_key, num_hash_f]
float *value, // [batch_size, num_key, value_dim]
float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE]
int batch_size,
int num_hash_f,
int hashtable_capacity,
int num_key,
int value_dim,
int offset_warp
) {
int warp_thread_idx = threadIdx.x;
int batch_idx = blockIdx.y;
int key_idx = blockIdx.x * blockDim.y + threadIdx.y;
int batch_idx__key_idx = batch_idx * num_key + key_idx;
if (key_mask[batch_idx__key_idx] == 0) {
return;
}
if (num_hash_f > WARP_SIZE) {
float warp_value = value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx];
for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) {
int warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_start + warp_thread_idx];
#pragma unroll
for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) {
int current_hashcode = warp_hashcode;
current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset);
int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode;
atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value);
}
}
} else {
float warp_value = value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx];
int warp_hashcode = 0;
if (warp_thread_idx < num_hash_f) {
warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + warp_thread_idx];
}
for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) {
int current_hashcode = warp_hashcode;
current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx);
int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode;
atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value);
}
}
}
__global__ void lsh_cumulation_ver1_step2_cuda_kernel(
int *query_mask, // [batch_size, num_query]
int *query_hash_code, // [batch_size, num_query, num_hash_f]
float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE]
float *cumulation_value, // [batch_size, num_query, value_dim]
int batch_size,
int num_hash_f,
int hashtable_capacity,
int num_query,
int value_dim,
int offset_warp
) {
int warp_thread_idx = threadIdx.x;
int batch_idx = blockIdx.y;
int query_idx = blockIdx.x * blockDim.y + threadIdx.y;
int batch_idx__query_idx = batch_idx * num_query + query_idx;
if (query_mask[batch_idx__query_idx] == 0) {
return;
}
if (num_hash_f > WARP_SIZE) {
float warp_value = 0;
for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) {
int warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + hash_f_start + warp_thread_idx];
#pragma unroll
for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) {
int current_hashcode = warp_hashcode;
current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset);
int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode;
warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx];
}
}
cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] = warp_value / float(num_hash_f);
} else {
float warp_value = 0;
int warp_hashcode = 0;
if (warp_thread_idx < num_hash_f) {
warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + warp_thread_idx];
}
for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) {
int current_hashcode = warp_hashcode;
current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx);
int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode;
warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx];
}
cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] = warp_value / float(num_hash_f);
}
}
__global__ void lsh_weighted_cumulation_ver1_step1_cuda_kernel(
int *key_mask, // [batch_size, num_key]
int *key_hash_code, // [batch_size, num_key, num_hash_f]
float *key_weight, // [batch_size, num_key, weight_dim]
float *value, // [batch_size, num_key, value_dim]
float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE]
int batch_size,
int num_hash_f,
int hashtable_capacity,
int num_key,
int value_dim,
int weight_dim,
int offset_warp,
int weight_idx
) {
int warp_thread_idx = threadIdx.x;
int batch_idx = blockIdx.y;
int key_idx = blockIdx.x * blockDim.y + threadIdx.y;
int batch_idx__key_idx = batch_idx * num_key + key_idx;
if (key_mask[batch_idx__key_idx] == 0) {
return;
}
if (num_hash_f > WARP_SIZE) {
float warp_value = key_weight[batch_idx__key_idx * weight_dim + weight_idx] * value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx];
for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) {
int warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_start + warp_thread_idx];
#pragma unroll
for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) {
int current_hashcode = warp_hashcode;
current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset);
int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode;
atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value);
}
}
} else {
float warp_value = key_weight[batch_idx__key_idx * weight_dim + weight_idx] * value[batch_idx__key_idx * value_dim + offset_warp + warp_thread_idx];
int warp_hashcode = 0;
if (warp_thread_idx < num_hash_f) {
warp_hashcode = key_hash_code[batch_idx__key_idx * num_hash_f + warp_thread_idx];
}
for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) {
int current_hashcode = warp_hashcode;
current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx);
int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode;
atomicAdd(&hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx], warp_value);
}
}
}
__global__ void lsh_weighted_cumulation_ver1_step2_cuda_kernel(
int *query_mask, // [batch_size, num_query]
int *query_hash_code, // [batch_size, num_query, num_hash_f]
float *query_weight, // [batch_size, num_query, weight_dim]
float *hashtable_value, // [batch_size, num_hash_f, hashtable_capacity, WARP_SIZE]
float *cumulation_value, // [batch_size, num_query, value_dim]
int batch_size,
int num_hash_f,
int hashtable_capacity,
int num_query,
int value_dim,
int weight_dim,
int offset_warp,
int weight_idx
) {
int warp_thread_idx = threadIdx.x;
int batch_idx = blockIdx.y;
int query_idx = blockIdx.x * blockDim.y + threadIdx.y;
int batch_idx__query_idx = batch_idx * num_query + query_idx;
if (query_mask[batch_idx__query_idx] == 0) {
return;
}
if (num_hash_f > WARP_SIZE) {
float warp_value = 0;
for (int hash_f_start = 0; hash_f_start < num_hash_f; hash_f_start = hash_f_start + WARP_SIZE) {
int warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + hash_f_start + warp_thread_idx];
#pragma unroll
for (int hash_f_offset = 0; hash_f_offset < WARP_SIZE; hash_f_offset++) {
int current_hashcode = warp_hashcode;
current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_offset);
int hashtable_idx = (batch_idx * num_hash_f + (hash_f_start + hash_f_offset)) * hashtable_capacity + current_hashcode;
warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx];
}
}
float warp_weight = query_weight[batch_idx__query_idx * weight_dim + weight_idx];
cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] += warp_weight * warp_value / float(num_hash_f);
} else {
float warp_value = 0;
int warp_hashcode = 0;
if (warp_thread_idx < num_hash_f) {
warp_hashcode = query_hash_code[batch_idx__query_idx * num_hash_f + warp_thread_idx];
}
for (int hash_f_idx = 0; hash_f_idx < num_hash_f; hash_f_idx++) {
int current_hashcode = warp_hashcode;
current_hashcode = __shfl_sync(FULL_MASK, current_hashcode, hash_f_idx);
int hashtable_idx = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + current_hashcode;
warp_value = warp_value + hashtable_value[hashtable_idx * WARP_SIZE + warp_thread_idx];
}
float warp_weight = query_weight[batch_idx__query_idx * weight_dim + weight_idx];
cumulation_value[batch_idx__query_idx * value_dim + offset_warp + warp_thread_idx] += warp_weight * warp_value / float(num_hash_f);
}
}
__global__ void count_sort_step1_cuda_kernel(
int *key_mask, // [batch_size, num_key]
int *key_hash_code, // [batch_size, num_key, num_hash_f]
int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
int batch_size,
int num_hash_f,
int hashtable_capacity,
int num_key
) {
int batch_idx = blockIdx.y;
int key_idx = blockIdx.x * blockDim.y + threadIdx.y;
int hash_f_idx = threadIdx.x;
int batch_idx__key_idx = batch_idx * num_key + key_idx;
if (key_mask[batch_idx__key_idx] == 0) {
return;
}
int hash_code = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_idx];
atomicAdd(&count_sort_table[(batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + hash_code], 1);
}
__global__ void count_sort_step2_cuda_kernel(
int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
int batch_size,
int num_hash_f,
int hashtable_capacity
) {
int batch_idx = blockIdx.y;
int hash_f_idx = blockIdx.x;
int num_threads = blockDim.x;
int thread_id = threadIdx.x;
int batch_idx__hash_f_idx = batch_idx * num_hash_f + hash_f_idx;
extern __shared__ float buffer[];
int *table_buffer = (int*)buffer;
if (thread_id == 0) {
table_buffer[0] = 0;
}
copy_data<int>(&count_sort_table[batch_idx__hash_f_idx * hashtable_capacity], &table_buffer[1], hashtable_capacity - 1, num_threads, thread_id);
for (int table_idx_start = 0; table_idx_start < hashtable_capacity; table_idx_start = table_idx_start + num_threads) {
int thread_value = table_buffer[table_idx_start + thread_id];
int next_thread_value = 0;
for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
next_thread_value = __shfl_up_sync(FULL_MASK, thread_value, offset);
if (thread_id % WARP_SIZE >= offset) {
thread_value = thread_value + next_thread_value;
}
}
table_buffer[table_idx_start + thread_id] = thread_value;
}
__syncthreads();
if (hashtable_capacity > WARP_SIZE) {
if (thread_id < WARP_SIZE) {
for (int table_idx_start = WARP_SIZE; table_idx_start < hashtable_capacity; table_idx_start = table_idx_start + WARP_SIZE) {
table_buffer[table_idx_start + thread_id] += table_buffer[table_idx_start - 1];
}
}
}
copy_data<int>(table_buffer, &count_sort_table[batch_idx__hash_f_idx * hashtable_capacity], hashtable_capacity, num_threads, thread_id);
}
__global__ void count_sort_step3_cuda_kernel(
int *key_mask, // [batch_size, num_key]
int *key_hash_code, // [batch_size, num_key, num_hash_f]
int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
int *key_sorted_idxes, // [batch_size, num_hash_f, num_key]
int batch_size,
int num_hash_f,
int hashtable_capacity,
int num_key
) {
int batch_idx = blockIdx.y;
int key_idx = blockIdx.x * blockDim.y + threadIdx.y;
int hash_f_idx = threadIdx.x;
int batch_idx__key_idx = batch_idx * num_key + key_idx;
if (key_mask[batch_idx__key_idx] == 0) {
return;
}
int batch_idx__hash_f_idx = batch_idx * num_hash_f + hash_f_idx;
int hash_code = key_hash_code[batch_idx__key_idx * num_hash_f + hash_f_idx];
int sort_idx = atomicAdd(&count_sort_table[batch_idx__hash_f_idx * hashtable_capacity + hash_code], 1);
key_sorted_idxes[batch_idx__hash_f_idx * num_key + sort_idx] = key_idx;
}
__global__ void extract_query_info_cuda_kernel(
int *query_mask, // [batch_size, num_query]
int *query_hash_code, // [batch_size, num_query, num_hash_f]
int *count_sort_table, // [batch_size, num_hash_f, hashtable_capacity]
int *query_info, // [batch_size, num_query, 2, num_hash_f]
int batch_size,
int num_hash_f,
int hashtable_capacity,
int num_query
) {
int batch_idx = blockIdx.y;
int query_idx = blockIdx.x * blockDim.y + threadIdx.y;
int hash_f_idx = threadIdx.x;
int batch_idx__query_idx = batch_idx * num_query + query_idx;
if (query_mask[batch_idx__query_idx] == 0) {
return;
}
int hash_code = query_hash_code[batch_idx__query_idx * num_hash_f + hash_f_idx];
int batch_idx__hash_f_idx__hash_code = (batch_idx * num_hash_f + hash_f_idx) * hashtable_capacity + hash_code;
int key_offset = select(hash_code == 0, 0, count_sort_table[batch_idx__hash_f_idx__hash_code - 1]);
int key_count = count_sort_table[batch_idx__hash_f_idx__hash_code] - key_offset;
query_info[batch_idx__query_idx * 2 * num_hash_f + hash_f_idx] = key_offset;
query_info[(batch_idx__query_idx * 2 + 1) * num_hash_f + hash_f_idx] = key_count;
}
__global__ void lsh_weighted_cumulation_ver2_step2_cuda_kernel(
int *query_mask, // [batch_size, num_query]
int *query_info, // [batch_size, num_query, 2, num_hash_f]
int *key_sorted_idxes, // [batch_size, num_hash_f, num_key]
float *query_weight, // [batch_size, num_query, weight_dim]
float *key_weight, // [batch_size, num_key, weight_dim]
float *value, // [batch_size, num_key, value_dim]
float *cumulation_value, // [batch_size, num_query, value_dim]
int batch_size,
int num_hash_f,
int num_query,
int num_key,
int value_dim,
int weight_dim
) {
int batch_idx = blockIdx.z;
int hash_f_idx = blockIdx.y;
int query_idx = blockIdx.x;
int num_threads = blockDim.y * blockDim.x;
int thread_id = threadIdx.y * blockDim.x + threadIdx.x;
int num_warps = blockDim.y;
int warp_idx = threadIdx.y;
int warp_thread_idx = threadIdx.x;
int batch_idx__query_idx = batch_idx * num_query + query_idx;
if (query_mask[batch_idx__query_idx] == 0) {
return;
}
int key_offset = query_info[batch_idx__query_idx * 2 * num_hash_f + hash_f_idx];
int key_count = query_info[(batch_idx__query_idx * 2 + 1) * num_hash_f + hash_f_idx];
if (key_count == 0) {
return;
}
extern __shared__ float buffer[];
if (key_count == 1) {
if (warp_idx == 0) {
int key_idx = key_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_key + key_offset];
int batch_idx__key_idx = batch_idx * num_key + key_idx;
float weight = 0;
for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) {
int weight_dim_idx = weight_offset + warp_thread_idx;
float val = query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx] * key_weight[batch_idx__key_idx * weight_dim + weight_dim_idx];
#pragma unroll
for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
val += __shfl_xor_sync(FULL_MASK, val, offset);
}
weight = weight + val;
}
weight = weight / float(num_hash_f);
for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) {
int value_dim_idx = value_offset + warp_thread_idx;
float val = value[batch_idx__key_idx * value_dim + value_dim_idx];
atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val);
}
}
} else {
float *weight_buffer = buffer;
int *key_idxes_buffer = (int*)&buffer[weight_dim];
copy_data_nonblocking<float>(&query_weight[batch_idx__query_idx * weight_dim], weight_buffer, weight_dim, num_threads, thread_id);
while (key_count > 0) {
int work_size = min(WARP_SIZE, key_count);
copy_data_nonblocking<int>(&key_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_key + key_offset], key_idxes_buffer, work_size, num_threads, thread_id);
__syncthreads();
for (int work_offset = 0; work_offset < WARP_SIZE; work_offset = work_offset + num_warps) {
int work_idx = work_offset + warp_idx;
if (work_idx < key_count) {
int key_idx = key_idxes_buffer[work_idx];
int batch_idx__key_idx = batch_idx * num_key + key_idx;
float weight = 0;
for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) {
int weight_dim_idx = weight_offset + warp_thread_idx;
float val = weight_buffer[weight_dim_idx] * key_weight[batch_idx__key_idx * weight_dim + weight_dim_idx];
#pragma unroll
for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
val += __shfl_xor_sync(FULL_MASK, val, offset);
}
weight = weight + val;
}
weight = weight / float(num_hash_f);
for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) {
int value_dim_idx = value_offset + warp_thread_idx;
float val = value[batch_idx__key_idx * value_dim + value_dim_idx];
atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val);
}
}
}
key_count = key_count - work_size;
key_offset = key_offset + work_size;
}
}
}
__global__ void lsh_weighted_cumulation_ver3_step2_cuda_kernel(
int *query_sorted_idxes, // [batch_size, num_hash_f, num_query]
int *key_mask, // [batch_size, num_key]
int *key_info, // [batch_size, num_key, 2, num_hash_f]
float *query_weight, // [batch_size, num_query, weight_dim]
float *key_weight, // [batch_size, num_key, weight_dim]
float *value, // [batch_size, num_key, value_dim]
float *cumulation_value, // [batch_size, num_query, value_dim]
int batch_size,
int num_hash_f,
int num_query,
int num_key,
int value_dim,
int weight_dim
) {
int batch_idx = blockIdx.z;
int hash_f_idx = blockIdx.y;
int key_idx = blockIdx.x;
int num_threads = blockDim.y * blockDim.x;
int thread_id = threadIdx.y * blockDim.x + threadIdx.x;
int num_warps = blockDim.y;
int warp_idx = threadIdx.y;
int warp_thread_idx = threadIdx.x;
int batch_idx__key_idx = batch_idx * num_key + key_idx;
if (key_mask[batch_idx__key_idx] == 0) {
return;
}
int query_offset = key_info[batch_idx__key_idx * 2 * num_hash_f + hash_f_idx];
int query_count = key_info[(batch_idx__key_idx * 2 + 1) * num_hash_f + hash_f_idx];
if (query_count == 0) {
return;
}
extern __shared__ float buffer[];
if (query_count == 1) {
if (warp_idx == 0) {
int query_idx = query_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_query + query_offset];
int batch_idx__query_idx = batch_idx * num_query + query_idx;
float weight = 0;
for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) {
int weight_dim_idx = weight_offset + warp_thread_idx;
float val = key_weight[batch_idx__key_idx * weight_dim + weight_dim_idx] * query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx];
#pragma unroll
for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
val += __shfl_xor_sync(FULL_MASK, val, offset);
}
weight = weight + val;
}
weight = weight / float(num_hash_f);
for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) {
int value_dim_idx = value_offset + warp_thread_idx;
float val = value[batch_idx__key_idx * value_dim + value_dim_idx];
atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val);
}
}
} else {
float *weight_buffer = buffer;
float *value_buffer = &buffer[weight_dim];
int *query_idxes_buffer = (int*)&buffer[weight_dim + value_dim];
copy_data_nonblocking<float>(&key_weight[batch_idx__key_idx * weight_dim], weight_buffer, weight_dim, num_threads, thread_id);
copy_data_nonblocking<float>(&value[batch_idx__key_idx * value_dim], value_buffer, value_dim, num_threads, thread_id);
while (query_count > 0) {
int work_size = min(WARP_SIZE, query_count);
copy_data_nonblocking<int>(&query_sorted_idxes[(batch_idx * num_hash_f + hash_f_idx) * num_query + query_offset], query_idxes_buffer, work_size, num_threads, thread_id);
__syncthreads();
for (int work_offset = 0; work_offset < WARP_SIZE; work_offset = work_offset + num_warps) {
int work_idx = work_offset + warp_idx;
if (work_idx < query_count) {
int query_idx = query_idxes_buffer[work_idx];
int batch_idx__query_idx = batch_idx * num_query + query_idx;
float weight = 0;
for (int weight_offset = 0; weight_offset < weight_dim; weight_offset = weight_offset + WARP_SIZE) {
int weight_dim_idx = weight_offset + warp_thread_idx;
float val = weight_buffer[weight_dim_idx] * query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx];
#pragma unroll
for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
val += __shfl_xor_sync(FULL_MASK, val, offset);
}
weight = weight + val;
}
weight = weight / float(num_hash_f);
for (int value_offset = 0; value_offset < value_dim; value_offset = value_offset + WARP_SIZE) {
int value_dim_idx = value_offset + warp_thread_idx;
float val = value_buffer[value_dim_idx];
atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val);
}
}
}
query_count = query_count - work_size;
query_offset = query_offset + work_size;
}
}
}
__global__ void lsh_weighted_cumulation_ver4_step2_cuda_kernel(
int *query_sorted_idxes, // [batch_size, num_hash_f, num_query]
int *key_mask, // [batch_size, num_key]
int *key_info, // [batch_size, num_key, 2, num_hash_f]
float *query_weight, // [batch_size, num_query, weight_dim]
float *key_weight, // [batch_size, num_key, weight_dim]
float *value, // [batch_size, num_key, value_dim]
float *cumulation_value, // [batch_size, num_query, value_dim]
int batch_size,
int num_hash_f,
int num_query,
int num_key,
int value_dim,
int weight_dim
) {
int batch_idx = blockIdx.y;
int key_idx = blockIdx.x;
int num_threads = blockDim.y * blockDim.x;
int thread_id = threadIdx.y * blockDim.x + threadIdx.x;
int num_warps = blockDim.y;
int warp_idx = threadIdx.y;
int warp_thread_idx = threadIdx.x;
int batch_idx__key_idx = batch_idx * num_key + key_idx;
if (key_mask[batch_idx__key_idx] == 0) {
return;
}
extern __shared__ float buffer[];
float *weight_buffer = buffer;
float *value_buffer = &buffer[weight_dim];
int *key_info_buffer = (int*)&buffer[weight_dim + value_dim];
copy_data_nonblocking<float>(&key_weight[batch_idx__key_idx * weight_dim], weight_buffer, weight_dim, num_threads, thread_id);
copy_data_nonblocking<float>(&value[batch_idx__key_idx * value_dim], value_buffer, value_dim, num_threads, thread_id);
copy_data_nonblocking<int>(&key_info[batch_idx__key_idx * 2 * num_hash_f], key_info_buffer, 2 * num_hash_f, num_threads, thread_id);
int *query_offset_buffer = key_info_buffer;
int *query_count_buffer = &key_info_buffer[num_hash_f];
const int hashtable_size = 1024 + OPTIMAL_THREADS_PER_BLOCK;
__shared__ int hashtable_query[hashtable_size];
__shared__ int hashtable_count[hashtable_size];
__shared__ int inserted_query[hashtable_size];
__shared__ int query_counter[1];
int hash_f_idx_base = 0;
while (true) {
init_buffer_nonblocking<int>(EMPTY_VALUE, hashtable_query, hashtable_size, num_threads, thread_id);
init_buffer_nonblocking<int>(0, hashtable_count, hashtable_size, num_threads, thread_id);
init_buffer_nonblocking<int>(EMPTY_VALUE, inserted_query, hashtable_size, num_threads, thread_id);
init_buffer_nonblocking<int>(0, query_counter, 1, num_threads, thread_id);
__syncthreads();
while (hash_f_idx_base < num_hash_f) {
int hash_f_idx = hash_f_idx_base + warp_idx;
int batch_idx__hash_f_idx = batch_idx * num_hash_f + hash_f_idx;
int stop_flag = 0;
int query_offset = query_offset_buffer[hash_f_idx];
int query_count = query_count_buffer[hash_f_idx];
while (query_count > 0) {
int work_size = min(query_count, WARP_SIZE);
// try inserting query to set and check whether the query is new
int found_new_query = 0;
int query_idx = -1;
if (warp_thread_idx < work_size) {
query_idx = query_sorted_idxes[batch_idx__hash_f_idx * num_query + query_offset + warp_thread_idx];
int slot = set_insert<int>(hashtable_query, hashtable_size, query_idx);
if (slot >= 0) {
found_new_query = atomicAdd(&hashtable_count[slot], 1) == 0;
}
}
// compute cumulative offset
int position_offset = found_new_query;
int next_position_offset = 0;
#pragma unroll
for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
next_position_offset = __shfl_up_sync(FULL_MASK, position_offset, offset);
if (thread_id % WARP_SIZE >= offset) {
position_offset = position_offset + next_position_offset;
}
}
// get the inserted query list end index
int inserted_query_base = 0;
if (thread_id % WARP_SIZE == WARP_SIZE - 1) {
inserted_query_base = atomicAdd(query_counter, position_offset);
}
inserted_query_base = __shfl_sync(FULL_MASK, inserted_query_base, WARP_SIZE - 1);
// insert new queries to list
int insert_idx = inserted_query_base + position_offset - 1;
if (found_new_query) {
inserted_query[insert_idx] = query_idx;
}
// remove inserted queries from list
query_offset_buffer[hash_f_idx] += work_size;
query_count_buffer[hash_f_idx] -= work_size;
query_offset += work_size;
query_count -= work_size;
// if list is almost full, stop inserting
if (inserted_query_base + OPTIMAL_THREADS_PER_BLOCK > hashtable_size) {
stop_flag = 1;
break;
}
}
if (stop_flag) {
break;
}
hash_f_idx_base = hash_f_idx_base + num_warps;
}
__syncthreads();
int num_distint_query = query_counter[0];
if (num_distint_query > 0) {
for (int idx_base = 0; idx_base < num_distint_query; idx_base = idx_base + num_warps) {
int idx = idx_base + warp_idx;
if (idx < num_distint_query) {
int query_idx = inserted_query[idx];
int batch_idx__query_idx = batch_idx * num_query + query_idx;
int slot = set_lookup<int>(hashtable_query, hashtable_size, query_idx);
int duplicate_count = hashtable_count[slot];
float weight = 0;
for (int weight_idx_base = 0; weight_idx_base < weight_dim; weight_idx_base = weight_idx_base + WARP_SIZE) {
int weight_dim_idx = weight_idx_base + warp_thread_idx;
float val = weight_buffer[weight_dim_idx] * query_weight[batch_idx__query_idx * weight_dim + weight_dim_idx];
#pragma unroll
for (int offset = 1; offset < WARP_SIZE; offset = offset << 1) {
val += __shfl_xor_sync(FULL_MASK, val, offset);
}
weight = weight + val;
}
weight = (float)duplicate_count * weight / float(num_hash_f);
for (int value_idx_base = 0; value_idx_base < value_dim; value_idx_base = value_idx_base + WARP_SIZE) {
int value_dim_idx = value_idx_base + warp_thread_idx;
float val = value_buffer[value_dim_idx];
atomicAdd(&cumulation_value[batch_idx__query_idx * value_dim + value_dim_idx], weight * val);
}
}
}
} else {
// all computation is completed if num_distint_query == 0
break;
}
__syncthreads();
}
}
|
transformers/src/transformers/kernels/yoso/fast_lsh_cumulation_cuda.cu/0
|
{
"file_path": "transformers/src/transformers/kernels/yoso/fast_lsh_cumulation_cuda.cu",
"repo_id": "transformers",
"token_count": 14407
}
| 94 |
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import Optional, Tuple
from .configuration_utils import PretrainedConfig
from .utils import is_torch_available, logging
logger = logging.get_logger(__name__)
if is_torch_available():
import torch
def _compute_default_rope_parameters(
config: Optional[PretrainedConfig] = None,
device: Optional["torch.device"] = None,
seq_len: Optional[int] = None,
**rope_kwargs,
) -> Tuple["torch.Tensor", float]:
"""
Computes the inverse frequencies according to the original RoPE implementation
Args:
config ([`~transformers.PretrainedConfig`]):
The model configuration.
device (`torch.device`):
The device to use for initialization of the inverse frequencies.
seq_len (`int`, *optional*):
The current sequence length. Unused for this type of RoPE.
rope_kwargs (`Dict`, *optional*):
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
Returns:
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
"""
if config is not None and len(rope_kwargs) > 0:
raise ValueError(
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
f"`_compute_default_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
)
if len(rope_kwargs) > 0:
base = rope_kwargs["base"]
dim = rope_kwargs["dim"]
elif config is not None:
base = config.rope_theta
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
dim = int(head_dim * partial_rotary_factor)
attention_factor = 1.0 # Unused in this type of RoPE
# Compute the inverse frequencies
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
return inv_freq, attention_factor
def _compute_linear_scaling_rope_parameters(
config: Optional[PretrainedConfig] = None,
device: Optional["torch.device"] = None,
seq_len: Optional[int] = None,
**rope_kwargs,
) -> Tuple["torch.Tensor", float]:
"""
Computes the inverse frequencies with linear scaling. Credits to the Reddit user /u/kaiokendev
Args:
config ([`~transformers.PretrainedConfig`]):
The model configuration.
device (`torch.device`):
The device to use for initialization of the inverse frequencies.
seq_len (`int`, *optional*):
The current sequence length. Unused for this type of RoPE.
rope_kwargs (`Dict`, *optional*):
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
Returns:
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
"""
if config is not None and len(rope_kwargs) > 0:
raise ValueError(
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
f"`_compute_linear_scaling_rope_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
)
if len(rope_kwargs) > 0:
factor = rope_kwargs["factor"]
elif config is not None:
factor = config.rope_scaling["factor"]
# Gets the default RoPE parameters
inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs)
# Then applies linear scaling to the frequencies.
# NOTE: originally, scaling was applied to the position_ids. However, we get `embs = inv_freq @ position_ids`, so
# applying scaling to the inverse frequencies is equivalent.
inv_freq /= factor
return inv_freq, attention_factor
def _compute_dynamic_ntk_parameters(
config: Optional[PretrainedConfig] = None,
device: Optional["torch.device"] = None,
seq_len: Optional[int] = None,
**rope_kwargs,
) -> Tuple["torch.Tensor", float]:
"""
Computes the inverse frequencies with NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla
Args:
config ([`~transformers.PretrainedConfig`]):
The model configuration.
device (`torch.device`):
The device to use for initialization of the inverse frequencies.
seq_len (`int`, *optional*):
The current sequence length, used to update the dynamic RoPE at inference time.
rope_kwargs (`Dict`, *optional*):
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
Returns:
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
"""
# TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
if config is not None and len(rope_kwargs) > 0:
raise ValueError(
"Unexpected arguments: `**rope_kwargs` and `config` are mutually exclusive in "
f"`_compute_dynamic_ntk_parameters`, got `rope_kwargs`={rope_kwargs} and `config`={config}"
)
if len(rope_kwargs) > 0:
base = rope_kwargs["base"]
dim = rope_kwargs["dim"]
max_position_embeddings = rope_kwargs["max_position_embeddings"]
factor = rope_kwargs["factor"]
elif config is not None:
base = config.rope_theta
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
dim = int(head_dim * partial_rotary_factor)
max_position_embeddings = config.max_position_embeddings
factor = config.rope_scaling["factor"]
attention_factor = 1.0 # Unused in this type of RoPE
# seq_len: default to max_position_embeddings, e.g. at init time
seq_len = seq_len if seq_len is not None and seq_len > max_position_embeddings else max_position_embeddings
# Compute the inverse frequencies
base = base * ((factor * seq_len / max_position_embeddings) - (factor - 1)) ** (dim / (dim - 2))
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.int64).float().to(device) / dim))
return inv_freq, attention_factor
def _compute_yarn_parameters(
config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
) -> Tuple["torch.Tensor", float]:
"""
Computes the inverse frequencies with NTK scaling. Please refer to the
[original paper](https://arxiv.org/abs/2309.00071)
Args:
config ([`~transformers.PretrainedConfig`]):
The model configuration.
device (`torch.device`):
The device to use for initialization of the inverse frequencies.
seq_len (`int`, *optional*):
The current sequence length. Unused for this type of RoPE.
rope_kwargs (`Dict`, *optional*):
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
Returns:
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
post-processing scaling factor applied to the computed cos/sin.
"""
# No need to keep BC with yarn, unreleased when this new pattern was created.
if len(rope_kwargs) > 0:
raise ValueError(
f"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_yarn_parameters`, got {rope_kwargs}"
)
base = config.rope_theta
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
dim = int(head_dim * partial_rotary_factor)
max_position_embeddings = config.max_position_embeddings
factor = config.rope_scaling["factor"]
# Sets the attention factor as suggested in the paper
attention_factor = config.rope_scaling.get("attention_factor")
if attention_factor is None:
attention_factor = 0.1 * math.log(factor) + 1.0
# Optional config options
# beta_fast/beta_slow: as suggested in the paper, default to 32/1 (correspondingly)
beta_fast = config.rope_scaling.get("beta_fast") or 32
beta_slow = config.rope_scaling.get("beta_slow") or 1
# Compute the inverse frequencies
def find_correction_dim(num_rotations, dim, base, max_position_embeddings):
"""Inverse dimension formula to find the dimension based on the number of rotations"""
return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (2 * math.log(base))
def find_correction_range(low_rot, high_rot, dim, base, max_position_embeddings):
"""Find dimension range bounds based on rotations"""
low = math.floor(find_correction_dim(low_rot, dim, base, max_position_embeddings))
high = math.ceil(find_correction_dim(high_rot, dim, base, max_position_embeddings))
return max(low, 0), min(high, dim - 1)
def linear_ramp_factor(min, max, dim):
if min == max:
max += 0.001 # Prevent singularity
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
ramp_func = torch.clamp(linear_func, 0, 1)
return ramp_func
# Note on variable naming: "interpolation" comes from the original technique, where we interpolate the position IDs
# to expand the possible context length. In other words, interpolation = apply scaling factor.
pos_freqs = base ** (torch.arange(0, dim, 2).float().to(device) / dim)
inv_freq_extrapolation = 1.0 / pos_freqs
inv_freq_interpolation = 1.0 / (factor * pos_freqs)
low, high = find_correction_range(beta_fast, beta_slow, dim, base, max_position_embeddings)
# Get n-dimensional rotational scaling corrected for extrapolation
inv_freq_extrapolation_factor = 1 - linear_ramp_factor(low, high, dim // 2).float().to(device)
inv_freq = (
inv_freq_interpolation * (1 - inv_freq_extrapolation_factor)
+ inv_freq_extrapolation * inv_freq_extrapolation_factor
)
return inv_freq, attention_factor
def _compute_longrope_parameters(
config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
) -> Tuple["torch.Tensor", float]:
"""
Computes the inverse frequencies with LongRoPE scaling. Please refer to the
[original implementation](https://github.com/microsoft/LongRoPE)
Args:
config ([`~transformers.PretrainedConfig`]):
The model configuration.
device (`torch.device`):
The device to use for initialization of the inverse frequencies.
seq_len (`int`, *optional*):
The current sequence length.
rope_kwargs (`Dict`, *optional*):
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
Returns:
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
post-processing scaling factor applied to the computed cos/sin.
"""
# TODO (joao): use the new `original_max_position_embeddings` from rope_scaling
# No need to keep BC with longrope, unreleased when this new pattern was created.
if len(rope_kwargs) > 0:
raise ValueError(
"Unexpected arguments: `**rope_kwargs` should be unset in `_compute_longrope_parameters`, got "
f"{rope_kwargs}"
)
base = config.rope_theta
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
dim = int(head_dim * partial_rotary_factor)
long_factor = config.rope_scaling["long_factor"]
short_factor = config.rope_scaling["short_factor"]
factor = config.rope_scaling.get("factor")
attention_factor = config.rope_scaling.get("attention_factor")
# NOTE: Phi3 (and potentially other models) modify `max_position_embeddings` and have a
# `original_max_position_embeddings` field containing the pretrained value. They use the ratio between these two
# values to compute the default attention scaling factor, instead of using `factor`.
if hasattr(config, "original_max_position_embeddings"):
original_max_position_embeddings = config.original_max_position_embeddings
factor = config.max_position_embeddings / config.original_max_position_embeddings
else:
original_max_position_embeddings = config.max_position_embeddings
# Sets the attention factor as suggested in the paper
if attention_factor is None:
if factor <= 1.0:
attention_factor = 1.0
else:
attention_factor = math.sqrt(1 + math.log(factor) / math.log(original_max_position_embeddings))
# Compute the inverse frequencies -- scaled based on the target sequence length
if seq_len and seq_len > original_max_position_embeddings:
ext_factors = torch.tensor(long_factor, dtype=torch.float32, device=device)
else:
ext_factors = torch.tensor(short_factor, dtype=torch.float32, device=device)
inv_freq_shape = torch.arange(0, dim, 2, dtype=torch.int64, device=device).float() / dim
inv_freq = 1.0 / (ext_factors * base**inv_freq_shape)
return inv_freq, attention_factor
def _compute_llama3_parameters(
config: PretrainedConfig, device: "torch.device", seq_len: Optional[int] = None, **rope_kwargs
) -> Tuple["torch.Tensor", float]:
"""
Computes the inverse frequencies for llama 3.1.
Args:
config ([`~transformers.PretrainedConfig`]):
The model configuration.
device (`torch.device`):
The device to use for initialization of the inverse frequencies.
seq_len (`int`, *optional*):
The current sequence length. Unused for this type of RoPE.
rope_kwargs (`Dict`, *optional*):
BC compatibility with the previous RoPE class instantiation, will be removed in v4.45.
Returns:
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
post-processing scaling factor applied to the computed cos/sin.
"""
# Gets the default RoPE parameters
inv_freq, attention_factor = _compute_default_rope_parameters(config, device, seq_len, **rope_kwargs)
factor = config.rope_scaling["factor"] # `8` in the original implementation
low_freq_factor = config.rope_scaling["low_freq_factor"] # `1` in the original implementation
high_freq_factor = config.rope_scaling["high_freq_factor"] # `4` in the original implementation
old_context_len = config.rope_scaling["original_max_position_embeddings"] # `8192` in the original implementation
low_freq_wavelen = old_context_len / low_freq_factor
high_freq_wavelen = old_context_len / high_freq_factor
wavelen = 2 * math.pi / inv_freq
# wavelen < high_freq_wavelen: do nothing
# wavelen > low_freq_wavelen: divide by factor
inv_freq_llama = torch.where(wavelen > low_freq_wavelen, inv_freq / factor, inv_freq)
# otherwise: interpolate between the two, using a smooth factor
smooth_factor = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
smoothed_inv_freq = (1 - smooth_factor) * inv_freq_llama / factor + smooth_factor * inv_freq_llama
is_medium_freq = ~(wavelen < high_freq_wavelen) * ~(wavelen > low_freq_wavelen)
inv_freq_llama = torch.where(is_medium_freq, smoothed_inv_freq, inv_freq_llama)
return inv_freq_llama, attention_factor
# This maps the "rope_type" string field in rope config to the corresponding function to compute the RoPE parameters
# from the model config. You can append new {'rope_type': callable} pairs to this dictionary to enable custom RoPE
# parameterizations, as long as the callable has the same signature.
ROPE_INIT_FUNCTIONS = {
"default": _compute_default_rope_parameters,
"linear": _compute_linear_scaling_rope_parameters,
"dynamic": _compute_dynamic_ntk_parameters,
"yarn": _compute_yarn_parameters,
"longrope": _compute_longrope_parameters,
"llama3": _compute_llama3_parameters,
}
def _check_received_keys(
rope_type: str,
received_keys: set,
required_keys: set,
optional_keys: Optional[set] = None,
ignore_keys: Optional[set] = None,
):
"""Compare the received keys in `config.rope_scaling` against the expected and optional keys"""
# BC: "rope_type" was originally "type" -- let's check for "rope_type" when "type" is present
if "type" in received_keys:
received_keys -= {"type"}
required_keys.add("rope_type")
# Some models need to store model-specific keys, and we don't want to throw warning at them
if ignore_keys is not None:
received_keys -= ignore_keys
missing_keys = required_keys - received_keys
if missing_keys:
raise KeyError(f"Missing required keys in `rope_scaling` for 'rope_type'='{rope_type}': {missing_keys}")
if optional_keys is not None:
unused_keys = received_keys - required_keys - optional_keys
else:
unused_keys = received_keys - required_keys
if unused_keys:
logger.warning(f"Unrecognized keys in `rope_scaling` for 'rope_type'='{rope_type}': {unused_keys}")
def _validate_default_rope_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None):
rope_scaling = config.rope_scaling
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
required_keys = {"rope_type"}
received_keys = set(rope_scaling.keys())
_check_received_keys(rope_type, received_keys, required_keys, ignore_keys=ignore_keys)
def _validate_linear_scaling_rope_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None):
rope_scaling = config.rope_scaling
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
required_keys = {"rope_type", "factor"}
received_keys = set(rope_scaling.keys())
_check_received_keys(rope_type, received_keys, required_keys, ignore_keys=ignore_keys)
factor = rope_scaling["factor"]
if factor is None or not isinstance(factor, float) or factor < 1.0:
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
def _validate_dynamic_scaling_rope_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None):
rope_scaling = config.rope_scaling
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
required_keys = {"rope_type", "factor"}
# TODO (joao): update logic for the inclusion of `original_max_position_embeddings`
optional_keys = {"original_max_position_embeddings"}
received_keys = set(rope_scaling.keys())
_check_received_keys(rope_type, received_keys, required_keys, optional_keys, ignore_keys=ignore_keys)
factor = rope_scaling["factor"]
if factor is None or not isinstance(factor, float) or factor < 1.0:
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
def _validate_yarn_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None):
rope_scaling = config.rope_scaling
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
required_keys = {"rope_type", "factor"}
optional_keys = {"attention_factor", "beta_fast", "beta_slow"}
received_keys = set(rope_scaling.keys())
_check_received_keys(rope_type, received_keys, required_keys, optional_keys, ignore_keys=ignore_keys)
factor = rope_scaling["factor"]
if factor is None or not isinstance(factor, float) or factor < 1.0:
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
attention_factor = rope_scaling.get("attention_factor")
if attention_factor is not None and (not isinstance(attention_factor, float) or attention_factor < 0):
logger.warning(
f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
)
beta_fast = rope_scaling.get("beta_fast")
if beta_fast is not None and not isinstance(beta_fast, float):
logger.warning(f"`rope_scaling`'s beta_fast field must be a float, got {beta_fast}")
beta_slow = rope_scaling.get("beta_slow")
if beta_slow is not None and not isinstance(beta_slow, float):
logger.warning(f"`rope_scaling`'s beta_slow field must be a float, got {beta_slow}")
if (beta_fast or 32) < (beta_slow or 1):
logger.warning(
f"`rope_scaling`'s beta_fast field must be greater than beta_slow, got beta_fast={beta_fast} "
f"(defaults to 32 if None) and beta_slow={beta_slow} (defaults to 1 if None)"
)
def _validate_longrope_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None):
rope_scaling = config.rope_scaling
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
required_keys = {"rope_type", "short_factor", "long_factor"}
# TODO (joao): update logic for the inclusion of `original_max_position_embeddings`
optional_keys = {"attention_factor", "factor", "original_max_position_embeddings"}
received_keys = set(rope_scaling.keys())
_check_received_keys(rope_type, received_keys, required_keys, optional_keys, ignore_keys=ignore_keys)
partial_rotary_factor = config.partial_rotary_factor if hasattr(config, "partial_rotary_factor") else 1.0
head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
dim = int(head_dim * partial_rotary_factor)
short_factor = rope_scaling.get("short_factor")
if not isinstance(short_factor, list) and all(isinstance(x, (int, float)) for x in short_factor):
logger.warning(f"`rope_scaling`'s short_factor field must be a list of numbers, got {short_factor}")
if not len(short_factor) == dim // 2:
logger.warning(f"`rope_scaling`'s short_factor field must have length {dim // 2}, got {len(short_factor)}")
long_factor = rope_scaling.get("long_factor")
if not isinstance(long_factor, list) and all(isinstance(x, (int, float)) for x in long_factor):
logger.warning(f"`rope_scaling`'s long_factor field must be a list of numbers, got {long_factor}")
if not len(long_factor) == dim // 2:
logger.warning(f"`rope_scaling`'s long_factor field must have length {dim // 2}, got {len(long_factor)}")
# Handle Phi3 divergence: prefer the use of `attention_factor` and/or `factor` over
# `original_max_position_embeddings` to compute internal variables. The latter lives outside `rope_scaling` and is
# unique to longrope (= undesirable)
if hasattr(config, "original_max_position_embeddings"):
logger.warning_once(
"This model has set a `original_max_position_embeddings` field, to be used together with "
"`max_position_embeddings` to determine a scaling factor. Please set the `factor` field of `rope_scaling`"
"with this ratio instead -- we recommend the use of this field over `original_max_position_embeddings`, "
"as it is compatible with most model architectures."
)
else:
factor = rope_scaling.get("factor")
if factor is None:
logger.warning("Missing required keys in `rope_scaling`: 'factor'")
elif not isinstance(factor, float) or factor < 1.0:
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
attention_factor = rope_scaling.get("attention_factor")
if attention_factor is not None:
if not isinstance(attention_factor, float) or attention_factor < 0.0:
logger.warning(
f"`rope_scaling`'s attention_factor field must be a float greater than 0, got {attention_factor}"
)
def _validate_llama3_parameters(config: PretrainedConfig, ignore_keys: Optional[set] = None):
rope_scaling = config.rope_scaling
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", None)) # BC: "rope_type" was originally "type"
required_keys = {"rope_type", "factor", "original_max_position_embeddings", "low_freq_factor", "high_freq_factor"}
received_keys = set(rope_scaling.keys())
_check_received_keys(rope_type, received_keys, required_keys, ignore_keys=ignore_keys)
factor = rope_scaling["factor"]
if factor is None or not isinstance(factor, float) or factor < 1.0:
logger.warning(f"`rope_scaling`'s factor field must be a float >= 1, got {factor}")
low_freq_factor = rope_scaling["low_freq_factor"]
high_freq_factor = rope_scaling["high_freq_factor"]
if low_freq_factor is None or not isinstance(low_freq_factor, float):
logger.warning(f"`rope_scaling`'s low_freq_factor field must be a float, got {low_freq_factor}")
if high_freq_factor is None or not isinstance(high_freq_factor, float):
logger.warning(f"`rope_scaling`'s high_freq_factor field must be a float, got {high_freq_factor}")
if high_freq_factor <= low_freq_factor:
logger.warning(
"`rope_scaling`'s high_freq_factor field must be greater than low_freq_factor, got high_freq_factor="
f"{high_freq_factor} and low_freq_factor={low_freq_factor}"
)
original_max_position_embeddings = rope_scaling["original_max_position_embeddings"]
if original_max_position_embeddings is None or not isinstance(original_max_position_embeddings, int):
logger.warning(
"`rope_scaling`'s original_max_position_embeddings field must be an integer, got "
f"{original_max_position_embeddings}"
)
if original_max_position_embeddings >= config.max_position_embeddings:
logger.warning(
"`rope_scaling`'s original_max_position_embeddings field must be less than max_position_embeddings, got "
f"{original_max_position_embeddings} and max_position_embeddings={config.max_position_embeddings}"
)
# Like `ROPE_INIT_FUNCTIONS`, this validation function mapping can be dynamically updated for custom RoPE types.
ROPE_VALIDATION_FUNCTIONS = {
"default": _validate_default_rope_parameters,
"linear": _validate_linear_scaling_rope_parameters,
"dynamic": _validate_dynamic_scaling_rope_parameters,
"yarn": _validate_yarn_parameters,
"longrope": _validate_longrope_parameters,
"llama3": _validate_llama3_parameters,
}
def rope_config_validation(config: PretrainedConfig, ignore_keys: Optional[set] = None):
"""
Validate the RoPE config arguments, given a `PretrainedConfig` object
"""
rope_scaling = getattr(config, "rope_scaling", None) # not a default parameter in `PretrainedConfig`
if rope_scaling is None:
return
# BC: "rope_type" was originally "type"
rope_type = rope_scaling.get("rope_type", rope_scaling.get("type", "default"))
validation_fn = ROPE_VALIDATION_FUNCTIONS.get(rope_type)
if validation_fn is not None:
validation_fn(config, ignore_keys=ignore_keys)
else:
logger.warning(
f"Missing validation function mapping in `ROPE_VALIDATION_FUNCTIONS` for 'rope_type'='{rope_type}'"
)
|
transformers/src/transformers/modeling_rope_utils.py/0
|
{
"file_path": "transformers/src/transformers/modeling_rope_utils.py",
"repo_id": "transformers",
"token_count": 10700
}
| 95 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert ALIGN checkpoints from the original repository."""
import argparse
import os
import align
import numpy as np
import requests
import tensorflow as tf
import torch
from PIL import Image
from tokenizer import Tokenizer
from transformers import (
AlignConfig,
AlignModel,
AlignProcessor,
BertConfig,
BertTokenizer,
EfficientNetConfig,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def preprocess(image):
image = tf.image.resize(image, (346, 346))
image = tf.image.crop_to_bounding_box(image, (346 - 289) // 2, (346 - 289) // 2, 289, 289)
return image
def get_align_config():
vision_config = EfficientNetConfig.from_pretrained("google/efficientnet-b7")
vision_config.image_size = 289
vision_config.hidden_dim = 640
vision_config.id2label = {"0": "LABEL_0", "1": "LABEL_1"}
vision_config.label2id = {"LABEL_0": 0, "LABEL_1": 1}
vision_config.depthwise_padding = []
text_config = BertConfig()
config = AlignConfig.from_text_vision_configs(
text_config=text_config, vision_config=vision_config, projection_dim=640
)
return config
# We will verify our results on an image of cute cats
def prepare_img():
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
im = Image.open(requests.get(url, stream=True).raw)
return im
def get_processor():
image_processor = EfficientNetImageProcessor(
do_center_crop=True,
rescale_factor=1 / 127.5,
rescale_offset=True,
do_normalize=False,
include_top=False,
resample=Image.BILINEAR,
)
tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
tokenizer.model_max_length = 64
processor = AlignProcessor(image_processor=image_processor, tokenizer=tokenizer)
return processor
# here we list all keys to be renamed (original name on the left, our name on the right)
def rename_keys(original_param_names):
# EfficientNet image encoder
block_names = [v.split("_")[0].split("block")[1] for v in original_param_names if v.startswith("block")]
block_names = list(set(block_names))
block_names = sorted(block_names)
num_blocks = len(block_names)
block_name_mapping = {b: str(i) for b, i in zip(block_names, range(num_blocks))}
rename_keys = []
rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight"))
rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight"))
rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias"))
rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean"))
rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var"))
for b in block_names:
hf_b = block_name_mapping[b]
rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight"))
rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight"))
rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias"))
rename_keys.append(
(f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean")
)
rename_keys.append(
(f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var")
)
rename_keys.append(
(f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight")
)
rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight"))
rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias"))
rename_keys.append(
(f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean")
)
rename_keys.append(
(f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var")
)
rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight"))
rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias"))
rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight"))
rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias"))
rename_keys.append(
(f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight")
)
rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight"))
rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias"))
rename_keys.append(
(f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean")
)
rename_keys.append(
(f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var")
)
key_mapping = {}
for item in rename_keys:
if item[0] in original_param_names:
key_mapping[item[0]] = "vision_model." + item[1]
# BERT text encoder
rename_keys = []
old = "tf_bert_model/bert"
new = "text_model"
for i in range(12):
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/self/query/kernel:0",
f"{new}.encoder.layer.{i}.attention.self.query.weight",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/self/query/bias:0",
f"{new}.encoder.layer.{i}.attention.self.query.bias",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/self/key/kernel:0",
f"{new}.encoder.layer.{i}.attention.self.key.weight",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/self/key/bias:0",
f"{new}.encoder.layer.{i}.attention.self.key.bias",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/self/value/kernel:0",
f"{new}.encoder.layer.{i}.attention.self.value.weight",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/self/value/bias:0",
f"{new}.encoder.layer.{i}.attention.self.value.bias",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/output/dense/kernel:0",
f"{new}.encoder.layer.{i}.attention.output.dense.weight",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/output/dense/bias:0",
f"{new}.encoder.layer.{i}.attention.output.dense.bias",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/output/LayerNorm/gamma:0",
f"{new}.encoder.layer.{i}.attention.output.LayerNorm.weight",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/attention/output/LayerNorm/beta:0",
f"{new}.encoder.layer.{i}.attention.output.LayerNorm.bias",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/intermediate/dense/kernel:0",
f"{new}.encoder.layer.{i}.intermediate.dense.weight",
)
)
rename_keys.append(
(
f"{old}/encoder/layer_._{i}/intermediate/dense/bias:0",
f"{new}.encoder.layer.{i}.intermediate.dense.bias",
)
)
rename_keys.append(
(f"{old}/encoder/layer_._{i}/output/dense/kernel:0", f"{new}.encoder.layer.{i}.output.dense.weight")
)
rename_keys.append(
(f"{old}/encoder/layer_._{i}/output/dense/bias:0", f"{new}.encoder.layer.{i}.output.dense.bias")
)
rename_keys.append(
(f"{old}/encoder/layer_._{i}/output/LayerNorm/gamma:0", f"{new}.encoder.layer.{i}.output.LayerNorm.weight")
)
rename_keys.append(
(f"{old}/encoder/layer_._{i}/output/LayerNorm/beta:0", f"{new}.encoder.layer.{i}.output.LayerNorm.bias")
)
rename_keys.append((f"{old}/embeddings/word_embeddings/weight:0", f"{new}.embeddings.word_embeddings.weight"))
rename_keys.append(
(f"{old}/embeddings/position_embeddings/embeddings:0", f"{new}.embeddings.position_embeddings.weight")
)
rename_keys.append(
(f"{old}/embeddings/token_type_embeddings/embeddings:0", f"{new}.embeddings.token_type_embeddings.weight")
)
rename_keys.append((f"{old}/embeddings/LayerNorm/gamma:0", f"{new}.embeddings.LayerNorm.weight"))
rename_keys.append((f"{old}/embeddings/LayerNorm/beta:0", f"{new}.embeddings.LayerNorm.bias"))
rename_keys.append((f"{old}/pooler/dense/kernel:0", f"{new}.pooler.dense.weight"))
rename_keys.append((f"{old}/pooler/dense/bias:0", f"{new}.pooler.dense.bias"))
rename_keys.append(("dense/kernel:0", "text_projection.weight"))
rename_keys.append(("dense/bias:0", "text_projection.bias"))
rename_keys.append(("dense/bias:0", "text_projection.bias"))
rename_keys.append(("temperature:0", "temperature"))
for item in rename_keys:
if item[0] in original_param_names:
key_mapping[item[0]] = item[1]
return key_mapping
def replace_params(hf_params, tf_params, key_mapping):
list(hf_params.keys())
for key, value in tf_params.items():
if key not in key_mapping:
continue
hf_key = key_mapping[key]
if "_conv" in key and "kernel" in key:
new_hf_value = torch.from_numpy(value).permute(3, 2, 0, 1)
elif "embeddings" in key:
new_hf_value = torch.from_numpy(value)
elif "depthwise_kernel" in key:
new_hf_value = torch.from_numpy(value).permute(2, 3, 0, 1)
elif "kernel" in key:
new_hf_value = torch.from_numpy(np.transpose(value))
elif "temperature" in key:
new_hf_value = value
elif "bn/gamma" or "bn/beta" in key:
new_hf_value = torch.from_numpy(np.transpose(value)).squeeze()
else:
new_hf_value = torch.from_numpy(value)
# Replace HF parameters with original TF model parameters
hf_params[hf_key].copy_(new_hf_value)
@torch.no_grad()
def convert_align_checkpoint(checkpoint_path, pytorch_dump_folder_path, save_model, push_to_hub):
"""
Copy/paste/tweak model's weights to our ALIGN structure.
"""
# Load original model
seq_length = 64
tok = Tokenizer(seq_length)
original_model = align.Align("efficientnet-b7", "bert-base", 640, seq_length, tok.get_vocab_size())
original_model.compile()
original_model.load_weights(checkpoint_path)
tf_params = original_model.trainable_variables
tf_non_train_params = original_model.non_trainable_variables
tf_params = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
tf_params[param.name] = param.numpy()
tf_param_names = list(tf_params.keys())
# Load HuggingFace model
config = get_align_config()
hf_model = AlignModel(config).eval()
hf_params = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print("Converting parameters...")
key_mapping = rename_keys(tf_param_names)
replace_params(hf_params, tf_params, key_mapping)
# Initialize processor
processor = get_processor()
inputs = processor(
images=prepare_img(), text="A picture of a cat", padding="max_length", max_length=64, return_tensors="pt"
)
# HF model inference
hf_model.eval()
with torch.no_grad():
outputs = hf_model(**inputs)
hf_image_features = outputs.image_embeds.detach().numpy()
hf_text_features = outputs.text_embeds.detach().numpy()
# Original model inference
original_model.trainable = False
tf_image_processor = EfficientNetImageProcessor(
do_center_crop=True,
do_rescale=False,
do_normalize=False,
include_top=False,
resample=Image.BILINEAR,
)
image = tf_image_processor(images=prepare_img(), return_tensors="tf", data_format="channels_last")["pixel_values"]
text = tok(tf.constant(["A picture of a cat"]))
image_features = original_model.image_encoder(image, training=False)
text_features = original_model.text_encoder(text, training=False)
image_features = tf.nn.l2_normalize(image_features, axis=-1)
text_features = tf.nn.l2_normalize(text_features, axis=-1)
# Check whether original and HF model outputs match -> np.allclose
if not np.allclose(image_features, hf_image_features, atol=1e-3):
raise ValueError("The predicted image features are not the same.")
if not np.allclose(text_features, hf_text_features, atol=1e-3):
raise ValueError("The predicted text features are not the same.")
print("Model outputs match!")
if save_model:
# Create folder to save model
if not os.path.isdir(pytorch_dump_folder_path):
os.mkdir(pytorch_dump_folder_path)
# Save converted model and image processor
hf_model.save_pretrained(pytorch_dump_folder_path)
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
# Push model and image processor to hub
print("Pushing converted ALIGN to the hub...")
processor.push_to_hub("align-base")
hf_model.push_to_hub("align-base")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--checkpoint_path",
default="./weights/model-weights",
type=str,
help="Path to the pretrained TF ALIGN checkpoint.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="hf_model",
type=str,
help="Path to the output PyTorch model directory.",
)
parser.add_argument("--save_model", action="store_true", help="Save model to local")
parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub")
args = parser.parse_args()
convert_align_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
|
transformers/src/transformers/models/align/convert_align_tf_to_hf.py/0
|
{
"file_path": "transformers/src/transformers/models/align/convert_align_tf_to_hf.py",
"repo_id": "transformers",
"token_count": 7042
}
| 96 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Audio Spectrogram Transformer checkpoints from the original repository. URL: https://github.com/YuanGongND/ast"""
import argparse
import json
from pathlib import Path
import torch
import torchaudio
from datasets import load_dataset
from huggingface_hub import hf_hub_download
from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
def get_audio_spectrogram_transformer_config(model_name):
config = ASTConfig()
if "10-10" in model_name:
pass
elif "speech-commands" in model_name:
config.max_length = 128
elif "12-12" in model_name:
config.time_stride = 12
config.frequency_stride = 12
elif "14-14" in model_name:
config.time_stride = 14
config.frequency_stride = 14
elif "16-16" in model_name:
config.time_stride = 16
config.frequency_stride = 16
else:
raise ValueError("Model not supported")
repo_id = "huggingface/label-files"
if "speech-commands" in model_name:
config.num_labels = 35
filename = "speech-commands-v2-id2label.json"
else:
config.num_labels = 527
filename = "audioset-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
config.id2label = id2label
config.label2id = {v: k for k, v in id2label.items()}
return config
def rename_key(name):
if "module.v" in name:
name = name.replace("module.v", "audio_spectrogram_transformer")
if "cls_token" in name:
name = name.replace("cls_token", "embeddings.cls_token")
if "dist_token" in name:
name = name.replace("dist_token", "embeddings.distillation_token")
if "pos_embed" in name:
name = name.replace("pos_embed", "embeddings.position_embeddings")
if "patch_embed.proj" in name:
name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection")
# transformer blocks
if "blocks" in name:
name = name.replace("blocks", "encoder.layer")
if "attn.proj" in name:
name = name.replace("attn.proj", "attention.output.dense")
if "attn" in name:
name = name.replace("attn", "attention.self")
if "norm1" in name:
name = name.replace("norm1", "layernorm_before")
if "norm2" in name:
name = name.replace("norm2", "layernorm_after")
if "mlp.fc1" in name:
name = name.replace("mlp.fc1", "intermediate.dense")
if "mlp.fc2" in name:
name = name.replace("mlp.fc2", "output.dense")
# final layernorm
if "audio_spectrogram_transformer.norm" in name:
name = name.replace("audio_spectrogram_transformer.norm", "audio_spectrogram_transformer.layernorm")
# classifier head
if "module.mlp_head.0" in name:
name = name.replace("module.mlp_head.0", "classifier.layernorm")
if "module.mlp_head.1" in name:
name = name.replace("module.mlp_head.1", "classifier.dense")
return name
def convert_state_dict(orig_state_dict, config):
for key in orig_state_dict.copy().keys():
val = orig_state_dict.pop(key)
if "qkv" in key:
key_split = key.split(".")
layer_num = int(key_split[3])
dim = config.hidden_size
if "weight" in key:
orig_state_dict[
f"audio_spectrogram_transformer.encoder.layer.{layer_num}.attention.attention.query.weight"
] = val[:dim, :]
orig_state_dict[
f"audio_spectrogram_transformer.encoder.layer.{layer_num}.attention.attention.key.weight"
] = val[dim : dim * 2, :]
orig_state_dict[
f"audio_spectrogram_transformer.encoder.layer.{layer_num}.attention.attention.value.weight"
] = val[-dim:, :]
else:
orig_state_dict[
f"audio_spectrogram_transformer.encoder.layer.{layer_num}.attention.attention.query.bias"
] = val[:dim]
orig_state_dict[
f"audio_spectrogram_transformer.encoder.layer.{layer_num}.attention.attention.key.bias"
] = val[dim : dim * 2]
orig_state_dict[
f"audio_spectrogram_transformer.encoder.layer.{layer_num}.attention.attention.value.bias"
] = val[-dim:]
else:
orig_state_dict[rename_key(key)] = val
return orig_state_dict
def remove_keys(state_dict):
ignore_keys = [
"module.v.head.weight",
"module.v.head.bias",
"module.v.head_dist.weight",
"module.v.head_dist.bias",
]
for k in ignore_keys:
state_dict.pop(k, None)
@torch.no_grad()
def convert_audio_spectrogram_transformer_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False):
"""
Copy/paste/tweak model's weights to our Audio Spectrogram Transformer structure.
"""
config = get_audio_spectrogram_transformer_config(model_name)
model_name_to_url = {
"ast-finetuned-audioset-10-10-0.4593": (
"https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1"
),
"ast-finetuned-audioset-10-10-0.450": (
"https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1"
),
"ast-finetuned-audioset-10-10-0.448": (
"https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1"
),
"ast-finetuned-audioset-10-10-0.448-v2": (
"https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1"
),
"ast-finetuned-audioset-12-12-0.447": (
"https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1"
),
"ast-finetuned-audioset-14-14-0.443": (
"https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1"
),
"ast-finetuned-audioset-16-16-0.442": (
"https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1"
),
"ast-finetuned-speech-commands-v2": (
"https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1"
),
}
# load original state_dict
checkpoint_url = model_name_to_url[model_name]
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")
# remove some keys
remove_keys(state_dict)
# rename some keys
new_state_dict = convert_state_dict(state_dict, config)
# load 🤗 model
model = ASTForAudioClassification(config)
model.eval()
model.load_state_dict(new_state_dict)
# verify outputs on dummy input
# source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62
mean = -4.2677393 if "speech-commands" not in model_name else -6.845978
std = 4.5689974 if "speech-commands" not in model_name else 5.5654526
max_length = 1024 if "speech-commands" not in model_name else 128
feature_extractor = ASTFeatureExtractor(mean=mean, std=std, max_length=max_length)
if "speech-commands" in model_name:
# TODO: Convert dataset to Parquet
dataset = load_dataset("google/speech_commands", "v0.02", split="validation", trust_remote_code=True)
waveform = dataset[0]["audio"]["array"]
else:
filepath = hf_hub_download(
repo_id="nielsr/audio-spectogram-transformer-checkpoint",
filename="sample_audio.flac",
repo_type="dataset",
)
waveform, _ = torchaudio.load(filepath)
waveform = waveform.squeeze().numpy()
inputs = feature_extractor(waveform, sampling_rate=16000, return_tensors="pt")
# forward pass
outputs = model(**inputs)
logits = outputs.logits
if model_name == "ast-finetuned-audioset-10-10-0.4593":
expected_slice = torch.tensor([-0.8760, -7.0042, -8.6602])
elif model_name == "ast-finetuned-audioset-10-10-0.450":
expected_slice = torch.tensor([-1.1986, -7.0903, -8.2718])
elif model_name == "ast-finetuned-audioset-10-10-0.448":
expected_slice = torch.tensor([-2.6128, -8.0080, -9.4344])
elif model_name == "ast-finetuned-audioset-10-10-0.448-v2":
expected_slice = torch.tensor([-1.5080, -7.4534, -8.8917])
elif model_name == "ast-finetuned-audioset-12-12-0.447":
expected_slice = torch.tensor([-0.5050, -6.5833, -8.0843])
elif model_name == "ast-finetuned-audioset-14-14-0.443":
expected_slice = torch.tensor([-0.3826, -7.0336, -8.2413])
elif model_name == "ast-finetuned-audioset-16-16-0.442":
expected_slice = torch.tensor([-1.2113, -6.9101, -8.3470])
elif model_name == "ast-finetuned-speech-commands-v2":
expected_slice = torch.tensor([6.1589, -8.0566, -8.7984])
else:
raise ValueError("Unknown model name")
if not torch.allclose(logits[0, :3], expected_slice, atol=1e-4):
raise ValueError("Logits don't match")
print("Looks ok!")
if pytorch_dump_folder_path is not None:
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
print(f"Saving feature extractor to {pytorch_dump_folder_path}")
feature_extractor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
print("Pushing model and feature extractor to the hub...")
model.push_to_hub(f"MIT/{model_name}")
feature_extractor.push_to_hub(f"MIT/{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="ast-finetuned-audioset-10-10-0.4593",
type=str,
help="Name of the Audio Spectrogram Transformer model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
args = parser.parse_args()
convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
|
transformers/src/transformers/models/audio_spectrogram_transformer/convert_audio_spectrogram_transformer_original_to_pytorch.py/0
|
{
"file_path": "transformers/src/transformers/models/audio_spectrogram_transformer/convert_audio_spectrogram_transformer_original_to_pytorch.py",
"repo_id": "transformers",
"token_count": 5019
}
| 97 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""
import collections
import copy
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
from ...utils import is_sentencepiece_available, is_sudachi_projection_available, logging
if is_sentencepiece_available():
import sentencepiece as spm
else:
spm = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "spm_file": "spiece.model"}
SPIECE_UNDERLINE = "▁"
# Copied from transformers.models.bert.tokenization_bert.load_vocab
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
for index, token in enumerate(tokens):
token = token.rstrip("\n")
vocab[token] = index
return vocab
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a piece of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class BertJapaneseTokenizer(PreTrainedTokenizer):
r"""
Construct a BERT tokenizer for Japanese text.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer
to: this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to a one-wordpiece-per-line vocabulary file.
spm_file (`str`, *optional*):
Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm or .model
extension) that contains the vocabulary.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether to lower case the input. Only has an effect when do_basic_tokenize=True.
do_word_tokenize (`bool`, *optional*, defaults to `True`):
Whether to do word tokenization.
do_subword_tokenize (`bool`, *optional*, defaults to `True`):
Whether to do subword tokenization.
word_tokenizer_type (`str`, *optional*, defaults to `"basic"`):
Type of word tokenizer. Choose from ["basic", "mecab", "sudachi", "jumanpp"].
subword_tokenizer_type (`str`, *optional*, defaults to `"wordpiece"`):
Type of subword tokenizer. Choose from ["wordpiece", "character", "sentencepiece",].
mecab_kwargs (`dict`, *optional*):
Dictionary passed to the `MecabTokenizer` constructor.
sudachi_kwargs (`dict`, *optional*):
Dictionary passed to the `SudachiTokenizer` constructor.
jumanpp_kwargs (`dict`, *optional*):
Dictionary passed to the `JumanppTokenizer` constructor.
"""
vocab_files_names = VOCAB_FILES_NAMES
def __init__(
self,
vocab_file,
spm_file=None,
do_lower_case=False,
do_word_tokenize=True,
do_subword_tokenize=True,
word_tokenizer_type="basic",
subword_tokenizer_type="wordpiece",
never_split=None,
unk_token="[UNK]",
sep_token="[SEP]",
pad_token="[PAD]",
cls_token="[CLS]",
mask_token="[MASK]",
mecab_kwargs=None,
sudachi_kwargs=None,
jumanpp_kwargs=None,
**kwargs,
):
if subword_tokenizer_type == "sentencepiece":
if not os.path.isfile(spm_file):
raise ValueError(
f"Can't find a vocabulary file at path '{spm_file}'. To load the vocabulary from a Google"
" pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.spm_file = spm_file
else:
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google"
" pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
self.vocab = load_vocab(vocab_file)
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
self.do_word_tokenize = do_word_tokenize
self.word_tokenizer_type = word_tokenizer_type
self.lower_case = do_lower_case
self.never_split = never_split
self.mecab_kwargs = copy.deepcopy(mecab_kwargs)
self.sudachi_kwargs = copy.deepcopy(sudachi_kwargs)
self.jumanpp_kwargs = copy.deepcopy(jumanpp_kwargs)
if do_word_tokenize:
if word_tokenizer_type == "basic":
self.word_tokenizer = BasicTokenizer(
do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=False
)
elif word_tokenizer_type == "mecab":
self.word_tokenizer = MecabTokenizer(
do_lower_case=do_lower_case, never_split=never_split, **(mecab_kwargs or {})
)
elif word_tokenizer_type == "sudachi":
self.word_tokenizer = SudachiTokenizer(
do_lower_case=do_lower_case, never_split=never_split, **(sudachi_kwargs or {})
)
elif word_tokenizer_type == "jumanpp":
self.word_tokenizer = JumanppTokenizer(
do_lower_case=do_lower_case, never_split=never_split, **(jumanpp_kwargs or {})
)
else:
raise ValueError(f"Invalid word_tokenizer_type '{word_tokenizer_type}' is specified.")
self.do_subword_tokenize = do_subword_tokenize
self.subword_tokenizer_type = subword_tokenizer_type
if do_subword_tokenize:
if subword_tokenizer_type == "wordpiece":
self.subword_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
elif subword_tokenizer_type == "character":
self.subword_tokenizer = CharacterTokenizer(vocab=self.vocab, unk_token=str(unk_token))
elif subword_tokenizer_type == "sentencepiece":
self.subword_tokenizer = SentencepieceTokenizer(vocab=self.spm_file, unk_token=str(unk_token))
else:
raise ValueError(f"Invalid subword_tokenizer_type '{subword_tokenizer_type}' is specified.")
super().__init__(
spm_file=spm_file,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
do_lower_case=do_lower_case,
do_word_tokenize=do_word_tokenize,
do_subword_tokenize=do_subword_tokenize,
word_tokenizer_type=word_tokenizer_type,
subword_tokenizer_type=subword_tokenizer_type,
never_split=never_split,
mecab_kwargs=mecab_kwargs,
sudachi_kwargs=sudachi_kwargs,
jumanpp_kwargs=jumanpp_kwargs,
**kwargs,
)
@property
def do_lower_case(self):
return self.lower_case
def __getstate__(self):
state = dict(self.__dict__)
if self.word_tokenizer_type in ["mecab", "sudachi", "jumanpp"]:
del state["word_tokenizer"]
return state
def __setstate__(self, state):
self.__dict__ = state
if self.word_tokenizer_type == "mecab":
self.word_tokenizer = MecabTokenizer(
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.mecab_kwargs or {})
)
elif self.word_tokenizer_type == "sudachi":
self.word_tokenizer = SudachiTokenizer(
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.sudachi_kwargs or {})
)
elif self.word_tokenizer_type == "jumanpp":
self.word_tokenizer = JumanppTokenizer(
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.jumanpp_kwargs or {})
)
def _tokenize(self, text):
if self.do_word_tokenize:
tokens = self.word_tokenizer.tokenize(text, never_split=self.all_special_tokens)
else:
tokens = [text]
if self.do_subword_tokenize:
split_tokens = [sub_token for token in tokens for sub_token in self.subword_tokenizer.tokenize(token)]
else:
split_tokens = tokens
return split_tokens
@property
def vocab_size(self):
if self.subword_tokenizer_type == "sentencepiece":
return len(self.subword_tokenizer.sp_model)
return len(self.vocab)
def get_vocab(self):
if self.subword_tokenizer_type == "sentencepiece":
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
return dict(self.vocab, **self.added_tokens_encoder)
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
if self.subword_tokenizer_type == "sentencepiece":
return self.subword_tokenizer.sp_model.PieceToId(token)
return self.vocab.get(token, self.vocab.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
if self.subword_tokenizer_type == "sentencepiece":
return self.subword_tokenizer.sp_model.IdToPiece(index)
return self.ids_to_tokens.get(index, self.unk_token)
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
if self.subword_tokenizer_type == "sentencepiece":
return self.subword_tokenizer.sp_model.decode(tokens)
out_string = " ".join(tokens).replace(" ##", "").strip()
return out_string
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A BERT sequence has the following format:
- single sequence: `[CLS] X [SEP]`
- pair of sequences: `[CLS] A [SEP] B [SEP]`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
cls = [self.cls_token_id]
sep = [self.sep_token_id]
return cls + token_ids_0 + sep + token_ids_1 + sep
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
def get_special_tokens_mask(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
)
if token_ids_1 is not None:
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
return [1] + ([0] * len(token_ids_0)) + [1]
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return len(cls + token_ids_0 + sep) * [0]
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if os.path.isdir(save_directory):
if self.subword_tokenizer_type == "sentencepiece":
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["spm_file"]
)
else:
vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"],
)
else:
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
if self.subword_tokenizer_type == "sentencepiece":
with open(vocab_file, "wb") as writer:
content_spiece_model = self.subword_tokenizer.sp_model.serialized_model_proto()
writer.write(content_spiece_model)
else:
with open(vocab_file, "w", encoding="utf-8") as writer:
index = 0
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(token + "\n")
index += 1
return (vocab_file,)
class MecabTokenizer:
"""Runs basic tokenization with MeCab morphological parser."""
def __init__(
self,
do_lower_case=False,
never_split=None,
normalize_text=True,
mecab_dic: Optional[str] = "unidic_lite",
mecab_option: Optional[str] = None,
):
"""
Constructs a MecabTokenizer.
Args:
**do_lower_case**: (*optional*) boolean (default True)
Whether to lowercase the input.
**never_split**: (*optional*) list of str
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of tokens not to split.
**normalize_text**: (*optional*) boolean (default True)
Whether to apply unicode normalization to text before tokenization.
**mecab_dic**: (*optional*) string (default "ipadic")
Name of dictionary to be used for MeCab initialization. If you are using a system-installed dictionary,
set this option to `None` and modify *mecab_option*.
**mecab_option**: (*optional*) string
String passed to MeCab constructor.
"""
self.do_lower_case = do_lower_case
self.never_split = never_split if never_split is not None else []
self.normalize_text = normalize_text
try:
import fugashi
except ModuleNotFoundError as error:
raise error.__class__(
"You need to install fugashi to use MecabTokenizer. "
"See https://pypi.org/project/fugashi/ for installation."
)
mecab_option = mecab_option or ""
if mecab_dic is not None:
if mecab_dic == "ipadic":
try:
import ipadic
except ModuleNotFoundError as error:
raise error.__class__(
"The ipadic dictionary is not installed. "
"See https://github.com/polm/ipadic-py for installation."
)
dic_dir = ipadic.DICDIR
elif mecab_dic == "unidic_lite":
try:
import unidic_lite
except ModuleNotFoundError as error:
raise error.__class__(
"The unidic_lite dictionary is not installed. "
"See https://github.com/polm/unidic-lite for installation."
)
dic_dir = unidic_lite.DICDIR
elif mecab_dic == "unidic":
try:
import unidic
except ModuleNotFoundError as error:
raise error.__class__(
"The unidic dictionary is not installed. "
"See https://github.com/polm/unidic-py for installation."
)
dic_dir = unidic.DICDIR
if not os.path.isdir(dic_dir):
raise RuntimeError(
"The unidic dictionary itself is not found. "
"See https://github.com/polm/unidic-py for installation."
)
else:
raise ValueError("Invalid mecab_dic is specified.")
mecabrc = os.path.join(dic_dir, "mecabrc")
mecab_option = f'-d "{dic_dir}" -r "{mecabrc}" ' + mecab_option
self.mecab = fugashi.GenericTagger(mecab_option)
def tokenize(self, text, never_split=None, **kwargs):
"""Tokenizes a piece of text."""
if self.normalize_text:
text = unicodedata.normalize("NFKC", text)
never_split = self.never_split + (never_split if never_split is not None else [])
tokens = []
for word in self.mecab(text):
token = word.surface
if self.do_lower_case and token not in never_split:
token = token.lower()
tokens.append(token)
return tokens
class SudachiTokenizer:
"""Runs basic tokenization with Sudachi morphological parser."""
def __init__(
self,
do_lower_case=False,
never_split=None,
normalize_text=True,
trim_whitespace=False,
sudachi_split_mode="A",
sudachi_config_path=None,
sudachi_resource_dir=None,
sudachi_dict_type="core",
sudachi_projection=None,
):
"""
Constructs a SudachiTokenizer.
Args:
**do_lower_case**: (*optional*) boolean (default True)
Whether to lowercase the input.
**never_split**: (*optional*) list of str
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of tokens not to split.
**normalize_text**: (*optional*) boolean (default True)
Whether to apply unicode normalization to text before tokenization.
**trim_whitespace**: (*optional*) boolean (default False)
Whether to trim all whitespace, tab, newline from tokens.
**sudachi_split_mode**: (*optional*) string
Split mode of sudachi, choose from `["A", "B", "C"]`.
**sudachi_config_path**: (*optional*) string
**sudachi_resource_dir**: (*optional*) string
**sudachi_dict_type**: (*optional*) string
dict type of sudachi, choose from `["small", "core", "full"]`.
**sudachi_projection**: (*optional*) string
Word projection mode of sudachi, choose from `["surface", "normalized", "reading", "dictionary", "dictionary_and_surface", "normalized_and_surface", "normalized_nouns"]`.
"""
self.do_lower_case = do_lower_case
self.never_split = never_split if never_split is not None else []
self.normalize_text = normalize_text
self.trim_whitespace = trim_whitespace
try:
from sudachipy import dictionary, tokenizer
except ImportError:
raise ImportError(
"You need to install sudachipy to use SudachiTokenizer. "
"See https://github.com/WorksApplications/SudachiPy for installation."
)
if sudachi_split_mode == "A":
self.split_mode = tokenizer.Tokenizer.SplitMode.A
elif sudachi_split_mode == "B":
self.split_mode = tokenizer.Tokenizer.SplitMode.B
elif sudachi_split_mode == "C":
self.split_mode = tokenizer.Tokenizer.SplitMode.C
else:
raise ValueError("Invalid sudachi_split_mode is specified.")
self.projection = sudachi_projection
sudachi_dictionary = dictionary.Dictionary(
config_path=sudachi_config_path, resource_dir=sudachi_resource_dir, dict=sudachi_dict_type
)
if is_sudachi_projection_available():
self.sudachi = sudachi_dictionary.create(self.split_mode, projection=self.projection)
elif self.projection is not None:
raise ImportError("You need to install sudachipy>=0.6.8 to specify `projection` field in sudachi_kwargs.")
else:
self.sudachi = sudachi_dictionary.create(self.split_mode)
def tokenize(self, text, never_split=None, **kwargs):
"""Tokenizes a piece of text."""
if self.normalize_text:
text = unicodedata.normalize("NFKC", text)
never_split = self.never_split + (never_split if never_split is not None else [])
tokens = []
for word in self.sudachi.tokenize(text):
token = word.surface()
if self.do_lower_case and token not in never_split:
token = token.lower()
if self.trim_whitespace:
if token.strip() == "":
continue
else:
token = token.strip()
tokens.append(token)
return tokens
class JumanppTokenizer:
"""Runs basic tokenization with jumanpp morphological parser."""
def __init__(
self,
do_lower_case=False,
never_split=None,
normalize_text=True,
trim_whitespace=False,
):
"""
Constructs a JumanppTokenizer.
Args:
**do_lower_case**: (*optional*) boolean (default True)
Whether to lowercase the input.
**never_split**: (*optional*) list of str
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of tokens not to split.
**normalize_text**: (*optional*) boolean (default True)
Whether to apply unicode normalization to text before tokenization.
**trim_whitespace**: (*optional*) boolean (default False)
Whether to trim all whitespace, tab, newline from tokens.
"""
self.do_lower_case = do_lower_case
self.never_split = never_split if never_split is not None else []
self.normalize_text = normalize_text
self.trim_whitespace = trim_whitespace
try:
import rhoknp
except ImportError:
raise ImportError(
"You need to install rhoknp to use JumanppTokenizer. "
"See https://github.com/ku-nlp/rhoknp for installation."
)
self.juman = rhoknp.Jumanpp()
def tokenize(self, text, never_split=None, **kwargs):
"""Tokenizes a piece of text."""
if self.normalize_text:
text = unicodedata.normalize("NFKC", text)
text = text.strip()
never_split = self.never_split + (never_split if never_split is not None else [])
tokens = []
for mrph in self.juman.apply_to_sentence(text).morphemes:
token = mrph.text
if self.do_lower_case and token not in never_split:
token = token.lower()
if self.trim_whitespace:
if token.strip() == "":
continue
else:
token = token.strip()
tokens.append(token)
return tokens
class CharacterTokenizer:
"""Runs Character tokenization."""
def __init__(self, vocab, unk_token, normalize_text=True):
"""
Constructs a CharacterTokenizer.
Args:
**vocab**:
Vocabulary object.
**unk_token**: str
A special symbol for out-of-vocabulary token.
**normalize_text**: (`optional`) boolean (default True)
Whether to apply unicode normalization to text before tokenization.
"""
self.vocab = vocab
self.unk_token = unk_token
self.normalize_text = normalize_text
def tokenize(self, text):
"""
Tokenizes a piece of text into characters.
For example, `input = "apple""` wil return as output `["a", "p", "p", "l", "e"]`.
Args:
text: A single token or whitespace separated tokens.
This should have already been passed through *BasicTokenizer*.
Returns:
A list of characters.
"""
if self.normalize_text:
text = unicodedata.normalize("NFKC", text)
output_tokens = []
for char in text:
if char not in self.vocab:
output_tokens.append(self.unk_token)
continue
output_tokens.append(char)
return output_tokens
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
class BasicTokenizer:
"""
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
Args:
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether or not to lowercase the input when tokenizing.
never_split (`Iterable`, *optional*):
Collection of tokens which will never be split during tokenization. Only has an effect when
`do_basic_tokenize=True`
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
Whether or not to tokenize Chinese characters.
This should likely be deactivated for Japanese (see this
[issue](https://github.com/huggingface/transformers/issues/328)).
strip_accents (`bool`, *optional*):
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
value for `lowercase` (as in the original BERT).
do_split_on_punc (`bool`, *optional*, defaults to `True`):
In some instances we want to skip the basic punctuation splitting so that later tokenization can capture
the full context of the words, such as contractions.
"""
def __init__(
self,
do_lower_case=True,
never_split=None,
tokenize_chinese_chars=True,
strip_accents=None,
do_split_on_punc=True,
):
if never_split is None:
never_split = []
self.do_lower_case = do_lower_case
self.never_split = set(never_split)
self.tokenize_chinese_chars = tokenize_chinese_chars
self.strip_accents = strip_accents
self.do_split_on_punc = do_split_on_punc
def tokenize(self, text, never_split=None):
"""
Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer.
Args:
never_split (`List[str]`, *optional*)
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
"""
# union() returns a new set by concatenating the two sets.
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
if self.tokenize_chinese_chars:
text = self._tokenize_chinese_chars(text)
# prevents treating the same character with different unicode codepoints as different characters
unicode_normalized_text = unicodedata.normalize("NFC", text)
orig_tokens = whitespace_tokenize(unicode_normalized_text)
split_tokens = []
for token in orig_tokens:
if token not in never_split:
if self.do_lower_case:
token = token.lower()
if self.strip_accents is not False:
token = self._run_strip_accents(token)
elif self.strip_accents:
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token, never_split))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text, never_split=None):
"""Splits punctuation on a piece of text."""
if not self.do_split_on_punc or (never_split is not None and text in never_split):
return [text]
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0x4E00 and cp <= 0x9FFF)
or (cp >= 0x3400 and cp <= 0x4DBF) #
or (cp >= 0x20000 and cp <= 0x2A6DF) #
or (cp >= 0x2A700 and cp <= 0x2B73F) #
or (cp >= 0x2B740 and cp <= 0x2B81F) #
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
or (cp >= 0xF900 and cp <= 0xFAFF)
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xFFFD or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
class WordpieceTokenizer:
"""Runs WordPiece tokenization."""
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
tokenization using the given vocabulary.
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through *BasicTokenizer*.
Returns:
A list of wordpiece tokens.
"""
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
class SentencepieceTokenizer:
"""
Runs sentencepiece tokenization. Based on transformers.models.albert.tokenization_albert.AlbertTokenizer.
"""
def __init__(
self,
vocab,
unk_token,
do_lower_case=False,
remove_space=True,
keep_accents=True,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
):
self.vocab = vocab
self.unk_token = unk_token
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab)
def preprocess_text(self, inputs):
if self.remove_space:
outputs = " ".join(inputs.strip().split())
else:
outputs = inputs
outputs = outputs.replace("``", '"').replace("''", '"')
if not self.keep_accents:
outputs = unicodedata.normalize("NFKD", outputs)
outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
if self.do_lower_case:
outputs = outputs.lower()
return outputs
def tokenize(self, text):
"""
Tokenizes text by sentencepiece. Based on [SentencePiece](https://github.com/google/sentencepiece).
Tokenization needs the given vocabulary.
Args:
text: A string needs to be tokenized.
Returns:
A list of sentencepiece tokens.
"""
text = self.preprocess_text(text)
pieces = self.sp_model.encode(text, out_type=str)
new_pieces = []
for piece in pieces:
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0]) == 1:
cur_pieces = cur_pieces[1:]
else:
cur_pieces[0] = cur_pieces[0][1:]
cur_pieces.append(piece[-1])
new_pieces.extend(cur_pieces)
else:
new_pieces.append(piece)
return new_pieces
__all__ = ["BertJapaneseTokenizer", "CharacterTokenizer", "MecabTokenizer"]
|
transformers/src/transformers/models/bert_japanese/tokenization_bert_japanese.py/0
|
{
"file_path": "transformers/src/transformers/models/bert_japanese/tokenization_bert_japanese.py",
"repo_id": "transformers",
"token_count": 18179
}
| 98 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
json_indent = 2
# modified from https://github.com/facebookresearch/fairseq/blob/dd74992d0d143155998e9ed4076826bcea80fb06/fairseq/data/dictionary.py#L18
class Dictionary:
"""A mapping from symbols to consecutive integers"""
def __init__(
self,
*, # begin keyword-only arguments
bos="<s>",
pad="<pad>",
eos="</s>",
unk="<unk>",
extra_special_symbols=None,
):
self.bos_word, self.unk_word, self.pad_word, self.eos_word = bos, unk, pad, eos
self.symbols = []
self.count = []
self.indices = {}
self.bos_index = self.add_symbol(bos)
self.pad_index = self.add_symbol(pad)
self.eos_index = self.add_symbol(eos)
self.unk_index = self.add_symbol(unk)
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(s)
self.nspecial = len(self.symbols)
def __eq__(self, other):
return self.indices == other.indices
def __getitem__(self, idx):
if idx < len(self.symbols):
return self.symbols[idx]
return self.unk_word
def __len__(self):
"""Returns the number of symbols in the dictionary"""
return len(self.symbols)
def __contains__(self, sym):
return sym in self.indices
@classmethod
def load(cls, f):
"""Loads the dictionary from a text file with the format:
```
<symbol0> <count0>
<symbol1> <count1>
...
```
"""
d = cls()
d.add_from_file(f)
return d
def add_symbol(self, word, n=1, overwrite=False):
"""Adds a word to the dictionary"""
if word in self.indices and not overwrite:
idx = self.indices[word]
self.count[idx] = self.count[idx] + n
return idx
else:
idx = len(self.symbols)
self.indices[word] = idx
self.symbols.append(word)
self.count.append(n)
return idx
def _load_meta(self, lines):
return 0
def add_from_file(self, f):
"""
Loads a pre-existing dictionary from a text file and adds its symbols to this instance.
"""
if isinstance(f, str):
try:
with open(f, "r", encoding="utf-8") as fd:
self.add_from_file(fd)
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(f))
return
lines = f.readlines()
indices_start_line = self._load_meta(lines)
for line in lines[indices_start_line:]:
try:
line, field = line.rstrip().rsplit(" ", 1)
if field == "#fairseq:overwrite":
overwrite = True
line, field = line.rsplit(" ", 1)
else:
overwrite = False
count = int(field)
word = line
if word in self and not overwrite:
raise RuntimeError(
"Duplicate word found when loading Dictionary: '{}'. "
"Duplicate words can overwrite earlier ones by adding the "
"#fairseq:overwrite flag at the end of the corresponding row "
"in the dictionary file. If using the Camembert model, please "
"download an updated copy of the model file.".format(word)
)
self.add_symbol(word, n=count, overwrite=overwrite)
except ValueError:
raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'")
def rewrite_dict_keys(d):
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
d2 = dict((re.sub(r"@@$", "", k), v) if k.endswith("@@") else (re.sub(r"$", "</w>", k), v) for k, v in d.items())
keep_keys = "<s> <pad> </s> <unk>".split()
# restore the special tokens
for k in keep_keys:
del d2[f"{k}</w>"]
d2[k] = d[k] # restore
return d2
def convert_biogpt_checkpoint_to_pytorch(biogpt_checkpoint_path, pytorch_dump_folder_path):
# prep
if not os.path.exists(biogpt_checkpoint_path):
raise ValueError(f"path {biogpt_checkpoint_path} does not exist!")
os.makedirs(pytorch_dump_folder_path, exist_ok=True)
print(f"Writing results to {pytorch_dump_folder_path}")
# handle various types of models
checkpoint_file = os.path.join(biogpt_checkpoint_path, "checkpoint.pt")
if not os.path.isfile(checkpoint_file):
raise ValueError(f"path to the file {checkpoint_file} does not exist!")
chkpt = torch.load(checkpoint_file, map_location="cpu")
args = chkpt["cfg"]["model"]
# dicts
dict_file = os.path.join(biogpt_checkpoint_path, "dict.txt")
if not os.path.isfile(dict_file):
raise ValueError(f"path to the file {dict_file} does not exist!")
src_dict = Dictionary.load(dict_file)
src_vocab = rewrite_dict_keys(src_dict.indices)
src_vocab_size = len(src_vocab)
src_vocab_file = os.path.join(pytorch_dump_folder_path, VOCAB_FILES_NAMES["vocab_file"])
print(f"Generating {src_vocab_file} of {src_vocab_size} records")
with open(src_vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(src_vocab, ensure_ascii=False, indent=json_indent))
# merges_file (bpecodes)
bpecodes_file = os.path.join(biogpt_checkpoint_path, "bpecodes")
if not os.path.isfile(bpecodes_file):
raise ValueError(f"path to the file {bpecodes_file} does not exist!")
merges_file = os.path.join(pytorch_dump_folder_path, VOCAB_FILES_NAMES["merges_file"])
shutil.copyfile(bpecodes_file, merges_file)
# model config
biogpt_model_config_file = os.path.join(pytorch_dump_folder_path, "config.json")
model_conf = {
"activation_dropout": args["activation_dropout"],
"architectures": ["BioGptForCausalLM"],
"attention_probs_dropout_prob": args["attention_dropout"],
"bos_token_id": 0,
"eos_token_id": 2,
"hidden_act": args["activation_fn"],
"hidden_dropout_prob": args["dropout"],
"hidden_size": args["decoder_embed_dim"],
"initializer_range": 0.02,
"intermediate_size": args["decoder_ffn_embed_dim"],
"layer_norm_eps": 1e-12,
"layerdrop": args["decoder_layerdrop"],
"max_position_embeddings": args["max_target_positions"],
"model_type": "biogpt",
"num_attention_heads": args["decoder_attention_heads"],
"num_hidden_layers": args["decoder_layers"],
"pad_token_id": 1,
"scale_embedding": not args["no_scale_embedding"],
"tie_word_embeddings": args["share_decoder_input_output_embed"],
"vocab_size": src_vocab_size,
}
# good hparam defaults to start with
print(f"Generating {biogpt_model_config_file}")
with open(biogpt_model_config_file, "w", encoding="utf-8") as f:
f.write(json.dumps(model_conf, ensure_ascii=False, indent=json_indent))
# tokenizer config
biogpt_tokenizer_config_file = os.path.join(pytorch_dump_folder_path, TOKENIZER_CONFIG_FILE)
tokenizer_conf = {
"bos_token": "<s>",
"eos_token": "</s>",
"model_max_length": 1024,
"pad_token": "<pad>",
"special_tokens_map_file": None,
"tokenizer_class": "BioGptTokenizer",
"unk_token": "<unk>",
}
print(f"Generating {biogpt_tokenizer_config_file}")
with open(biogpt_tokenizer_config_file, "w", encoding="utf-8") as f:
f.write(json.dumps(tokenizer_conf, ensure_ascii=False, indent=json_indent))
# model
model_state_dict = chkpt["model"]
# remove unneeded keys
ignore_keys = [
"decoder.version",
]
for k in ignore_keys:
model_state_dict.pop(k, None)
layer_names = list(model_state_dict.keys())
for layer_name in layer_names:
if layer_name.endswith("output_projection.weight"):
model_state_dict[layer_name.replace("decoder.", "")] = model_state_dict.pop(layer_name)
else:
model_state_dict[layer_name.replace("decoder", "biogpt")] = model_state_dict.pop(layer_name)
config = BioGptConfig.from_pretrained(pytorch_dump_folder_path)
model_new = BioGptForCausalLM(config)
# check that it loads ok
model_new.load_state_dict(model_state_dict)
# save
pytorch_weights_dump_path = os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME)
print(f"Generating {pytorch_weights_dump_path}")
torch.save(model_state_dict, pytorch_weights_dump_path)
print("Conversion is done!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--biogpt_checkpoint_path",
default=None,
type=str,
required=True,
help=(
"Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,"
" bpecodes, etc."
),
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
args = parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
|
transformers/src/transformers/models/biogpt/convert_biogpt_original_pytorch_checkpoint_to_pytorch.py/0
|
{
"file_path": "transformers/src/transformers/models/biogpt/convert_biogpt_original_pytorch_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 4719
}
| 99 |
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert CANINE checkpoint."""
import argparse
from transformers import CanineConfig, CanineModel, CanineTokenizer, load_tf_weights_in_canine
from transformers.utils import logging
logging.set_verbosity_info()
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, pytorch_dump_path):
# Initialize PyTorch model
config = CanineConfig()
model = CanineModel(config)
model.eval()
print(f"Building PyTorch model from configuration: {config}")
# Load weights from tf checkpoint
load_tf_weights_in_canine(model, config, tf_checkpoint_path)
# Save pytorch-model (weights and configuration)
print(f"Save PyTorch model to {pytorch_dump_path}")
model.save_pretrained(pytorch_dump_path)
# Save tokenizer files
tokenizer = CanineTokenizer()
print(f"Save tokenizer files to {pytorch_dump_path}")
tokenizer.save_pretrained(pytorch_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path",
default=None,
type=str,
required=True,
help="Path to the TensorFlow checkpoint. Should end with model.ckpt",
)
parser.add_argument(
"--pytorch_dump_path",
default=None,
type=str,
required=True,
help="Path to a folder where the PyTorch model will be placed.",
)
args = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.pytorch_dump_path)
|
transformers/src/transformers/models/canine/convert_canine_original_tf_checkpoint_to_pytorch.py/0
|
{
"file_path": "transformers/src/transformers/models/canine/convert_canine_original_tf_checkpoint_to_pytorch.py",
"repo_id": "transformers",
"token_count": 742
}
| 100 |
# coding=utf-8
# Copyright 2021 The Open AI Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for OpenAI GPT."""
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_clip import CLIPTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
class CLIPTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a "fast" CLIP tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level
Byte-Pair-Encoding.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`, *optional*):
Path to the vocabulary file.
merges_file (`str`, *optional*):
Path to the merges file.
tokenizer_file (`str`, *optional*):
The path to a tokenizer file to use instead of the vocab file.
unk_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<|startoftext|>"`):
The beginning of sequence token.
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The end of sequence token.
pad_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
The token used for padding, for example when batching sequences of different lengths.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
slow_tokenizer_class = CLIPTokenizer
def __init__(
self,
vocab_file=None,
merges_file=None,
tokenizer_file=None,
unk_token="<|endoftext|>",
bos_token="<|startoftext|>",
eos_token="<|endoftext|>",
pad_token="<|endoftext|>", # hack to enable padding
**kwargs,
):
super().__init__(
vocab_file,
merges_file,
tokenizer_file=tokenizer_file,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
pad_token=pad_token,
**kwargs,
)
if not isinstance(self.backend_tokenizer.pre_tokenizer, pre_tokenizers.Sequence):
raise ValueError(
"The `backend_tokenizer` provided does not match the expected format. The CLIP tokenizer has been"
" heavily modified from transformers version 4.17.0. You need to convert the tokenizer you are using"
" to be compatible with this version.The easiest way to do so is"
' `CLIPTokenizerFast.from_pretrained("path_to_local_folder_or_hub_repo, from_slow=True)`. If you want'
" to use your existing tokenizer, you will have to revert to a version prior to 4.17.0 of"
" transformers."
)
self._wrap_decode_method_backend_tokenizer()
# Very ugly hack to enable padding to have a correct decoding see https://github.com/huggingface/tokenizers/issues/872
def _wrap_decode_method_backend_tokenizer(self):
orig_decode_method = self.backend_tokenizer.decode
## define this as a local variable to avoid circular reference
## See: https://github.com/huggingface/transformers/issues/30930
end_of_word_suffix = self.backend_tokenizer.model.end_of_word_suffix
def new_decode_method(*args, **kwargs):
text = orig_decode_method(*args, **kwargs)
text = text.replace(end_of_word_suffix, " ").strip()
return text
self.backend_tokenizer.decode = new_decode_method
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. A CLIP sequence has the following format:
- single sequence: `<|startoftext|> X <|endoftext|>`
Pairs of sequences are not the expected use case, but they will be handled without a separator.
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
bos_token = [self.bos_token_id]
eos_token = [self.eos_token_id]
if token_ids_1 is None:
return bos_token + token_ids_0 + eos_token
return bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed. CLIP does not make use of token type ids, therefore a list of
zeros is returned.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of zeros.
"""
bos_token = [self.bos_token_id]
eos_token = [self.eos_token_id]
if token_ids_1 is None:
return len(bos_token + token_ids_0 + eos_token) * [0]
return len(bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token) * [0]
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
return tuple(files)
__all__ = ["CLIPTokenizerFast"]
|
transformers/src/transformers/models/clip/tokenization_clip_fast.py/0
|
{
"file_path": "transformers/src/transformers/models/clip/tokenization_clip_fast.py",
"repo_id": "transformers",
"token_count": 2732
}
| 101 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import normalizers, processors
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
from ...utils.versions import require_version
require_version("tokenizers>=0.13.3")
if is_sentencepiece_available():
from .tokenization_code_llama import CodeLlamaTokenizer
else:
CodeLlamaTokenizer = None
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model", "tokenizer_file": "tokenizer.json"}
SPIECE_UNDERLINE = "▁"
B_INST, E_INST = "[INST]", "[/INST]"
B_SYS, E_SYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
# fmt: off
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your \
answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure\
that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not \
correct. If you don't know the answer to a question, please don't share false information."""
# fmt: on
class CodeLlamaTokenizerFast(PreTrainedTokenizerFast):
"""
Construct a Llama tokenizer. Based on byte-level Byte-Pair-Encoding.
This uses notably ByteFallback and no normalization.
```python
>>> from transformers import CodeLlamaTokenizerFast
>>> tokenizer = CodeLlamaTokenizerFast.from_pretrained("hf-internal-testing/llama-tokenizer")
>>> tokenizer.encode("Hello this is a test")
[1, 15043, 445, 338, 263, 1243]
```
If you want to change the `bos_token` or the `eos_token`, make sure to specify them when initializing the model, or
call `tokenizer.update_post_processor()` to make sure that the post-processing is correctly done (otherwise the
values of the first token and final token of an encoded sequence will not be correct). For more details, checkout
[post-processors] (https://huggingface.co/docs/tokenizers/api/post-processors) documentation.
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods. The default configuration match that of
[meta-llama/CodeLlama-7b-Instruct-hf](https://huggingface.co/meta-llama/CodeLlama-7b-Instruct-hf/blob/main/tokenizer_config.json)
which supports prompt infilling.
Args:
vocab_file (`str`, *optional*):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .model extension) that
contains the vocabulary necessary to instantiate a tokenizer.
tokenizer_file (`str`, *optional*):
[tokenizers](https://github.com/huggingface/tokenizers) file (generally has a .json extension) that
contains everything needed to load the tokenizer.
clean_up_tokenization_spaces (`str`, *optional*, defaults to `False`):
Wether to cleanup spaces after decoding, cleanup consists in removing potential artifacts like extra
spaces.
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
token instead.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
prefix_token (`str`, *optional*, defaults to `"▁<PRE>"`):
Prefix token used for infilling.
middle_token (`str`, *optional*, defaults to `"▁<MID>"`):
Middle token used for infilling.
suffix_token (`str`, *optional*, defaults to `"▁<SUF>"`):
Suffix token used for infilling.
eot_token (`str`, *optional*, defaults to `"▁<EOT>"`):
End of text token used for infilling.
fill_token (`str`, *optional*, defaults to `"<FILL_ME>"`):
The token used to split the input between the prefix and suffix.
additional_special_tokens (`List[str]`, *optional*):
Additional special tokens used by the tokenizer.
add_bos_token (`bool`, *optional*, defaults to `True`):
Whether to add a beginning of sequence token at the start of sequences.
add_eos_token (`bool`, *optional*, defaults to `False`):
Whether to add an end of sequence token at the end of sequences.
use_default_system_prompt (`bool`, *optional*, defaults to `False`):
Whether or not the default system prompt for Llama should be used.
"""
vocab_files_names = VOCAB_FILES_NAMES
slow_tokenizer_class = CodeLlamaTokenizer
padding_side = "left"
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
clean_up_tokenization_spaces=False,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
prefix_token="▁<PRE>",
middle_token="▁<MID>",
suffix_token="▁<SUF>",
eot_token="▁<EOT>",
fill_token="<FILL_ME>",
additional_special_tokens=None,
add_bos_token=True,
add_eos_token=False,
use_default_system_prompt=False,
**kwargs,
):
# mark tokens special to skip them
additional_special_tokens = additional_special_tokens or []
for token in [prefix_token, middle_token, suffix_token, eot_token]:
additional_special_tokens += [token] if token is not None else []
self.use_default_system_prompt = use_default_system_prompt
super().__init__(
vocab_file=vocab_file,
tokenizer_file=tokenizer_file,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
additional_special_tokens=additional_special_tokens,
unk_token=unk_token,
bos_token=bos_token,
eos_token=eos_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
prefix_token=prefix_token,
middle_token=middle_token,
suffix_token=suffix_token,
eot_token=eot_token,
fill_token=fill_token,
use_default_system_prompt=use_default_system_prompt,
**kwargs,
)
self._add_bos_token = add_bos_token
self._add_eos_token = add_eos_token
self.update_post_processor()
self.vocab_file = vocab_file
self._prefix_token = prefix_token
self._middle_token = middle_token
self._suffix_token = suffix_token
self._eot_token = eot_token
self.fill_token = fill_token
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.update_post_processor
def update_post_processor(self):
"""
Updates the underlying post processor with the current `bos_token` and `eos_token`.
"""
bos = self.bos_token
bos_token_id = self.bos_token_id
if bos is None and self.add_bos_token:
raise ValueError("add_bos_token = True but bos_token = None")
eos = self.eos_token
eos_token_id = self.eos_token_id
if eos is None and self.add_eos_token:
raise ValueError("add_eos_token = True but eos_token = None")
single = f"{(bos+':0 ') if self.add_bos_token else ''}$A:0{(' '+eos+':0') if self.add_eos_token else ''}"
pair = f"{single}{(' '+bos+':1') if self.add_bos_token else ''} $B:1{(' '+eos+':1') if self.add_eos_token else ''}"
special_tokens = []
if self.add_bos_token:
special_tokens.append((bos, bos_token_id))
if self.add_eos_token:
special_tokens.append((eos, eos_token_id))
self._tokenizer.post_processor = processors.TemplateProcessing(
single=single, pair=pair, special_tokens=special_tokens
)
@property
def prefix_token(self):
return self._prefix_token
@property
def prefix_id(self):
if self._prefix_token is None:
return None
return self.convert_tokens_to_ids(self.prefix_token)
@property
def middle_token(self):
return self._middle_token
@property
def middle_id(self):
if self._middle_token is None:
return None
return self.convert_tokens_to_ids(self.middle_token)
@property
def suffix_token(self):
return self._suffix_token
@property
def suffix_id(self):
if self._suffix_token is None:
return None
return self.convert_tokens_to_ids(self.suffix_token)
@property
def eot_id(self):
if self._eot_token is None:
return None
return self.convert_tokens_to_ids(self.eot_token)
@property
def eot_token(self):
return self._eot_token
@property
def add_eos_token(self):
return self._add_eos_token
@property
def add_bos_token(self):
return self._add_bos_token
@add_eos_token.setter
def add_eos_token(self, value):
self._add_eos_token = value
self.update_post_processor()
@add_bos_token.setter
def add_bos_token(self, value):
self._add_bos_token = value
self.update_post_processor()
def set_infilling_processor(self, reset, suffix_first=False, add_special_tokens=True):
"""
Updates the normalizer to make sure the prompt format for `infilling` is respected. The infilling format is the
following: if suffix_first
" <PRE> <SUF>{suf} <MID> {pre}"
else:
" <PRE> {pre} <SUF>{suf} <MID>"
If `reset` is set to `True`, the `normalizer` and `post_processor` are reset to their "normal" behaviour, which
is to add a prefix space for the normalizer, and add a `bos_token` to the input text for the `post_processor`.
"""
if reset:
self._tokenizer.normalizer = normalizers.Sequence(
[
normalizers.Prepend(prepend="▁"),
normalizers.Replace(pattern=" ", content="▁"),
]
)
self.update_post_processor()
return
self._tokenizer.normalizer = normalizers.Replace(pattern=" ", content="▁")
pair = [self.bos_token] if self.add_bos_token and add_special_tokens else []
special_tokens = [(self.bos_token, self.bos_token_id)] if self.add_bos_token and add_special_tokens else []
if suffix_first:
# format as " <PRE> <SUF>{suf} <MID> {pre}"
pair += [self.prefix_token, self.suffix_token, "$B", self.middle_token, "$A"]
special_tokens += [
(self.prefix_token, self.prefix_id),
(self.suffix_token, self.suffix_id),
(self.middle_token, self.middle_id),
]
else:
# format as " <PRE> {pre} <SUF>{suf} <MID>"
pair += [self.prefix_token, "$A", self.suffix_token, "$B", self.middle_token]
special_tokens += [
(self.prefix_token, self.prefix_id),
(self.suffix_token, self.suffix_id),
(self.middle_token, self.middle_id),
]
if self.add_eos_token and add_special_tokens:
pair += [self.eos_token]
special_tokens += [(self.eos_token, self.eos_token_id)]
self._tokenizer.post_processor = processors.TemplateProcessing(
single="$A", pair=pair, special_tokens=special_tokens
)
def encode_plus(self, text, text_pair=None, suffix_first=False, add_special_tokens=True, **kwargs):
# hack to make sure the input is pre-process but outside rust
text_pair = kwargs.pop("suffix", text_pair)
if self.fill_token is not None and self.fill_token in text and text_pair is None:
text, text_pair = text.split(self.fill_token)
if text_pair is None or len(text_pair) < 1:
return super().encode_plus(text, text_pair, add_special_tokens=add_special_tokens, **kwargs)
if None in (self.prefix_id, self.middle_id, self.suffix_id):
raise ValueError(
"Then input includes a `prefix` and a `suffix` used for the infilling task,"
" the `prefix_id, middle_id, suffix_id` must all be initialized. Current"
f" values : {self.prefix_id, self.middle_id, self.suffix_id}"
)
self.set_infilling_processor(False, suffix_first=suffix_first, add_special_tokens=add_special_tokens)
tokens = super().encode_plus(" " + text, text_pair=text_pair, add_special_tokens=True, **kwargs)
self.set_infilling_processor(True)
return tokens
# Copied from transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. The special tokens depend on calling set_lang.
An NLLB sequence has the following format, where `X` represents the sequence:
- `input_ids` (for encoder) `X [eos, src_lang_code]`
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
separator.
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
if token_ids_1 is None:
return self.bos_token_id + token_ids_0 + self.eos_token_id
return self.bos_token_id + token_ids_0 + token_ids_1 + self.eos_token_id
__all__ = ["CodeLlamaTokenizerFast"]
|
transformers/src/transformers/models/code_llama/tokenization_code_llama_fast.py/0
|
{
"file_path": "transformers/src/transformers/models/code_llama/tokenization_code_llama_fast.py",
"repo_id": "transformers",
"token_count": 6708
}
| 102 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ColPali model configuration"""
import logging
from copy import deepcopy
from ...configuration_utils import PretrainedConfig
from ..auto import CONFIG_MAPPING, AutoConfig
logger = logging.getLogger(__name__)
class ColPaliConfig(PretrainedConfig):
r"""
Configuration class to store the configuration of a [`ColPaliForRetrieval`]. It is used to instantiate an instance
of `ColPaliForRetrieval` according to the specified arguments, defining the model architecture following the methodology
from the "ColPali: Efficient Document Retrieval with Vision Language Models" paper.
Creating a configuration with the default settings will result in a configuration where the VLM backbone is set to the
default PaliGemma configuration, i.e the one from [vidore/colpali-v1.2](https://huggingface.co/vidore/colpali-v1.2).
The ColPali config is very similar to [`PaligemmaConfig`], but with an extra attribute defining the embedding dimension.
Note that contrarily to what the class name suggests (actually the name refers to the ColPali **methodology**), you can
use a different VLM backbone model than PaliGemma by passing the corresponding VLM configuration to the class constructor.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vlm_config (`PretrainedConfig`, *optional*):
Configuration of the VLM backbone model.
text_config (`PretrainedConfig`, *optional*):
Configuration of the text backbone model. Overrides the `text_config` attribute of the `vlm_config` if provided.
embedding_dim (`int`, *optional*, defaults to 128):
Dimension of the multi-vector embeddings produced by the model.
Example:
```python
from transformers.models.colpali import ColPaliConfig, ColPaliForRetrieval
config = ColPaliConfig()
model = ColPaliForRetrieval(config)
```
"""
model_type = "colpali"
sub_configs = {"vlm_config": PretrainedConfig, "text_config": AutoConfig}
def __init__(
self,
vlm_config=None,
text_config=None,
embedding_dim: int = 128,
**kwargs,
):
if vlm_config is None:
vlm_config = CONFIG_MAPPING["paligemma"]()
logger.info(
"`vlm_config` is `None`. Initializing `vlm_config` with the `PaliGemmaConfig` with default values."
)
elif isinstance(vlm_config, dict):
vlm_config = deepcopy(vlm_config)
if "model_type" not in vlm_config:
raise KeyError(
"The `model_type` key is missing in the `vlm_config` dictionary. Please provide the model type."
)
elif vlm_config["model_type"] not in CONFIG_MAPPING:
raise ValueError(
f"The model type `{vlm_config['model_type']}` is not supported. Please provide a valid model type."
)
vlm_config = CONFIG_MAPPING[vlm_config["model_type"]](**vlm_config)
elif isinstance(vlm_config, PretrainedConfig):
vlm_config = vlm_config
else:
raise TypeError(
f"Invalid type for `vlm_config`. Expected `PretrainedConfig`, `dict`, or `None`, but got {type(vlm_config)}."
)
self.vlm_config = vlm_config
self.text_config = text_config = text_config if text_config is not None else vlm_config.text_config
if isinstance(self.text_config, dict):
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "gemma"
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
self.embedding_dim = embedding_dim
super().__init__(**kwargs)
__all__ = ["ColPaliConfig"]
|
transformers/src/transformers/models/colpali/configuration_colpali.py/0
|
{
"file_path": "transformers/src/transformers/models/colpali/configuration_colpali.py",
"repo_id": "transformers",
"token_count": 1682
}
| 103 |
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import AddedToken, PreTrainedTokenizerFast
from ...utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"}
class CpmTokenizerFast(PreTrainedTokenizerFast):
"""Runs pre-tokenization with Jieba segmentation tool. It is used in CPM models."""
def __init__(
self,
vocab_file=None,
tokenizer_file=None,
do_lower_case=False,
remove_space=True,
keep_accents=False,
bos_token="<s>",
eos_token="</s>",
unk_token="<unk>",
sep_token="<sep>",
pad_token="<pad>",
cls_token="<cls>",
mask_token="<mask>",
additional_special_tokens=["<eop>", "<eod>"],
**kwargs,
):
"""
Construct a CPM tokenizer. Based on [Jieba](https://pypi.org/project/jieba/) and
[SentencePiece](https://github.com/google/sentencepiece).
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should
refer to this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
[SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm extension) that
contains the vocabulary necessary to instantiate a tokenizer.
do_lower_case (`bool`, *optional*, defaults to `True`):
Whether to lowercase the input when tokenizing.
remove_space (`bool`, *optional*, defaults to `True`):
Whether to strip the text when tokenizing (removing excess spaces before and after the string).
keep_accents (`bool`, *optional*, defaults to `False`):
Whether to keep accents when tokenizing.
bos_token (`str`, *optional*, defaults to `"<s>"`):
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier
token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the beginning of
sequence. The token used is the `cls_token`.
</Tip>
eos_token (`str`, *optional*, defaults to `"</s>"`):
The end of sequence token.
<Tip>
When building a sequence using special tokens, this is not the token that is used for the end of
sequence. The token used is the `sep_token`.
</Tip>
unk_token (`str`, *optional*, defaults to `"<unk>"`):
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be
this token instead.
sep_token (`str`, *optional*, defaults to `"<sep>"`):
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences
for sequence classification or for a text and a question for question answering. It is also used as the
last token of a sequence built with special tokens.
pad_token (`str`, *optional*, defaults to `"<pad>"`):
The token used for padding, for example when batching sequences of different lengths.
cls_token (`str`, *optional*, defaults to `"<cls>"`):
The classifier token which is used when doing sequence classification (classification of the whole
sequence instead of per-token classification). It is the first token of the sequence when built with
special tokens.
mask_token (`str`, *optional*, defaults to `"<mask>"`):
The token used for masking values. This is the token used when training this model with masked language
modeling. This is the token which the model will try to predict.
additional_special_tokens (`List[str]`, *optional*, defaults to `["<eop>", "<eod>"]`):
Additional special tokens used by the tokenizer.
Attributes:
sp_model (`SentencePieceProcessor`):
The *SentencePiece* processor that is used for every conversion (string, tokens and IDs).
"""
# Mask token behave like a normal word, i.e. include the space before it
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
super().__init__(
vocab_file=vocab_file,
tokenizer_file=tokenizer_file,
do_lower_case=do_lower_case,
remove_space=remove_space,
keep_accents=keep_accents,
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
sep_token=sep_token,
pad_token=pad_token,
cls_token=cls_token,
mask_token=mask_token,
additional_special_tokens=additional_special_tokens,
**kwargs,
)
self._pad_token_type_id = 3
self.do_lower_case = do_lower_case
self.remove_space = remove_space
self.keep_accents = keep_accents
self.vocab_file = vocab_file
try:
import jieba
except ModuleNotFoundError as error:
raise error.__class__(
"You need to install jieba to use CpmTokenizer or CpmTokenizerFast. "
"See https://pypi.org/project/jieba/ for installation."
)
self.jieba = jieba
self.translator = str.maketrans(" \n", "\u2582\u2583")
@property
def can_save_slow_tokenizer(self) -> bool:
return os.path.isfile(self.vocab_file) if self.vocab_file else False
# Copied from transformers.models.xlnet.tokenization_xlnet_fast.XLNetTokenizerFast.build_inputs_with_special_tokens
def build_inputs_with_special_tokens(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
adding special tokens. An XLNet sequence has the following format:
- single sequence: `X <sep> <cls>`
- pair of sequences: `A <sep> B <sep> <cls>`
Args:
token_ids_0 (`List[int]`):
List of IDs to which the special tokens will be added.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
"""
sep = [self.sep_token_id]
cls = [self.cls_token_id]
if token_ids_1 is None:
return token_ids_0 + sep + cls
return token_ids_0 + sep + token_ids_1 + sep + cls
# Copied from transformers.models.xlnet.tokenization_xlnet_fast.XLNetTokenizerFast.create_token_type_ids_from_sequences
def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLNet
sequence pair mask has the following format:
```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
sep = [self.sep_token_id]
cls_segment_id = [2]
if token_ids_1 is None:
return len(token_ids_0 + sep) * [0] + cls_segment_id
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1] + cls_segment_id
# Copied from transformers.models.xlnet.tokenization_xlnet_fast.XLNetTokenizerFast.save_vocabulary
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer."
)
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
copyfile(self.vocab_file, out_vocab_file)
return (out_vocab_file,)
def _batch_encode_plus(self, batch_text_or_text_pairs, *args, **kwargs):
batch_text_or_text_pairs = [
" ".join([x.translate(self.translator) for x in self.jieba.cut(text, cut_all=False)])
for text in batch_text_or_text_pairs
]
return super()._batch_encode_plus(batch_text_or_text_pairs, *args, **kwargs)
def _decode(self, *args, **kwargs):
text = super()._decode(*args, **kwargs)
text = text.replace(" ", "").replace("\u2582", " ").replace("\u2583", "\n")
return text
__all__ = ["CpmTokenizerFast"]
|
transformers/src/transformers/models/cpm/tokenization_cpm_fast.py/0
|
{
"file_path": "transformers/src/transformers/models/cpm/tokenization_cpm_fast.py",
"repo_id": "transformers",
"token_count": 4459
}
| 104 |
# coding=utf-8
# Copyright 2024 Descript and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Dac model configuration"""
import math
import numpy as np
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class DacConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of an [`DacModel`]. It is used to instantiate a
Dac model according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the
[descript/dac_16khz](https://huggingface.co/descript/dac_16khz) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
encoder_hidden_size (`int`, *optional*, defaults to 64):
Intermediate representation dimension for the encoder.
downsampling_ratios (`List[int]`, *optional*, defaults to `[2, 4, 8, 8]`):
Ratios for downsampling in the encoder. These are used in reverse order for upsampling in the decoder.
decoder_hidden_size (`int`, *optional*, defaults to 1536):
Intermediate representation dimension for the decoder.
n_codebooks (`int`, *optional*, defaults to 9):
Number of codebooks in the VQVAE.
codebook_size (`int`, *optional*, defaults to 1024):
Number of discrete codes in each codebook.
codebook_dim (`int`, *optional*, defaults to 8):
Dimension of the codebook vectors. If not defined, uses `encoder_hidden_size`.
quantizer_dropout (`bool`, *optional*, defaults to 0):
Whether to apply dropout to the quantizer.
commitment_loss_weight (float, *optional*, defaults to 0.25):
Weight of the commitment loss term in the VQVAE loss function.
codebook_loss_weight (float, *optional*, defaults to 1.0):
Weight of the codebook loss term in the VQVAE loss function.
sampling_rate (`int`, *optional*, defaults to 16000):
The sampling rate at which the audio waveform should be digitalized expressed in hertz (Hz).
Example:
```python
>>> from transformers import DacModel, DacConfig
>>> # Initializing a "descript/dac_16khz" style configuration
>>> configuration = DacConfig()
>>> # Initializing a model (with random weights) from the "descript/dac_16khz" style configuration
>>> model = DacModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "dac"
def __init__(
self,
encoder_hidden_size=64,
downsampling_ratios=[2, 4, 8, 8],
decoder_hidden_size=1536,
n_codebooks=9,
codebook_size=1024,
codebook_dim=8,
quantizer_dropout=0,
commitment_loss_weight=0.25,
codebook_loss_weight=1.0,
sampling_rate=16000,
**kwargs,
):
self.encoder_hidden_size = encoder_hidden_size
self.downsampling_ratios = downsampling_ratios
self.decoder_hidden_size = decoder_hidden_size
self.upsampling_ratios = downsampling_ratios[::-1]
self.n_codebooks = n_codebooks
self.codebook_size = codebook_size
self.codebook_dim = codebook_dim
self.quantizer_dropout = quantizer_dropout
self.sampling_rate = sampling_rate
self.hidden_size = encoder_hidden_size * (2 ** len(downsampling_ratios))
self.hop_length = int(np.prod(downsampling_ratios))
self.commitment_loss_weight = commitment_loss_weight
self.codebook_loss_weight = codebook_loss_weight
super().__init__(**kwargs)
@property
def frame_rate(self) -> int:
hop_length = np.prod(self.upsampling_ratios)
return math.ceil(self.sampling_rate / hop_length)
__all__ = ["DacConfig"]
|
transformers/src/transformers/models/dac/configuration_dac.py/0
|
{
"file_path": "transformers/src/transformers/models/dac/configuration_dac.py",
"repo_id": "transformers",
"token_count": 1666
}
| 105 |
# coding=utf-8
# Copyright 2024 Databricks Mosaic Research and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""DBRX model configuration"""
from typing import Any, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
logger = logging.get_logger(__name__)
class DbrxAttentionConfig(PretrainedConfig):
"""Configuration class for Dbrx Attention.
[`DbrxAttention`] class. It is used to instantiate attention layers
according to the specified arguments, defining the layers architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
attn_pdrop (`float`, *optional*, defaults to 0.0):
The dropout probability for the attention layers.
clip_qkv (`float`, *optional*):
If set, clip the queries, keys, and values in the attention layer to this value.
kv_n_heads (`int`, *optional*, defaults to 1): For grouped_query_attention only, allow user to specify number of kv heads.
rope_theta (`float`, *optional*, defaults to 10000.0): The base frequency for rope.
"""
base_config_key = "attn_config"
def __init__(
self,
attn_pdrop: float = 0.0,
clip_qkv: Optional[float] = None,
kv_n_heads: int = 1,
rope_theta: float = 10000.0,
**kwargs: Any,
):
super().__init__(**kwargs)
self.attn_pdrop = attn_pdrop
self.clip_qkv = clip_qkv
self.kv_n_heads = kv_n_heads
self.rope_theta = rope_theta
for k in ["model_type", "attn_implementation", "transformers_version", "_commit_hash"]:
if k in kwargs:
kwargs.pop(k)
if len(kwargs) != 0:
raise ValueError(f"Found unknown {kwargs=}")
class DbrxFFNConfig(PretrainedConfig):
"""Configuration class for Dbrx FFN.
[`DbrxFFN`] class. It is used to instantiate feedforward layers according to
the specified arguments, defining the layers architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
ffn_act_fn (`dict`, *optional*, defaults to `None`): A dict specifying activation function for the FFN.
The dict should have a key 'name' with the value being the name of the activation function along with
any additional keyword arguments. If `None`, then set to `{"name": "silu"}`.
ffn_hidden_size (`int`, *optional*, defaults to 3584): The hidden size of the feedforward network.
moe_num_experts (`int`, *optional*, defaults to 4): The number of experts in the mixture of experts layer.
moe_top_k (`int`, *optional*, defaults to 1): The number of experts to use in the mixture of experts layer.
moe_jitter_eps (`float`, *optional*, defaults to `None`): If not `None`, the jitter epsilon for the mixture of experts layer.
moe_loss_weight (`float`, *optional*, defaults to 0.01): The loss weight for the mixture of experts layer.
moe_normalize_expert_weights (`float`, *optional*, defaults to 1.0): The normalization factor for the expert weights.
"""
base_config_key = "ffn_config"
def __init__(
self,
ffn_act_fn: dict = None,
ffn_hidden_size: int = 3584,
moe_num_experts: int = 4,
moe_top_k: int = 1,
moe_jitter_eps: Optional[float] = None,
moe_loss_weight: float = 0.01,
moe_normalize_expert_weights: Optional[float] = 1.0,
**kwargs: Any,
):
super().__init__()
if ffn_act_fn is None:
ffn_act_fn = {"name": "silu"}
self.ffn_act_fn = ffn_act_fn
self.ffn_hidden_size = ffn_hidden_size
self.moe_num_experts = moe_num_experts
self.moe_top_k = moe_top_k
self.moe_jitter_eps = moe_jitter_eps
self.moe_loss_weight = moe_loss_weight
self.moe_normalize_expert_weights = moe_normalize_expert_weights
for k in ["model_type", "attn_implementation", "transformers_version", "_commit_hash"]:
if k in kwargs:
kwargs.pop(k)
if len(kwargs) != 0:
raise ValueError(f"Found unknown {kwargs=}")
class DbrxConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`DbrxModel`]. It is used to instantiate a Dbrx model according to the
specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a different configuration to that of the [databricks/dbrx-instruct](https://huggingface.co/databricks/dbrx-instruct) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
d_model (`int`, *optional*, defaults to 2048):
Dimensionality of the embeddings and hidden states.
n_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
n_layers (`int`, *optional*, defaults to 24):
Number of hidden layers in the Transformer encoder.
max_seq_len (`int`, *optional*, defaults to 2048):
The maximum sequence length of the model.
vocab_size (`int`, *optional*, defaults to 32000):
Vocabulary size of the Dbrx model. Defines the maximum number of different tokens that can be represented by
the `inputs_ids` passed when calling [`DbrxModel`].
resid_pdrop (`float`, *optional*, defaults to 0.0):
The dropout probability applied to the attention output before combining with residual.
emb_pdrop (`float`, *optional*, defaults to 0.0):
The dropout probability for the embedding layer.
attn_config (`dict`, *optional*):
A dictionary used to configure the model's attention module.
ffn_config (`dict`, *optional*):
A dictionary used to configure the model's FFN module.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
output_router_logits (`bool`, *optional*, defaults to `False`):
Whether or not the router logits should be returned by the model. Enabling this will also
allow the model to output the auxiliary loss. See [here]() for more details.
Example:
```python
>>> from transformers import DbrxConfig, DbrxModel
>>> # Initializing a Dbrx configuration
>>> configuration = DbrxConfig(n_layers=2, d_model=256, n_heads=8, vocab_size=128)
>>> # Initializing a model (with random weights) from the configuration
>>> model = DbrxModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```
"""
model_type = "dbrx"
sub_configs = {"attn_config": DbrxAttentionConfig, "ffn_config": DbrxFFNConfig}
attribute_map = {
"num_attention_heads": "n_heads",
"hidden_size": "d_model",
"num_hidden_layers": "n_layers",
"max_position_embeddings": "max_seq_len",
}
def __init__(
self,
d_model: int = 2048,
n_heads: int = 16,
n_layers: int = 24,
max_seq_len: int = 2048,
vocab_size: int = 32000,
resid_pdrop: float = 0.0,
emb_pdrop: float = 0.0,
attn_config: Optional[DbrxAttentionConfig] = None,
ffn_config: Optional[DbrxFFNConfig] = None,
use_cache: bool = True,
initializer_range: float = 0.02,
output_router_logits: bool = False,
**kwargs: Any,
):
if attn_config is None:
self.attn_config = DbrxAttentionConfig()
elif isinstance(attn_config, dict):
self.attn_config = DbrxAttentionConfig(**attn_config)
else:
self.attn_config = attn_config
if ffn_config is None:
self.ffn_config = DbrxFFNConfig()
elif isinstance(ffn_config, dict):
self.ffn_config = DbrxFFNConfig(**ffn_config)
else:
self.ffn_config = ffn_config
self.d_model = d_model
self.n_heads = n_heads
self.n_layers = n_layers
self.max_seq_len = max_seq_len
self.vocab_size = vocab_size
self.resid_pdrop = resid_pdrop
self.emb_pdrop = emb_pdrop
self.use_cache = use_cache
self.initializer_range = initializer_range
self.output_router_logits = output_router_logits
self.num_key_value_heads = self.attn_config.kv_n_heads
tie_word_embeddings = kwargs.pop("tie_word_embeddings", False)
if tie_word_embeddings:
raise ValueError("tie_word_embeddings is not supported for DBRX models.")
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
__all__ = ["DbrxConfig"]
|
transformers/src/transformers/models/dbrx/configuration_dbrx.py/0
|
{
"file_path": "transformers/src/transformers/models/dbrx/configuration_dbrx.py",
"repo_id": "transformers",
"token_count": 3899
}
| 106 |
# coding=utf-8
# Copyright 2022 The HuggingFace Team The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch DecisionTransformer model."""
import math
import os
from dataclasses import dataclass
from typing import Callable, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutputWithPastAndCrossAttentions
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
from ...utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_decision_transformer import DecisionTransformerConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "edbeeching/decision-transformer-gym-hopper-medium"
_CONFIG_FOR_DOC = "DecisionTransformerConfig"
# Copied from transformers.models.gpt2.modeling_gpt2.load_tf_weights_in_gpt2
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
"""Load tf checkpoints in a pytorch model"""
try:
import re
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(gpt2_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array.squeeze())
for name, array in zip(names, arrays):
name = name[6:] # skip "model/"
name = name.split("/")
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
scope_names = re.split(r"(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "w" or scope_names[0] == "g":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "b":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "wpe" or scope_names[0] == "wte":
pointer = getattr(pointer, scope_names[0])
pointer = getattr(pointer, "weight")
else:
pointer = getattr(pointer, scope_names[0])
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
try:
if pointer.shape != array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
except ValueError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
return model
# Copied from transformers.models.gpt2.modeling_gpt2.eager_attention_forward
def eager_attention_forward(module, query, key, value, attention_mask, head_mask=None, **kwargs):
attn_weights = torch.matmul(query, key.transpose(-1, -2))
if module.scale_attn_weights:
attn_weights = attn_weights / torch.full(
[], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
)
# Layer-wise attention scaling
if module.scale_attn_by_inverse_layer_idx:
attn_weights = attn_weights / float(module.layer_idx + 1)
if not module.is_cross_attention:
# if only "normal" attention layer implements causal mask
query_length, key_length = query.size(-2), key.size(-2)
causal_mask = module.bias[:, :, key_length - query_length : key_length, :key_length]
mask_value = torch.finfo(attn_weights.dtype).min
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype, device=attn_weights.device)
attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value)
if attention_mask is not None:
# Apply the attention mask
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
attn_weights = attn_weights.type(value.dtype)
attn_weights = module.attn_dropout(attn_weights)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2)
return attn_output, attn_weights
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2Attention with GPT2->DecisionTransformerGPT2
class DecisionTransformerGPT2Attention(nn.Module):
def __init__(self, config, is_cross_attention=False, layer_idx=None):
super().__init__()
self.config = config
max_positions = config.max_position_embeddings
self.register_buffer(
"bias",
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
1, 1, max_positions, max_positions
),
persistent=False,
)
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
self.split_size = self.embed_dim
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale_attn_weights = config.scale_attn_weights
self.is_cross_attention = is_cross_attention
# Layer-wise attention scaling, reordering, and upcasting
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
self.layer_idx = layer_idx
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
if self.is_cross_attention:
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
else:
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
self.attn_dropout = nn.Dropout(config.attn_pdrop)
self.resid_dropout = nn.Dropout(config.resid_pdrop)
self.is_causal = True
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
# Prune conv1d layers
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
# Update hyper params
self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
self.num_heads = self.num_heads - len(heads)
self.pruned_heads = self.pruned_heads.union(heads)
def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
# Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
bsz, num_heads, q_seq_len, dk = query.size()
_, _, k_seq_len, _ = key.size()
# Preallocate attn_weights for `baddbmm`
attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
# Compute Scale Factor
scale_factor = 1.0
if self.scale_attn_weights:
scale_factor /= float(value.size(-1)) ** 0.5
if self.scale_attn_by_inverse_layer_idx:
scale_factor /= float(self.layer_idx + 1)
# Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
with torch.amp.autocast(query.device.type, enabled=False):
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
if not self.is_cross_attention:
# if only "normal" attention layer implements causal mask
query_length, key_length = query.size(-2), key.size(-2)
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
mask_value = torch.finfo(attn_weights.dtype).min
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
if attention_mask is not None:
# Apply the attention mask
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
if attn_weights.dtype != torch.float32:
raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
attn_weights = attn_weights.type(value.dtype)
attn_weights = self.attn_dropout(attn_weights)
# Mask heads if we want to
if head_mask is not None:
attn_weights = attn_weights * head_mask
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2)
return attn_output, attn_weights
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
**kwargs,
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
if encoder_hidden_states is not None:
if not hasattr(self, "q_attn"):
raise ValueError(
"If class is used as cross attention, the weights `q_attn` have to be defined. "
"Please make sure to instantiate class with `DecisionTransformerGPT2Attention(..., is_cross_attention=True)`."
)
query_states = self.q_attn(hidden_states)
key_states, value_states = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
attention_mask = encoder_attention_mask
else:
query_states, key_states, value_states = self.c_attn(hidden_states).split(self.split_size, dim=2)
shape_q = (*query_states.shape[:-1], -1, self.head_dim)
shape_kv = (*key_states.shape[:-1], -1, self.head_dim)
query_states = query_states.view(shape_q).transpose(1, 2)
key_states = key_states.view(shape_kv).transpose(1, 2)
value_states = value_states.view(shape_kv).transpose(1, 2)
if layer_past is not None:
past_key, past_value = layer_past
key_states = torch.cat((past_key, key_states), dim=-2)
value_states = torch.cat((past_value, value_states), dim=-2)
if use_cache is True:
present = (key_states, value_states)
else:
present = None
is_cross_attention = encoder_hidden_states is not None
is_causal = attention_mask is None and query_states.shape[-2] > 1 and not is_cross_attention
using_eager = self.config._attn_implementation == "eager"
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and (output_attentions or head_mask is not None):
using_eager = True
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
# Attention functions are consistent with previous equivalent attention classes, however they do not support some options
# (e.g. layer scaling, head mask) that eager supports. These implementations are thus equivalent to previous code, but
# not necessarily to eager (if mentionned options are provided).
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
if using_eager and self.reorder_and_upcast_attn:
attn_output, attn_weights = self._upcast_and_reordered_attn(
query_states, key_states, value_states, attention_mask, head_mask
)
else:
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
head_mask=head_mask,
dropout=self.attn_dropout.p if self.training else 0.0,
is_causal=is_causal,
**kwargs,
)
attn_output = attn_output.reshape(*attn_output.shape[:-2], -1).contiguous()
attn_output = self.c_proj(attn_output)
attn_output = self.resid_dropout(attn_output)
outputs = (attn_output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs # a, present, (attentions)
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP with GPT2->DecisionTransformerGPT2
class DecisionTransformerGPT2MLP(nn.Module):
def __init__(self, intermediate_size, config):
super().__init__()
embed_dim = config.hidden_size
self.c_fc = Conv1D(intermediate_size, embed_dim)
self.c_proj = Conv1D(embed_dim, intermediate_size)
self.act = ACT2FN[config.activation_function]
self.dropout = nn.Dropout(config.resid_pdrop)
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
hidden_states = self.c_fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2Block with GPT2->DecisionTransformerGPT2
class DecisionTransformerGPT2Block(nn.Module):
# Ignore copy
def __init__(self, config, layer_idx=None):
super().__init__()
hidden_size = config.hidden_size
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.attn = DecisionTransformerGPT2Attention(config, layer_idx=layer_idx)
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
if config.add_cross_attention:
self.crossattention = DecisionTransformerGPT2Attention(
config, is_cross_attention=True, layer_idx=layer_idx
)
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.mlp = DecisionTransformerGPT2MLP(inner_dim, config)
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
layer_past: Optional[Tuple[torch.Tensor]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_outputs = self.attn(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
outputs = attn_outputs[1:]
# residual connection
hidden_states = attn_output + residual
if encoder_hidden_states is not None:
# add one self-attention block for cross-attention
if not hasattr(self, "crossattention"):
raise ValueError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
"cross-attention layers by setting `config.add_cross_attention=True`"
)
residual = hidden_states
hidden_states = self.ln_cross_attn(hidden_states)
cross_attn_outputs = self.crossattention(
hidden_states,
attention_mask=attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
)
attn_output = cross_attn_outputs[0]
# residual connection
hidden_states = residual + attn_output
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
residual = hidden_states
hidden_states = self.ln_2(hidden_states)
feed_forward_hidden_states = self.mlp(hidden_states)
# residual connection
hidden_states = residual + feed_forward_hidden_states
if use_cache:
outputs = (hidden_states,) + outputs
else:
outputs = (hidden_states,) + outputs[1:]
return outputs # hidden_states, present, (attentions, cross_attentions)
class DecisionTransformerGPT2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DecisionTransformerConfig
load_tf_weights = load_tf_weights_in_gpt2
base_model_prefix = "transformer"
is_parallelizable = True
supports_gradient_checkpointing = True
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, (nn.Linear, Conv1D)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if "c_proj" in name and "weight" in name:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))
class DecisionTransformerGPT2Model(DecisionTransformerGPT2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embed_dim = config.hidden_size
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
self.drop = nn.Dropout(config.embd_pdrop)
self.h = nn.ModuleList(
[DecisionTransformerGPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
)
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
# Model parallel
self.model_parallel = False
self.device_map = None
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.wte
def set_input_embeddings(self, new_embeddings):
self.wte = new_embeddings
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
batch_size = input_ids.shape[0]
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
batch_size = inputs_embeds.shape[0]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
device = input_ids.device if input_ids is not None else inputs_embeds.device
if token_type_ids is not None:
token_type_ids = token_type_ids.view(-1, input_shape[-1])
if past_key_values is None:
past_length = 0
past_key_values = tuple([None] * len(self.h))
else:
past_length = past_key_values[0][0].size(-2)
if position_ids is None:
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
position_ids = position_ids.unsqueeze(0)
# Attention mask.
if attention_mask is not None:
if batch_size <= 0:
raise ValueError("batch_size has to be defined and > 0")
attention_mask = attention_mask.view(batch_size, -1)
# We create a 3D attention mask from a 2D tensor mask.
# Sizes are [batch_size, 1, 1, to_seq_length]
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
# this attention mask is more simple than the triangular masking of causal attention
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
attention_mask = attention_mask[:, None, None, :]
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
# masked positions, this operation will create a tensor which is 0.0 for
# positions we want to attend and the dtype's smallest value for masked positions.
# Since we are adding it to the raw scores before the softmax, this is
# effectively the same as removing these entirely.
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.add_cross_attention and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# head_mask has shape n_layer x batch x n_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
if inputs_embeds is None:
inputs_embeds = self.wte(input_ids)
position_embeds = self.wpe(position_ids)
hidden_states = inputs_embeds + position_embeds
if token_type_ids is not None:
token_type_embeds = self.wte(token_type_ids)
hidden_states = hidden_states + token_type_embeds
hidden_states = self.drop(hidden_states)
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
# Model parallel
if self.model_parallel:
torch.cuda.set_device(hidden_states.device)
# Ensure layer_past is on same device as hidden_states (might not be correct)
if layer_past is not None:
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
# Ensure that attention_mask is always on the same device as hidden_states
if attention_mask is not None:
attention_mask = attention_mask.to(hidden_states.device)
if isinstance(head_mask, torch.Tensor):
head_mask = head_mask.to(hidden_states.device)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
outputs = self._gradient_checkpointing_func(
block.__call__,
hidden_states,
None,
attention_mask,
head_mask[i],
encoder_hidden_states,
encoder_attention_mask,
use_cache,
output_attentions,
)
else:
outputs = block(
hidden_states,
layer_past=layer_past,
attention_mask=attention_mask,
head_mask=head_mask[i],
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
# Model Parallel: If it's the last layer for that device, put things on the next device
if self.model_parallel:
for k, v in self.device_map.items():
if i == v[-1] and "cuda:" + str(k) != self.last_device:
hidden_states = hidden_states.to("cuda:" + str(k + 1))
hidden_states = self.ln_f(hidden_states)
hidden_states = hidden_states.view(output_shape)
# Add last hidden state
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
@dataclass
class DecisionTransformerOutput(ModelOutput):
"""
Base class for model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
state_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, state_dim)`):
Environment state predictions
action_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, action_dim)`):
Model action predictions
return_preds (`torch.FloatTensor` of shape `(batch_size, sequence_length, 1)`):
Predicted returns for each state
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
"""
state_preds: torch.FloatTensor = None
action_preds: torch.FloatTensor = None
return_preds: torch.FloatTensor = None
hidden_states: torch.FloatTensor = None
attentions: torch.FloatTensor = None
last_hidden_state: torch.FloatTensor = None
class DecisionTransformerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DecisionTransformerConfig
base_model_prefix = "decision_transformer"
main_input_name = "states"
supports_gradient_checkpointing = False
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
DECISION_TRANSFORMER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`~DecisionTransformerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DECISION_TRANSFORMER_INPUTS_DOCSTRING = r"""
Args:
states (`torch.FloatTensor` of shape `(batch_size, episode_length, state_dim)`):
The states for each step in the trajectory
actions (`torch.FloatTensor` of shape `(batch_size, episode_length, act_dim)`):
The actions taken by the "expert" policy for the current state, these are masked for auto regressive
prediction
rewards (`torch.FloatTensor` of shape `(batch_size, episode_length, 1)`):
The rewards for each state, action
returns_to_go (`torch.FloatTensor` of shape `(batch_size, episode_length, 1)`):
The returns for each state in the trajectory
timesteps (`torch.LongTensor` of shape `(batch_size, episode_length)`):
The timestep for each step in the trajectory
attention_mask (`torch.FloatTensor` of shape `(batch_size, episode_length)`):
Masking, used to mask the actions when performing autoregressive prediction
"""
@add_start_docstrings("The Decision Transformer Model", DECISION_TRANSFORMER_START_DOCSTRING)
class DecisionTransformerModel(DecisionTransformerPreTrainedModel):
"""
The model builds upon the GPT2 architecture to perform autoregressive prediction of actions in an offline RL
setting. Refer to the paper for more details: https://arxiv.org/abs/2106.01345
"""
def __init__(self, config):
super().__init__(config)
self.config = config
self.hidden_size = config.hidden_size
# note: the only difference between this GPT2Model and the default Huggingface version
# is that the positional embeddings are removed (since we'll add those ourselves)
self.encoder = DecisionTransformerGPT2Model(config)
self.embed_timestep = nn.Embedding(config.max_ep_len, config.hidden_size)
self.embed_return = torch.nn.Linear(1, config.hidden_size)
self.embed_state = torch.nn.Linear(config.state_dim, config.hidden_size)
self.embed_action = torch.nn.Linear(config.act_dim, config.hidden_size)
self.embed_ln = nn.LayerNorm(config.hidden_size)
# note: we don't predict states or returns for the paper
self.predict_state = torch.nn.Linear(config.hidden_size, config.state_dim)
self.predict_action = nn.Sequential(
*([nn.Linear(config.hidden_size, config.act_dim)] + ([nn.Tanh()] if config.action_tanh else []))
)
self.predict_return = torch.nn.Linear(config.hidden_size, 1)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DECISION_TRANSFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=DecisionTransformerOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
states: Optional[torch.FloatTensor] = None,
actions: Optional[torch.FloatTensor] = None,
rewards: Optional[torch.FloatTensor] = None,
returns_to_go: Optional[torch.FloatTensor] = None,
timesteps: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.FloatTensor], DecisionTransformerOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import DecisionTransformerModel
>>> import torch
>>> model = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-medium")
>>> # evaluation
>>> model = model.to(device)
>>> model.eval()
>>> env = gym.make("Hopper-v3")
>>> state_dim = env.observation_space.shape[0]
>>> act_dim = env.action_space.shape[0]
>>> state = env.reset()
>>> states = torch.from_numpy(state).reshape(1, 1, state_dim).to(device=device, dtype=torch.float32)
>>> actions = torch.zeros((1, 1, act_dim), device=device, dtype=torch.float32)
>>> rewards = torch.zeros(1, 1, device=device, dtype=torch.float32)
>>> target_return = torch.tensor(TARGET_RETURN, dtype=torch.float32).reshape(1, 1)
>>> timesteps = torch.tensor(0, device=device, dtype=torch.long).reshape(1, 1)
>>> attention_mask = torch.zeros(1, 1, device=device, dtype=torch.float32)
>>> # forward pass
>>> with torch.no_grad():
... state_preds, action_preds, return_preds = model(
... states=states,
... actions=actions,
... rewards=rewards,
... returns_to_go=target_return,
... timesteps=timesteps,
... attention_mask=attention_mask,
... return_dict=False,
... )
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
batch_size, seq_length = states.shape[0], states.shape[1]
if attention_mask is None:
# attention mask for GPT: 1 if can be attended to, 0 if not
attention_mask = torch.ones((batch_size, seq_length), dtype=torch.long)
# embed each modality with a different head
state_embeddings = self.embed_state(states)
action_embeddings = self.embed_action(actions)
returns_embeddings = self.embed_return(returns_to_go)
time_embeddings = self.embed_timestep(timesteps)
# time embeddings are treated similar to positional embeddings
state_embeddings = state_embeddings + time_embeddings
action_embeddings = action_embeddings + time_embeddings
returns_embeddings = returns_embeddings + time_embeddings
# this makes the sequence look like (R_1, s_1, a_1, R_2, s_2, a_2, ...)
# which works nice in an autoregressive sense since states predict actions
stacked_inputs = (
torch.stack((returns_embeddings, state_embeddings, action_embeddings), dim=1)
.permute(0, 2, 1, 3)
.reshape(batch_size, 3 * seq_length, self.hidden_size)
)
stacked_inputs = self.embed_ln(stacked_inputs)
# to make the attention mask fit the stacked inputs, have to stack it as well
stacked_attention_mask = (
torch.stack((attention_mask, attention_mask, attention_mask), dim=1)
.permute(0, 2, 1)
.reshape(batch_size, 3 * seq_length)
)
device = stacked_inputs.device
# we feed in the input embeddings (not word indices as in NLP) to the model
encoder_outputs = self.encoder(
inputs_embeds=stacked_inputs,
attention_mask=stacked_attention_mask,
position_ids=torch.zeros(stacked_attention_mask.shape, device=device, dtype=torch.long),
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
x = encoder_outputs[0]
# reshape x so that the second dimension corresponds to the original
# returns (0), states (1), or actions (2); i.e. x[:,1,t] is the token for s_t
x = x.reshape(batch_size, seq_length, 3, self.hidden_size).permute(0, 2, 1, 3)
# get predictions
return_preds = self.predict_return(x[:, 2]) # predict next return given state and action
state_preds = self.predict_state(x[:, 2]) # predict next state given state and action
action_preds = self.predict_action(x[:, 1]) # predict next action given state
if not return_dict:
return (state_preds, action_preds, return_preds)
return DecisionTransformerOutput(
last_hidden_state=encoder_outputs.last_hidden_state,
state_preds=state_preds,
action_preds=action_preds,
return_preds=return_preds,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
__all__ = [
"DecisionTransformerGPT2Model",
"DecisionTransformerGPT2PreTrainedModel",
"DecisionTransformerModel",
"DecisionTransformerPreTrainedModel",
]
|
transformers/src/transformers/models/decision_transformer/modeling_decision_transformer.py/0
|
{
"file_path": "transformers/src/transformers/models/decision_transformer/modeling_decision_transformer.py",
"repo_id": "transformers",
"token_count": 19105
}
| 107 |
# coding=utf-8
# Copyright 2022 Facebook AI Research (FAIR) and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TensorFlow DeiT model."""
from __future__ import annotations
import collections.abc
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import tensorflow as tf
from ...activations_tf import get_tf_activation
from ...modeling_tf_outputs import (
TFBaseModelOutput,
TFBaseModelOutputWithPooling,
TFImageClassifierOutput,
TFMaskedImageModelingOutput,
)
from ...modeling_tf_utils import (
TFPreTrainedModel,
TFSequenceClassificationLoss,
get_initializer,
keras,
keras_serializable,
unpack_inputs,
)
from ...tf_utils import shape_list, stable_softmax
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_deit import DeiTConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "DeiTConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "facebook/deit-base-distilled-patch16-224"
_EXPECTED_OUTPUT_SHAPE = [1, 198, 768]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "facebook/deit-base-distilled-patch16-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
@dataclass
class TFDeiTForImageClassificationWithTeacherOutput(ModelOutput):
"""
Output type of [`DeiTForImageClassificationWithTeacher`].
Args:
logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
Prediction scores as the average of the cls_logits and distillation logits.
cls_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
Prediction scores of the classification head (i.e. the linear layer on top of the final hidden state of the
class token).
distillation_logits (`tf.Tensor` of shape `(batch_size, config.num_labels)`):
Prediction scores of the distillation head (i.e. the linear layer on top of the final hidden state of the
distillation token).
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
`(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus
the initial embedding outputs.
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in
the self-attention heads.
"""
logits: tf.Tensor = None
cls_logits: tf.Tensor = None
distillation_logits: tf.Tensor = None
hidden_states: Tuple[tf.Tensor] | None = None
attentions: Tuple[tf.Tensor] | None = None
class TFDeiTEmbeddings(keras.layers.Layer):
"""
Construct the CLS token, distillation token, position and patch embeddings. Optionally, also the mask token.
"""
def __init__(self, config: DeiTConfig, use_mask_token: bool = False, **kwargs) -> None:
super().__init__(**kwargs)
self.config = config
self.use_mask_token = use_mask_token
self.patch_embeddings = TFDeiTPatchEmbeddings(config=config, name="patch_embeddings")
self.dropout = keras.layers.Dropout(config.hidden_dropout_prob, name="dropout")
def build(self, input_shape=None):
self.cls_token = self.add_weight(
shape=(1, 1, self.config.hidden_size),
initializer=keras.initializers.zeros(),
trainable=True,
name="cls_token",
)
self.distillation_token = self.add_weight(
shape=(1, 1, self.config.hidden_size),
initializer=keras.initializers.zeros(),
trainable=True,
name="distillation_token",
)
self.mask_token = None
if self.use_mask_token:
self.mask_token = self.add_weight(
shape=(1, 1, self.config.hidden_size),
initializer=keras.initializers.zeros(),
trainable=True,
name="mask_token",
)
num_patches = self.patch_embeddings.num_patches
self.position_embeddings = self.add_weight(
shape=(1, num_patches + 2, self.config.hidden_size),
initializer=keras.initializers.zeros(),
trainable=True,
name="position_embeddings",
)
if self.built:
return
self.built = True
if getattr(self, "patch_embeddings", None) is not None:
with tf.name_scope(self.patch_embeddings.name):
self.patch_embeddings.build(None)
if getattr(self, "dropout", None) is not None:
with tf.name_scope(self.dropout.name):
self.dropout.build(None)
def interpolate_pos_encoding(self, embeddings: tf.Tensor, height: int, width: int) -> tf.Tensor:
num_patches = embeddings.shape[1] - 2
num_positions = self.position_embeddings.shape[1] - 2
if num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, 0, :]
dist_pos_embed = self.position_embeddings[:, 1, :]
patch_pos_embed = self.position_embeddings[:, 2:, :]
dim = embeddings.shape[-1]
h0 = height // self.config.patch_size
w0 = width // self.config.patch_size
# # we add a small number to avoid floating point error in the interpolation
# # see discussion at https://github.com/facebookresearch/dino/issues/8
h0, w0 = h0 + 0.1, w0 + 0.1
patch_pos_embed = tf.reshape(
patch_pos_embed, (1, int(math.sqrt(num_positions)), int(math.sqrt(num_positions)), dim)
)
patch_pos_embed = tf.image.resize(patch_pos_embed, size=(int(h0), int(w0)), method="bicubic")
patch_pos_embed = tf.transpose(patch_pos_embed, perm=[0, 2, 3, 1])
patch_pos_embed = tf.reshape(patch_pos_embed, (1, -1, dim))
return tf.concat(
[tf.expand_dims(class_pos_embed, axis=0), tf.expand_dims(dist_pos_embed, axis=0), patch_pos_embed], axis=1
)
def call(
self,
pixel_values: tf.Tensor,
bool_masked_pos: tf.Tensor | None = None,
training: bool = False,
interpolate_pos_encoding: bool = False,
) -> tf.Tensor:
_, height, width, _ = pixel_values.shape
embeddings = self.patch_embeddings(pixel_values)
batch_size, seq_length, _ = shape_list(embeddings)
if bool_masked_pos is not None:
mask_tokens = tf.tile(self.mask_token, [batch_size, seq_length, 1])
# replace the masked visual tokens by mask_tokens
mask = tf.expand_dims(bool_masked_pos, axis=-1)
mask = tf.cast(mask, dtype=mask_tokens.dtype)
embeddings = embeddings * (1.0 - mask) + mask_tokens * mask
cls_tokens = tf.repeat(self.cls_token, repeats=batch_size, axis=0)
distillation_tokens = tf.repeat(self.distillation_token, repeats=batch_size, axis=0)
embeddings = tf.concat((cls_tokens, distillation_tokens, embeddings), axis=1)
position_embedding = self.position_embeddings
if interpolate_pos_encoding:
position_embedding = self.interpolate_pos_encoding(embeddings, height, width)
embeddings = embeddings + position_embedding
embeddings = self.dropout(embeddings, training=training)
return embeddings
class TFDeiTPatchEmbeddings(keras.layers.Layer):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config: DeiTConfig, **kwargs) -> None:
super().__init__(**kwargs)
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size)
patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size)
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.projection = keras.layers.Conv2D(
hidden_size, kernel_size=patch_size, strides=patch_size, name="projection"
)
def call(self, pixel_values: tf.Tensor) -> tf.Tensor:
batch_size, height, width, num_channels = shape_list(pixel_values)
if tf.executing_eagerly() and num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
x = self.projection(pixel_values)
batch_size, height, width, num_channels = shape_list(x)
x = tf.reshape(x, (batch_size, height * width, num_channels))
return x
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "projection", None) is not None:
with tf.name_scope(self.projection.name):
self.projection.build([None, None, None, self.num_channels])
# Copied from transformers.models.vit.modeling_tf_vit.TFViTSelfAttention with ViT->DeiT
class TFDeiTSelfAttention(keras.layers.Layer):
def __init__(self, config: DeiTConfig, **kwargs):
super().__init__(**kwargs)
if config.hidden_size % config.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number "
f"of attention heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.sqrt_att_head_size = math.sqrt(self.attention_head_size)
self.query = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query"
)
self.key = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key"
)
self.value = keras.layers.Dense(
units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value"
)
self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob)
self.config = config
def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor:
# Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size]
tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size))
# Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size]
return tf.transpose(tensor, perm=[0, 2, 1, 3])
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
batch_size = shape_list(hidden_states)[0]
mixed_query_layer = self.query(inputs=hidden_states)
mixed_key_layer = self.key(inputs=hidden_states)
mixed_value_layer = self.value(inputs=hidden_states)
query_layer = self.transpose_for_scores(mixed_query_layer, batch_size)
key_layer = self.transpose_for_scores(mixed_key_layer, batch_size)
value_layer = self.transpose_for_scores(mixed_value_layer, batch_size)
# Take the dot product between "query" and "key" to get the raw attention scores.
# (batch size, num_heads, seq_len_q, seq_len_k)
attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True)
dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype)
attention_scores = tf.divide(attention_scores, dk)
# Normalize the attention scores to probabilities.
attention_probs = stable_softmax(logits=attention_scores, axis=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(inputs=attention_probs, training=training)
# Mask heads if we want to
if head_mask is not None:
attention_probs = tf.multiply(attention_probs, head_mask)
attention_output = tf.matmul(attention_probs, value_layer)
attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3])
# (batch_size, seq_len_q, all_head_size)
attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size))
outputs = (attention_output, attention_probs) if output_attentions else (attention_output,)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "query", None) is not None:
with tf.name_scope(self.query.name):
self.query.build([None, None, self.config.hidden_size])
if getattr(self, "key", None) is not None:
with tf.name_scope(self.key.name):
self.key.build([None, None, self.config.hidden_size])
if getattr(self, "value", None) is not None:
with tf.name_scope(self.value.name):
self.value.build([None, None, self.config.hidden_size])
# Copied from transformers.models.vit.modeling_tf_vit.TFViTSelfOutput with ViT->DeiT
class TFDeiTSelfOutput(keras.layers.Layer):
"""
The residual connection is defined in TFDeiTLayer instead of here (as is the case with other models), due to the
layernorm applied before each block.
"""
def __init__(self, config: DeiTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
# Copied from transformers.models.vit.modeling_tf_vit.TFViTAttention with ViT->DeiT
class TFDeiTAttention(keras.layers.Layer):
def __init__(self, config: DeiTConfig, **kwargs):
super().__init__(**kwargs)
self.self_attention = TFDeiTSelfAttention(config, name="attention")
self.dense_output = TFDeiTSelfOutput(config, name="output")
def prune_heads(self, heads):
raise NotImplementedError
def call(
self,
input_tensor: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
self_outputs = self.self_attention(
hidden_states=input_tensor, head_mask=head_mask, output_attentions=output_attentions, training=training
)
attention_output = self.dense_output(
hidden_states=self_outputs[0], input_tensor=input_tensor, training=training
)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "self_attention", None) is not None:
with tf.name_scope(self.self_attention.name):
self.self_attention.build(None)
if getattr(self, "dense_output", None) is not None:
with tf.name_scope(self.dense_output.name):
self.dense_output.build(None)
# Copied from transformers.models.vit.modeling_tf_vit.TFViTIntermediate with ViT->DeiT
class TFDeiTIntermediate(keras.layers.Layer):
def __init__(self, config: DeiTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = get_tf_activation(config.hidden_act)
else:
self.intermediate_act_fn = config.hidden_act
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
# Copied from transformers.models.vit.modeling_tf_vit.TFViTOutput with ViT->DeiT
class TFDeiTOutput(keras.layers.Layer):
def __init__(self, config: DeiTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense"
)
self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob)
self.config = config
def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = self.dense(inputs=hidden_states)
hidden_states = self.dropout(inputs=hidden_states, training=training)
hidden_states = hidden_states + input_tensor
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.intermediate_size])
class TFDeiTLayer(keras.layers.Layer):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: DeiTConfig, **kwargs):
super().__init__(**kwargs)
self.attention = TFDeiTAttention(config, name="attention")
self.intermediate = TFDeiTIntermediate(config, name="intermediate")
self.deit_output = TFDeiTOutput(config, name="output")
self.layernorm_before = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_before")
self.layernorm_after = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm_after")
self.config = config
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
training: bool = False,
) -> Tuple[tf.Tensor]:
attention_outputs = self.attention(
# in DeiT, layernorm is applied before self-attention
input_tensor=self.layernorm_before(inputs=hidden_states, training=training),
head_mask=head_mask,
output_attentions=output_attentions,
training=training,
)
attention_output = attention_outputs[0]
# first residual connection
hidden_states = attention_output + hidden_states
# in DeiT, layernorm is also applied after self-attention
layer_output = self.layernorm_after(inputs=hidden_states, training=training)
intermediate_output = self.intermediate(hidden_states=layer_output, training=training)
# second residual connection is done here
layer_output = self.deit_output(
hidden_states=intermediate_output, input_tensor=hidden_states, training=training
)
outputs = (layer_output,) + attention_outputs[1:] # add attentions if we output them
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "attention", None) is not None:
with tf.name_scope(self.attention.name):
self.attention.build(None)
if getattr(self, "intermediate", None) is not None:
with tf.name_scope(self.intermediate.name):
self.intermediate.build(None)
if getattr(self, "deit_output", None) is not None:
with tf.name_scope(self.deit_output.name):
self.deit_output.build(None)
if getattr(self, "layernorm_before", None) is not None:
with tf.name_scope(self.layernorm_before.name):
self.layernorm_before.build([None, None, self.config.hidden_size])
if getattr(self, "layernorm_after", None) is not None:
with tf.name_scope(self.layernorm_after.name):
self.layernorm_after.build([None, None, self.config.hidden_size])
# Copied from transformers.models.vit.modeling_tf_vit.TFViTEncoder with ViT->DeiT
class TFDeiTEncoder(keras.layers.Layer):
def __init__(self, config: DeiTConfig, **kwargs):
super().__init__(**kwargs)
self.layer = [TFDeiTLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)]
def call(
self,
hidden_states: tf.Tensor,
head_mask: tf.Tensor,
output_attentions: bool,
output_hidden_states: bool,
return_dict: bool,
training: bool = False,
) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]:
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(
hidden_states=hidden_states,
head_mask=head_mask[i],
output_attentions=output_attentions,
training=training,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None)
return TFBaseModelOutput(
last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "layer", None) is not None:
for layer in self.layer:
with tf.name_scope(layer.name):
layer.build(None)
@keras_serializable
class TFDeiTMainLayer(keras.layers.Layer):
config_class = DeiTConfig
def __init__(
self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs
) -> None:
super().__init__(**kwargs)
self.config = config
self.embeddings = TFDeiTEmbeddings(config, use_mask_token=use_mask_token, name="embeddings")
self.encoder = TFDeiTEncoder(config, name="encoder")
self.layernorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layernorm")
self.pooler = TFDeiTPooler(config, name="pooler") if add_pooling_layer else None
def get_input_embeddings(self) -> TFDeiTPatchEmbeddings:
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
raise NotImplementedError
def get_head_mask(self, head_mask):
if head_mask is not None:
raise NotImplementedError
else:
head_mask = [None] * self.config.num_hidden_layers
return head_mask
@unpack_inputs
def call(
self,
pixel_values: tf.Tensor | None = None,
bool_masked_pos: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
training: bool = False,
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor, ...]]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
# TF 2.0 image layers can't use NCHW format when running on CPU.
# (batch_size, num_channels, height, width) -> (batch_size, height, width, num_channels)
pixel_values = tf.transpose(pixel_values, (0, 2, 3, 1))
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask)
embedding_output = self.embeddings(
pixel_values,
bool_masked_pos=bool_masked_pos,
training=training,
interpolate_pos_encoding=interpolate_pos_encoding,
)
encoder_outputs = self.encoder(
embedding_output,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
training=training,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output, training=training)
pooled_output = self.pooler(sequence_output, training=training) if self.pooler is not None else None
if not return_dict:
head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,)
return head_outputs + encoder_outputs[1:]
return TFBaseModelOutputWithPooling(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "embeddings", None) is not None:
with tf.name_scope(self.embeddings.name):
self.embeddings.build(None)
if getattr(self, "encoder", None) is not None:
with tf.name_scope(self.encoder.name):
self.encoder.build(None)
if getattr(self, "layernorm", None) is not None:
with tf.name_scope(self.layernorm.name):
self.layernorm.build([None, None, self.config.hidden_size])
if getattr(self, "pooler", None) is not None:
with tf.name_scope(self.pooler.name):
self.pooler.build(None)
# Copied from transformers.models.vit.modeling_tf_vit.TFViTPreTrainedModel with ViT->DeiT all-casing
class TFDeiTPreTrainedModel(TFPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DeiTConfig
base_model_prefix = "deit"
main_input_name = "pixel_values"
DEIT_START_DOCSTRING = r"""
This model is a TensorFlow
[keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer). Use it as a regular
TensorFlow Module and refer to the TensorFlow documentation for all matter related to general usage and behavior.
Parameters:
config ([`DeiTConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DEIT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`DeiTImageProcessor.__call__`] for details.
head_mask (`tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
interpolate_pos_encoding (`bool`, *optional*, defaults to `False`):
Whether to interpolate the pre-trained position encodings.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare DeiT Model transformer outputting raw hidden-states without any specific head on top.",
DEIT_START_DOCSTRING,
)
class TFDeiTModel(TFDeiTPreTrainedModel):
def __init__(
self, config: DeiTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False, **kwargs
) -> None:
super().__init__(config, **kwargs)
self.deit = TFDeiTMainLayer(
config, add_pooling_layer=add_pooling_layer, use_mask_token=use_mask_token, name="deit"
)
@unpack_inputs
@add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TFBaseModelOutputWithPooling,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def call(
self,
pixel_values: tf.Tensor | None = None,
bool_masked_pos: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
training: bool = False,
) -> Union[Tuple, TFBaseModelOutputWithPooling]:
outputs = self.deit(
pixel_values=pixel_values,
bool_masked_pos=bool_masked_pos,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
interpolate_pos_encoding=interpolate_pos_encoding,
training=training,
)
return outputs
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "deit", None) is not None:
with tf.name_scope(self.deit.name):
self.deit.build(None)
# Copied from transformers.models.vit.modeling_tf_vit.TFViTPooler with ViT->DeiT
class TFDeiTPooler(keras.layers.Layer):
def __init__(self, config: DeiTConfig, **kwargs):
super().__init__(**kwargs)
self.dense = keras.layers.Dense(
units=config.hidden_size,
kernel_initializer=get_initializer(config.initializer_range),
activation="tanh",
name="dense",
)
self.config = config
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(inputs=first_token_tensor)
return pooled_output
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "dense", None) is not None:
with tf.name_scope(self.dense.name):
self.dense.build([None, None, self.config.hidden_size])
class TFDeitPixelShuffle(keras.layers.Layer):
"""TF layer implementation of torch.nn.PixelShuffle"""
def __init__(self, upscale_factor: int, **kwargs) -> None:
super().__init__(**kwargs)
if not isinstance(upscale_factor, int) or upscale_factor < 2:
raise ValueError(f"upscale_factor must be an integer value >= 2 got {upscale_factor}")
self.upscale_factor = upscale_factor
def call(self, x: tf.Tensor) -> tf.Tensor:
hidden_states = x
batch_size, _, _, num_input_channels = shape_list(hidden_states)
block_size_squared = self.upscale_factor**2
output_depth = int(num_input_channels / block_size_squared)
# When the number of output channels >= 2, PyTorch's PixelShuffle and
# TF's depth_to_space differ in their output as the order of channels selected for combining
# is a permutation of the other c.f.
# https://stackoverflow.com/questions/68272502/tf-depth-to-space-not-same-as-torchs-pixelshuffle-when-output-channels-1
permutation = tf.constant(
[[i + j * block_size_squared for i in range(block_size_squared) for j in range(output_depth)]]
)
hidden_states = tf.gather(params=hidden_states, indices=tf.tile(permutation, [batch_size, 1]), batch_dims=-1)
hidden_states = tf.nn.depth_to_space(hidden_states, block_size=self.upscale_factor, data_format="NHWC")
return hidden_states
class TFDeitDecoder(keras.layers.Layer):
def __init__(self, config: DeiTConfig, **kwargs) -> None:
super().__init__(**kwargs)
self.conv2d = keras.layers.Conv2D(
filters=config.encoder_stride**2 * config.num_channels, kernel_size=1, name="0"
)
self.pixel_shuffle = TFDeitPixelShuffle(config.encoder_stride, name="1")
self.config = config
def call(self, inputs: tf.Tensor, training: bool = False) -> tf.Tensor:
hidden_states = inputs
hidden_states = self.conv2d(hidden_states)
hidden_states = self.pixel_shuffle(hidden_states)
return hidden_states
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "conv2d", None) is not None:
with tf.name_scope(self.conv2d.name):
self.conv2d.build([None, None, None, self.config.hidden_size])
if getattr(self, "pixel_shuffle", None) is not None:
with tf.name_scope(self.pixel_shuffle.name):
self.pixel_shuffle.build(None)
@add_start_docstrings(
"DeiT Model with a decoder on top for masked image modeling, as proposed in"
" [SimMIM](https://arxiv.org/abs/2111.09886).",
DEIT_START_DOCSTRING,
)
class TFDeiTForMaskedImageModeling(TFDeiTPreTrainedModel):
def __init__(self, config: DeiTConfig) -> None:
super().__init__(config)
self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, use_mask_token=True, name="deit")
self.decoder = TFDeitDecoder(config, name="decoder")
@unpack_inputs
@add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFMaskedImageModelingOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
pixel_values: tf.Tensor | None = None,
bool_masked_pos: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
training: bool = False,
) -> Union[tuple, TFMaskedImageModelingOutput]:
r"""
bool_masked_pos (`tf.Tensor` of type bool and shape `(batch_size, num_patches)`):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, TFDeiTForMaskedImageModeling
>>> import tensorflow as tf
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224")
>>> model = TFDeiTForMaskedImageModeling.from_pretrained("facebook/deit-base-distilled-patch16-224")
>>> num_patches = (model.config.image_size // model.config.patch_size) ** 2
>>> pixel_values = image_processor(images=image, return_tensors="tf").pixel_values
>>> # create random boolean mask of shape (batch_size, num_patches)
>>> bool_masked_pos = tf.cast(tf.random.uniform((1, num_patches), minval=0, maxval=2, dtype=tf.int32), tf.bool)
>>> outputs = model(pixel_values, bool_masked_pos=bool_masked_pos)
>>> loss, reconstructed_pixel_values = outputs.loss, outputs.reconstruction
>>> list(reconstructed_pixel_values.shape)
[1, 3, 224, 224]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.deit(
pixel_values,
bool_masked_pos=bool_masked_pos,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
interpolate_pos_encoding=interpolate_pos_encoding,
training=training,
)
sequence_output = outputs[0]
# Reshape to (batch_size, num_channels, height, width)
sequence_output = sequence_output[:, 1:-1]
batch_size, sequence_length, num_channels = shape_list(sequence_output)
height = width = int(sequence_length**0.5)
sequence_output = tf.reshape(sequence_output, (batch_size, height, width, num_channels))
# Reconstruct pixel values
reconstructed_pixel_values = self.decoder(sequence_output, training=training)
# TF 2.0 image layers can't use NCHW format when running on CPU, so intermediate layers use NHWC,
# including the decoder. We transpose to compute the loss against the pixel values
# (batch_size, height, width, num_channels) -> (batch_size, num_channels, height, width)
reconstructed_pixel_values = tf.transpose(reconstructed_pixel_values, (0, 3, 1, 2))
masked_im_loss = None
if bool_masked_pos is not None:
size = self.config.image_size // self.config.patch_size
bool_masked_pos = tf.reshape(bool_masked_pos, (-1, size, size))
mask = tf.repeat(bool_masked_pos, self.config.patch_size, 1)
mask = tf.repeat(mask, self.config.patch_size, 2)
mask = tf.expand_dims(mask, 1)
mask = tf.cast(mask, tf.float32)
reconstruction_loss = keras.losses.mean_absolute_error(
# Swap axes as metric calculation reduces over the final dimension
tf.transpose(pixel_values, (1, 2, 3, 0)),
tf.transpose(reconstructed_pixel_values, (1, 2, 3, 0)),
)
reconstruction_loss = tf.expand_dims(reconstruction_loss, 0)
total_loss = tf.reduce_sum(reconstruction_loss * mask)
num_masked_pixels = (tf.reduce_sum(mask) + 1e-5) * self.config.num_channels
masked_im_loss = total_loss / num_masked_pixels
masked_im_loss = tf.reshape(masked_im_loss, (1,))
if not return_dict:
output = (reconstructed_pixel_values,) + outputs[1:]
return ((masked_im_loss,) + output) if masked_im_loss is not None else output
return TFMaskedImageModelingOutput(
loss=masked_im_loss,
reconstruction=reconstructed_pixel_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "deit", None) is not None:
with tf.name_scope(self.deit.name):
self.deit.build(None)
if getattr(self, "decoder", None) is not None:
with tf.name_scope(self.decoder.name):
self.decoder.build(None)
@add_start_docstrings(
"""
DeiT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of
the [CLS] token) e.g. for ImageNet.
""",
DEIT_START_DOCSTRING,
)
class TFDeiTForImageClassification(TFDeiTPreTrainedModel, TFSequenceClassificationLoss):
def __init__(self, config: DeiTConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, name="deit")
# Classifier head
self.classifier = (
keras.layers.Dense(config.num_labels, name="classifier")
if config.num_labels > 0
else keras.layers.Activation("linear", name="classifier")
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=TFImageClassifierOutput, config_class=_CONFIG_FOR_DOC)
def call(
self,
pixel_values: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
labels: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
training: bool = False,
) -> Union[tf.Tensor, TFImageClassifierOutput]:
r"""
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, TFDeiTForImageClassification
>>> import tensorflow as tf
>>> from PIL import Image
>>> import requests
>>> keras.utils.set_random_seed(3) # doctest: +IGNORE_RESULT
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> # note: we are loading a TFDeiTForImageClassificationWithTeacher from the hub here,
>>> # so the head will be randomly initialized, hence the predictions will be random
>>> image_processor = AutoImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224")
>>> model = TFDeiTForImageClassification.from_pretrained("facebook/deit-base-distilled-patch16-224")
>>> inputs = image_processor(images=image, return_tensors="tf")
>>> outputs = model(**inputs)
>>> logits = outputs.logits
>>> # model predicts one of the 1000 ImageNet classes
>>> predicted_class_idx = tf.math.argmax(logits, axis=-1)[0]
>>> print("Predicted class:", model.config.id2label[int(predicted_class_idx)])
Predicted class: little blue heron, Egretta caerulea
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.deit(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
interpolate_pos_encoding=interpolate_pos_encoding,
training=training,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output[:, 0, :])
# we don't use the distillation token
loss = None if labels is None else self.hf_compute_loss(labels, logits)
if not return_dict:
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output
return TFImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "deit", None) is not None:
with tf.name_scope(self.deit.name):
self.deit.build(None)
if getattr(self, "classifier", None) is not None:
with tf.name_scope(self.classifier.name):
self.classifier.build([None, None, self.config.hidden_size])
@add_start_docstrings(
"""
DeiT Model transformer with image classification heads on top (a linear layer on top of the final hidden state of
the [CLS] token and a linear layer on top of the final hidden state of the distillation token) e.g. for ImageNet.
.. warning::
This model supports inference-only. Fine-tuning with distillation (i.e. with a teacher) is not yet
supported.
""",
DEIT_START_DOCSTRING,
)
class TFDeiTForImageClassificationWithTeacher(TFDeiTPreTrainedModel):
def __init__(self, config: DeiTConfig) -> None:
super().__init__(config)
self.num_labels = config.num_labels
self.deit = TFDeiTMainLayer(config, add_pooling_layer=False, name="deit")
# Classifier heads
self.cls_classifier = (
keras.layers.Dense(config.num_labels, name="cls_classifier")
if config.num_labels > 0
else keras.layers.Activation("linear", name="cls_classifier")
)
self.distillation_classifier = (
keras.layers.Dense(config.num_labels, name="distillation_classifier")
if config.num_labels > 0
else keras.layers.Activation("linear", name="distillation_classifier")
)
self.config = config
@unpack_inputs
@add_start_docstrings_to_model_forward(DEIT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=TFDeiTForImageClassificationWithTeacherOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def call(
self,
pixel_values: tf.Tensor | None = None,
head_mask: tf.Tensor | None = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
training: bool = False,
) -> Union[tuple, TFDeiTForImageClassificationWithTeacherOutput]:
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.deit(
pixel_values,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
interpolate_pos_encoding=interpolate_pos_encoding,
training=training,
)
sequence_output = outputs[0]
cls_logits = self.cls_classifier(sequence_output[:, 0, :])
distillation_logits = self.distillation_classifier(sequence_output[:, 1, :])
# during inference, return the average of both classifier predictions
logits = (cls_logits + distillation_logits) / 2
if not return_dict:
output = (logits, cls_logits, distillation_logits) + outputs[1:]
return output
return TFDeiTForImageClassificationWithTeacherOutput(
logits=logits,
cls_logits=cls_logits,
distillation_logits=distillation_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def build(self, input_shape=None):
if self.built:
return
self.built = True
if getattr(self, "deit", None) is not None:
with tf.name_scope(self.deit.name):
self.deit.build(None)
if getattr(self, "cls_classifier", None) is not None:
with tf.name_scope(self.cls_classifier.name):
self.cls_classifier.build([None, None, self.config.hidden_size])
if getattr(self, "distillation_classifier", None) is not None:
with tf.name_scope(self.distillation_classifier.name):
self.distillation_classifier.build([None, None, self.config.hidden_size])
__all__ = [
"TFDeiTForImageClassification",
"TFDeiTForImageClassificationWithTeacher",
"TFDeiTForMaskedImageModeling",
"TFDeiTModel",
"TFDeiTPreTrainedModel",
]
|
transformers/src/transformers/models/deit/modeling_tf_deit.py/0
|
{
"file_path": "transformers/src/transformers/models/deit/modeling_tf_deit.py",
"repo_id": "transformers",
"token_count": 22225
}
| 108 |
# Copyright 2023 The HuggingFace and Baidu Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available
_import_structure = {
"configuration_ernie_m": ["ErnieMConfig"],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["tokenization_ernie_m"] = ["ErnieMTokenizer"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_ernie_m"] = [
"ErnieMForMultipleChoice",
"ErnieMForQuestionAnswering",
"ErnieMForSequenceClassification",
"ErnieMForTokenClassification",
"ErnieMModel",
"ErnieMPreTrainedModel",
"ErnieMForInformationExtraction",
]
if TYPE_CHECKING:
from .configuration_ernie_m import ErnieMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_ernie_m import ErnieMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_ernie_m import (
ErnieMForInformationExtraction,
ErnieMForMultipleChoice,
ErnieMForQuestionAnswering,
ErnieMForSequenceClassification,
ErnieMForTokenClassification,
ErnieMModel,
ErnieMPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
transformers/src/transformers/models/deprecated/ernie_m/__init__.py/0
|
{
"file_path": "transformers/src/transformers/models/deprecated/ernie_m/__init__.py",
"repo_id": "transformers",
"token_count": 920
}
| 109 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert Jukebox checkpoints"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger(__name__)
PREFIX = "https://openaipublic.azureedge.net/jukebox/models/"
MODEL_MAPPING = {
"jukebox-1b-lyrics": [
"5b/vqvae.pth.tar",
"5b/prior_level_0.pth.tar",
"5b/prior_level_1.pth.tar",
"1b_lyrics/prior_level_2.pth.tar",
],
"jukebox-5b-lyrics": [
"5b/vqvae.pth.tar",
"5b/prior_level_0.pth.tar",
"5b/prior_level_1.pth.tar",
"5b_lyrics/prior_level_2.pth.tar",
],
}
def replace_key(key):
if key.endswith(".model.1.bias") and len(key.split(".")) > 10:
key = key.replace(".model.1.bias", ".conv1d_1.bias")
elif key.endswith(".model.1.weight") and len(key.split(".")) > 10:
key = key.replace(".model.1.weight", ".conv1d_1.weight")
elif key.endswith(".model.3.bias") and len(key.split(".")) > 10:
key = key.replace(".model.3.bias", ".conv1d_2.bias")
elif key.endswith(".model.3.weight") and len(key.split(".")) > 10:
key = key.replace(".model.3.weight", ".conv1d_2.weight")
if "conditioner_blocks.0." in key:
key = key.replace("conditioner_blocks.0", "conditioner_blocks")
if "prime_prior" in key:
key = key.replace("prime_prior", "encoder")
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
key = key.replace(".emb.", ".")
if key.endswith("k"): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(".k", ".codebook")
if "y_emb." in key:
return key.replace("y_emb.", "metadata_embedding.")
if "x_emb.emb." in key:
key = key.replace("0.x_emb.emb", "embed_tokens")
if "prime_state_ln" in key:
return key.replace("prime_state_ln", "encoder.final_layer_norm")
if ".ln" in key:
return key.replace(".ln", ".layer_norm")
if "_ln" in key:
return key.replace("_ln", "_layer_norm")
if "prime_state_proj" in key:
return key.replace("prime_state_proj", "encoder.proj_in")
if "prime_x_out" in key:
return key.replace("prime_x_out", "encoder.lm_head")
if "prior.x_out" in key:
return key.replace("x_out", "fc_proj_out")
if "x_emb" in key:
return key.replace("x_emb", "embed_tokens")
return key
def fix_jukebox_keys(state_dict, model_state_dict, key_prefix, mapping):
new_dict = {}
import re
re_encoder_block_conv_in = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)")
re_encoder_block_resnet = re.compile(
r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)"
)
re_encoder_block_proj_out = re.compile(r"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)")
re_decoder_block_conv_out = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)")
re_decoder_block_resnet = re.compile(
r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)"
)
re_decoder_block_proj_in = re.compile(r"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)")
re_prior_cond_conv_out = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)")
re_prior_cond_resnet = re.compile(
r"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)"
)
re_prior_cond_proj_in = re.compile(r"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)")
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(original_key):
regex_match = re_encoder_block_conv_in.match(original_key)
groups = regex_match.groups()
block_index = int(groups[2]) * 2 + int(groups[3])
re_new_key = f"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}"
key = re_encoder_block_conv_in.sub(re_new_key, original_key)
elif re_encoder_block_resnet.fullmatch(original_key):
regex_match = re_encoder_block_resnet.match(original_key)
groups = regex_match.groups()
block_index = int(groups[2]) * 2 + int(groups[3])
conv_index = {"1": 1, "3": 2}[groups[-2]]
prefix = f"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}."
resnet_block = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"
re_new_key = prefix + resnet_block
key = re_encoder_block_resnet.sub(re_new_key, original_key)
elif re_encoder_block_proj_out.fullmatch(original_key):
regex_match = re_encoder_block_proj_out.match(original_key)
groups = regex_match.groups()
re_new_key = f"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}"
key = re_encoder_block_proj_out.sub(re_new_key, original_key)
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(original_key):
regex_match = re_decoder_block_conv_out.match(original_key)
groups = regex_match.groups()
block_index = int(groups[2]) * 2 + int(groups[3]) - 2
re_new_key = f"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}"
key = re_decoder_block_conv_out.sub(re_new_key, original_key)
elif re_decoder_block_resnet.fullmatch(original_key):
regex_match = re_decoder_block_resnet.match(original_key)
groups = regex_match.groups()
block_index = int(groups[2]) * 2 + int(groups[3]) - 2
conv_index = {"1": 1, "3": 2}[groups[-2]]
prefix = f"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}."
resnet_block = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"
re_new_key = prefix + resnet_block
key = re_decoder_block_resnet.sub(re_new_key, original_key)
elif re_decoder_block_proj_in.fullmatch(original_key):
regex_match = re_decoder_block_proj_in.match(original_key)
groups = regex_match.groups()
re_new_key = f"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}"
key = re_decoder_block_proj_in.sub(re_new_key, original_key)
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(original_key):
regex_match = re_prior_cond_conv_out.match(original_key)
groups = regex_match.groups()
block_index = int(groups[1]) * 2 + int(groups[2]) - 2
re_new_key = f"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}"
key = re_prior_cond_conv_out.sub(re_new_key, original_key)
elif re_prior_cond_resnet.fullmatch(original_key):
regex_match = re_prior_cond_resnet.match(original_key)
groups = regex_match.groups()
block_index = int(groups[1]) * 2 + int(groups[2]) - 2
conv_index = {"1": 1, "3": 2}[groups[-2]]
prefix = f"conditioner_blocks.upsampler.upsample_block.{block_index}."
resnet_block = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}"
re_new_key = prefix + resnet_block
key = re_prior_cond_resnet.sub(re_new_key, original_key)
elif re_prior_cond_proj_in.fullmatch(original_key):
regex_match = re_prior_cond_proj_in.match(original_key)
groups = regex_match.groups()
re_new_key = f"conditioner_blocks.upsampler.proj_in.{groups[-1]}"
key = re_prior_cond_proj_in.sub(re_new_key, original_key)
# keep original key
else:
key = original_key
key = replace_key(key)
if f"{key_prefix}.{key}" not in model_state_dict or key is None:
print(f"failed converting {original_key} to {key}, does not match")
# handle missmatched shape
elif value.shape != model_state_dict[f"{key_prefix}.{key}"].shape:
val = model_state_dict[f"{key_prefix}.{key}"]
print(f"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match")
key = original_key
mapping[key] = original_key
new_dict[key] = value
return new_dict
@torch.no_grad()
def convert_openai_checkpoint(model_name=None, pytorch_dump_folder_path=None):
"""
Copy/paste/tweak model's weights to our Jukebox structure.
"""
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f"{pytorch_dump_folder_path}/{file.split('/')[-1]}"):
r = requests.get(f"{PREFIX}{file}", allow_redirects=True)
os.makedirs(f"{pytorch_dump_folder_path}/", exist_ok=True)
open(f"{pytorch_dump_folder_path}/{file.split('/')[-1]}", "wb").write(r.content)
model_to_convert = MODEL_MAPPING[model_name.split("/")[-1]]
config = JukeboxConfig.from_pretrained(model_name)
model = JukeboxModel(config)
weight_dict = []
mapping = {}
for i, dict_name in enumerate(model_to_convert):
old_dic = torch.load(f"{pytorch_dump_folder_path}/{dict_name.split('/')[-1]}")["model"]
new_dic = {}
for k in old_dic.keys():
if k.endswith(".b"):
new_dic[k.replace("b", "bias")] = old_dic[k]
elif k.endswith(".w"):
new_dic[k.replace("w", "weight")] = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
new_dic[k.replace(".blocks.", ".model.")] = old_dic[k]
else:
new_dic[k] = old_dic[k]
key_prefix = "vqvae" if i == 0 else f"priors.{3 - i}"
new_dic = fix_jukebox_keys(new_dic, model.state_dict(), key_prefix, mapping)
weight_dict.append(new_dic)
vqvae_state_dict = weight_dict.pop(0)
model.vqvae.load_state_dict(vqvae_state_dict)
for i in range(len(weight_dict)):
model.priors[i].load_state_dict(weight_dict[2 - i])
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
with open(f"{pytorch_dump_folder_path}/mapping.json", "w") as txtfile:
json.dump(mapping, txtfile)
print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
return weight_dict
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="jukebox-5b-lyrics",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="jukebox-5b-lyrics-converted",
type=str,
help="Path to the output PyTorch model directory.",
)
args = parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
|
transformers/src/transformers/models/deprecated/jukebox/convert_jukebox.py/0
|
{
"file_path": "transformers/src/transformers/models/deprecated/jukebox/convert_jukebox.py",
"repo_id": "transformers",
"token_count": 5498
}
| 110 |
# coding=utf-8
# Copyright 2022 The Trajectory Transformers paper authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch TrajectoryTransformer model."""
import math
import os
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import functional as F
from ....modeling_utils import PreTrainedModel
from ....utils import (
ModelOutput,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_trajectory_transformer import TrajectoryTransformerConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "CarlCochet/trajectory-transformer-halfcheetah-medium-v2"
_CONFIG_FOR_DOC = "TrajectoryTransformerConfig"
def load_tf_weights_in_trajectory_transformer(model, config, tf_checkpoint_path):
"""Load tf checkpoints in a pytorch model."""
try:
import re
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions."
)
raise
tf_path = os.path.abspath(tf_checkpoint_path)
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
# Load weights from TF model
init_vars = tf.train.list_variables(tf_path)
names = []
arrays = []
for name, shape in init_vars:
logger.info(f"Loading TF weight {name} with shape {shape}")
array = tf.train.load_variable(tf_path, name)
names.append(name)
arrays.append(array)
for name, array in zip(names, arrays):
name = name.split("/")
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
# which are not required for using pretrained model
if any(
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
for n in name
):
logger.info(f"Skipping {'/'.join(name)}")
continue
pointer = model
for m_name in name:
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
scope_names = re.split(r"_(\d+)", m_name)
else:
scope_names = [m_name]
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
pointer = getattr(pointer, "bias")
elif scope_names[0] == "output_weights":
pointer = getattr(pointer, "weight")
elif scope_names[0] == "squad":
pointer = getattr(pointer, "classifier")
else:
try:
pointer = getattr(pointer, scope_names[0])
except AttributeError:
logger.info(f"Skipping {'/'.join(name)}")
continue
if len(scope_names) >= 2:
num = int(scope_names[1])
pointer = pointer[num]
if m_name[-11:] == "_embeddings":
pointer = getattr(pointer, "weight")
elif m_name == "kernel":
array = np.transpose(array)
try:
if pointer.shape != array.shape:
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
except AssertionError as e:
e.args += (pointer.shape, array.shape)
raise
logger.info(f"Initialize PyTorch weight {name}")
pointer.data = torch.from_numpy(array)
return model
@dataclass
class TrajectoryTransformerOutput(ModelOutput):
"""
Base class for model's outputs that also contains a pooling of the last hidden states.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss.
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (`Tuple[Tuple[torch.Tensor]]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
Tuple of length `config.n_layers`, containing tuples of tensors of shape `(batch_size, num_heads,
sequence_length, embed_size_per_head)`). Contains pre-computed hidden-states (key and values in the
attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer
plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`. GPT2Attentions weights after the attention softmax, used to compute the weighted average
in the self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class TrajectoryTransformerPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = TrajectoryTransformerConfig
load_tf_weights = load_tf_weights_in_trajectory_transformer
base_model_prefix = "trajectory_transformer"
main_input_name = "trajectories"
supports_gradient_checkpointing = True
def _init_weights(self, module):
if isinstance(module, (nn.Linear, nn.Embedding)):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, EinLinear):
for i in range(module.n_models):
nn.init.kaiming_uniform_(module.weight[i], a=math.sqrt(5) / self.config.kaiming_initializer_range)
if module.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(module.weight[i])
bound = (1 / math.sqrt(fan_in)) * self.config.initializer_range
nn.init.uniform_(module.bias[i], -bound, bound)
TRAJECTORY_TRANSFORMER_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`TrajectoryTransformerConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
TRAJECTORY_TRANSFORMER_INPUTS_DOCSTRING = r"""
Args:
trajectories (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
Batch of trajectories, where a trajectory is a sequence of states, actions and rewards.
past_key_values (`Tuple[Tuple[torch.Tensor]]` of length `config.n_layers`, *optional*):
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
their past given to this model should not be passed as `input_ids` as they have already been computed.
targets (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Desired targets used to compute the loss.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
class EinLinear(nn.Module):
def __init__(self, n_models, in_features, out_features, bias):
super().__init__()
self.n_models = n_models
self.out_features = out_features
self.in_features = in_features
self.weight = nn.Parameter(torch.Tensor(n_models, out_features, in_features))
if bias:
self.bias = nn.Parameter(torch.Tensor(n_models, out_features))
else:
self.register_parameter("bias", None)
def reset_parameters(self):
for i in range(self.n_models):
nn.init.kaiming_uniform_(self.weight[i], a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.weight[i])
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(self.bias[i], -bound, bound)
def forward(self, input):
"""
Args:
input (`torch.FloatTensor` of shape `(B, n_models, input_dim)`):
The input to the layer.
"""
# [ batch_size x n_models x output_dim ]
output = torch.einsum("eoi,bei->beo", self.weight, input)
if self.bias is not None:
raise RuntimeError()
return output
class CausalSelfAttention(nn.Module):
def __init__(self, config):
super().__init__()
if config.n_embd % config.n_head != 0:
raise ValueError(f"n_head ({config.n_head}) should be a divisor of n_embd ({config.n_embd})")
# key, query, value projections for all heads
self.key = nn.Linear(config.n_embd, config.n_embd)
self.query = nn.Linear(config.n_embd, config.n_embd)
self.value = nn.Linear(config.n_embd, config.n_embd)
# regularization
self.attn_drop = nn.Dropout(config.attn_pdrop)
self.resid_drop = nn.Dropout(config.resid_pdrop)
# output projection
self.proj = nn.Linear(config.n_embd, config.n_embd)
# causal mask to ensure that attention is only applied to the left in the input sequence
self.register_buffer(
"mask",
torch.tril(torch.ones(config.block_size, config.block_size)).view(
1, 1, config.block_size, config.block_size
),
persistent=False,
)
# mask previous value estimates
joined_dim = config.observation_dim + config.action_dim + 2
self.mask.squeeze()[:, joined_dim - 1 :: joined_dim] = 0
self.n_head = config.n_head
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
layer_past: Optional[Tuple[torch.Tensor]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
):
batch_size, sequence_length, embedding_dim = hidden_states.size()
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
# [ batch_size x n_heads x sequence_length x head_dim ]
key = (
self.key(hidden_states)
.view(batch_size, sequence_length, self.n_head, embedding_dim // self.n_head)
.transpose(1, 2)
)
query = (
self.query(hidden_states)
.view(batch_size, sequence_length, self.n_head, embedding_dim // self.n_head)
.transpose(1, 2)
)
value = (
self.value(hidden_states)
.view(batch_size, sequence_length, self.n_head, embedding_dim // self.n_head)
.transpose(1, 2)
)
if layer_past is not None:
past_key, past_value = layer_past
key = torch.cat((past_key, key), dim=-2)
value = torch.cat((past_value, value), dim=-2)
if use_cache is True:
present = (key, value)
else:
present = None
# causal self-attention
# [ batch_size x n_heads x sequence_length x sequence_length ]
attn_weights = (torch.matmul(query, key.transpose(-2, -1))) * (1.0 / math.sqrt(key.size(-1)))
attn_weights = attn_weights.masked_fill(
self.mask[:, :, :sequence_length, :sequence_length] == 0, torch.finfo(attn_weights.dtype).min
)
attn_weights = F.softmax(attn_weights, dim=-1)
self._attn_map = attn_weights.clone()
attn_weights = self.attn_drop(attn_weights)
output = torch.matmul(attn_weights, value)
# [ batch_size x sequence_length x embedding_dim ]
# re-assemble all head outputs side by side
output = output.transpose(1, 2).contiguous().view(batch_size, sequence_length, embedding_dim)
# output projection
output = self.resid_drop(self.proj(output))
outputs = (output, present)
if output_attentions:
outputs += (attn_weights,)
return outputs
class Block(nn.Module):
def __init__(self, config):
super().__init__()
self.ln1 = nn.LayerNorm(config.n_embd)
self.ln2 = nn.LayerNorm(config.n_embd)
self.attn = CausalSelfAttention(config)
# MLP
self.l1 = nn.Linear(config.n_embd, 4 * config.n_embd)
self.act = nn.GELU()
self.l2 = nn.Linear(4 * config.n_embd, config.n_embd)
self.drop = nn.Dropout(config.resid_pdrop)
def forward(
self,
hidden_states: Optional[Tuple[torch.FloatTensor]],
layer_past: Optional[Tuple[torch.Tensor]] = None,
use_cache: Optional[bool] = False,
output_attentions: Optional[bool] = False,
):
residual = hidden_states
hidden_states = self.ln1(hidden_states)
attn_outputs = self.attn(
hidden_states, layer_past=layer_past, use_cache=use_cache, output_attentions=output_attentions
)
attn_output = attn_outputs[0]
outputs = attn_outputs[1:]
hidden_states = attn_output + residual
residual = hidden_states
hidden_states = self.ln2(hidden_states)
hidden_states = self.l1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.l2(hidden_states)
hidden_states = residual + self.drop(hidden_states)
if use_cache:
outputs = (hidden_states,) + outputs
else:
outputs = (hidden_states,) + outputs[1:]
return outputs
@add_start_docstrings(
"The bare TrajectoryTransformer Model transformer outputting raw hidden-states without any specific head on top.",
TRAJECTORY_TRANSFORMER_START_DOCSTRING,
)
class TrajectoryTransformerModel(TrajectoryTransformerPreTrainedModel):
"""the full GPT language model, with a context size of block_size"""
def __init__(self, config):
super().__init__(config)
# input embedding stem (+1 for stop token)
self.tok_emb = nn.Embedding(config.vocab_size * config.transition_dim + 1, config.n_embd)
self.pos_emb = nn.Parameter(torch.zeros(1, config.block_size, config.n_embd))
self.drop = nn.Dropout(config.embd_pdrop)
# transformer
self.blocks = nn.ModuleList([Block(config) for _ in range(config.n_layer)])
# decoder head
self.ln_f = nn.LayerNorm(config.n_embd)
self.head = EinLinear(config.transition_dim, config.n_embd, config.vocab_size + 1, bias=False)
self.vocab_size = config.vocab_size
self.stop_token = config.vocab_size * config.transition_dim
self.block_size = config.block_size
self.observation_dim = config.observation_dim
self.action_dim = config.action_dim
self.transition_dim = config.transition_dim
self.embedding_dim = config.n_embd
self.action_weight = config.action_weight
self.reward_weight = config.reward_weight
self.value_weight = config.value_weight
self.gradient_checkpointing = False
self.post_init()
def get_block_size(self):
return self.block_size
def offset_tokens(self, trajectories):
_, sequence_length = trajectories.shape
n_states = int(np.ceil(sequence_length / self.transition_dim))
offsets = torch.arange(self.transition_dim) * self.vocab_size
offsets = offsets.repeat(n_states).to(trajectories.device)
offset_trajectories = trajectories + offsets[:sequence_length]
offset_trajectories[trajectories == self.vocab_size] = self.stop_token
return offset_trajectories
def pad_to_full_observation(self, hidden_states):
batch_size, sequence_length, _ = hidden_states.shape
n_pad = (self.transition_dim - sequence_length % self.transition_dim) % self.transition_dim
padding = torch.zeros(batch_size, n_pad, self.embedding_dim, device=hidden_states.device)
# [ batch_size x padded_sequence_length' x embedding_dim ]
hidden_states_pad = torch.cat([hidden_states, padding], dim=1)
hidden_states_pad = hidden_states_pad.view(-1, self.transition_dim, self.embedding_dim)
return hidden_states_pad, n_pad
@add_start_docstrings_to_model_forward(
TRAJECTORY_TRANSFORMER_INPUTS_DOCSTRING.format("batch_size, sequence_length")
)
@replace_return_docstrings(output_type=TrajectoryTransformerOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
trajectories: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
targets: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TrajectoryTransformerOutput]:
r"""
Returns:
Examples:
```python
>>> from transformers import TrajectoryTransformerModel
>>> import torch
>>> model = TrajectoryTransformerModel.from_pretrained(
... "CarlCochet/trajectory-transformer-halfcheetah-medium-v2"
... )
>>> model.to(device)
>>> model.eval()
>>> observations_dim, action_dim, batch_size = 17, 6, 256
>>> seq_length = observations_dim + action_dim + 1
>>> trajectories = torch.LongTensor([np.random.permutation(self.seq_length) for _ in range(batch_size)]).to(
... device
... )
>>> targets = torch.LongTensor([np.random.permutation(self.seq_length) for _ in range(batch_size)]).to(device)
>>> outputs = model(
... trajectories,
... targets=targets,
... use_cache=True,
... output_attentions=True,
... output_hidden_states=True,
... return_dict=True,
... )
```
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if past_key_values is None:
past_key_values = tuple([None] * len(self.blocks))
batch_size, sequence_length = trajectories.size()
if sequence_length > self.block_size:
raise ValueError("Cannot forward, model block size is exhausted.")
offset_trajectories = self.offset_tokens(trajectories)
# [ batch_size x sequence_length x embedding_dim ]
# forward the GPT model
token_embeddings = self.tok_emb(offset_trajectories) # each index maps to a (learnable) vector
position_embeddings = self.pos_emb[:, :sequence_length, :] # each position maps to a (learnable) vector
hidden_states = self.drop(token_embeddings + position_embeddings)
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
presents = () if use_cache else None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, (block, layer_past) in enumerate(zip(self.blocks, past_key_values)):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
outputs = self._gradient_checkpointing_func(
block.__call__,
hidden_states,
layer_past,
use_cache,
output_attentions,
)
else:
outputs = block(hidden_states, layer_past, use_cache, output_attentions)
hidden_states = outputs[0]
if use_cache is True:
presents = presents + (outputs[1],)
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
# [ batch_size x sequence_length x embedding_dim ]
hidden_state = self.ln_f(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
hidden_states_pad, n_pad = self.pad_to_full_observation(hidden_state)
logits = self.head(hidden_states_pad)
logits = logits.reshape(batch_size, sequence_length + n_pad, self.vocab_size + 1)
logits = logits[:, :sequence_length]
# if we are given some desired targets also calculate the loss
if targets is not None:
loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), targets.view(-1), reduction="none")
if self.action_weight != 1 or self.reward_weight != 1 or self.value_weight != 1:
# make weights
n_states = int(np.ceil(sequence_length / self.transition_dim))
weights = torch.cat(
[
torch.ones(self.observation_dim, device=trajectories.device),
torch.ones(self.action_dim, device=trajectories.device) * self.action_weight,
torch.ones(1, device=trajectories.device) * self.reward_weight,
torch.ones(1, device=trajectories.device) * self.value_weight,
]
)
weights = weights.repeat(n_states)
weights = weights[1:].repeat(batch_size, 1)
loss = loss * weights.view(-1)
loss = (loss * attention_mask.view(-1)).mean()
else:
loss = None
if not return_dict:
return tuple(v for v in [loss, logits, presents, all_hidden_states, all_self_attentions] if v is not None)
return TrajectoryTransformerOutput(
loss=loss,
logits=logits,
past_key_values=presents,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
|
transformers/src/transformers/models/deprecated/trajectory_transformer/modeling_trajectory_transformer.py/0
|
{
"file_path": "transformers/src/transformers/models/deprecated/trajectory_transformer/modeling_trajectory_transformer.py",
"repo_id": "transformers",
"token_count": 11006
}
| 111 |
# coding=utf-8
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""VAN model configuration"""
from ....configuration_utils import PretrainedConfig
from ....utils import logging
logger = logging.get_logger(__name__)
class VanConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`VanModel`]. It is used to instantiate a VAN model
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the VAN
[Visual-Attention-Network/van-base](https://huggingface.co/Visual-Attention-Network/van-base) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
num_channels (`int`, *optional*, defaults to 3):
The number of input channels.
patch_sizes (`List[int]`, *optional*, defaults to `[7, 3, 3, 3]`):
Patch size to use in each stage's embedding layer.
strides (`List[int]`, *optional*, defaults to `[4, 2, 2, 2]`):
Stride size to use in each stage's embedding layer to downsample the input.
hidden_sizes (`List[int]`, *optional*, defaults to `[64, 128, 320, 512]`):
Dimensionality (hidden size) at each stage.
depths (`List[int]`, *optional*, defaults to `[3, 3, 12, 3]`):
Depth (number of layers) for each stage.
mlp_ratios (`List[int]`, *optional*, defaults to `[8, 8, 4, 4]`):
The expansion ratio for mlp layer at each stage.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in each layer. If string, `"gelu"`, `"relu"`,
`"selu"` and `"gelu_new"` are supported.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
layer_scale_init_value (`float`, *optional*, defaults to 0.01):
The initial value for layer scaling.
drop_path_rate (`float`, *optional*, defaults to 0.0):
The dropout probability for stochastic depth.
dropout_rate (`float`, *optional*, defaults to 0.0):
The dropout probability for dropout.
Example:
```python
>>> from transformers import VanModel, VanConfig
>>> # Initializing a VAN van-base style configuration
>>> configuration = VanConfig()
>>> # Initializing a model from the van-base style configuration
>>> model = VanModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "van"
def __init__(
self,
image_size=224,
num_channels=3,
patch_sizes=[7, 3, 3, 3],
strides=[4, 2, 2, 2],
hidden_sizes=[64, 128, 320, 512],
depths=[3, 3, 12, 3],
mlp_ratios=[8, 8, 4, 4],
hidden_act="gelu",
initializer_range=0.02,
layer_norm_eps=1e-6,
layer_scale_init_value=1e-2,
drop_path_rate=0.0,
dropout_rate=0.0,
**kwargs,
):
super().__init__(**kwargs)
self.image_size = image_size
self.num_channels = num_channels
self.patch_sizes = patch_sizes
self.strides = strides
self.hidden_sizes = hidden_sizes
self.depths = depths
self.mlp_ratios = mlp_ratios
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.layer_scale_init_value = layer_scale_init_value
self.drop_path_rate = drop_path_rate
self.dropout_rate = dropout_rate
|
transformers/src/transformers/models/deprecated/van/configuration_van.py/0
|
{
"file_path": "transformers/src/transformers/models/deprecated/van/configuration_van.py",
"repo_id": "transformers",
"token_count": 1771
}
| 112 |
# coding=utf-8
# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Dilated Neighborhood Attention Transformer model."""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
ModelOutput,
OptionalDependencyNotAvailable,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_natten_available,
logging,
replace_return_docstrings,
requires_backends,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_dinat import DinatConfig
if is_natten_available():
from natten.functional import natten2dav, natten2dqkrpb
else:
def natten2dqkrpb(*args, **kwargs):
raise OptionalDependencyNotAvailable()
def natten2dav(*args, **kwargs):
raise OptionalDependencyNotAvailable()
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "DinatConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "shi-labs/dinat-mini-in1k-224"
_EXPECTED_OUTPUT_SHAPE = [1, 7, 7, 512]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "shi-labs/dinat-mini-in1k-224"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
# drop_path and DinatDropPath are from the timm library.
@dataclass
class DinatEncoderOutput(ModelOutput):
"""
Dinat encoder's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class DinatModelOutput(ModelOutput):
"""
Dinat model's outputs that also contains a pooling of the last hidden states.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
Average pooling of the last layer hidden-state.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
last_hidden_state: torch.FloatTensor = None
pooler_output: Optional[torch.FloatTensor] = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
@dataclass
class DinatImageClassifierOutput(ModelOutput):
"""
Dinat outputs for image classification.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Classification (or regression if config.num_labels==1) loss.
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
Classification (or regression if config.num_labels==1) scores (before SoftMax).
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
shape `(batch_size, hidden_size, height, width)`.
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
include the spatial dimensions.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
class DinatEmbeddings(nn.Module):
"""
Construct the patch and position embeddings.
"""
def __init__(self, config):
super().__init__()
self.patch_embeddings = DinatPatchEmbeddings(config)
self.norm = nn.LayerNorm(config.embed_dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor]:
embeddings = self.patch_embeddings(pixel_values)
embeddings = self.norm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class DinatPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, height, width, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
patch_size = config.patch_size
num_channels, hidden_size = config.num_channels, config.embed_dim
self.num_channels = num_channels
if patch_size == 4:
pass
else:
# TODO: Support arbitrary patch sizes.
raise ValueError("Dinat only supports patch size of 4 at the moment.")
self.projection = nn.Sequential(
nn.Conv2d(self.num_channels, hidden_size // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
nn.Conv2d(hidden_size // 2, hidden_size, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
)
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> torch.Tensor:
_, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.projection(pixel_values)
embeddings = embeddings.permute(0, 2, 3, 1)
return embeddings
class DinatDownsampler(nn.Module):
"""
Convolutional Downsampling Layer.
Args:
dim (`int`):
Number of input channels.
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
Normalization layer class.
"""
def __init__(self, dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None:
super().__init__()
self.dim = dim
self.reduction = nn.Conv2d(dim, 2 * dim, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
self.norm = norm_layer(2 * dim)
def forward(self, input_feature: torch.Tensor) -> torch.Tensor:
input_feature = self.reduction(input_feature.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
input_feature = self.norm(input_feature)
return input_feature
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Dinat
class DinatDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
class NeighborhoodAttention(nn.Module):
def __init__(self, config, dim, num_heads, kernel_size, dilation):
super().__init__()
if dim % num_heads != 0:
raise ValueError(
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
)
self.num_attention_heads = num_heads
self.attention_head_size = int(dim / num_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.kernel_size = kernel_size
self.dilation = dilation
# rpb is learnable relative positional biases; same concept is used Swin.
self.rpb = nn.Parameter(torch.zeros(num_heads, (2 * self.kernel_size - 1), (2 * self.kernel_size - 1)))
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 3, 1, 2, 4)
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
query_layer = self.transpose_for_scores(self.query(hidden_states))
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
# Apply the scale factor before computing attention weights. It's usually more efficient because
# attention weights are typically a bigger tensor compared to query.
# It gives identical results because scalars are commutable in matrix multiplication.
query_layer = query_layer / math.sqrt(self.attention_head_size)
# Compute NA between "query" and "key" to get the raw attention scores, and add relative positional biases.
attention_scores = natten2dqkrpb(query_layer, key_layer, self.rpb, self.kernel_size, self.dilation)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = natten2dav(attention_probs, value_layer, self.kernel_size, self.dilation)
context_layer = context_layer.permute(0, 2, 3, 1, 4).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
class NeighborhoodAttentionOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, dim)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class NeighborhoodAttentionModule(nn.Module):
def __init__(self, config, dim, num_heads, kernel_size, dilation):
super().__init__()
self.self = NeighborhoodAttention(config, dim, num_heads, kernel_size, dilation)
self.output = NeighborhoodAttentionOutput(config, dim)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
self_outputs = self.self(hidden_states, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class DinatIntermediate(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim))
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.intermediate_act_fn(hidden_states)
return hidden_states
class DinatOutput(nn.Module):
def __init__(self, config, dim):
super().__init__()
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
class DinatLayer(nn.Module):
def __init__(self, config, dim, num_heads, dilation, drop_path_rate=0.0):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.kernel_size = config.kernel_size
self.dilation = dilation
self.window_size = self.kernel_size * self.dilation
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.attention = NeighborhoodAttentionModule(
config, dim, num_heads, kernel_size=self.kernel_size, dilation=self.dilation
)
self.drop_path = DinatDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
self.intermediate = DinatIntermediate(config, dim)
self.output = DinatOutput(config, dim)
self.layer_scale_parameters = (
nn.Parameter(config.layer_scale_init_value * torch.ones((2, dim)), requires_grad=True)
if config.layer_scale_init_value > 0
else None
)
def maybe_pad(self, hidden_states, height, width):
window_size = self.window_size
pad_values = (0, 0, 0, 0, 0, 0)
if height < window_size or width < window_size:
pad_l = pad_t = 0
pad_r = max(0, window_size - width)
pad_b = max(0, window_size - height)
pad_values = (0, 0, pad_l, pad_r, pad_t, pad_b)
hidden_states = nn.functional.pad(hidden_states, pad_values)
return hidden_states, pad_values
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size, height, width, channels = hidden_states.size()
shortcut = hidden_states
hidden_states = self.layernorm_before(hidden_states)
# pad hidden_states if they are smaller than kernel size x dilation
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)
_, height_pad, width_pad, _ = hidden_states.shape
attention_outputs = self.attention(hidden_states, output_attentions=output_attentions)
attention_output = attention_outputs[0]
was_padded = pad_values[3] > 0 or pad_values[5] > 0
if was_padded:
attention_output = attention_output[:, :height, :width, :].contiguous()
if self.layer_scale_parameters is not None:
attention_output = self.layer_scale_parameters[0] * attention_output
hidden_states = shortcut + self.drop_path(attention_output)
layer_output = self.layernorm_after(hidden_states)
layer_output = self.output(self.intermediate(layer_output))
if self.layer_scale_parameters is not None:
layer_output = self.layer_scale_parameters[1] * layer_output
layer_output = hidden_states + self.drop_path(layer_output)
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,)
return layer_outputs
class DinatStage(nn.Module):
def __init__(self, config, dim, depth, num_heads, dilations, drop_path_rate, downsample):
super().__init__()
self.config = config
self.dim = dim
self.layers = nn.ModuleList(
[
DinatLayer(
config=config,
dim=dim,
num_heads=num_heads,
dilation=dilations[i],
drop_path_rate=drop_path_rate[i],
)
for i in range(depth)
]
)
# patch merging layer
if downsample is not None:
self.downsample = downsample(dim=dim, norm_layer=nn.LayerNorm)
else:
self.downsample = None
self.pointing = False
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
_, height, width, _ = hidden_states.size()
for i, layer_module in enumerate(self.layers):
layer_outputs = layer_module(hidden_states, output_attentions)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = hidden_states
if self.downsample is not None:
hidden_states = self.downsample(hidden_states_before_downsampling)
stage_outputs = (hidden_states, hidden_states_before_downsampling)
if output_attentions:
stage_outputs += layer_outputs[1:]
return stage_outputs
class DinatEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.num_levels = len(config.depths)
self.config = config
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
self.levels = nn.ModuleList(
[
DinatStage(
config=config,
dim=int(config.embed_dim * 2**i_layer),
depth=config.depths[i_layer],
num_heads=config.num_heads[i_layer],
dilations=config.dilations[i_layer],
drop_path_rate=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
downsample=DinatDownsampler if (i_layer < self.num_levels - 1) else None,
)
for i_layer in range(self.num_levels)
]
)
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: Optional[bool] = False,
output_hidden_states: Optional[bool] = False,
output_hidden_states_before_downsampling: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> Union[Tuple, DinatEncoderOutput]:
all_hidden_states = () if output_hidden_states else None
all_reshaped_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
if output_hidden_states:
# rearrange b h w c -> b c h w
reshaped_hidden_state = hidden_states.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
for i, layer_module in enumerate(self.levels):
layer_outputs = layer_module(hidden_states, output_attentions)
hidden_states = layer_outputs[0]
hidden_states_before_downsampling = layer_outputs[1]
if output_hidden_states and output_hidden_states_before_downsampling:
# rearrange b h w c -> b c h w
reshaped_hidden_state = hidden_states_before_downsampling.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states_before_downsampling,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
elif output_hidden_states and not output_hidden_states_before_downsampling:
# rearrange b h w c -> b c h w
reshaped_hidden_state = hidden_states.permute(0, 3, 1, 2)
all_hidden_states += (hidden_states,)
all_reshaped_hidden_states += (reshaped_hidden_state,)
if output_attentions:
all_self_attentions += layer_outputs[2:]
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return DinatEncoderOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
reshaped_hidden_states=all_reshaped_hidden_states,
)
class DinatPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = DinatConfig
base_model_prefix = "dinat"
main_input_name = "pixel_values"
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
DINAT_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`DinatConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
DINAT_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare Dinat Model transformer outputting raw hidden-states without any specific head on top.",
DINAT_START_DOCSTRING,
)
class DinatModel(DinatPreTrainedModel):
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
requires_backends(self, ["natten"])
self.config = config
self.num_levels = len(config.depths)
self.num_features = int(config.embed_dim * 2 ** (self.num_levels - 1))
self.embeddings = DinatEmbeddings(config)
self.encoder = DinatEncoder(config)
self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps)
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(DINAT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=DinatModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, DinatModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
pooled_output = None
if self.pooler is not None:
pooled_output = self.pooler(sequence_output.flatten(1, 2).transpose(1, 2))
pooled_output = torch.flatten(pooled_output, 1)
if not return_dict:
output = (sequence_output, pooled_output) + encoder_outputs[1:]
return output
return DinatModelOutput(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
)
@add_start_docstrings(
"""
Dinat Model transformer with an image classification head on top (a linear layer on top of the final hidden state
of the [CLS] token) e.g. for ImageNet.
""",
DINAT_START_DOCSTRING,
)
class DinatForImageClassification(DinatPreTrainedModel):
def __init__(self, config):
super().__init__(config)
requires_backends(self, ["natten"])
self.num_labels = config.num_labels
self.dinat = DinatModel(config)
# Classifier head
self.classifier = (
nn.Linear(self.dinat.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity()
)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(DINAT_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=DinatImageClassifierOutput,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, DinatImageClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.dinat(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
pooled_output = outputs[1]
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return DinatImageClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
reshaped_hidden_states=outputs.reshaped_hidden_states,
)
@add_start_docstrings(
"NAT backbone, to be used with frameworks like DETR and MaskFormer.",
DINAT_START_DOCSTRING,
)
class DinatBackbone(DinatPreTrainedModel, BackboneMixin):
def __init__(self, config):
super().__init__(config)
super()._init_backbone(config)
requires_backends(self, ["natten"])
self.embeddings = DinatEmbeddings(config)
self.encoder = DinatEncoder(config)
self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))]
# Add layer norms to hidden states of out_features
hidden_states_norms = {}
for stage, num_channels in zip(self._out_features, self.channels):
hidden_states_norms[stage] = nn.LayerNorm(num_channels)
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
@add_start_docstrings_to_model_forward(DINAT_INPUTS_DOCSTRING)
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.Tensor,
output_hidden_states: Optional[bool] = None,
output_attentions: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> BackboneOutput:
"""
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, AutoBackbone
>>> import torch
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224")
>>> model = AutoBackbone.from_pretrained(
... "shi-labs/nat-mini-in1k-224", out_features=["stage1", "stage2", "stage3", "stage4"]
... )
>>> inputs = processor(image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> feature_maps = outputs.feature_maps
>>> list(feature_maps[-1].shape)
[1, 512, 7, 7]
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
embedding_output = self.embeddings(pixel_values)
outputs = self.encoder(
embedding_output,
output_attentions=output_attentions,
output_hidden_states=True,
output_hidden_states_before_downsampling=True,
return_dict=True,
)
hidden_states = outputs.reshaped_hidden_states
feature_maps = ()
for stage, hidden_state in zip(self.stage_names, hidden_states):
if stage in self.out_features:
batch_size, num_channels, height, width = hidden_state.shape
hidden_state = hidden_state.permute(0, 2, 3, 1).contiguous()
hidden_state = hidden_state.view(batch_size, height * width, num_channels)
hidden_state = self.hidden_states_norms[stage](hidden_state)
hidden_state = hidden_state.view(batch_size, height, width, num_channels)
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
feature_maps += (hidden_state,)
if not return_dict:
output = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=feature_maps,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
__all__ = ["DinatForImageClassification", "DinatModel", "DinatPreTrainedModel", "DinatBackbone"]
|
transformers/src/transformers/models/dinat/modeling_dinat.py/0
|
{
"file_path": "transformers/src/transformers/models/dinat/modeling_dinat.py",
"repo_id": "transformers",
"token_count": 16674
}
| 113 |
# coding=utf-8
# Copyright 2018 The HuggingFace Inc. team, The Hugging Face Team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for DPR."""
import collections
from typing import List, Optional, Union
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
from ..bert.tokenization_bert import BertTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
class DPRContextEncoderTokenizer(BertTokenizer):
r"""
Construct a DPRContextEncoder tokenizer.
[`DPRContextEncoderTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation
splitting and wordpiece.
Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters.
"""
vocab_files_names = VOCAB_FILES_NAMES
class DPRQuestionEncoderTokenizer(BertTokenizer):
r"""
Constructs a DPRQuestionEncoder tokenizer.
[`DPRQuestionEncoderTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation
splitting and wordpiece.
Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters.
"""
vocab_files_names = VOCAB_FILES_NAMES
DPRSpanPrediction = collections.namedtuple(
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
)
DPRReaderOutput = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
CUSTOM_DPR_READER_DOCSTRING = r"""
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
with the format:
```
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
```
Args:
questions (`str` or `List[str]`):
The questions to be encoded. You can specify one question for many passages. In this case, the question
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
`titles` or `texts`.
titles (`str` or `List[str]`):
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
texts (`str` or `List[str]`):
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
Activates and controls padding. Accepts the following values:
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
if provided).
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided.
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
lengths).
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
Activates and controls truncation. Accepts the following values:
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
the maximum acceptable input length for the model if that argument is not provided. This will truncate
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
of pairs) is provided.
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the first
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
acceptable input length for the model if that argument is not provided. This will only truncate the
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
greater than the model maximum admissible input size).
max_length (`int`, *optional*):
Controls the maximum length to use by one of the truncation/padding parameters.
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
is required by one of the truncation/padding parameters. If the model has no specific maximum input
length (like XLNet) truncation/padding to a maximum length will be deactivated.
return_tensors (`str` or [`~utils.TensorType`], *optional*):
If set, will return tensors instead of list of python integers. Acceptable values are:
- `'tf'`: Return TensorFlow `tf.constant` objects.
- `'pt'`: Return PyTorch `torch.Tensor` objects.
- `'np'`: Return Numpy `np.ndarray` objects.
return_attention_mask (`bool`, *optional*):
Whether or not to return the attention mask. If not set, will return the attention mask according to the
specific tokenizer's default, defined by the `return_outputs` attribute.
[What are attention masks?](../glossary#attention-mask)
Returns:
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
- `input_ids`: List of token ids to be fed to a model.
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
"""
@add_start_docstrings(CUSTOM_DPR_READER_DOCSTRING)
class CustomDPRReaderTokenizerMixin:
def __call__(
self,
questions,
titles: Optional[str] = None,
texts: Optional[str] = None,
padding: Union[bool, str] = False,
truncation: Union[bool, str] = False,
max_length: Optional[int] = None,
return_tensors: Optional[Union[str, TensorType]] = None,
return_attention_mask: Optional[bool] = None,
**kwargs,
) -> BatchEncoding:
if titles is None and texts is None:
return super().__call__(
questions,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
return_attention_mask=return_attention_mask,
**kwargs,
)
elif titles is None or texts is None:
text_pair = titles if texts is None else texts
return super().__call__(
questions,
text_pair,
padding=padding,
truncation=truncation,
max_length=max_length,
return_tensors=return_tensors,
return_attention_mask=return_attention_mask,
**kwargs,
)
titles = titles if not isinstance(titles, str) else [titles]
texts = texts if not isinstance(texts, str) else [texts]
n_passages = len(titles)
questions = questions if not isinstance(questions, str) else [questions] * n_passages
if len(titles) != len(texts):
raise ValueError(
f"There should be as many titles than texts but got {len(titles)} titles and {len(texts)} texts."
)
encoded_question_and_titles = super().__call__(questions, titles, padding=False, truncation=False)["input_ids"]
encoded_texts = super().__call__(texts, add_special_tokens=False, padding=False, truncation=False)["input_ids"]
encoded_inputs = {
"input_ids": [
(encoded_question_and_title + encoded_text)[:max_length]
if max_length is not None and truncation
else encoded_question_and_title + encoded_text
for encoded_question_and_title, encoded_text in zip(encoded_question_and_titles, encoded_texts)
]
}
if return_attention_mask is not False:
attention_mask = []
for input_ids in encoded_inputs["input_ids"]:
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
encoded_inputs["attention_mask"] = attention_mask
return self.pad(encoded_inputs, padding=padding, max_length=max_length, return_tensors=return_tensors)
def decode_best_spans(
self,
reader_input: BatchEncoding,
reader_output: DPRReaderOutput,
num_spans: int = 16,
max_answer_length: int = 64,
num_spans_per_passage: int = 4,
) -> List[DPRSpanPrediction]:
"""
Get the span predictions for the extractive Q&A model.
Returns: *List* of *DPRReaderOutput* sorted by descending *(relevance_score, span_score)*. Each
*DPRReaderOutput* is a *Tuple* with:
- **span_score**: `float` that corresponds to the score given by the reader for this span compared to other
spans in the same passage. It corresponds to the sum of the start and end logits of the span.
- **relevance_score**: `float` that corresponds to the score of the each passage to answer the question,
compared to all the other passages. It corresponds to the output of the QA classifier of the DPRReader.
- **doc_id**: `int` the id of the passage. - **start_index**: `int` the start index of the span
(inclusive). - **end_index**: `int` the end index of the span (inclusive).
Examples:
```python
>>> from transformers import DPRReader, DPRReaderTokenizer
>>> tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base")
>>> model = DPRReader.from_pretrained("facebook/dpr-reader-single-nq-base")
>>> encoded_inputs = tokenizer(
... questions=["What is love ?"],
... titles=["Haddaway"],
... texts=["'What Is Love' is a song recorded by the artist Haddaway"],
... return_tensors="pt",
... )
>>> outputs = model(**encoded_inputs)
>>> predicted_spans = tokenizer.decode_best_spans(encoded_inputs, outputs)
>>> print(predicted_spans[0].text) # best span
a song
```"""
input_ids = reader_input["input_ids"]
start_logits, end_logits, relevance_logits = reader_output[:3]
n_passages = len(relevance_logits)
sorted_docs = sorted(range(n_passages), reverse=True, key=relevance_logits.__getitem__)
nbest_spans_predictions: List[DPRReaderOutput] = []
for doc_id in sorted_docs:
sequence_ids = list(input_ids[doc_id])
# assuming question & title information is at the beginning of the sequence
passage_offset = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id
if sequence_ids[-1] == self.pad_token_id:
sequence_len = sequence_ids.index(self.pad_token_id)
else:
sequence_len = len(sequence_ids)
best_spans = self._get_best_spans(
start_logits=start_logits[doc_id][passage_offset:sequence_len],
end_logits=end_logits[doc_id][passage_offset:sequence_len],
max_answer_length=max_answer_length,
top_spans=num_spans_per_passage,
)
for start_index, end_index in best_spans:
start_index += passage_offset
end_index += passage_offset
nbest_spans_predictions.append(
DPRSpanPrediction(
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index],
relevance_score=relevance_logits[doc_id],
doc_id=doc_id,
start_index=start_index,
end_index=end_index,
text=self.decode(sequence_ids[start_index : end_index + 1]),
)
)
if len(nbest_spans_predictions) >= num_spans:
break
return nbest_spans_predictions[:num_spans]
def _get_best_spans(
self,
start_logits: List[int],
end_logits: List[int],
max_answer_length: int,
top_spans: int,
) -> List[DPRSpanPrediction]:
"""
Finds the best answer span for the extractive Q&A model for one passage. It returns the best span by descending
`span_score` order and keeping max `top_spans` spans. Spans longer that `max_answer_length` are ignored.
"""
scores = []
for start_index, start_score in enumerate(start_logits):
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
scores.append(((start_index, start_index + answer_length), start_score + end_score))
scores = sorted(scores, key=lambda x: x[1], reverse=True)
chosen_span_intervals = []
for (start_index, end_index), score in scores:
if start_index > end_index:
raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]")
length = end_index - start_index + 1
if length > max_answer_length:
raise ValueError(f"Span is too long: {length} > {max_answer_length}")
if any(
start_index <= prev_start_index <= prev_end_index <= end_index
or prev_start_index <= start_index <= end_index <= prev_end_index
for (prev_start_index, prev_end_index) in chosen_span_intervals
):
continue
chosen_span_intervals.append((start_index, end_index))
if len(chosen_span_intervals) == top_spans:
break
return chosen_span_intervals
@add_end_docstrings(CUSTOM_DPR_READER_DOCSTRING)
class DPRReaderTokenizer(CustomDPRReaderTokenizerMixin, BertTokenizer):
r"""
Construct a DPRReader tokenizer.
[`DPRReaderTokenizer`] is almost identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation
splitting and wordpiece. The difference is that is has three inputs strings: question, titles and texts that are
combined to be fed to the [`DPRReader`] model.
Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
__all__ = ["DPRContextEncoderTokenizer", "DPRQuestionEncoderTokenizer", "DPRReaderOutput", "DPRReaderTokenizer"]
|
transformers/src/transformers/models/dpr/tokenization_dpr.py/0
|
{
"file_path": "transformers/src/transformers/models/dpr/tokenization_dpr.py",
"repo_id": "transformers",
"token_count": 6460
}
| 114 |
# coding=utf-8
# Copyright 2023 Google Research, Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch EfficientNet model."""
import math
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACT2FN
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from .configuration_efficientnet import EfficientNetConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "EfficientNetConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "google/efficientnet-b7"
_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
# Image classification docstring
_IMAGE_CLASS_CHECKPOINT = "google/efficientnet-b7"
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
EFFICIENTNET_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`EfficientNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
EFFICIENTNET_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`AutoImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def round_filters(config: EfficientNetConfig, num_channels: int):
r"""
Round number of filters based on depth multiplier.
"""
divisor = config.depth_divisor
num_channels *= config.width_coefficient
new_dim = max(divisor, int(num_channels + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_dim < 0.9 * num_channels:
new_dim += divisor
return int(new_dim)
def correct_pad(kernel_size: Union[int, Tuple], adjust: bool = True):
r"""
Utility function to get the tuple padding value for the depthwise convolution.
Args:
kernel_size (`int` or `tuple`):
Kernel size of the convolution layers.
adjust (`bool`, *optional*, defaults to `True`):
Adjusts padding value to apply to right and bottom sides of the input.
"""
if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size)
correct = (kernel_size[0] // 2, kernel_size[1] // 2)
if adjust:
return (correct[1] - 1, correct[1], correct[0] - 1, correct[0])
else:
return (correct[1], correct[1], correct[0], correct[0])
class EfficientNetEmbeddings(nn.Module):
r"""
A module that corresponds to the stem module of the original work.
"""
def __init__(self, config: EfficientNetConfig):
super().__init__()
self.out_dim = round_filters(config, 32)
self.padding = nn.ZeroPad2d(padding=(0, 1, 0, 1))
self.convolution = nn.Conv2d(
config.num_channels, self.out_dim, kernel_size=3, stride=2, padding="valid", bias=False
)
self.batchnorm = nn.BatchNorm2d(self.out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum)
self.activation = ACT2FN[config.hidden_act]
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
features = self.padding(pixel_values)
features = self.convolution(features)
features = self.batchnorm(features)
features = self.activation(features)
return features
class EfficientNetDepthwiseConv2d(nn.Conv2d):
def __init__(
self,
in_channels,
depth_multiplier=1,
kernel_size=3,
stride=1,
padding=0,
dilation=1,
bias=True,
padding_mode="zeros",
):
out_channels = in_channels * depth_multiplier
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=in_channels,
bias=bias,
padding_mode=padding_mode,
)
class EfficientNetExpansionLayer(nn.Module):
r"""
This corresponds to the expansion phase of each block in the original implementation.
"""
def __init__(self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int):
super().__init__()
self.expand_conv = nn.Conv2d(
in_channels=in_dim,
out_channels=out_dim,
kernel_size=1,
padding="same",
bias=False,
)
self.expand_bn = nn.BatchNorm2d(num_features=out_dim, eps=config.batch_norm_eps)
self.expand_act = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
# Expand phase
hidden_states = self.expand_conv(hidden_states)
hidden_states = self.expand_bn(hidden_states)
hidden_states = self.expand_act(hidden_states)
return hidden_states
class EfficientNetDepthwiseLayer(nn.Module):
r"""
This corresponds to the depthwise convolution phase of each block in the original implementation.
"""
def __init__(
self,
config: EfficientNetConfig,
in_dim: int,
stride: int,
kernel_size: int,
adjust_padding: bool,
):
super().__init__()
self.stride = stride
conv_pad = "valid" if self.stride == 2 else "same"
padding = correct_pad(kernel_size, adjust=adjust_padding)
self.depthwise_conv_pad = nn.ZeroPad2d(padding=padding)
self.depthwise_conv = EfficientNetDepthwiseConv2d(
in_dim, kernel_size=kernel_size, stride=stride, padding=conv_pad, bias=False
)
self.depthwise_norm = nn.BatchNorm2d(
num_features=in_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
)
self.depthwise_act = ACT2FN[config.hidden_act]
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
# Depthwise convolution
if self.stride == 2:
hidden_states = self.depthwise_conv_pad(hidden_states)
hidden_states = self.depthwise_conv(hidden_states)
hidden_states = self.depthwise_norm(hidden_states)
hidden_states = self.depthwise_act(hidden_states)
return hidden_states
class EfficientNetSqueezeExciteLayer(nn.Module):
r"""
This corresponds to the Squeeze and Excitement phase of each block in the original implementation.
"""
def __init__(self, config: EfficientNetConfig, in_dim: int, expand_dim: int, expand: bool = False):
super().__init__()
self.dim = expand_dim if expand else in_dim
self.dim_se = max(1, int(in_dim * config.squeeze_expansion_ratio))
self.squeeze = nn.AdaptiveAvgPool2d(output_size=1)
self.reduce = nn.Conv2d(
in_channels=self.dim,
out_channels=self.dim_se,
kernel_size=1,
padding="same",
)
self.expand = nn.Conv2d(
in_channels=self.dim_se,
out_channels=self.dim,
kernel_size=1,
padding="same",
)
self.act_reduce = ACT2FN[config.hidden_act]
self.act_expand = nn.Sigmoid()
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
inputs = hidden_states
hidden_states = self.squeeze(hidden_states)
hidden_states = self.reduce(hidden_states)
hidden_states = self.act_reduce(hidden_states)
hidden_states = self.expand(hidden_states)
hidden_states = self.act_expand(hidden_states)
hidden_states = torch.mul(inputs, hidden_states)
return hidden_states
class EfficientNetFinalBlockLayer(nn.Module):
r"""
This corresponds to the final phase of each block in the original implementation.
"""
def __init__(
self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int, drop_rate: float, id_skip: bool
):
super().__init__()
self.apply_dropout = stride == 1 and not id_skip
self.project_conv = nn.Conv2d(
in_channels=in_dim,
out_channels=out_dim,
kernel_size=1,
padding="same",
bias=False,
)
self.project_bn = nn.BatchNorm2d(
num_features=out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
)
self.dropout = nn.Dropout(p=drop_rate)
def forward(self, embeddings: torch.FloatTensor, hidden_states: torch.FloatTensor) -> torch.Tensor:
hidden_states = self.project_conv(hidden_states)
hidden_states = self.project_bn(hidden_states)
if self.apply_dropout:
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + embeddings
return hidden_states
class EfficientNetBlock(nn.Module):
r"""
This corresponds to the expansion and depthwise convolution phase of each block in the original implementation.
Args:
config ([`EfficientNetConfig`]):
Model configuration class.
in_dim (`int`):
Number of input channels.
out_dim (`int`):
Number of output channels.
stride (`int`):
Stride size to be used in convolution layers.
expand_ratio (`int`):
Expand ratio to set the output dimensions for the expansion and squeeze-excite layers.
kernel_size (`int`):
Kernel size for the depthwise convolution layer.
drop_rate (`float`):
Dropout rate to be used in the final phase of each block.
id_skip (`bool`):
Whether to apply dropout and sum the final hidden states with the input embeddings during the final phase
of each block. Set to `True` for the first block of each stage.
adjust_padding (`bool`):
Whether to apply padding to only right and bottom side of the input kernel before the depthwise convolution
operation, set to `True` for inputs with odd input sizes.
"""
def __init__(
self,
config: EfficientNetConfig,
in_dim: int,
out_dim: int,
stride: int,
expand_ratio: int,
kernel_size: int,
drop_rate: float,
id_skip: bool,
adjust_padding: bool,
):
super().__init__()
self.expand_ratio = expand_ratio
self.expand = True if self.expand_ratio != 1 else False
expand_in_dim = in_dim * expand_ratio
if self.expand:
self.expansion = EfficientNetExpansionLayer(
config=config, in_dim=in_dim, out_dim=expand_in_dim, stride=stride
)
self.depthwise_conv = EfficientNetDepthwiseLayer(
config=config,
in_dim=expand_in_dim if self.expand else in_dim,
stride=stride,
kernel_size=kernel_size,
adjust_padding=adjust_padding,
)
self.squeeze_excite = EfficientNetSqueezeExciteLayer(
config=config, in_dim=in_dim, expand_dim=expand_in_dim, expand=self.expand
)
self.projection = EfficientNetFinalBlockLayer(
config=config,
in_dim=expand_in_dim if self.expand else in_dim,
out_dim=out_dim,
stride=stride,
drop_rate=drop_rate,
id_skip=id_skip,
)
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
embeddings = hidden_states
# Expansion and depthwise convolution phase
if self.expand_ratio != 1:
hidden_states = self.expansion(hidden_states)
hidden_states = self.depthwise_conv(hidden_states)
# Squeeze and excite phase
hidden_states = self.squeeze_excite(hidden_states)
hidden_states = self.projection(embeddings, hidden_states)
return hidden_states
class EfficientNetEncoder(nn.Module):
r"""
Forward propogates the embeddings through each EfficientNet block.
Args:
config ([`EfficientNetConfig`]):
Model configuration class.
"""
def __init__(self, config: EfficientNetConfig):
super().__init__()
self.config = config
self.depth_coefficient = config.depth_coefficient
def round_repeats(repeats):
# Round number of block repeats based on depth multiplier.
return int(math.ceil(self.depth_coefficient * repeats))
num_base_blocks = len(config.in_channels)
num_blocks = sum(round_repeats(n) for n in config.num_block_repeats)
curr_block_num = 0
blocks = []
for i in range(num_base_blocks):
in_dim = round_filters(config, config.in_channels[i])
out_dim = round_filters(config, config.out_channels[i])
stride = config.strides[i]
kernel_size = config.kernel_sizes[i]
expand_ratio = config.expand_ratios[i]
for j in range(round_repeats(config.num_block_repeats[i])):
id_skip = True if j == 0 else False
stride = 1 if j > 0 else stride
in_dim = out_dim if j > 0 else in_dim
adjust_padding = False if curr_block_num in config.depthwise_padding else True
drop_rate = config.drop_connect_rate * curr_block_num / num_blocks
block = EfficientNetBlock(
config=config,
in_dim=in_dim,
out_dim=out_dim,
stride=stride,
kernel_size=kernel_size,
expand_ratio=expand_ratio,
drop_rate=drop_rate,
id_skip=id_skip,
adjust_padding=adjust_padding,
)
blocks.append(block)
curr_block_num += 1
self.blocks = nn.ModuleList(blocks)
self.top_conv = nn.Conv2d(
in_channels=out_dim,
out_channels=round_filters(config, 1280),
kernel_size=1,
padding="same",
bias=False,
)
self.top_bn = nn.BatchNorm2d(
num_features=config.hidden_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
)
self.top_activation = ACT2FN[config.hidden_act]
def forward(
self,
hidden_states: torch.FloatTensor,
output_hidden_states: Optional[bool] = False,
return_dict: Optional[bool] = True,
) -> BaseModelOutputWithNoAttention:
all_hidden_states = (hidden_states,) if output_hidden_states else None
for block in self.blocks:
hidden_states = block(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
hidden_states = self.top_conv(hidden_states)
hidden_states = self.top_bn(hidden_states)
hidden_states = self.top_activation(hidden_states)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
)
class EfficientNetPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = EfficientNetConfig
base_model_prefix = "efficientnet"
main_input_name = "pixel_values"
_no_split_modules = []
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
@add_start_docstrings(
"The bare EfficientNet model outputting raw features without any specific head on top.",
EFFICIENTNET_START_DOCSTRING,
)
class EfficientNetModel(EfficientNetPreTrainedModel):
def __init__(self, config: EfficientNetConfig):
super().__init__(config)
self.config = config
self.embeddings = EfficientNetEmbeddings(config)
self.encoder = EfficientNetEncoder(config)
# Final pooling layer
if config.pooling_type == "mean":
self.pooler = nn.AvgPool2d(config.hidden_dim, ceil_mode=True)
elif config.pooling_type == "max":
self.pooler = nn.MaxPool2d(config.hidden_dim, ceil_mode=True)
else:
raise ValueError(f"config.pooling must be one of ['mean', 'max'] got {config.pooling}")
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndNoAttention,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
def forward(
self,
pixel_values: torch.FloatTensor = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values")
embedding_output = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
embedding_output,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# Apply pooling
last_hidden_state = encoder_outputs[0]
pooled_output = self.pooler(last_hidden_state)
# Reshape (batch_size, 1280, 1 , 1) -> (batch_size, 1280)
pooled_output = pooled_output.reshape(pooled_output.shape[:2])
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
)
@add_start_docstrings(
"""
EfficientNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g.
for ImageNet.
""",
EFFICIENTNET_START_DOCSTRING,
)
class EfficientNetForImageClassification(EfficientNetPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.efficientnet = EfficientNetModel(config)
# Classifier head
self.dropout = nn.Dropout(p=config.dropout_rate)
self.classifier = nn.Linear(config.hidden_dim, self.num_labels) if self.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT,
output_type=ImageClassifierOutputWithNoAttention,
config_class=_CONFIG_FOR_DOC,
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
)
def forward(
self,
pixel_values: torch.FloatTensor = None,
labels: Optional[torch.LongTensor] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.efficientnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
pooled_output = outputs.pooler_output if return_dict else outputs[1]
pooled_output = self.dropout(pooled_output)
logits = self.classifier(pooled_output)
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
)
__all__ = ["EfficientNetForImageClassification", "EfficientNetModel", "EfficientNetPreTrainedModel"]
|
transformers/src/transformers/models/efficientnet/modeling_efficientnet.py/0
|
{
"file_path": "transformers/src/transformers/models/efficientnet/modeling_efficientnet.py",
"repo_id": "transformers",
"token_count": 10382
}
| 115 |
# coding=utf-8
# Copyright 2022 Meta and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch ESM model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
BaseModelOutputWithPoolingAndCrossAttentions,
MaskedLMOutput,
SequenceClassifierOutput,
TokenClassifierOutput,
)
from ...modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import logging
from .configuration_esm import EsmConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "facebook/esm2_t6_8M_UR50D"
_CONFIG_FOR_DOC = "EsmConfig"
def rotate_half(x):
x1, x2 = x.chunk(2, dim=-1)
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(x, cos, sin):
cos = cos[:, :, : x.shape[-2], :]
sin = sin[:, :, : x.shape[-2], :]
return (x * cos) + (rotate_half(x) * sin)
def gelu(x):
"""
This is the gelu implementation from the original ESM repo. Using F.gelu yields subtly wrong results.
"""
return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0)))
def symmetrize(x):
"Make layer symmetric in final two dimensions, used for contact prediction."
return x + x.transpose(-1, -2)
def average_product_correct(x):
"Perform average product correct, used for contact prediction."
a1 = x.sum(-1, keepdims=True)
a2 = x.sum(-2, keepdims=True)
a12 = x.sum((-1, -2), keepdims=True)
avg = a1 * a2
avg.div_(a12) # in-place to reduce memory
normalized = x - avg
return normalized
class RotaryEmbedding(torch.nn.Module):
"""
Rotary position embeddings based on those in
[RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation
matrices which depend on their relative positions.
"""
def __init__(self, dim: int):
super().__init__()
# Generate and save the inverse frequency buffer (non trainable)
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim))
inv_freq = inv_freq
self.register_buffer("inv_freq", inv_freq)
self._seq_len_cached = None
self._cos_cached = None
self._sin_cached = None
def _update_cos_sin_tables(self, x, seq_dimension=2):
seq_len = x.shape[seq_dimension]
# Reset the tables if the sequence length has changed,
# or if we're on a new device (possibly due to tracing for instance)
if seq_len != self._seq_len_cached or self._cos_cached.device != x.device:
self._seq_len_cached = seq_len
t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq)
freqs = torch.outer(t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
self._cos_cached = emb.cos()[None, None, :, :]
self._sin_cached = emb.sin()[None, None, :, :]
return self._cos_cached, self._sin_cached
def forward(self, q: torch.Tensor, k: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2)
return (
apply_rotary_pos_emb(q, self._cos_cached, self._sin_cached),
apply_rotary_pos_emb(k, self._cos_cached, self._sin_cached),
)
class EsmContactPredictionHead(nn.Module):
"""Performs symmetrization, apc, and computes a logistic regression on the output features"""
def __init__(
self,
in_features: int,
bias=True,
eos_idx: int = 2,
):
super().__init__()
self.in_features = in_features
self.eos_idx = eos_idx
self.regression = nn.Linear(in_features, 1, bias)
self.activation = nn.Sigmoid()
def forward(self, tokens, attentions):
# remove eos token attentions
eos_mask = tokens.ne(self.eos_idx).to(attentions)
eos_mask = eos_mask.unsqueeze(1) * eos_mask.unsqueeze(2)
attentions = attentions * eos_mask[:, None, None, :, :]
attentions = attentions[..., :-1, :-1]
# remove cls token attentions
attentions = attentions[..., 1:, 1:]
batch_size, layers, heads, seqlen, _ = attentions.size()
attentions = attentions.view(batch_size, layers * heads, seqlen, seqlen)
# features: batch x channels x tokens x tokens (symmetric)
attentions = attentions.to(
self.regression.weight.device
) # attentions always float32, may need to convert to float16
attentions = average_product_correct(symmetrize(attentions))
attentions = attentions.permute(0, 2, 3, 1)
return self.activation(self.regression(attentions).squeeze(3))
class EsmEmbeddings(nn.Module):
"""
Same as BertEmbeddings with a tiny tweak for positional embeddings indexing.
"""
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
if config.emb_layer_norm_before:
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
else:
self.layer_norm = None
self.dropout = nn.Dropout(config.hidden_dropout_prob)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
self.padding_idx = config.pad_token_id
self.position_embeddings = nn.Embedding(
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
)
self.token_dropout = config.token_dropout
self.mask_token_id = config.mask_token_id
def forward(
self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, past_key_values_length=0
):
if position_ids is None:
if input_ids is not None:
# Create the position ids from the input token ids. Any padded tokens remain padded.
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length)
else:
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds)
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
# Note that if we want to support ESM-1 (not 1b!) in future then we need to support an
# embedding_scale factor here.
embeddings = inputs_embeds
# Matt: ESM has the option to handle masking in MLM in a slightly unusual way. If the token_dropout
# flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however,
# masked tokens are treated as if they were selected for input dropout and zeroed out.
# This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by
# a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample).
# This is analogous to the way that dropout layers scale down outputs during evaluation when not
# actually dropping out values (or, equivalently, scale up their un-dropped outputs in training).
if self.token_dropout:
embeddings = embeddings.masked_fill((input_ids == self.mask_token_id).unsqueeze(-1), 0.0)
mask_ratio_train = 0.15 * 0.8 # Hardcoded as the ratio used in all ESM model training runs
src_lengths = attention_mask.sum(-1)
mask_ratio_observed = (input_ids == self.mask_token_id).sum(-1).float() / src_lengths
embeddings = (embeddings * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]).to(
embeddings.dtype
)
if self.position_embedding_type == "absolute":
position_embeddings = self.position_embeddings(position_ids)
embeddings = embeddings + position_embeddings
if self.layer_norm is not None:
embeddings = self.layer_norm(embeddings)
if attention_mask is not None:
embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(embeddings.dtype)
# Matt: I think this line was copied incorrectly from BERT, disabling it for now.
# embeddings = self.dropout(embeddings)
return embeddings
def create_position_ids_from_inputs_embeds(self, inputs_embeds):
"""
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
Args:
inputs_embeds: torch.Tensor
Returns: torch.Tensor
"""
input_shape = inputs_embeds.size()[:-1]
sequence_length = input_shape[1]
position_ids = torch.arange(
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
)
return position_ids.unsqueeze(0).expand(input_shape)
class EsmSelfAttention(nn.Module):
def __init__(self, config, position_embedding_type=None):
super().__init__()
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
raise ValueError(
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
f"heads ({config.num_attention_heads})"
)
self.num_attention_heads = config.num_attention_heads
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(config.hidden_size, self.all_head_size)
self.key = nn.Linear(config.hidden_size, self.all_head_size)
self.value = nn.Linear(config.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.position_embedding_type = position_embedding_type or getattr(
config, "position_embedding_type", "absolute"
)
self.rotary_embeddings = None
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
self.max_position_embeddings = config.max_position_embeddings
self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size)
elif self.position_embedding_type == "rotary":
self.rotary_embeddings = RotaryEmbedding(dim=self.attention_head_size)
self.is_decoder = config.is_decoder
def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
x = x.view(new_x_shape)
return x.permute(0, 2, 1, 3)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
output_attentions: Optional[bool] = False,
) -> Tuple[torch.Tensor]:
mixed_query_layer = self.query(hidden_states)
# If this is instantiated as a cross-attention module, the keys
# and values come from an encoder; the attention mask needs to be
# such that the encoder's padding tokens are not attended to.
is_cross_attention = encoder_hidden_states is not None
if is_cross_attention and past_key_value is not None:
# reuse k,v, cross_attentions
key_layer = past_key_value[0]
value_layer = past_key_value[1]
attention_mask = encoder_attention_mask
elif is_cross_attention:
key_layer = self.transpose_for_scores(self.key(encoder_hidden_states))
value_layer = self.transpose_for_scores(self.value(encoder_hidden_states))
attention_mask = encoder_attention_mask
elif past_key_value is not None:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
key_layer = torch.cat([past_key_value[0], key_layer], dim=2)
value_layer = torch.cat([past_key_value[1], value_layer], dim=2)
else:
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
query_layer = self.transpose_for_scores(mixed_query_layer)
# Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim).
# ESM scales the query down by the same factor instead. Modulo numerical stability these are equivalent,
# but not when rotary embeddings get involved. Therefore, we scale the query here to match the original
# ESM code and fix rotary embeddings.
query_layer = query_layer * self.attention_head_size**-0.5
if self.is_decoder:
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
# Further calls to cross_attention layer can then reuse all cross-attention
# key/value_states (first "if" case)
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
# all previous decoder key/value_states. Further calls to uni-directional self-attention
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
# if encoder bi-directional self-attention `past_key_value` is always `None`
past_key_value = (key_layer, value_layer)
if self.position_embedding_type == "rotary":
query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer)
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query":
seq_length = hidden_states.size()[1]
position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1)
position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1)
distance = position_ids_l - position_ids_r
positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1)
positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility
if self.position_embedding_type == "relative_key":
relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores
elif self.position_embedding_type == "relative_key_query":
relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding)
relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding)
attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in EsmModel forward() function)
attention_scores = attention_scores + attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
# Mask heads if we want to
if head_mask is not None:
attention_probs = attention_probs * head_mask
context_layer = torch.matmul(attention_probs.to(value_layer.dtype), value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
if self.is_decoder:
outputs = outputs + (past_key_value,)
return outputs
class EsmSelfOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
class EsmAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.self = EsmSelfAttention(config)
self.output = EsmSelfOutput(config)
self.pruned_heads = set()
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
hidden_states_ln = self.LayerNorm(hidden_states)
self_outputs = self.self(
hidden_states_ln,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
class EsmIntermediate(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.dense(hidden_states)
hidden_states = gelu(hidden_states)
return hidden_states
class EsmOutput(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = hidden_states + input_tensor
return hidden_states
class EsmLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = EsmAttention(config)
self.is_decoder = config.is_decoder
self.add_cross_attention = config.add_cross_attention
if self.add_cross_attention:
if not self.is_decoder:
raise RuntimeError(f"{self} should be used as a decoder model if cross attention is added")
self.crossattention = EsmAttention(config)
self.intermediate = EsmIntermediate(config)
self.output = EsmOutput(config)
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_value=None,
output_attentions=False,
):
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
self_attention_outputs = self.attention(
hidden_states,
attention_mask,
head_mask,
output_attentions=output_attentions,
past_key_value=self_attn_past_key_value,
)
attention_output = self_attention_outputs[0]
# if decoder, the last output is tuple of self-attn cache
if self.is_decoder:
outputs = self_attention_outputs[1:-1]
present_key_value = self_attention_outputs[-1]
else:
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
cross_attn_present_key_value = None
if self.is_decoder and encoder_hidden_states is not None:
if not hasattr(self, "crossattention"):
raise AttributeError(
f"If `encoder_hidden_states` are passed, {self} has to be instantiated"
" with cross-attention layers by setting `config.add_cross_attention=True`"
)
# cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
cross_attention_outputs = self.crossattention(
attention_output,
attention_mask,
head_mask,
encoder_hidden_states,
encoder_attention_mask,
cross_attn_past_key_value,
output_attentions,
)
attention_output = cross_attention_outputs[0]
outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights
# add cross-attn cache to positions 3,4 of present_key_value tuple
cross_attn_present_key_value = cross_attention_outputs[-1]
present_key_value = present_key_value + cross_attn_present_key_value
layer_output = self.feed_forward_chunk(attention_output)
outputs = (layer_output,) + outputs
# if decoder, return the attn key/values as the last output
if self.is_decoder:
outputs = outputs + (present_key_value,)
return outputs
def feed_forward_chunk(self, attention_output):
attention_output_ln = self.LayerNorm(attention_output)
intermediate_output = self.intermediate(attention_output_ln)
layer_output = self.output(intermediate_output, attention_output)
return layer_output
class EsmEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.layer = nn.ModuleList([EsmLayer(config) for _ in range(config.num_hidden_layers)])
self.emb_layer_norm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.gradient_checkpointing = False
def forward(
self,
hidden_states,
attention_mask=None,
head_mask=None,
encoder_hidden_states=None,
encoder_attention_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with `config.gradient_checkpointing=True`. Setting "
"`use_cache=False`..."
)
use_cache = False
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
next_decoder_cache = () if use_cache else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_head_mask = head_mask[i] if head_mask is not None else None
past_key_value = past_key_values[i] if past_key_values is not None else None
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
layer_module.__call__,
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
else:
layer_outputs = layer_module(
hidden_states,
attention_mask,
layer_head_mask,
encoder_hidden_states,
encoder_attention_mask,
past_key_value,
output_attentions,
)
hidden_states = layer_outputs[0]
if use_cache:
next_decoder_cache = next_decoder_cache + (layer_outputs[-1],)
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if self.config.add_cross_attention:
all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
if self.emb_layer_norm_after:
hidden_states = self.emb_layer_norm_after(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
next_decoder_cache,
all_hidden_states,
all_self_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_decoder_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
cross_attentions=all_cross_attentions,
)
# Copied from transformers.models.bert.modeling_bert.BertPooler
class EsmPooler(nn.Module):
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.activation = nn.Tanh()
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
# We "pool" the model by simply taking the hidden state corresponding
# to the first token.
first_token_tensor = hidden_states[:, 0]
pooled_output = self.dense(first_token_tensor)
pooled_output = self.activation(pooled_output)
return pooled_output
class EsmPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = EsmConfig
base_model_prefix = "esm"
supports_gradient_checkpointing = True
_no_split_modules = ["EsmLayer", "EsmFoldTriangularSelfAttentionBlock", "EsmEmbeddings"]
# Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, nn.Linear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
ESM_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`EsmConfig`]): Model configuration class with all the parameters of the
model. Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
ESM_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `({0})`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare ESM Model transformer outputting raw hidden-states without any specific head on top.",
ESM_START_DOCSTRING,
)
class EsmModel(EsmPreTrainedModel):
"""
The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of
cross-attention is added between the self-attention layers, following the architecture described in [Attention is
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit,
Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
To behave as an decoder the model needs to be initialized with the `is_decoder` argument of the configuration set
to `True`. To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder` argument and
`add_cross_attention` set to `True`; an `encoder_hidden_states` is then expected as an input to the forward pass.
"""
def __init__(self, config, add_pooling_layer=True):
super().__init__(config)
self.config = config
self.embeddings = EsmEmbeddings(config)
self.encoder = EsmEncoder(config)
self.pooler = EsmPooler(config) if add_pooling_layer else None
self.contact_head = EsmContactPredictionHead(
in_features=config.num_hidden_layers * config.num_attention_heads, bias=True
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.word_embeddings
def set_input_embeddings(self, value):
self.embeddings.word_embeddings = value
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPoolingAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
the model is configured as a decoder.
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if self.config.is_decoder:
use_cache = use_cache if use_cache is not None else self.config.use_cache
else:
use_cache = False
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
input_shape = input_ids.size()
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
batch_size, seq_length = input_shape
device = input_ids.device if input_ids is not None else inputs_embeds.device
# past_key_values_length
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
if attention_mask is None:
attention_mask = torch.ones(((batch_size, seq_length + past_key_values_length)), device=device)
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape)
# If a 2D or 3D attention mask is provided for the cross-attention
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
if self.config.is_decoder and encoder_hidden_states is not None:
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
if encoder_attention_mask is None:
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
else:
encoder_extended_attention_mask = None
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape bsz x n_heads x N x N
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
embedding_output = self.embeddings(
input_ids=input_ids,
position_ids=position_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
past_key_values_length=past_key_values_length,
)
encoder_outputs = self.encoder(
embedding_output,
attention_mask=extended_attention_mask,
head_mask=head_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_extended_attention_mask,
past_key_values=past_key_values,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
if not return_dict:
return (sequence_output, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndCrossAttentions(
last_hidden_state=sequence_output,
pooler_output=pooled_output,
past_key_values=encoder_outputs.past_key_values,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
cross_attentions=encoder_outputs.cross_attentions,
)
def predict_contacts(self, tokens, attention_mask):
attns = self(tokens, attention_mask=attention_mask, return_dict=True, output_attentions=True).attentions
attns = torch.stack(attns, dim=1) # Matches the original model layout
# In the original model, attentions for padding tokens are completely zeroed out.
# This makes no difference most of the time because the other tokens won't attend to them,
# but it does for the contact prediction task, which takes attentions as input,
# so we have to mimic that here.
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(3)
attns *= attention_mask.unsqueeze(1).unsqueeze(2).unsqueeze(4)
return self.contact_head(tokens, attns)
@add_start_docstrings("""ESM Model with a `language modeling` head on top.""", ESM_START_DOCSTRING)
class EsmForMaskedLM(EsmPreTrainedModel):
_tied_weights_keys = ["lm_head.decoder.weight"]
def __init__(self, config):
super().__init__(config)
if config.is_decoder:
logger.warning(
"If you want to use `EsmForMaskedLM` make sure `config.is_decoder=False` for "
"bi-directional self-attention."
)
self.esm = EsmModel(config, add_pooling_layer=False)
self.lm_head = EsmLMHead(config)
self.init_weights()
def get_output_embeddings(self):
return self.lm_head.decoder
def set_output_embeddings(self, new_embeddings):
self.lm_head.decoder = new_embeddings
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=MaskedLMOutput,
config_class=_CONFIG_FOR_DOC,
mask="<mask>",
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, MaskedLMOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
kwargs (`Dict[str, any]`, *optional*, defaults to `{}`):
Used to hide legacy arguments that have been deprecated.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
masked_lm_loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(prediction_scores.device)
masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
return MaskedLMOutput(
loss=masked_lm_loss,
logits=prediction_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def predict_contacts(self, tokens, attention_mask):
return self.esm.predict_contacts(tokens, attention_mask=attention_mask)
class EsmLMHead(nn.Module):
"""ESM Head for masked language modeling."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
def forward(self, features, **kwargs):
x = self.dense(features)
x = gelu(x)
x = self.layer_norm(x)
# project back to size of vocabulary with bias
x = self.decoder(x) + self.bias
return x
@add_start_docstrings(
"""
ESM Model transformer with a sequence classification/regression head on top (a linear layer on top of the pooled
output) e.g. for GLUE tasks.
""",
ESM_START_DOCSTRING,
)
class EsmForSequenceClassification(EsmPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.config = config
self.esm = EsmModel(config, add_pooling_layer=False)
self.classifier = EsmClassificationHead(config)
self.init_weights()
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, SequenceClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
labels = labels.to(logits.device)
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(logits, labels)
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
@add_start_docstrings(
"""
ESM Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
ESM_START_DOCSTRING,
)
class EsmForTokenClassification(EsmPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.esm = EsmModel(config, add_pooling_layer=False)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
self.init_weights()
@add_start_docstrings_to_model_forward(ESM_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.esm(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
sequence_output = self.dropout(sequence_output)
logits = self.classifier(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
labels = labels.to(logits.device)
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
if not return_dict:
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
class EsmClassificationHead(nn.Module):
"""Head for sentence-level classification tasks."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features[:, 0, :] # take <s> token (equiv. to [CLS])
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
"""
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
are ignored. This is modified from fairseq's `utils.make_positions`.
Args:
x: torch.Tensor x:
Returns: torch.Tensor
"""
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
mask = input_ids.ne(padding_idx).int()
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
return incremental_indices.long() + padding_idx
__all__ = [
"EsmForMaskedLM",
"EsmForSequenceClassification",
"EsmForTokenClassification",
"EsmModel",
"EsmPreTrainedModel",
]
|
transformers/src/transformers/models/esm/modeling_esm.py/0
|
{
"file_path": "transformers/src/transformers/models/esm/modeling_esm.py",
"repo_id": "transformers",
"token_count": 23697
}
| 116 |
# coding=utf-8
# Copyright 2023 the Falcon authors and HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch Falcon model."""
import math
from typing import TYPE_CHECKING, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, LayerNorm, MSELoss
from torch.nn import functional as F
from ...activations import get_activation
from ...cache_utils import Cache, DynamicCache, StaticCache
from ...generation import GenerationMixin
from ...modeling_attn_mask_utils import (
AttentionMaskConverter,
)
from ...modeling_outputs import (
BaseModelOutputWithPastAndCrossAttentions,
CausalLMOutputWithCrossAttentions,
QuestionAnsweringModelOutput,
SequenceClassifierOutputWithPast,
TokenClassifierOutput,
)
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
is_flash_attn_2_available,
is_flash_attn_greater_or_equal_2_10,
logging,
)
from ...utils.deprecation import deprecate_kwarg
from .configuration_falcon import FalconConfig
if TYPE_CHECKING:
from ...configuration_utils import PretrainedConfig
if is_flash_attn_2_available():
from ...modeling_flash_attention_utils import _flash_attention_forward
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "Rocketknight1/falcon-rw-1b"
_CONFIG_FOR_DOC = "FalconConfig"
# NOTE(Hesslow): Unfortunately we did not fuse matmul and bias during training, this means that there's one additional quantization to bfloat16 between the operations.
# In order not to degrade the quality of our HF-port, we keep these characteristics in the final model.
class FalconLinear(nn.Linear):
def forward(self, input: torch.Tensor) -> torch.Tensor:
hidden_states = input @ self.weight.T
if self.bias is None:
return hidden_states
return hidden_states + self.bias
# Copied from transformers.models.llama.modeling_llama.rotate_half
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Falcon
class FalconRotaryEmbedding(nn.Module):
def __init__(self, config: FalconConfig, device=None):
super().__init__()
# BC: "rope_type" was originally "type"
if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
else:
self.rope_type = "default"
self.max_seq_len_cached = config.max_position_embeddings
self.original_max_seq_len = config.max_position_embeddings
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
self.original_inv_freq = self.inv_freq
def _dynamic_frequency_update(self, position_ids, device):
"""
dynamic RoPE layers should recompute `inv_freq` in the following situations:
1 - growing beyond the cached sequence length (allow scaling)
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
"""
seq_len = torch.max(position_ids) + 1
if seq_len > self.max_seq_len_cached: # growth
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: may break with compilation
self.max_seq_len_cached = seq_len
if seq_len < self.original_max_seq_len and self.max_seq_len_cached > self.original_max_seq_len: # reset
# This .to() is needed if the model has been moved to a device after being initialized (because
# the buffer is automatically moved, but not the original copy)
self.original_inv_freq = self.original_inv_freq.to(device)
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
self.max_seq_len_cached = self.original_max_seq_len
@torch.no_grad()
def forward(self, x, position_ids):
if "dynamic" in self.rope_type:
self._dynamic_frequency_update(position_ids, device=x.device)
# Core RoPE block
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
# Force float32 (see https://github.com/huggingface/transformers/pull/29285)
device_type = x.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
# Advanced RoPE types (e.g. yarn) apply a post-processing scaling factor, equivalent to scaling attention
cos = cos * self.attention_scaling
sin = sin * self.attention_scaling
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
def build_alibi_tensor(attention_mask: torch.Tensor, num_heads: int, dtype: torch.dtype) -> torch.Tensor:
batch_size, seq_length = attention_mask.shape
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
base = torch.tensor(
2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
)
powers = torch.arange(1, 1 + closest_power_of_2, device=attention_mask.device, dtype=torch.int32)
slopes = torch.pow(base, powers)
if closest_power_of_2 != num_heads:
extra_base = torch.tensor(
2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), device=attention_mask.device, dtype=torch.float32
)
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=attention_mask.device, dtype=torch.int32)
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
# => the query_length dimension will then be broadcasted correctly
# This is more or less identical to T5's relative position bias:
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
arange_tensor = ((attention_mask.cumsum(dim=-1) - 1) * attention_mask)[:, None, :]
alibi = slopes[..., None].bfloat16() * arange_tensor
return alibi.reshape(batch_size * num_heads, 1, seq_length).to(dtype)
# Copied from transformers.models.bloom.modeling_bloom.dropout_add
def dropout_add(x: torch.Tensor, residual: torch.Tensor, prob: float, training: bool) -> torch.Tensor:
"""
Dropout add function
Args:
x (`torch.tensor`):
input tensor
residual (`torch.tensor`):
residual tensor
prob (`float`):
dropout probability
training (`bool`):
training mode
"""
out = F.dropout(x, p=prob, training=training)
out = residual + out
return out
class FalconAttention(nn.Module):
def __init__(self, config: FalconConfig, layer_idx=None):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.hidden_size // self.num_heads
self.split_size = self.hidden_size
self.hidden_dropout = config.hidden_dropout
self.max_position_embeddings = config.max_position_embeddings
self.rope_theta = config.rope_theta
self.is_causal = True
self._use_sdpa = config._attn_implementation == "sdpa"
self.layer_idx = layer_idx
if layer_idx is None:
logger.warning_once(
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
"when creating this class."
)
if self.head_dim * self.num_heads != self.hidden_size:
raise ValueError(
f"`hidden_size` must be divisible by num_heads (got `hidden_size`: {self.hidden_size} and `num_heads`:"
f" {self.num_heads})."
)
# Layer-wise attention scaling
self.inv_norm_factor = 1.0 / math.sqrt(self.head_dim)
self.beta = self.inv_norm_factor
if config.new_decoder_architecture:
qkv_out_dim = (config.num_kv_heads * 2 + config.num_attention_heads) * self.head_dim
elif config.multi_query:
qkv_out_dim = self.hidden_size + 2 * self.head_dim
else:
qkv_out_dim = 3 * self.hidden_size
self.query_key_value = FalconLinear(self.hidden_size, qkv_out_dim, bias=config.bias)
self.new_decoder_architecture = config.new_decoder_architecture
self.multi_query = config.multi_query
self.dense = FalconLinear(self.hidden_size, self.hidden_size, bias=config.bias)
self.attention_dropout = nn.Dropout(config.attention_dropout)
self.num_kv_heads = config.num_kv_heads if (self.new_decoder_architecture or not self.multi_query) else 1
# TODO (raushan): remove in v4.46 (RoPE is computed in the model, not in the decoder layers)
if config.rotary:
self.rotary_emb = FalconRotaryEmbedding(config=self.config)
def _split_heads(self, fused_qkv: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""
Split the last dimension into (num_heads, head_dim), results share same memory storage as `fused_qkv`
Args:
fused_qkv (`torch.tensor`): [batch_size, seq_length, num_heads * 3 * head_dim]
Returns:
query: [batch_size, seq_length, num_heads, head_dim] key: [batch_size, seq_length, num_heads, head_dim]
value: [batch_size, seq_length, num_heads, head_dim]
"""
if self.new_decoder_architecture:
batch, seq_len, _ = fused_qkv.shape
qkv = fused_qkv.view(batch, seq_len, -1, self.num_heads // self.num_kv_heads + 2, self.head_dim)
query = qkv[:, :, :, :-2]
key = qkv[:, :, :, [-2]]
value = qkv[:, :, :, [-1]]
key = torch.broadcast_to(key, query.shape)
value = torch.broadcast_to(value, query.shape)
query, key, value = [x.flatten(2, 3) for x in (query, key, value)]
return query, key, value
elif not self.multi_query:
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads, 3, self.head_dim)
return fused_qkv[..., 0, :], fused_qkv[..., 1, :], fused_qkv[..., 2, :]
else:
batch_size, seq_length, three_times_hidden_size = fused_qkv.shape
fused_qkv = fused_qkv.view(batch_size, seq_length, self.num_heads + 2, self.head_dim)
return fused_qkv[..., :-2, :], fused_qkv[..., [-2], :], fused_qkv[..., [-1], :]
# Copied from transformers.models.bloom.modeling_bloom.BloomAttention._merge_heads
def _merge_heads(self, x: torch.Tensor) -> torch.Tensor:
"""
Merge heads together over the last dimension
Args:
x (`torch.tensor`): [batch_size * num_heads, seq_length, head_dim]
Returns:
torch.tensor: [batch_size, seq_length, num_heads * head_dim]
"""
# What we want to achieve is:
# batch_size * num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads * head_dim
batch_size_and_num_heads, seq_length, _ = x.shape
batch_size = batch_size_and_num_heads // self.num_heads
# First view to decompose the batch size
# batch_size * num_heads, seq_length, head_dim -> batch_size, num_heads, seq_length, head_dim
x = x.view(batch_size, self.num_heads, seq_length, self.head_dim)
# batch_size, num_heads, seq_length, head_dim -> batch_size, seq_length, num_heads, head_dim
x = x.permute(0, 2, 1, 3)
# batch_size, seq_length, num_heads, head_dim -> batch_size, seq_length, num_heads * head_dim
return x.reshape(batch_size, seq_length, self.num_heads * self.head_dim)
def forward(
self,
hidden_states: torch.Tensor,
alibi: Optional[torch.Tensor],
attention_mask: torch.Tensor,
position_ids: Optional[torch.LongTensor] = None,
layer_past: Optional[Cache] = None,
head_mask: Optional[torch.Tensor] = None,
use_cache: bool = False,
output_attentions: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
):
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
# 3 x [batch_size, seq_length, num_heads, head_dim]
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
batch_size, query_length, _, _ = query_layer.shape
query_layer = query_layer.transpose(1, 2).reshape(batch_size, self.num_heads, query_length, self.head_dim)
key_layer = key_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
value_layer = value_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
if alibi is None:
cos, sin = position_embeddings
query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin)
if layer_past is not None:
cache_kwargs = {"cache_position": cache_position}
if alibi is None:
cache_kwargs.update({"sin": sin, "cos": cos})
key_layer, value_layer = layer_past.update(key_layer, value_layer, self.layer_idx, cache_kwargs)
kv_length = key_layer.shape[-2]
if self._use_sdpa and query_layer.device.type == "cuda" and attention_mask is not None:
# For torch<=2.1.2, SDPA with memory-efficient backend is bugged with non-contiguous inputs with custom attn_mask,
# Reference: https://github.com/pytorch/pytorch/issues/112577.
query_layer = query_layer.contiguous()
key_layer = key_layer.contiguous()
value_layer = value_layer.contiguous()
if attention_mask is not None:
attention_mask = attention_mask[:, :, :, : key_layer.shape[-2]]
if alibi is None:
if self._use_sdpa and not output_attentions:
# We dispatch to SDPA's Flash Attention or Efficient kernels via this if statement instead of an
# inline conditional assignment to support both torch.compile's `dynamic=True` and `fullgraph=True`
# The query_length > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not
# create a causal mask in case query_length == 1.
is_causal = True if self.is_causal and attention_mask is None and query_length > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_layer,
key_layer,
value_layer,
attn_mask=attention_mask,
dropout_p=0.0,
is_causal=is_causal,
)
attention_scores = None
else:
attention_scores = query_layer @ key_layer.transpose(-1, -2)
attention_scores /= math.sqrt(self.head_dim)
attention_scores = F.softmax(attention_scores + attention_mask, dim=-1, dtype=hidden_states.dtype)
# It is unclear why neither dropout nor head_mask is applied here (while it is with alibi).
attn_output = attention_scores @ value_layer
attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
attn_output = attn_output.permute(0, 2, 1, 3)
attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
attn_output = self.dense(attn_output)
if output_attentions:
return attn_output, layer_past, attention_scores
else:
return attn_output, layer_past
else:
if self._use_sdpa and not output_attentions and head_mask is None:
# We dispatch to SDPA's Flash Attention or Efficient kernels via this if statement instead of an
# inline conditional assignment to support both torch.compile's `dynamic=True` and `fullgraph=True`
is_causal = True if self.is_causal and attention_mask is None and query_length > 1 else False
attn_output = torch.nn.functional.scaled_dot_product_attention(
query_layer,
key_layer,
value_layer,
attn_mask=attention_mask,
dropout_p=self.attention_dropout.p if self.training else 0.0,
is_causal=is_causal,
)
attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
attn_output = self.dense(attn_output)
else:
matmul_result = query_layer @ key_layer.transpose(-1, -2)
# change view to [batch_size, num_heads, q_length, kv_length]
attention_scores = matmul_result.view(batch_size, self.num_heads, query_length, kv_length)
# cast attention scores to fp32, compute scaled softmax and cast back to initial dtype - [batch_size, num_heads, q_length, kv_length]
input_dtype = attention_scores.dtype
# `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
attention_scores = attention_scores.to(torch.float32)
attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)
attention_logits *= self.inv_norm_factor
attention_probs = F.softmax(attention_logits + attention_mask, dim=-1, dtype=hidden_states.dtype)
# [batch_size, num_heads, q_length, kv_length]
attention_probs = self.attention_dropout(attention_probs)
if head_mask is not None:
attention_probs = attention_probs * head_mask
# change view [batch_size, num_heads, q_length, kv_length]
attention_probs_reshaped = attention_probs.view(batch_size, self.num_heads, query_length, kv_length)
# matmul: [batch_size * num_heads, q_length, head_dim]
attn_output = (attention_probs_reshaped @ value_layer).flatten(0, 1)
# change view [batch_size, q_length, num_heads * head_dim]
attn_output = self._merge_heads(attn_output)
attn_output = self.dense(attn_output)
if output_attentions:
return attn_output, layer_past, attention_probs
else:
return attn_output, layer_past
class FalconFlashAttention2(FalconAttention):
"""
Falcon flash attention module. This module inherits from `FalconAttention` as the weights of the module stays
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
flash attention and deal with padding tokens in case the input contains any of them.
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
def forward(
self,
hidden_states: torch.Tensor,
alibi: Optional[torch.Tensor],
attention_mask: torch.Tensor,
position_ids: Optional[torch.LongTensor] = None,
layer_past: Optional[Cache] = None,
head_mask: Optional[torch.Tensor] = None,
use_cache: bool = False,
output_attentions: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
):
fused_qkv = self.query_key_value(hidden_states) # [batch_size, seq_length, 3 x hidden_size]
num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
# 3 x [batch_size, seq_length, num_heads, head_dim]
(query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
batch_size, query_length, _, _ = query_layer.shape
query_layer = query_layer.transpose(1, 2).reshape(batch_size, self.num_heads, query_length, self.head_dim)
key_layer = key_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
value_layer = value_layer.transpose(1, 2).reshape(batch_size, num_kv_heads, query_length, self.head_dim)
if alibi is None:
cos, sin = position_embeddings
query_layer, key_layer = apply_rotary_pos_emb(query_layer, key_layer, cos, sin)
if layer_past is not None:
cache_kwargs = {"cache_position": cache_position}
if alibi is None:
cache_kwargs.update({"sin": sin, "cos": cos})
key_layer, value_layer = layer_past.update(key_layer, value_layer, self.layer_idx, cache_kwargs)
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
# to be able to avoid many of these transpose/reshape/view.
query_layer = query_layer.transpose(1, 2)
key_layer = key_layer.transpose(1, 2)
value_layer = value_layer.transpose(1, 2)
if alibi is not None:
raise ValueError("`alibi` is not supported when `use_flash_attn` is True")
attn_dropout = self.config.attention_dropout if self.training else 0.0
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
# therefore the input hidden states gets silently casted in float32. Hence, we need
# cast them back in float16 just to be sure everything works as expected.
input_dtype = query_layer.dtype
if input_dtype == torch.float32:
if torch.is_autocast_enabled():
target_dtype = torch.get_autocast_gpu_dtype()
# Handle the case where the model is quantized
elif hasattr(self.config, "_pre_quantization_dtype"):
target_dtype = self.config._pre_quantization_dtype
else:
target_dtype = self.query_key_value.weight.dtype
logger.warning_once(
f"The input hidden states seems to be silently casted in float32, this might be related to"
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
f" {target_dtype}."
)
query_layer = query_layer.to(target_dtype)
key_layer = key_layer.to(target_dtype)
value_layer = value_layer.to(target_dtype)
attn_output = _flash_attention_forward(
query_layer,
key_layer,
value_layer,
attention_mask,
query_length,
position_ids=position_ids,
dropout=attn_dropout,
is_causal=self.is_causal,
use_top_left_mask=self._flash_attn_uses_top_left_mask,
)
attn_weights = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
attn_output = self.dense(attn_weights)
if not output_attentions:
attn_weights = None
return attn_output, layer_past, attn_weights
class FalconMLP(nn.Module):
def __init__(self, config: FalconConfig):
super().__init__()
hidden_size = config.hidden_size
self.dense_h_to_4h = FalconLinear(hidden_size, config.ffn_hidden_size, bias=config.bias)
self.act = get_activation(config.activation)
self.dense_4h_to_h = FalconLinear(config.ffn_hidden_size, hidden_size, bias=config.bias)
self.hidden_dropout = config.hidden_dropout
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.act(self.dense_h_to_4h(x))
x = self.dense_4h_to_h(x)
return x
FALCON_ATTENTION_CLASSES = {
"eager": FalconAttention,
"sdpa": FalconAttention, # FalconAttention originally implemented both a forward with & without SDPA
"flash_attention_2": FalconFlashAttention2,
}
class FalconDecoderLayer(nn.Module):
def __init__(self, config: FalconConfig, layer_idx=None):
super().__init__()
hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.self_attention = FALCON_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
self.mlp = FalconMLP(config)
self.hidden_dropout = config.hidden_dropout
self.config = config
if config.num_ln_in_parallel_attn is None and config.new_decoder_architecture:
config.num_ln_in_parallel_attn = 2
if not config.parallel_attn:
self.post_attention_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
else:
if config.num_ln_in_parallel_attn == 2:
# The layer norm before self-attention
self.ln_attn = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
# The layer norm before the MLP
self.ln_mlp = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
else:
self.input_layernorm = LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
def forward(
self,
hidden_states: torch.Tensor,
alibi: Optional[torch.Tensor],
attention_mask: torch.Tensor,
position_ids: Optional[torch.LongTensor] = None,
layer_past: Optional[Union[Cache, Tuple[torch.Tensor, torch.Tensor]]] = None,
head_mask: Optional[torch.Tensor] = None,
use_cache: bool = False,
output_attentions: bool = False,
cache_position: Optional[torch.LongTensor] = None,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
**kwargs,
):
residual = hidden_states
if self.config.new_decoder_architecture and self.config.num_ln_in_parallel_attn == 2:
attention_layernorm_out = self.ln_attn(hidden_states)
mlp_layernorm_out = self.ln_mlp(hidden_states)
else:
attention_layernorm_out = self.input_layernorm(hidden_states)
# Self attention.
attn_outputs = self.self_attention(
attention_layernorm_out,
layer_past=layer_past,
attention_mask=attention_mask,
position_ids=position_ids,
alibi=alibi,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
attention_output = attn_outputs[0]
if not self.config.new_decoder_architecture:
if self.config.parallel_attn:
mlp_layernorm_out = attention_layernorm_out
else:
residual = dropout_add(
attention_output, residual, self.config.attention_dropout, training=self.training
)
mlp_layernorm_out = self.post_attention_layernorm(residual)
if (
self.config.new_decoder_architecture
and self.config.parallel_attn
and self.config.num_ln_in_parallel_attn == 1
):
mlp_layernorm_out = attention_layernorm_out
outputs = attn_outputs[1:]
# MLP.
mlp_output = self.mlp(mlp_layernorm_out)
if self.config.new_decoder_architecture or self.config.parallel_attn:
mlp_output += attention_output
output = dropout_add(mlp_output, residual, self.config.hidden_dropout, training=self.training)
if use_cache:
outputs = (output,) + outputs
else:
outputs = (output,) + outputs[1:]
return outputs # hidden_states, past_kv, attentions
FALCON_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`FalconConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
FALCON_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0][0].shape[2]`
(`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary.
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
`input_ids`.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
Two formats are allowed:
- a [`~cache_utils.Cache`] instance, see our
[kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache);
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
cache format.
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
legacy cache format will be returned.
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
of shape `(batch_size, sequence_length)`.
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.n_positions - 1]`.
[What are position IDs?](../glossary#position-ids)
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
- 1 indicates the head is **not masked**,
- 0 indicates the head is **masked**.
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
`past_key_values`).
use_cache (`bool`, *optional*):
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
`past_key_values`).
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
the complete sequence length.
"""
class FalconPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = FalconConfig
base_model_prefix = "transformer"
supports_gradient_checkpointing = True
_no_split_modules = ["FalconDecoderLayer"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_quantized_cache = True
_supports_static_cache = True
def __init__(self, *inputs, **kwargs):
super().__init__(*inputs, **kwargs)
def _init_weights(self, module: nn.Module):
"""Initialize the weights."""
if isinstance(module, nn.Linear) or isinstance(module, FalconLinear):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
# Adapted from transformers.modeling_utils.PreTrainedModel._check_and_enable_sdpa
@classmethod
def _check_and_enable_sdpa(cls, config, hard_check_only: bool = False) -> "PretrainedConfig":
_is_bettertransformer = getattr(cls, "use_bettertransformer", False)
if _is_bettertransformer:
return config
if not hard_check_only:
config._attn_implementation = "sdpa"
return config
@add_start_docstrings(
"The bare Falcon Model transformer outputting raw hidden-states without any specific head on top.",
FALCON_START_DOCSTRING,
)
class FalconModel(FalconPreTrainedModel):
def __init__(self, config: FalconConfig):
super().__init__(config)
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.use_alibi = config.alibi
# Embedding + LN Embedding
self.word_embeddings = nn.Embedding(config.vocab_size, self.embed_dim)
# Transformer blocks
self.h = nn.ModuleList([FalconDecoderLayer(config, layer_idx=i) for i in range(config.num_hidden_layers)])
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
self._use_sdpa = config._attn_implementation == "sdpa"
# Final Layer Norm
self.ln_f = LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
self.rotary_emb = FalconRotaryEmbedding(config=config)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.word_embeddings
def set_input_embeddings(self, new_embeddings: torch.Tensor):
self.word_embeddings = new_embeddings
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutputWithPastAndCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training:
if use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.word_embeddings(input_ids)
# kept for BC (non `Cache` `past_key_values` inputs)
return_legacy_cache = False
if use_cache and not isinstance(past_key_values, Cache):
return_legacy_cache = True
if past_key_values is None:
past_key_values = DynamicCache()
else:
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
logger.warning_once(
"We detected that you are passing `past_key_values` as a tuple of tuples. This is deprecated and "
"will be removed in v4.47. Please convert your cache or use an appropriate `Cache` class "
"(https://huggingface.co/docs/transformers/kv_cache#legacy-cache-format)"
)
# Compute alibi tensor: check build_alibi_tensor documentation
alibi = None
past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0
batch_size, seq_length, _ = inputs_embeds.shape
if self.use_alibi:
mask = (
torch.ones(
(batch_size, seq_length + past_key_values_length), device=inputs_embeds.device, dtype=torch.long
)
if attention_mask is None
else attention_mask
)
alibi = build_alibi_tensor(mask, self.num_heads, dtype=inputs_embeds.dtype)
if cache_position is None:
cache_position = torch.arange(
past_key_values_length, past_key_values_length + seq_length, device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions, head_mask, alibi
)
# Prepare head mask if needed
# 1.0 in head_mask indicate we keep the head
# attention_probs has shape batch_size x num_heads x N x N
# head_mask has shape n_layer x batch x num_heads x N x N
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
next_decoder_cache = None
all_self_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for i, block in enumerate(self.h):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
outputs = self._gradient_checkpointing_func(
block.__call__,
hidden_states,
alibi,
causal_mask,
position_ids,
head_mask[i],
past_key_values,
use_cache,
output_attentions,
cache_position,
position_embeddings,
)
else:
outputs = block(
hidden_states,
layer_past=past_key_values,
attention_mask=causal_mask,
position_ids=position_ids,
head_mask=head_mask[i],
use_cache=use_cache,
output_attentions=output_attentions,
alibi=alibi,
cache_position=cache_position,
position_embeddings=position_embeddings,
)
hidden_states = outputs[0]
if use_cache is True:
next_decoder_cache = outputs[1]
if output_attentions:
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
# Add last hidden state
hidden_states = self.ln_f(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
next_cache = next_decoder_cache if use_cache else None
if return_legacy_cache:
next_cache = next_cache.to_legacy_cache()
if not return_dict:
return tuple(
v for v in [hidden_states, next_cache, all_hidden_states, all_self_attentions] if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=next_cache,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: Cache,
output_attentions: bool,
head_mask: torch.Tensor,
alibi: torch.Tensor,
):
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
if self.config._attn_implementation == "flash_attention_2":
if attention_mask is not None and 0.0 in attention_mask:
return attention_mask
return None
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
# to infer the attention mask.
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
using_static_cache = isinstance(past_key_values, StaticCache)
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
if (
self.config._attn_implementation == "sdpa"
and not using_static_cache
and not output_attentions
and head_mask is None
and alibi is None
):
if AttentionMaskConverter._ignore_causal_mask_sdpa(
attention_mask,
inputs_embeds=input_tensor,
past_key_values_length=past_seen_tokens,
is_training=self.training,
):
return None
dtype, device = input_tensor.dtype, input_tensor.device
min_dtype = torch.finfo(dtype).min
batch_size, sequence_length, _ = input_tensor.shape
if using_static_cache:
target_length = past_key_values.get_max_cache_shape()
else:
target_length = (
attention_mask.shape[-1]
if isinstance(attention_mask, torch.Tensor)
else past_seen_tokens + sequence_length
)
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
# We take care to integrate alibi bias in the causal_mask here
if head_mask is None and alibi is not None:
alibi = alibi.reshape(batch_size, -1, *alibi.shape[1:])
causal_mask = torch.masked_fill(
alibi / math.sqrt(self.config.hidden_size // self.num_heads),
causal_mask < -1,
min_dtype,
)
if (
self.config._attn_implementation == "sdpa"
and attention_mask is not None
and attention_mask.device.type == "cuda"
and not output_attentions
):
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
# Details: https://github.com/pytorch/pytorch/issues/110213
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
return causal_mask
@staticmethod
# Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel._prepare_4d_causal_attention_mask_with_cache_position
def _prepare_4d_causal_attention_mask_with_cache_position(
attention_mask: torch.Tensor,
sequence_length: int,
target_length: int,
dtype: torch.dtype,
device: torch.device,
cache_position: torch.Tensor,
batch_size: int,
**kwargs,
):
"""
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
Args:
attention_mask (`torch.Tensor`):
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape
`(batch_size, 1, query_length, key_value_length)`.
sequence_length (`int`):
The sequence length being processed.
target_length (`int`):
The target length: when generating with static cache, the mask should be as long as the static cache,
to account for the 0 padding, the part of the cache that is not filled yet.
dtype (`torch.dtype`):
The dtype to use for the 4D attention mask.
device (`torch.device`):
The device to plcae the 4D attention mask on.
cache_position (`torch.Tensor`):
Indices depicting the position of the input sequence tokens in the sequence.
batch_size (`torch.Tensor`):
Batch size.
"""
if attention_mask is not None and attention_mask.dim() == 4:
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
causal_mask = attention_mask
else:
min_dtype = torch.finfo(dtype).min
causal_mask = torch.full(
(sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device
)
if sequence_length != 1:
causal_mask = torch.triu(causal_mask, diagonal=1)
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
if attention_mask is not None:
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
mask_length = attention_mask.shape[-1]
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
padding_mask = padding_mask == 0
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
padding_mask, min_dtype
)
return causal_mask
@add_start_docstrings(
"The Falcon Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).",
FALCON_START_DOCSTRING,
)
class FalconForCausalLM(FalconPreTrainedModel, GenerationMixin):
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: FalconConfig):
super().__init__(config)
self.transformer = FalconModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings: torch.Tensor):
self.lm_head = new_embeddings
@deprecate_kwarg("num_logits_to_keep", version="4.50", new_name="logits_to_keep")
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=CausalLMOutputWithCrossAttentions,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
logits_to_keep (`int` or `torch.Tensor`, *optional*):
If an `int`, compute logits for the last `logits_to_keep` tokens. If `0`, calculate logits for all
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
If a `torch.Tensor`, must be 1D corresponding to the indices to keep in the sequence length dimension.
This is useful when using packed tensor format (single dimension for batch and sequence length).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = transformer_outputs[0]
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
lm_logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = lm_logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
batch_size, seq_length, vocab_size = shift_logits.shape
# Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(
shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)
)
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
def _reorder_cache(
self, past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
"""
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
beam_idx at every generation step.
Output shares the same memory storage as `past`.
"""
# Get a copy of `beam_idx` on all the devices where we need those indices.
device_to_beam_idx = {
past_state.device: beam_idx.to(past_state.device) for layer_past in past for past_state in layer_past
}
reordered_past = tuple(
(
layer_past[0].index_select(0, device_to_beam_idx[layer_past[0].device]),
layer_past[1].index_select(0, device_to_beam_idx[layer_past[0].device]),
)
for layer_past in past
)
return reordered_past
@add_start_docstrings(
"""
The Falcon Model transformer with a sequence classification head on top (linear layer).
[`FalconForSequenceClassification`] uses the last token in order to do the classification, as other causal models
(e.g. GPT-1) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
each row of the batch).
""",
FALCON_START_DOCSTRING,
)
class FalconForSequenceClassification(FalconPreTrainedModel):
def __init__(self, config: FalconConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = FalconModel(config)
self.score = nn.Linear(config.hidden_size, config.num_labels, bias=False)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=SequenceClassifierOutputWithPast,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
logits = self.score(hidden_states)
if input_ids is not None:
batch_size = input_ids.shape[0]
else:
batch_size = inputs_embeds.shape[0]
if self.config.pad_token_id is None and batch_size != 1:
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
if self.config.pad_token_id is None:
sequence_lengths = -1
else:
if input_ids is not None:
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
sequence_lengths = sequence_lengths % input_ids.shape[-1]
sequence_lengths = sequence_lengths.to(logits.device)
else:
sequence_lengths = -1
logger.warning_once(
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
)
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
loss = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
self.config.problem_type = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
self.config.problem_type = "single_label_classification"
else:
self.config.problem_type = "multi_label_classification"
if self.config.problem_type == "regression":
loss_fct = MSELoss()
if self.num_labels == 1:
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
else:
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "single_label_classification":
loss_fct = CrossEntropyLoss()
loss = loss_fct(pooled_logits, labels)
elif self.config.problem_type == "multi_label_classification":
loss_fct = BCEWithLogitsLoss()
loss = loss_fct(pooled_logits, labels)
if not return_dict:
output = (pooled_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return SequenceClassifierOutputWithPast(
loss=loss,
logits=pooled_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
Falcon Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
Named-Entity-Recognition (NER) tasks.
""",
FALCON_START_DOCSTRING,
)
class FalconForTokenClassification(FalconPreTrainedModel):
def __init__(self, config: FalconConfig):
super().__init__(config)
self.num_labels = config.num_labels
self.transformer = FalconModel(config)
if getattr(config, "classifier_dropout", None) is not None:
classifier_dropout = config.classifier_dropout
elif getattr(config, "hidden_dropout", None) is not None:
classifier_dropout = config.hidden_dropout
else:
classifier_dropout = 0.1
self.dropout = nn.Dropout(classifier_dropout)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=TokenClassifierOutput,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
attention_mask: Optional[torch.Tensor] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
r"""
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = transformer_outputs[0]
hidden_states = self.dropout(hidden_states)
logits = self.classifier(hidden_states)
loss = None
if labels is not None:
batch_size, seq_length = labels.shape
loss_fct = CrossEntropyLoss()
loss = loss_fct(
logits.view(batch_size * seq_length, self.num_labels), labels.view(batch_size * seq_length)
)
if not return_dict:
output = (logits,) + transformer_outputs[2:]
return ((loss,) + output) if loss is not None else output
return TokenClassifierOutput(
loss=loss,
logits=logits,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
)
@add_start_docstrings(
"""
The Falcon Model transformer with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
""",
FALCON_START_DOCSTRING,
)
class FalconForQuestionAnswering(FalconPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.transformer = FalconModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, 2)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(FALCON_INPUTS_DOCSTRING)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
start_positions: Optional[torch.LongTensor] = None,
end_positions: Optional[torch.LongTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, QuestionAnsweringModelOutput]:
r"""
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the start of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
Labels for position (index) of the end of the labelled span for computing the token classification loss.
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
are not taken into account for computing the loss.
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits = self.qa_outputs(sequence_output)
start_logits, end_logits = logits.split(1, dim=-1)
start_logits = start_logits.squeeze(-1).contiguous()
end_logits = end_logits.squeeze(-1).contiguous()
total_loss = None
if start_positions is not None and end_positions is not None:
# If we are on multi-GPU, split add a dimension
if len(start_positions.size()) > 1:
start_positions = start_positions.squeeze(-1)
if len(end_positions.size()) > 1:
end_positions = end_positions.squeeze(-1)
# sometimes the start/end positions are outside our model inputs, we ignore these terms
ignored_index = start_logits.size(1)
start_positions = start_positions.clamp(0, ignored_index)
end_positions = end_positions.clamp(0, ignored_index)
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
start_loss = loss_fct(start_logits, start_positions)
end_loss = loss_fct(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2
if not return_dict:
output = (start_logits, end_logits) + outputs[2:]
return ((total_loss,) + output) if total_loss is not None else output
return QuestionAnsweringModelOutput(
loss=total_loss,
start_logits=start_logits,
end_logits=end_logits,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"FalconForCausalLM",
"FalconModel",
"FalconPreTrainedModel",
"FalconForSequenceClassification",
"FalconForTokenClassification",
"FalconForQuestionAnswering",
]
|
transformers/src/transformers/models/falcon/modeling_falcon.py/0
|
{
"file_path": "transformers/src/transformers/models/falcon/modeling_falcon.py",
"repo_id": "transformers",
"token_count": 32291
}
| 117 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert FocalNet checkpoints from the original repository. URL: https://github.com/microsoft/FocalNet/tree/main"""
import argparse
import json
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision import transforms
from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification
from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling
def get_focalnet_config(model_name):
depths = [2, 2, 6, 2] if "tiny" in model_name else [2, 2, 18, 2]
use_conv_embed = True if "large" in model_name or "huge" in model_name else False
use_post_layernorm = True if "large" in model_name or "huge" in model_name else False
use_layerscale = True if "large" in model_name or "huge" in model_name else False
if "large" in model_name or "xlarge" in model_name or "huge" in model_name:
if "fl3" in model_name:
focal_levels = [3, 3, 3, 3]
focal_windows = [5, 5, 5, 5]
elif "fl4" in model_name:
focal_levels = [4, 4, 4, 4]
focal_windows = [3, 3, 3, 3]
if "tiny" in model_name or "small" in model_name or "base" in model_name:
focal_windows = [3, 3, 3, 3]
if "lrf" in model_name:
focal_levels = [3, 3, 3, 3]
else:
focal_levels = [2, 2, 2, 2]
if "tiny" in model_name:
embed_dim = 96
elif "small" in model_name:
embed_dim = 96
elif "base" in model_name:
embed_dim = 128
elif "large" in model_name:
embed_dim = 192
elif "xlarge" in model_name:
embed_dim = 256
elif "huge" in model_name:
embed_dim = 352
# set label information
repo_id = "huggingface/label-files"
if "large" in model_name or "huge" in model_name:
filename = "imagenet-22k-id2label.json"
else:
filename = "imagenet-1k-id2label.json"
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
id2label = {int(k): v for k, v in id2label.items()}
label2id = {v: k for k, v in id2label.items()}
config = FocalNetConfig(
embed_dim=embed_dim,
depths=depths,
focal_levels=focal_levels,
focal_windows=focal_windows,
use_conv_embed=use_conv_embed,
id2label=id2label,
label2id=label2id,
use_post_layernorm=use_post_layernorm,
use_layerscale=use_layerscale,
)
return config
def rename_key(name):
if "patch_embed.proj" in name:
name = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection")
if "patch_embed.norm" in name:
name = name.replace("patch_embed.norm", "embeddings.norm")
if "layers" in name:
name = "encoder." + name
if "encoder.layers" in name:
name = name.replace("encoder.layers", "encoder.stages")
if "downsample.proj" in name:
name = name.replace("downsample.proj", "downsample.projection")
if "blocks" in name:
name = name.replace("blocks", "layers")
if "modulation.f.weight" in name or "modulation.f.bias" in name:
name = name.replace("modulation.f", "modulation.projection_in")
if "modulation.h.weight" in name or "modulation.h.bias" in name:
name = name.replace("modulation.h", "modulation.projection_context")
if "modulation.proj.weight" in name or "modulation.proj.bias" in name:
name = name.replace("modulation.proj", "modulation.projection_out")
if name == "norm.weight":
name = "layernorm.weight"
if name == "norm.bias":
name = "layernorm.bias"
if "head" in name:
name = name.replace("head", "classifier")
else:
name = "focalnet." + name
return name
def convert_focalnet_checkpoint(model_name, pytorch_dump_folder_path, push_to_hub=False):
# fmt: off
model_name_to_url = {
"focalnet-tiny": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth",
"focalnet-tiny-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth",
"focalnet-small": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth",
"focalnet-small-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth",
"focalnet-base": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth",
"focalnet-base-lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth",
"focalnet-large-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth",
"focalnet-large-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth",
"focalnet-xlarge-lrf-fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth",
"focalnet-xlarge-lrf-fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth",
}
# fmt: on
checkpoint_url = model_name_to_url[model_name]
print("Checkpoint URL: ", checkpoint_url)
state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu")["model"]
# rename keys
for key in state_dict.copy().keys():
val = state_dict.pop(key)
state_dict[rename_key(key)] = val
config = get_focalnet_config(model_name)
model = FocalNetForImageClassification(config)
model.eval()
# load state dict
model.load_state_dict(state_dict)
# verify conversion
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
processor = BitImageProcessor(
do_resize=True,
size={"shortest_edge": 256},
resample=PILImageResampling.BILINEAR,
do_center_crop=True,
crop_size=224,
do_normalize=True,
image_mean=IMAGENET_DEFAULT_MEAN,
image_std=IMAGENET_DEFAULT_STD,
)
image = Image.open(requests.get(url, stream=True).raw)
inputs = processor(images=image, return_tensors="pt")
image_transforms = transforms.Compose(
[
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
]
)
original_pixel_values = image_transforms(image).unsqueeze(0)
# verify pixel_values
assert torch.allclose(inputs.pixel_values, original_pixel_values, atol=1e-4)
outputs = model(**inputs)
predicted_class_idx = outputs.logits.argmax(-1).item()
print("Predicted class:", model.config.id2label[predicted_class_idx])
print("First values of logits:", outputs.logits[0, :3])
if model_name == "focalnet-tiny":
expected_slice = torch.tensor([0.2166, -0.4368, 0.2191])
elif model_name == "focalnet-tiny-lrf":
expected_slice = torch.tensor([1.1669, 0.0125, -0.1695])
elif model_name == "focalnet-small":
expected_slice = torch.tensor([0.4917, -0.0430, 0.1341])
elif model_name == "focalnet-small-lrf":
expected_slice = torch.tensor([-0.2588, -0.5342, -0.2331])
elif model_name == "focalnet-base":
expected_slice = torch.tensor([-0.1655, -0.4090, -0.1730])
elif model_name == "focalnet-base-lrf":
expected_slice = torch.tensor([0.5306, -0.0483, -0.3928])
assert torch.allclose(outputs.logits[0, :3], expected_slice, atol=1e-4)
print("Looks ok!")
if pytorch_dump_folder_path is not None:
print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}")
model.save_pretrained(pytorch_dump_folder_path)
processor.save_pretrained(pytorch_dump_folder_path)
if push_to_hub:
print(f"Pushing model and processor of {model_name} to the hub...")
model.push_to_hub(f"{model_name}")
processor.push_to_hub(f"{model_name}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="focalnet-tiny",
type=str,
help="Name of the FocalNet model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
)
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model and processor to the hub.",
)
args = parser.parse_args()
convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
|
transformers/src/transformers/models/focalnet/convert_focalnet_to_hf_format.py/0
|
{
"file_path": "transformers/src/transformers/models/focalnet/convert_focalnet_to_hf_format.py",
"repo_id": "transformers",
"token_count": 3999
}
| 118 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import sys
import warnings
import flatdict
import torch
from transformers import FuyuConfig, FuyuForCausalLM, LlamaTokenizer
try:
from transformers import LlamaTokenizerFast
tokenizer_class = LlamaTokenizerFast
except ImportError as e:
warnings.warn(e)
warnings.warn(
"The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion"
)
tokenizer_class = LlamaTokenizer
"""
Sample usage: # TODO fix clone links from persimmon to fuyu
```
git clone https://github.com/adept-ai-labs/adept-inference
wget https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_base_model_release.tar
wget https://axtkn4xl5cip.objectstorage.us-phoenix-1.oci.customer-oci.com/n/axtkn4xl5cip/b/adept-public-data/o/8b_chat_model_release.tar
python src/transformers/models/fuyu/convert_fuyu_weights_to_hf.py --input_dir /path/to/downloaded/fuyu/weights/ --output_dir /output/path
```
Thereafter, models can be loaded via:
```py
from transformers import FuyuForCausalLM, FuyuTokenizer
model = FuyuForCausalLM.from_pretrained("/output/path")
tokenizer = FuyuTokenizer.from_pretrained("/output/path")
```
Important note: you need to be able to host the whole model in RAM to execute this script (even if the biggest versions
come in several checkpoints they each contain a part of each weight of the model, so we need to load them all in RAM).
"""
KEYS_TO_MODIFY_MAPPING = {
"self_attention": "self_attn",
"language_model.encoder": "language_model.model",
"word_embeddings_for_head": "language_model.lm_head",
"language_model.embedding.word_embeddings": "language_model.model.embed_tokens",
"vit_encoder.linear_encoder": "vision_embed_tokens",
}
KEYS_TO_REMOVE = {
"rotary_emb.inv_freq",
"image_patch_projection",
"image_patch_projection.weight",
"image_patch_projection.bias",
}
def rename_state_dict(state_dict):
model_state_dict = {}
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
key = key.replace(key_to_modify, new_key)
# if KEYS_TO_REMOVE in key:
if key in KEYS_TO_REMOVE:
continue
model_state_dict[key] = value
return model_state_dict
def convert_fuyu_checkpoint(pytorch_dump_folder_path, ada_lib_path, pt_model_path, safe_serialization=False):
sys.path.insert(0, ada_lib_path)
model_state_dict_base = torch.load(pt_model_path, map_location="cpu")
state_dict = flatdict.FlatDict(model_state_dict_base["model"], ".")
state_dict = rename_state_dict(state_dict)
transformers_config = FuyuConfig()
model = FuyuForCausalLM(transformers_config).to(torch.bfloat16)
model.load_state_dict(state_dict)
model.save_pretrained(pytorch_dump_folder_path, safe_serialization=safe_serialization)
transformers_config.save_pretrained(pytorch_dump_folder_path)
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--input_dir",
help="Location of Fuyu weights, which contains tokenizer.model and model folders",
)
parser.add_argument(
"--pt_model_path",
help="Location of Fuyu `model_optim_rng.pt`",
)
parser.add_argument(
"--output_dir",
help="Location to write HF model and tokenizer",
)
parser.add_argument(
"--ada_lib_path",
help="Location of original source code from adept to deserialize .pt checkpoint",
)
parser.add_argument("--safe_serialization", type=bool, help="Whether or not to save using `safetensors`.")
args = parser.parse_args()
spm_path = os.path.join(args.input_dir, "adept_vocab.model")
convert_fuyu_checkpoint(
pytorch_dump_folder_path=args.output_dir,
pt_model_path=args.pt_model_path,
safe_serialization=args.safe_serialization,
ada_lib_path=args.ada_lib_path,
)
tokenizer = tokenizer_class(spm_path, bos_token="|ENDOFTEXT|", eos_token="|ENDOFTEXT|")
tokenizer.save_pretrained(args.output_dir)
if __name__ == "__main__":
main()
|
transformers/src/transformers/models/fuyu/convert_fuyu_model_weights_to_hf.py/0
|
{
"file_path": "transformers/src/transformers/models/fuyu/convert_fuyu_model_weights_to_hf.py",
"repo_id": "transformers",
"token_count": 1851
}
| 119 |
# coding=utf-8
# Copyright 2024 Google Inc. HuggingFace Inc. team. All rights reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Callable, Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from ...activations import ACT2FN
from ...cache_utils import Cache, HybridCache
from ...configuration_utils import PretrainedConfig
from ...modeling_flash_attention_utils import FlashAttentionKwargs
from ...modeling_outputs import (
BaseModelOutputWithPast,
CausalLMOutputWithPast,
)
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS
from ...processing_utils import Unpack
from ...utils import logging
from ..gemma.modeling_gemma import (
GemmaAttention,
GemmaForCausalLM,
GemmaForSequenceClassification,
GemmaForTokenClassification,
GemmaMLP,
GemmaModel,
GemmaRMSNorm,
apply_rotary_pos_emb,
repeat_kv,
)
_CHECKPOINT_FOR_DOC = "google/gemma2-7b"
logger = logging.get_logger(__name__)
class Gemma2Config(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`Gemma2Model`]. It is used to instantiate an Gemma2
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
defaults will yield a similar configuration to that of the Gemma2-7B.
e.g. [google/gemma2-7b](https://huggingface.co/google/gemma2-7b)
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 256000):
Vocabulary size of the Gemma2 model. Defines the number of different tokens that can be represented by the
`inputs_ids` passed when calling [`Gemma2Model`]
hidden_size (`int`, *optional*, defaults to 2304):
Dimension of the hidden representations.
intermediate_size (`int`, *optional*, defaults to 9216):
Dimension of the MLP representations.
num_hidden_layers (`int`, *optional*, defaults to 26):
Number of hidden layers in the Transformer decoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer decoder.
num_key_value_heads (`int`, *optional*, defaults to 4):
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
by meanpooling all the original heads within that group. For more details checkout [this
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
`num_attention_heads`.
head_dim (`int`, *optional*, defaults to 256):
The attention head dimension.
hidden_activation (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
The non-linear activation function (function or string) in the decoder. Will default to `"gelu_pytorch_tanh"`
if not specified. `"gelu_pytorch_tanh"` uses an approximation of the `"gelu"` activation function.
max_position_embeddings (`int`, *optional*, defaults to 8192):
The maximum sequence length that this model might ever be used with.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the rms normalization layers.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models). Only
relevant if `config.is_decoder=True`.
pad_token_id (`int`, *optional*, defaults to 0):
Padding token id.
eos_token_id (`int`, *optional*, defaults to 1):
End of stream token id.
bos_token_id (`int`, *optional*, defaults to 2):
Beginning of stream token id.
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
Whether to tie weight embeddings
rope_theta (`float`, *optional*, defaults to 10000.0):
The base period of the RoPE embeddings.
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
Whether to use a bias in the query, key, value and output projection layers during self-attention.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
query_pre_attn_scalar (`float`, *optional*, defaults to 256): scaling factor used on the attention scores
sliding_window (`int`, *optional*, defaults to 4096): in Gemma2, every other layer uses sliding window attention. This is the
size of the sliding window.
final_logit_softcapping (`float`, *optional*, defaults to 30.0): scaling factor when applying tanh softcapping on the logits.
attn_logit_softcapping (`float`, *optional*, defaults to 50.0): scaling factor when applying tanh softcapping on the attention scores.
cache_implementation (`str`, *optional*, defaults to `"hybrid"`): the cache type to be used with `generate`.
```python
>>> from transformers import Gemma2Model, Gemma2Config
>>> # Initializing a Gemma2 gemma2-7b style configuration
>>> configuration = Gemma2Config()
>>> # Initializing a model from the gemma2-7b style configuration
>>> model = Gemma2Model(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "gemma2"
keys_to_ignore_at_inference = ["past_key_values"]
def __init__(
self,
vocab_size=256000,
hidden_size=2304,
intermediate_size=9216,
num_hidden_layers=26,
num_attention_heads=8,
num_key_value_heads=4,
head_dim=256,
hidden_activation="gelu_pytorch_tanh",
max_position_embeddings=8192,
initializer_range=0.02,
rms_norm_eps=1e-6,
use_cache=True,
pad_token_id=0,
eos_token_id=1,
bos_token_id=2,
tie_word_embeddings=True,
rope_theta=10000.0,
attention_bias=False,
attention_dropout=0.0,
query_pre_attn_scalar=256,
sliding_window=4096,
final_logit_softcapping=30.0,
attn_logit_softcapping=50.0,
cache_implementation="hybrid",
**kwargs,
):
super().__init__(
pad_token_id=pad_token_id,
bos_token_id=bos_token_id,
eos_token_id=eos_token_id,
tie_word_embeddings=tie_word_embeddings,
**kwargs,
)
self.vocab_size = vocab_size
self.max_position_embeddings = max_position_embeddings
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.head_dim = head_dim
self.num_key_value_heads = num_key_value_heads
self.initializer_range = initializer_range
self.rms_norm_eps = rms_norm_eps
self.use_cache = use_cache
self.rope_theta = rope_theta
self.attention_bias = attention_bias
self.attention_dropout = attention_dropout
self.hidden_activation = hidden_activation
self.query_pre_attn_scalar = query_pre_attn_scalar
self.sliding_window = sliding_window
self.final_logit_softcapping = final_logit_softcapping
self.attn_logit_softcapping = attn_logit_softcapping
self.cache_implementation = cache_implementation
class Gemma2RMSNorm(GemmaRMSNorm):
pass
class Gemma2MLP(GemmaMLP):
def __init__(self, config):
super().__init__()
self.act_fn = ACT2FN[config.hidden_activation]
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
dropout: float = 0.0,
scaling: Optional[float] = None,
softcap: Optional[float] = None,
**kwargs,
) -> Tuple[torch.Tensor, torch.Tensor]:
if scaling is None:
scaling = module.head_dim**-0.5
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if softcap is not None:
attn_weights = attn_weights / softcap
attn_weights = torch.tanh(attn_weights)
attn_weights = attn_weights * softcap
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class Gemma2Attention(GemmaAttention):
def __init__(self, config: Gemma2Config, layer_idx: int):
super().__init__(config, layer_idx)
self.attn_logit_softcapping = self.config.attn_logit_softcapping
self.attention_dropout = self.config.attention_dropout
self.is_causal = True
self.scaling = config.query_pre_attn_scalar**-0.5
self.sliding_window = config.sliding_window if not bool(layer_idx % 2) else None
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor],
past_key_value: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
input_shape = hidden_states.shape[:-1]
hidden_shape = (*input_shape, -1, self.head_dim)
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
if past_key_value is not None:
# sin and cos are specific to RoPE models; cache_position needed for the static cache
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
logger.warning_once(
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
)
else:
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=self.attention_dropout if self.training else 0.0,
scaling=self.scaling,
sliding_window=self.sliding_window,
softcap=self.attn_logit_softcapping,
**kwargs,
)
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class Gemma2DecoderLayer(nn.Module):
def __init__(self, config: Gemma2Config, layer_idx: int):
super().__init__()
self.hidden_size = config.hidden_size
self.config = config
self.is_sliding = not bool(layer_idx % 2)
self.self_attn = Gemma2Attention(config=config, layer_idx=layer_idx)
self.mlp = Gemma2MLP(config)
self.input_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.pre_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_feedforward_layernorm = Gemma2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.sliding_window = config.sliding_window
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Tuple[torch.Tensor, torch.Tensor],
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Cache] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
if self.is_sliding and attention_mask is not None: # efficient SDPA and no padding
# Flash-attn is a 2D tensor
if self.config._attn_implementation == "flash_attention_2":
if past_key_value is not None: # when decoding
attention_mask = attention_mask[:, -self.sliding_window :]
else:
min_dtype = torch.finfo(hidden_states.dtype).min
sliding_window_mask = torch.tril(
torch.ones_like(attention_mask, dtype=torch.bool), diagonal=-self.sliding_window
)
attention_mask = torch.where(sliding_window_mask, min_dtype, attention_mask)
if attention_mask.shape[-1] <= 1: # when decoding
attention_mask = attention_mask[:, :, :, -self.sliding_window :]
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
)
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.pre_feedforward_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = self.post_feedforward_layernorm(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
return outputs
class Gemma2Model(GemmaModel):
def __init__(self, config: Gemma2Config):
super().__init__(config)
self.layers = nn.ModuleList(
[Gemma2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**flash_attn_kwargs: Unpack[FlashAttentionKwargs],
) -> Union[Tuple, BaseModelOutputWithPast]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if self.gradient_checkpointing and self.training and use_cache:
logger.warning_once(
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
)
use_cache = False
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None and not self.training:
batch_size, seq_len, _ = inputs_embeds.shape
past_key_values = HybridCache(
self.config,
max_batch_size=batch_size,
max_cache_len=seq_len,
dtype=inputs_embeds.dtype,
)
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
causal_mask = self._update_causal_mask(
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
)
# embed positions
hidden_states = inputs_embeds
# create position embeddings to be shared across the decoder layers
position_embeddings = self.rotary_emb(hidden_states, position_ids)
# normalized
# Gemma2 downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
# See https://github.com/huggingface/transformers/pull/29402
normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
hidden_states = hidden_states * normalizer
# decoder layers
all_hidden_states = () if output_hidden_states else None
all_self_attns = () if output_attentions else None
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
if output_hidden_states:
all_hidden_states += (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
decoder_layer.__call__,
hidden_states,
position_embeddings,
causal_mask,
position_ids,
past_key_values,
output_attentions,
use_cache,
cache_position,
)
else:
layer_outputs = decoder_layer(
hidden_states,
position_embeddings=position_embeddings,
attention_mask=causal_mask,
position_ids=position_ids,
past_key_value=past_key_values,
output_attentions=output_attentions,
use_cache=use_cache,
cache_position=cache_position,
**flash_attn_kwargs,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attns += (layer_outputs[1],)
hidden_states = self.norm(hidden_states)
if output_hidden_states:
all_hidden_states += (hidden_states,)
output = BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values,
hidden_states=all_hidden_states,
attentions=all_self_attns,
)
return output if return_dict else output.to_tuple()
@torch.no_grad()
def _update_causal_mask(
self,
attention_mask: torch.Tensor,
input_tensor: torch.Tensor,
cache_position: torch.Tensor,
past_key_values: HybridCache,
output_attentions: bool,
):
# Flash Attention currently doesn't support static cache but Gemma2 work only with static cache.
# So we will pass in attention mask as is in any case, not only when ther's padding. Then we'll use its shape
# to cut out keys/values trailing 0 used in static cache. This workaround should be compile compatible
# as it doesn't cause dynamic control issues.
if self.config._attn_implementation == "flash_attention_2":
return attention_mask
dtype, device = input_tensor.dtype, input_tensor.device
sequence_length = input_tensor.shape[1]
if isinstance(past_key_values, HybridCache):
target_length = past_key_values.get_max_cache_shape()
else:
target_length = attention_mask.shape[-1] if attention_mask is not None else input_tensor.shape[1]
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=target_length,
dtype=dtype,
device=device,
cache_position=cache_position,
batch_size=input_tensor.shape[0],
)
return causal_mask
class Gemma2ForCausalLM(GemmaForCausalLM):
def __init__(self, config):
super().__init__(config)
self.model = Gemma2Model(config)
self.post_init()
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[HybridCache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**loss_kwargs,
) -> Union[Tuple, CausalLMOutputWithPast]:
r"""
```python
>>> from transformers import AutoTokenizer, GemmaForCausalLM
>>> model = GemmaForCausalLM.from_pretrained("google/gemma-2-9b")
>>> tokenizer = AutoTokenizer.from_pretrained("google/gemma-2-9b")
>>> prompt = "What is your favorite condiment?"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> # Generate
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
"What is your favorite condiment?"
```"""
if self.training and self.config._attn_implementation != "eager":
logger.warning_once(
"It is strongly recommended to train Gemma2 models with the `eager` attention implementation "
f"instead of `{self.config._attn_implementation}`. Use `eager` with `AutoModelForCausalLM.from_pretrained('<path-to-checkpoint>', attn_implementation='eager')`."
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
if self.config.final_logit_softcapping is not None:
logits = logits / self.config.final_logit_softcapping
logits = torch.tanh(logits)
logits = logits * self.config.final_logit_softcapping
loss = None
if labels is not None:
loss = self.loss_function(logits, labels, self.vocab_size, **loss_kwargs)
if not return_dict:
output = (logits,) + outputs[1:]
return (loss,) + output if loss is not None else output
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
cache_position=None,
position_ids=None,
use_cache=True,
logits_to_keep=None,
**kwargs,
):
# Overwritten: has a special cache type, `HybridCache`
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
# Exception 1: when passing input_embeds, input_ids may be missing entries
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
if past_key_values is not None:
if inputs_embeds is not None: # Exception 1
input_ids = input_ids[:, -cache_position.shape[0] :]
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
input_ids = input_ids[:, cache_position]
if attention_mask is not None and position_ids is None:
# create position_ids on the fly for batch generation
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
if past_key_values:
position_ids = position_ids[:, -input_ids.shape[1] :]
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s
# `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride
# during the decoding. Here, simply using `.contiguous()` is not sufficient as in the
# batch size = 1 case, `position_ids` is already contiguous but with varying stride
# which retriggers a capture.
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and cache_position[0] == 0:
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
else:
# The clone here is for the same reason as for `position_ids`.
model_inputs = {"input_ids": input_ids.clone(memory_format=torch.contiguous_format), "inputs_embeds": None}
if (
isinstance(past_key_values, HybridCache)
and attention_mask.ndim == 2
and not self.config._attn_implementation == "flash_attention_2"
):
if model_inputs["inputs_embeds"] is not None:
batch_size, sequence_length, _ = model_inputs["inputs_embeds"].shape
device = model_inputs["inputs_embeds"].device
else:
batch_size, sequence_length = model_inputs["input_ids"].shape
device = model_inputs["input_ids"].device
attention_mask = self.model._prepare_4d_causal_attention_mask_with_cache_position(
attention_mask,
sequence_length=sequence_length,
target_length=past_key_values.get_max_cache_shape(),
dtype=self.lm_head.weight.dtype,
device=device,
cache_position=cache_position,
batch_size=batch_size,
)
if logits_to_keep is not None:
model_inputs["logits_to_keep"] = logits_to_keep
model_inputs.update(
{
"position_ids": position_ids,
"cache_position": cache_position,
"past_key_values": past_key_values,
"use_cache": use_cache,
"attention_mask": attention_mask,
}
)
return model_inputs
class Gemma2ForSequenceClassification(GemmaForSequenceClassification):
def __init__(self, config):
super().__init__(config)
self.model = Gemma2Model(config)
self.post_init()
class Gemma2ForTokenClassification(GemmaForTokenClassification):
def __init__(self, config):
super().__init__(config)
self.model = Gemma2Model(config)
self.post_init()
__all__ = [
"Gemma2Config",
"Gemma2ForCausalLM",
"Gemma2Model",
"Gemma2PreTrainedModel", # noqa: F822
"Gemma2ForSequenceClassification",
"Gemma2ForTokenClassification",
]
|
transformers/src/transformers/models/gemma2/modular_gemma2.py/0
|
{
"file_path": "transformers/src/transformers/models/gemma2/modular_gemma2.py",
"repo_id": "transformers",
"token_count": 13517
}
| 120 |
# coding=utf-8
# Copyright 2022 KAIST and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch GLPN model."""
import math
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from ...activations import ACT2FN
from ...modeling_outputs import BaseModelOutput, DepthEstimatorOutput
from ...modeling_utils import PreTrainedModel
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from .configuration_glpn import GLPNConfig
logger = logging.get_logger(__name__)
# General docstring
_CONFIG_FOR_DOC = "GLPNConfig"
# Base docstring
_CHECKPOINT_FOR_DOC = "vinvino02/glpn-kitti"
_EXPECTED_OUTPUT_SHAPE = [1, 512, 15, 20]
# Copied from transformers.models.beit.modeling_beit.drop_path
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
"""
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
argument.
"""
if drop_prob == 0.0 or not training:
return input
keep_prob = 1 - drop_prob
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
random_tensor.floor_() # binarize
output = input.div(keep_prob) * random_tensor
return output
# Copied from transformers.models.segformer.modeling_segformer.SegformerDropPath
class GLPNDropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob: Optional[float] = None) -> None:
super().__init__()
self.drop_prob = drop_prob
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
return drop_path(hidden_states, self.drop_prob, self.training)
def extra_repr(self) -> str:
return "p={}".format(self.drop_prob)
# Copied from transformers.models.segformer.modeling_segformer.SegformerOverlapPatchEmbeddings
class GLPNOverlapPatchEmbeddings(nn.Module):
"""Construct the overlapping patch embeddings."""
def __init__(self, patch_size, stride, num_channels, hidden_size):
super().__init__()
self.proj = nn.Conv2d(
num_channels,
hidden_size,
kernel_size=patch_size,
stride=stride,
padding=patch_size // 2,
)
self.layer_norm = nn.LayerNorm(hidden_size)
def forward(self, pixel_values):
embeddings = self.proj(pixel_values)
_, _, height, width = embeddings.shape
# (batch_size, num_channels, height, width) -> (batch_size, num_channels, height*width) -> (batch_size, height*width, num_channels)
# this can be fed to a Transformer layer
embeddings = embeddings.flatten(2).transpose(1, 2)
embeddings = self.layer_norm(embeddings)
return embeddings, height, width
# Copied from transformers.models.segformer.modeling_segformer.SegformerEfficientSelfAttention
class GLPNEfficientSelfAttention(nn.Module):
"""SegFormer's efficient self-attention mechanism. Employs the sequence reduction process introduced in the [PvT
paper](https://arxiv.org/abs/2102.12122)."""
def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio):
super().__init__()
self.hidden_size = hidden_size
self.num_attention_heads = num_attention_heads
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
f"The hidden size ({self.hidden_size}) is not a multiple of the number of attention "
f"heads ({self.num_attention_heads})"
)
self.attention_head_size = int(self.hidden_size / self.num_attention_heads)
self.all_head_size = self.num_attention_heads * self.attention_head_size
self.query = nn.Linear(self.hidden_size, self.all_head_size)
self.key = nn.Linear(self.hidden_size, self.all_head_size)
self.value = nn.Linear(self.hidden_size, self.all_head_size)
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
self.sr_ratio = sequence_reduction_ratio
if sequence_reduction_ratio > 1:
self.sr = nn.Conv2d(
hidden_size, hidden_size, kernel_size=sequence_reduction_ratio, stride=sequence_reduction_ratio
)
self.layer_norm = nn.LayerNorm(hidden_size)
def transpose_for_scores(self, hidden_states):
new_shape = hidden_states.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
hidden_states = hidden_states.view(new_shape)
return hidden_states.permute(0, 2, 1, 3)
def forward(
self,
hidden_states,
height,
width,
output_attentions=False,
):
query_layer = self.transpose_for_scores(self.query(hidden_states))
if self.sr_ratio > 1:
batch_size, seq_len, num_channels = hidden_states.shape
# Reshape to (batch_size, num_channels, height, width)
hidden_states = hidden_states.permute(0, 2, 1).reshape(batch_size, num_channels, height, width)
# Apply sequence reduction
hidden_states = self.sr(hidden_states)
# Reshape back to (batch_size, seq_len, num_channels)
hidden_states = hidden_states.reshape(batch_size, num_channels, -1).permute(0, 2, 1)
hidden_states = self.layer_norm(hidden_states)
key_layer = self.transpose_for_scores(self.key(hidden_states))
value_layer = self.transpose_for_scores(self.value(hidden_states))
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
# Normalize the attention scores to probabilities.
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
attention_probs = self.dropout(attention_probs)
context_layer = torch.matmul(attention_probs, value_layer)
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
context_layer = context_layer.view(new_context_layer_shape)
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
return outputs
# Copied from transformers.models.segformer.modeling_segformer.SegformerSelfOutput
class GLPNSelfOutput(nn.Module):
def __init__(self, config, hidden_size):
super().__init__()
self.dense = nn.Linear(hidden_size, hidden_size)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, input_tensor):
hidden_states = self.dense(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.segformer.modeling_segformer.SegformerAttention with Segformer->GLPN
class GLPNAttention(nn.Module):
def __init__(self, config, hidden_size, num_attention_heads, sequence_reduction_ratio):
super().__init__()
self.self = GLPNEfficientSelfAttention(
config=config,
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
sequence_reduction_ratio=sequence_reduction_ratio,
)
self.output = GLPNSelfOutput(config, hidden_size=hidden_size)
self.pruned_heads = set()
def prune_heads(self, heads):
if len(heads) == 0:
return
heads, index = find_pruneable_heads_and_indices(
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
)
# Prune linear layers
self.self.query = prune_linear_layer(self.self.query, index)
self.self.key = prune_linear_layer(self.self.key, index)
self.self.value = prune_linear_layer(self.self.value, index)
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
# Update hyper params and store pruned heads
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
self.pruned_heads = self.pruned_heads.union(heads)
def forward(self, hidden_states, height, width, output_attentions=False):
self_outputs = self.self(hidden_states, height, width, output_attentions)
attention_output = self.output(self_outputs[0], hidden_states)
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
return outputs
# Copied from transformers.models.segformer.modeling_segformer.SegformerDWConv
class GLPNDWConv(nn.Module):
def __init__(self, dim=768):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
def forward(self, hidden_states, height, width):
batch_size, seq_len, num_channels = hidden_states.shape
hidden_states = hidden_states.transpose(1, 2).view(batch_size, num_channels, height, width)
hidden_states = self.dwconv(hidden_states)
hidden_states = hidden_states.flatten(2).transpose(1, 2)
return hidden_states
# Copied from transformers.models.segformer.modeling_segformer.SegformerMixFFN with Segformer->GLPN
class GLPNMixFFN(nn.Module):
def __init__(self, config, in_features, hidden_features=None, out_features=None):
super().__init__()
out_features = out_features or in_features
self.dense1 = nn.Linear(in_features, hidden_features)
self.dwconv = GLPNDWConv(hidden_features)
if isinstance(config.hidden_act, str):
self.intermediate_act_fn = ACT2FN[config.hidden_act]
else:
self.intermediate_act_fn = config.hidden_act
self.dense2 = nn.Linear(hidden_features, out_features)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, hidden_states, height, width):
hidden_states = self.dense1(hidden_states)
hidden_states = self.dwconv(hidden_states, height, width)
hidden_states = self.intermediate_act_fn(hidden_states)
hidden_states = self.dropout(hidden_states)
hidden_states = self.dense2(hidden_states)
hidden_states = self.dropout(hidden_states)
return hidden_states
# Copied from transformers.models.segformer.modeling_segformer.SegformerLayer with Segformer->GLPN
class GLPNLayer(nn.Module):
"""This corresponds to the Block class in the original implementation."""
def __init__(self, config, hidden_size, num_attention_heads, drop_path, sequence_reduction_ratio, mlp_ratio):
super().__init__()
self.layer_norm_1 = nn.LayerNorm(hidden_size)
self.attention = GLPNAttention(
config,
hidden_size=hidden_size,
num_attention_heads=num_attention_heads,
sequence_reduction_ratio=sequence_reduction_ratio,
)
self.drop_path = GLPNDropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.layer_norm_2 = nn.LayerNorm(hidden_size)
mlp_hidden_size = int(hidden_size * mlp_ratio)
self.mlp = GLPNMixFFN(config, in_features=hidden_size, hidden_features=mlp_hidden_size)
def forward(self, hidden_states, height, width, output_attentions=False):
self_attention_outputs = self.attention(
self.layer_norm_1(hidden_states), # in GLPN, layernorm is applied before self-attention
height,
width,
output_attentions=output_attentions,
)
attention_output = self_attention_outputs[0]
outputs = self_attention_outputs[1:] # add self attentions if we output attention weights
# first residual connection (with stochastic depth)
attention_output = self.drop_path(attention_output)
hidden_states = attention_output + hidden_states
mlp_output = self.mlp(self.layer_norm_2(hidden_states), height, width)
# second residual connection (with stochastic depth)
mlp_output = self.drop_path(mlp_output)
layer_output = mlp_output + hidden_states
outputs = (layer_output,) + outputs
return outputs
class GLPNEncoder(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
# patch embeddings
embeddings = []
for i in range(config.num_encoder_blocks):
embeddings.append(
GLPNOverlapPatchEmbeddings(
patch_size=config.patch_sizes[i],
stride=config.strides[i],
num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1],
hidden_size=config.hidden_sizes[i],
)
)
self.patch_embeddings = nn.ModuleList(embeddings)
# Transformer blocks
blocks = []
cur = 0
for i in range(config.num_encoder_blocks):
# each block consists of layers
layers = []
if i != 0:
cur += config.depths[i - 1]
for j in range(config.depths[i]):
layers.append(
GLPNLayer(
config,
hidden_size=config.hidden_sizes[i],
num_attention_heads=config.num_attention_heads[i],
drop_path=dpr[cur + j],
sequence_reduction_ratio=config.sr_ratios[i],
mlp_ratio=config.mlp_ratios[i],
)
)
blocks.append(nn.ModuleList(layers))
self.block = nn.ModuleList(blocks)
# Layer norms
self.layer_norm = nn.ModuleList(
[nn.LayerNorm(config.hidden_sizes[i]) for i in range(config.num_encoder_blocks)]
)
def forward(
self,
pixel_values,
output_attentions=False,
output_hidden_states=False,
return_dict=True,
):
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
batch_size = pixel_values.shape[0]
hidden_states = pixel_values
for idx, x in enumerate(zip(self.patch_embeddings, self.block, self.layer_norm)):
embedding_layer, block_layer, norm_layer = x
# first, obtain patch embeddings
hidden_states, height, width = embedding_layer(hidden_states)
# second, send embeddings through blocks
for i, blk in enumerate(block_layer):
layer_outputs = blk(hidden_states, height, width, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
# third, apply layer norm
hidden_states = norm_layer(hidden_states)
# fourth, optionally reshape back to (batch_size, num_channels, height, width)
hidden_states = hidden_states.reshape(batch_size, height, width, -1).permute(0, 3, 1, 2).contiguous()
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
class GLPNPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GLPNConfig
base_model_prefix = "glpn"
main_input_name = "pixel_values"
_no_split_modules = []
# Copied from transformers.models.segformer.modeling_segformer.SegformerPreTrainedModel._init_weights
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
GLPN_START_DOCSTRING = r"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`GLPNConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
GLPN_INPUTS_DOCSTRING = r"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
[`AutoImageProcessor`]. See [`GLPNImageProcessor.__call__`] for details.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare GLPN encoder (Mix-Transformer) outputting raw hidden-states without any specific head on top.",
GLPN_START_DOCSTRING,
)
class GLPNModel(GLPNPreTrainedModel):
# Copied from transformers.models.segformer.modeling_segformer.SegformerModel.__init__ with Segformer->GLPN
def __init__(self, config):
super().__init__(config)
self.config = config
# hierarchical Transformer encoder
self.encoder = GLPNEncoder(config)
# Initialize weights and apply final processing
self.post_init()
def _prune_heads(self, heads_to_prune):
"""
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
class PreTrainedModel
"""
for layer, heads in heads_to_prune.items():
self.encoder.layer[layer].attention.prune_heads(heads)
@add_start_docstrings_to_model_forward(GLPN_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=BaseModelOutput,
config_class=_CONFIG_FOR_DOC,
modality="vision",
expected_output=_EXPECTED_OUTPUT_SHAPE,
)
# Copied from transformers.models.segformer.modeling_segformer.SegformerModel.forward
def forward(
self,
pixel_values: torch.FloatTensor,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
encoder_outputs = self.encoder(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = encoder_outputs[0]
if not return_dict:
return (sequence_output,) + encoder_outputs[1:]
return BaseModelOutput(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
class GLPNSelectiveFeatureFusion(nn.Module):
"""
Selective Feature Fusion module, as explained in the [paper](https://arxiv.org/abs/2201.07436) (section 3.4). This
module adaptively selects and integrates local and global features by attaining an attention map for each feature.
"""
def __init__(self, in_channel=64):
super().__init__()
self.convolutional_layer1 = nn.Sequential(
nn.Conv2d(in_channels=int(in_channel * 2), out_channels=in_channel, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(in_channel),
nn.ReLU(),
)
self.convolutional_layer2 = nn.Sequential(
nn.Conv2d(in_channels=in_channel, out_channels=int(in_channel / 2), kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(int(in_channel / 2)),
nn.ReLU(),
)
self.convolutional_layer3 = nn.Conv2d(
in_channels=int(in_channel / 2), out_channels=2, kernel_size=3, stride=1, padding=1
)
self.sigmoid = nn.Sigmoid()
def forward(self, local_features, global_features):
# concatenate features along the channel dimension
features = torch.cat((local_features, global_features), dim=1)
# pass through convolutional layers
features = self.convolutional_layer1(features)
features = self.convolutional_layer2(features)
features = self.convolutional_layer3(features)
# apply sigmoid to get two-channel attention map
attn = self.sigmoid(features)
# construct hybrid features by adding element-wise
hybrid_features = local_features * attn[:, 0, :, :].unsqueeze(1) + global_features * attn[
:, 1, :, :
].unsqueeze(1)
return hybrid_features
class GLPNDecoderStage(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
should_skip = in_channels == out_channels
self.convolution = nn.Conv2d(in_channels, out_channels, kernel_size=1) if not should_skip else nn.Identity()
self.fusion = GLPNSelectiveFeatureFusion(out_channels)
self.upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False)
def forward(self, hidden_state, residual=None):
hidden_state = self.convolution(hidden_state)
if residual is not None:
hidden_state = self.fusion(hidden_state, residual)
hidden_state = self.upsample(hidden_state)
return hidden_state
hidden_state = self.upsample(hidden_state)
return hidden_state
class GLPNDecoder(nn.Module):
def __init__(self, config):
super().__init__()
# we use features from end -> start
reserved_hidden_sizes = config.hidden_sizes[::-1]
out_channels = config.decoder_hidden_size
self.stages = nn.ModuleList(
[GLPNDecoderStage(hidden_size, out_channels) for hidden_size in reserved_hidden_sizes]
)
# don't fuse in first stage
self.stages[0].fusion = None
self.final_upsample = nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False)
def forward(self, hidden_states: List[torch.Tensor]) -> List[torch.Tensor]:
stage_hidden_states = []
stage_hidden_state = None
for hidden_state, stage in zip(hidden_states[::-1], self.stages):
stage_hidden_state = stage(hidden_state, stage_hidden_state)
stage_hidden_states.append(stage_hidden_state)
stage_hidden_states[-1] = self.final_upsample(stage_hidden_state)
return stage_hidden_states
class SiLogLoss(nn.Module):
r"""
Implements the Scale-invariant log scale loss [Eigen et al., 2014](https://arxiv.org/abs/1406.2283).
$$L=\frac{1}{n} \sum_{i} d_{i}^{2}-\frac{1}{2 n^{2}}\left(\sum_{i} d_{i}^{2}\right)$$ where $d_{i}=\log y_{i}-\log
y_{i}^{*}$.
"""
def __init__(self, lambd=0.5):
super().__init__()
self.lambd = lambd
def forward(self, pred, target):
valid_mask = (target > 0).detach()
diff_log = torch.log(target[valid_mask]) - torch.log(pred[valid_mask])
loss = torch.sqrt(torch.pow(diff_log, 2).mean() - self.lambd * torch.pow(diff_log.mean(), 2))
return loss
class GLPNDepthEstimationHead(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
channels = config.decoder_hidden_size
self.head = nn.Sequential(
nn.Conv2d(channels, channels, kernel_size=3, stride=1, padding=1),
nn.ReLU(inplace=False),
nn.Conv2d(channels, 1, kernel_size=3, stride=1, padding=1),
)
def forward(self, hidden_states: List[torch.Tensor]) -> torch.Tensor:
# use last features of the decoder
hidden_states = hidden_states[self.config.head_in_index]
hidden_states = self.head(hidden_states)
predicted_depth = torch.sigmoid(hidden_states) * self.config.max_depth
predicted_depth = predicted_depth.squeeze(dim=1)
return predicted_depth
@add_start_docstrings(
"""GLPN Model transformer with a lightweight depth estimation head on top e.g. for KITTI, NYUv2.""",
GLPN_START_DOCSTRING,
)
class GLPNForDepthEstimation(GLPNPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.glpn = GLPNModel(config)
self.decoder = GLPNDecoder(config)
self.head = GLPNDepthEstimationHead(config)
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(GLPN_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
@replace_return_docstrings(output_type=DepthEstimatorOutput, config_class=_CONFIG_FOR_DOC)
def forward(
self,
pixel_values: torch.FloatTensor,
labels: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple[torch.Tensor], DepthEstimatorOutput]:
r"""
labels (`torch.FloatTensor` of shape `(batch_size, height, width)`, *optional*):
Ground truth depth estimation maps for computing the loss.
Returns:
Examples:
```python
>>> from transformers import AutoImageProcessor, GLPNForDepthEstimation
>>> import torch
>>> import numpy as np
>>> from PIL import Image
>>> import requests
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> image_processor = AutoImageProcessor.from_pretrained("vinvino02/glpn-kitti")
>>> model = GLPNForDepthEstimation.from_pretrained("vinvino02/glpn-kitti")
>>> # prepare image for the model
>>> inputs = image_processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
... outputs = model(**inputs)
>>> # interpolate to original size
>>> post_processed_output = image_processor.post_process_depth_estimation(
... outputs,
... target_sizes=[(image.height, image.width)],
... )
>>> # visualize the prediction
>>> predicted_depth = post_processed_output[0]["predicted_depth"]
>>> depth = predicted_depth * 255 / predicted_depth.max()
>>> depth = depth.detach().cpu().numpy()
>>> depth = Image.fromarray(depth.astype("uint8"))
```"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
outputs = self.glpn(
pixel_values,
output_attentions=output_attentions,
output_hidden_states=True, # we need the intermediate hidden states
return_dict=return_dict,
)
hidden_states = outputs.hidden_states if return_dict else outputs[1]
out = self.decoder(hidden_states)
predicted_depth = self.head(out)
loss = None
if labels is not None:
loss_fct = SiLogLoss()
loss = loss_fct(predicted_depth, labels)
if not return_dict:
if output_hidden_states:
output = (predicted_depth,) + outputs[1:]
else:
output = (predicted_depth,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return DepthEstimatorOutput(
loss=loss,
predicted_depth=predicted_depth,
hidden_states=outputs.hidden_states if output_hidden_states else None,
attentions=outputs.attentions,
)
__all__ = ["GLPNForDepthEstimation", "GLPNLayer", "GLPNModel", "GLPNPreTrainedModel"]
|
transformers/src/transformers/models/glpn/modeling_glpn.py/0
|
{
"file_path": "transformers/src/transformers/models/glpn/modeling_glpn.py",
"repo_id": "transformers",
"token_count": 13171
}
| 121 |
# coding=utf-8
# Copyright 2021 The Eleuther AI and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Convert GPT Neo checkpoint."""
import argparse
import json
from transformers import GPTNeoConfig, GPTNeoForCausalLM, load_tf_weights_in_gpt_neo
from transformers.utils import logging
logging.set_verbosity_info()
def convert_tf_checkpoint_to_pytorch(tf_checkpoint_path, config_file, pytorch_dump_path):
# Initialise PyTorch model
config_json = json.load(open(config_file, "r"))
config = GPTNeoConfig(
hidden_size=config_json["n_embd"],
num_layers=config_json["n_layer"],
num_heads=config_json["n_head"],
attention_types=config_json["attention_types"],
max_position_embeddings=config_json["n_positions"],
resid_dropout=config_json["res_dropout"],
embed_dropout=config_json["embed_dropout"],
attention_dropout=config_json["attn_dropout"],
)
print(f"Building PyTorch model from configuration: {config}")
model = GPTNeoForCausalLM(config)
# Load weights from tf checkpoint
load_tf_weights_in_gpt_neo(model, config, tf_checkpoint_path)
# Save pytorch-model
print(f"Save PyTorch model to {pytorch_dump_path}")
model.save_pretrained(pytorch_dump_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path."
)
parser.add_argument(
"--config_file",
default=None,
type=str,
required=True,
help=(
"The config json file corresponding to the pre-trained mesh-tf model. \n"
"This specifies the model architecture."
),
)
parser.add_argument(
"--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
args = parser.parse_args()
convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
|
transformers/src/transformers/models/gpt_neo/convert_gpt_neo_mesh_tf_to_pytorch.py/0
|
{
"file_path": "transformers/src/transformers/models/gpt_neo/convert_gpt_neo_mesh_tf_to_pytorch.py",
"repo_id": "transformers",
"token_count": 957
}
| 122 |
# coding=utf-8
# Copyright 2021 The EleutherAI and The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
from typing import Optional, Tuple
import flax.linen as nn
import jax
import jax.numpy as jnp
import numpy as np
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
from flax.linen import combine_masks, make_causal_mask
from flax.linen.attention import dot_product_attention_weights
from flax.traverse_util import flatten_dict, unflatten_dict
from jax import lax
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_gptj import GPTJConfig
logger = logging.get_logger(__name__)
_CHECKPOINT_FOR_DOC = "gptj"
_CONFIG_FOR_DOC = "GPTJConfig"
GPTJ_START_DOCSTRING = r"""
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a Flax Linen
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
Parameters:
config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
`jax.numpy.bfloat16` (on TPUs).
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
specified all the computation will be performed with the given `dtype`.
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
parameters.**
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
[`~FlaxPreTrainedModel.to_bf16`].
"""
GPTJ_INPUTS_DOCSTRING = r"""
Args:
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
`input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
config.max_position_embeddings - 1]`.
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
def create_sinusoidal_positions(num_pos, dim):
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
sinusoid_inp = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32")
sin, cos = np.sin(sinusoid_inp), np.cos(sinusoid_inp)
sentinel = dim // 2 + dim % 2
out = np.zeros((num_pos, dim))
out[:, 0:sentinel] = sin
out[:, sentinel:] = cos
return jnp.array(out)
def rotate_every_two(tensor):
rotate_half_tensor = jnp.stack((-tensor[:, :, :, 1::2], tensor[:, :, :, ::2]), axis=-1)
rotate_half_tensor = rotate_half_tensor.reshape(rotate_half_tensor.shape[:-2] + (-1,))
return rotate_half_tensor
def apply_rotary_pos_emb(tensor, sincos):
sin_pos, cos_pos = sincos
sin_pos = sin_pos[:, :, None, :].repeat(2, 3)
cos_pos = cos_pos[:, :, None, :].repeat(2, 3)
return (tensor * cos_pos) + (rotate_every_two(tensor) * sin_pos)
class FlaxGPTJAttention(nn.Module):
config: GPTJConfig
dtype: jnp.dtype = jnp.float32
causal: bool = True
is_cross_attention: bool = False
def setup(self):
config = self.config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
self.rotary_dim = config.rotary_dim
dense = partial(
nn.Dense,
self.embed_dim,
use_bias=False,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
)
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
self.out_proj = dense()
self.resid_dropout = nn.Dropout(rate=config.resid_pdrop)
self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool")
pos_embd_dim = self.rotary_dim or self.embed_dim
self.embed_positions = create_sinusoidal_positions(config.max_position_embeddings, pos_embd_dim)
def _split_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
def _merge_heads(self, hidden_states):
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
@nn.compact
def _concatenate_to_cache(self, key, value, query, attention_mask):
"""
This function takes projected key, value states from a single input token and concatenates the states to cached
states from previous steps. This function is slighly adapted from the official Flax repository:
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
"""
# detect if we're initializing by absence of existing cache data.
is_initialized = self.has_variable("cache", "cached_key")
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
if is_initialized:
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
# update key, value caches with our new 1d spatial slices
cur_index = cache_index.value
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
key = lax.dynamic_update_slice(cached_key.value, key, indices)
value = lax.dynamic_update_slice(cached_value.value, value, indices)
cached_key.value = key
cached_value.value = value
num_updated_cache_vectors = query.shape[1]
cache_index.value = cache_index.value + num_updated_cache_vectors
# causal mask for cached decoder self-attention: our single query position should only attend to those key
# positions that have already been generated and cached, not the remaining zero elements.
pad_mask = jnp.broadcast_to(
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
)
attention_mask = combine_masks(pad_mask, attention_mask)
return key, value, attention_mask
def __call__(
self,
hidden_states,
attention_mask,
position_ids,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
query = self.q_proj(hidden_states)
key = self.k_proj(hidden_states)
value = self.v_proj(hidden_states)
query = self._split_heads(query)
key = self._split_heads(key)
value = self._split_heads(value)
sincos = jnp.take(self.embed_positions, position_ids, axis=0)
sincos = jnp.split(sincos, 2, axis=-1)
if self.rotary_dim is not None:
k_rot = key[:, :, :, : self.rotary_dim]
k_pass = key[:, :, :, self.rotary_dim :]
q_rot = query[:, :, :, : self.rotary_dim]
q_pass = query[:, :, :, self.rotary_dim :]
k_rot = apply_rotary_pos_emb(k_rot, sincos)
q_rot = apply_rotary_pos_emb(q_rot, sincos)
key = jnp.concatenate([k_rot, k_pass], axis=-1)
query = jnp.concatenate([q_rot, q_pass], axis=-1)
else:
key = apply_rotary_pos_emb(key, sincos)
query = apply_rotary_pos_emb(query, sincos)
query_length, key_length = query.shape[1], key.shape[1]
if self.has_variable("cache", "cached_key"):
mask_shift = self.variables["cache"]["cache_index"]
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
causal_mask = lax.dynamic_slice(
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
)
else:
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
batch_size = hidden_states.shape[0]
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
attention_mask = combine_masks(attention_mask, causal_mask)
dropout_rng = None
if not deterministic and self.config.attn_pdrop > 0.0:
dropout_rng = self.make_rng("dropout")
# During fast autoregressive decoding, we feed one position at a time,
# and cache the keys and values step by step.
if self.has_variable("cache", "cached_key") or init_cache:
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
# transform boolean mask into float mask
attention_bias = lax.select(
attention_mask > 0,
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
)
# usual dot product attention
attn_weights = dot_product_attention_weights(
query,
key,
bias=attention_bias,
dropout_rng=dropout_rng,
dropout_rate=self.config.attn_pdrop,
deterministic=deterministic,
dtype=self.dtype,
precision=None,
)
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
attn_output = self._merge_heads(attn_output)
attn_output = self.out_proj(attn_output)
attn_output = self.resid_dropout(attn_output, deterministic=deterministic)
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
return outputs
class FlaxGPTJMLP(nn.Module):
config: GPTJConfig
intermediate_size: int
dtype: jnp.dtype = jnp.float32
def setup(self):
embed_dim = self.config.hidden_size
kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
self.fc_in = nn.Dense(self.intermediate_size, dtype=self.dtype, kernel_init=kernel_init)
self.fc_out = nn.Dense(embed_dim, dtype=self.dtype, kernel_init=kernel_init)
self.act = ACT2FN[self.config.activation_function]
self.dropout = nn.Dropout(rate=self.config.resid_pdrop)
def __call__(self, hidden_states, deterministic: bool = True):
hidden_states = self.fc_in(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.fc_out(hidden_states)
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
return hidden_states
class FlaxGPTJBlock(nn.Module):
config: GPTJConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
hidden_size = self.config.hidden_size
inner_dim = self.config.n_inner if self.config.n_inner is not None else 4 * hidden_size
self.ln_1 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
self.attn = FlaxGPTJAttention(self.config, dtype=self.dtype)
self.mlp = FlaxGPTJMLP(self.config, inner_dim, dtype=self.dtype)
def __call__(
self,
hidden_states,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
):
residual = hidden_states
hidden_states = self.ln_1(hidden_states)
attn_outputs = self.attn(
hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
attn_output = attn_outputs[0]
feed_forward_hidden_states = self.mlp(hidden_states, deterministic=deterministic)
# residual connection
hidden_states = attn_output + feed_forward_hidden_states + residual
return (hidden_states,) + attn_outputs[1:]
class FlaxGPTJPreTrainedModel(FlaxPreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = GPTJConfig
base_model_prefix = "transformer"
module_class: nn.Module = None
def __init__(
self,
config: GPTJConfig,
input_shape: Tuple = (1, 1),
seed: int = 0,
dtype: jnp.dtype = jnp.float32,
_do_init: bool = True,
**kwargs,
):
module = self.module_class(config=config, dtype=dtype, **kwargs)
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
# init input tensors
input_ids = jnp.zeros(input_shape, dtype="i4")
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
params_rng, dropout_rng = jax.random.split(rng)
rngs = {"params": params_rng, "dropout": dropout_rng}
if self.config.add_cross_attention:
encoder_hidden_states = jnp.zeros(input_shape + (self.config.n_embd,))
encoder_attention_mask = attention_mask
module_init_outputs = self.module.init(
rngs,
input_ids,
attention_mask,
position_ids,
encoder_hidden_states,
encoder_attention_mask,
return_dict=False,
)
else:
module_init_outputs = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)
random_params = module_init_outputs["params"]
if params is not None:
random_params = flatten_dict(unfreeze(random_params))
params = flatten_dict(unfreeze(params))
for missing_key in self._missing_keys:
params[missing_key] = random_params[missing_key]
self._missing_keys = set()
return freeze(unflatten_dict(params))
else:
return random_params
def init_cache(self, batch_size, max_length):
r"""
Args:
batch_size (`int`):
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
max_length (`int`):
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
cache.
"""
# init input variables to retrieve cache
input_ids = jnp.ones((batch_size, max_length))
attention_mask = jnp.ones_like(input_ids)
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
init_variables = self.module.init(
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
)
return init_variables["cache"]
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING)
def __call__(
self,
input_ids,
attention_mask=None,
position_ids=None,
params: dict = None,
past_key_values: dict = None,
dropout_rng: jax.random.PRNGKey = None,
train: bool = False,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.return_dict
batch_size, sequence_length = input_ids.shape
if position_ids is None:
if past_key_values is not None:
raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
if attention_mask is None:
attention_mask = jnp.ones((batch_size, sequence_length))
# Handle any PRNG if needed
rngs = {}
if dropout_rng is not None:
rngs["dropout"] = dropout_rng
inputs = {"params": params or self.params}
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPTJAttention module
if past_key_values:
inputs["cache"] = past_key_values
mutable = ["cache"]
else:
mutable = False
outputs = self.module.apply(
inputs,
jnp.array(input_ids, dtype="i4"),
jnp.array(attention_mask, dtype="i4"),
jnp.array(position_ids, dtype="i4"),
not train,
False,
output_attentions,
output_hidden_states,
return_dict,
rngs=rngs,
mutable=mutable,
)
# add updated cache to model output
if past_key_values is not None and return_dict:
outputs, past_key_values = outputs
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
return outputs
elif past_key_values is not None and not return_dict:
outputs, past_key_values = outputs
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
return outputs
class FlaxGPTJBlockCollection(nn.Module):
config: GPTJConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.blocks = [
FlaxGPTJBlock(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
]
def __call__(
self,
hidden_states,
attention_mask=None,
position_ids=None,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
all_attentions = () if output_attentions else None
all_hidden_states = () if output_hidden_states else None
for block in self.blocks:
if output_hidden_states:
all_hidden_states += (hidden_states,)
layer_outputs = block(
hidden_states,
attention_mask,
position_ids=position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions += (layer_outputs[1],)
# this contains possible `None` values - `FlaxGPTJModule` will filter them out
outputs = (hidden_states, all_hidden_states, all_attentions)
return outputs
class FlaxGPTJModule(nn.Module):
config: GPTJConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.embed_dim = self.config.hidden_size
self.wte = nn.Embed(
self.config.vocab_size,
self.config.hidden_size,
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
self.dropout = nn.Dropout(rate=self.config.embd_pdrop)
self.h = FlaxGPTJBlockCollection(self.config, dtype=self.dtype)
self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
deterministic=True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
input_embeds = self.wte(input_ids.astype("i4"))
hidden_states = self.dropout(input_embeds, deterministic=deterministic)
outputs = self.h(
hidden_states,
attention_mask,
position_ids=position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
hidden_states = self.ln_f(hidden_states)
if output_hidden_states:
all_hidden_states = outputs[1] + (hidden_states,)
outputs = (hidden_states, all_hidden_states) + outputs[2:]
else:
outputs = (hidden_states,) + outputs[1:]
if not return_dict:
return tuple(v for v in outputs if v is not None)
return FlaxBaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=outputs[1],
attentions=outputs[-1],
)
@add_start_docstrings(
"The bare GPTJ Model transformer outputting raw hidden-states without any specific head on top.",
GPTJ_START_DOCSTRING,
)
class FlaxGPTJModel(FlaxGPTJPreTrainedModel):
module_class = FlaxGPTJModule
append_call_sample_docstring(
FlaxGPTJModel,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutput,
_CONFIG_FOR_DOC,
)
class FlaxGPTJForCausalLMModule(nn.Module):
config: GPTJConfig
dtype: jnp.dtype = jnp.float32
def setup(self):
self.transformer = FlaxGPTJModule(self.config, dtype=self.dtype)
self.lm_head = nn.Dense(
self.config.vocab_size,
dtype=self.dtype,
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
)
def __call__(
self,
input_ids,
attention_mask,
position_ids,
deterministic: bool = True,
init_cache: bool = False,
output_attentions: bool = False,
output_hidden_states: bool = False,
return_dict: bool = True,
):
outputs = self.transformer(
input_ids,
attention_mask,
position_ids,
deterministic=deterministic,
init_cache=init_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
hidden_states = outputs[0]
if self.config.tie_word_embeddings:
shared_kernel = self.transformer.variables["params"]["wte"]["embedding"].T
lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
else:
lm_logits = self.lm_head(hidden_states)
if not return_dict:
return (lm_logits,) + outputs[1:]
return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
@add_start_docstrings(
"""
The GPTJ Model transformer with a language modeling head on top.
""",
GPTJ_START_DOCSTRING,
)
class FlaxGPTJForCausalLM(FlaxGPTJPreTrainedModel):
module_class = FlaxGPTJForCausalLMModule
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
# initializing the cache
batch_size, seq_length = input_ids.shape
past_key_values = self.init_cache(batch_size, max_length)
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
# But since GPTJ uses a causal mask, those positions are masked anyways.
# Thus we can create a single static attention_mask here, which is more efficient for compilation
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
if attention_mask is not None:
position_ids = attention_mask.cumsum(axis=-1) - 1
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
else:
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
return {
"past_key_values": past_key_values,
"attention_mask": extended_attention_mask,
"position_ids": position_ids,
}
def update_inputs_for_generation(self, model_outputs, model_kwargs):
model_kwargs["past_key_values"] = model_outputs.past_key_values
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
return model_kwargs
append_call_sample_docstring(
FlaxGPTJForCausalLM,
_CHECKPOINT_FOR_DOC,
FlaxCausalLMOutput,
_CONFIG_FOR_DOC,
)
__all__ = ["FlaxGPTJForCausalLM", "FlaxGPTJModel", "FlaxGPTJPreTrainedModel"]
|
transformers/src/transformers/models/gptj/modeling_flax_gptj.py/0
|
{
"file_path": "transformers/src/transformers/models/gptj/modeling_flax_gptj.py",
"repo_id": "transformers",
"token_count": 12496
}
| 123 |
# This code was adapted from https://github.com/lucidrains/flamingo-pytorch licensed under the MIT License.
#
# MIT License
#
# Copyright (c) 2020 The Google AI Language Team Authors, The HuggingFace Inc. team and github/lonePatient
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
"""
Generic interface to various configurations of the Perceiver Resampler, that simply takes in a series of (potentially
time-indexed) contextual embeddings, and "resamples" (compresses) them down to a pre-specified number of latents! Note
that the Perceiver in general resamples based solely off the *long-range* context; there's a nice opportunity here to
prime the Perceiver Resampler with say a single layer's worth of language embeddings (the target domain), and use that
to softly "retrieve & compress" what we need --> this would be a novel contribution we should explore.
References:
- DeepMind's Flamingo: https://www.deepmind.com/blog/tackling-multiple-tasks-with-a-single-visual-language-model
- Code borrowed w/ love from: https://github.com/lucidrains/flamingo-pytorch
"""
from typing import Optional, Tuple
import torch
import torch.nn as nn
from .configuration_idefics import IdeficsConfig
class IdeficsPerceiverResampler(nn.Module):
def __init__(
self, config: IdeficsConfig, embed_dim: int, depth: int, n_heads: int, head_dim: int, n_latents: int
) -> None:
"""
Instantiates a Perceiver Resampler that operates over a sequence of embeddings (say from a ResNet or ViT or
MAE) of a given dimension, performs `depth` blocks of cross-attention with a fixed `n_latents` inputs, then
returns a Tensor of shape [bsz, n_latents, embed_dim]. :param embed_dim: Dimensionality of embeddings being fed
to the Perceiver Resampler (also dimensionality of latent embeddings *returned* by the Perceiver Resampler.
Could be e.g., VIT embed_dim, ResNet pool dim, and so on.
Args:
config (`IdeficsConfig`): config object
embed_dim (`int`): The size of each embedding vector
depth (`int`): Depth of the Perceiver Resampler (Transformer w/ cross attention). Should be shallow (< 3).
n_heads (`int`): Number of heads in each Transformer block (for multi-headed self-attention).
head_dim (`int`): Dimensionality of each head projection in the Transformer block.
n_latents (`int`):
Number of latent embeddings to resample ("compress") the input sequence to (usually < 128).
"""
super().__init__()
self.embed_dim, self.n_heads, self.head_dim, self.n_latents = embed_dim, n_heads, head_dim, n_latents
self.qk_layer_norms = config.perceiver_config.qk_layer_norms_perceiver
# Create Latents for Perceiver
self.latents = nn.Parameter(torch.randn(self.n_latents, self.embed_dim), requires_grad=True)
self.intermediate_dim = (
self.embed_dim * 4
if not hasattr(config.vision_config, "embed_dim")
else config.vision_config.embed_dim * 4
)
# Create Transformer Blocks
self.blocks = nn.ModuleList(
[
nn.ModuleList(
[
IdeficsPerceiverAttention(self.embed_dim, self.n_heads, self.head_dim, self.qk_layer_norms),
IdeficsMLP(self.intermediate_dim, config),
]
)
for _ in range(depth)
]
)
self.layer_norm = nn.LayerNorm(self.embed_dim)
def forward(self, context: torch.Tensor) -> torch.Tensor:
"""Resample arbitrary length context & *compress* down to self.n_latents latent embeddings"""
# einsum.repeat(self.latents, "seq embed -> bsz seq embed", bsz=context.shape[0])
latents = self.latents.repeat(context.shape[0], 1, 1)
# Feed through Perceiver Attention blocks...
for attn, ff in self.blocks:
latents = attn(context, latents) + latents
latents = ff(latents) + latents
return self.layer_norm(latents)
class IdeficsPerceiverAttention(nn.Module):
def __init__(self, embed_dim: int, n_heads: int, head_dim: int, qk_layer_norms: bool) -> None:
"""Perceiver Cross-Attention Module --> let long-form inputs be `context`, resampled embeddings be `latents`"""
super().__init__()
self.embed_dim, self.n_heads, self.head_dim = embed_dim, n_heads, head_dim
self.qk_layer_norms = qk_layer_norms
# Normalization & Scaling
self.context_layer_norm = nn.LayerNorm(self.embed_dim)
self.latents_layer_norm = nn.LayerNorm(self.embed_dim)
if self.qk_layer_norms:
self.q_layer_norm = nn.LayerNorm(self.head_dim)
self.k_layer_norm = nn.LayerNorm(self.head_dim)
self.qk_scale = self.head_dim**-0.5
# Q, K, V Projection (no bias -- detail from Perceiver/Flamingo Papers).
self.q_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.embed_dim, self.n_heads * self.head_dim, bias=False)
self.output_proj = nn.Linear(self.n_heads * self.head_dim, embed_dim, bias=False)
def forward(self, context: torch.Tensor, latents: torch.Tensor) -> torch.Tensor:
"""
Runs Perceiver Self-Attention, with special (context, latents) appended along the `seq` dimension!
Args:
context (`torch.Tensor`):
Tensor of shape `[bsz, seq, embed_dim]` representing long-form context to resample.
latents (`torch.Tensor`):
Tensor of shape `[bsz, n_latents, embed_dim]` representing fixed length latents to compress to.
Returns:
`torch.Tensor`: Tensor of shape `[bsz, n_latents, embed_dim]` representing attention over latents w/ cross
from context.
"""
context = self.context_layer_norm(context)
latents = self.latents_layer_norm(latents)
batch_size, seq_length, embed_dim = context.shape[:3]
# Query, Key, Value Projections --> Note that in Flamingo, latents are *concatenated* with context prior to attn!
# Note: This results in queries w/ `seq = n_latents`, and keys, values with `seq = len(context) + n_latents`
q = self.q_proj(latents)
k = self.k_proj(torch.cat([context, latents], dim=-2))
v = self.v_proj(torch.cat([context, latents], dim=-2))
# Multiheaded Self-Attention w/ stable softmax (subtract per-row max -- `amax` -- before softmax call)
# =>> `attn` should be a 2D matrix of shape [n_latents x (context + n_latents)]
# einsum.rearrange(x, "bsz seq (heads embed) -> bsz heads seq embed", heads=self.n_heads)
q, k, v = [x.reshape(batch_size, x.shape[1], self.n_heads, self.head_dim).transpose(1, 2) for x in (q, k, v)]
if self.qk_layer_norms:
q = self.q_layer_norm(q)
k = self.k_layer_norm(k)
scores = torch.einsum("... i d, ... j d -> ... i j", q * self.qk_scale, k)
stabilized_scores = scores - (scores.amax(dim=-1, keepdim=True).detach())
attn = stabilized_scores.softmax(dim=-1)
# Attend & project back to output...
resampled = torch.einsum("... i j, ... j d -> ... i d", attn, v)
# einsum.rearrange(resampled, "bsz heads seq embed -> bsz seq (heads embed)", heads=self.n_heads)
return self.output_proj(resampled.transpose(1, 2).flatten(-2))
class IdeficsMLP(nn.Module):
def __init__(self, intermediate_size, config: IdeficsConfig):
"""Simple MLP block with intermediate_size and embedding size"""
super().__init__()
self.embed_dim = config.vision_config.embed_dim
self.ln = nn.LayerNorm(self.embed_dim)
self.fc = nn.Linear(self.embed_dim, intermediate_size, bias=False)
self.act = nn.ReLU()
self.c_proj = nn.Linear(intermediate_size, self.embed_dim, bias=False)
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
hidden_states = self.ln(hidden_states)
hidden_states = self.fc(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.c_proj(hidden_states)
return hidden_states
|
transformers/src/transformers/models/idefics/perceiver.py/0
|
{
"file_path": "transformers/src/transformers/models/idefics/perceiver.py",
"repo_id": "transformers",
"token_count": 3756
}
| 124 |
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for Idefics3.
"""
import re
from itertools import accumulate
from typing import TYPE_CHECKING, Dict, List, Optional, Union
from ...feature_extraction_utils import BatchFeature
from ...image_utils import ImageInput, is_valid_image, load_image
from ...processing_utils import ImagesKwargs, ProcessingKwargs, ProcessorMixin, Unpack
from ...tokenization_utils_base import AddedToken, BatchEncoding, TextInput
from ...utils import logging
if TYPE_CHECKING:
from ...tokenization_utils_base import PreTokenizedInput
logger = logging.get_logger(__name__)
def is_url(val) -> bool:
return isinstance(val, str) and val.startswith("http")
def is_image_or_image_url(elem):
return is_url(elem) or is_valid_image(elem)
def _prompt_split_image(image_seq_len, image_rows, image_cols, fake_token_around_image, image_token, global_img_token):
"""Prompt with expanded image tokens for when the image is split into patches."""
text_split_images = ""
for n_h in range(image_rows):
for n_w in range(image_cols):
text_split_images += (
f"{fake_token_around_image}" + f"<row_{n_h + 1}_col_{n_w + 1}>" + f"{image_token}" * image_seq_len
)
text_split_images += "\n"
text_split_images += (
f"\n{fake_token_around_image}"
+ f"{global_img_token}"
+ f"{image_token}" * image_seq_len
+ f"{fake_token_around_image}"
)
return text_split_images
def _prompt_single_image(image_seq_len, fake_token_around_image, image_token, global_img_token):
"""Prompt with expanded image tokens for a single image."""
return (
f"{fake_token_around_image}"
+ f"{global_img_token}"
+ f"{image_token}" * image_seq_len
+ f"{fake_token_around_image}"
)
def get_image_prompt_string(
image_rows, image_cols, image_seq_len, fake_token_around_image, image_token, global_img_token
):
if image_rows == 0 and image_cols == 0:
return _prompt_single_image(
image_seq_len,
fake_token_around_image=fake_token_around_image,
image_token=image_token,
global_img_token=global_img_token,
)
return _prompt_split_image(
image_seq_len, image_rows, image_cols, fake_token_around_image, image_token, global_img_token
)
class Idefics3ImagesKwargs(ImagesKwargs, total=False):
return_row_col_info: Optional[bool]
max_image_size: Optional[Dict[str, int]]
class Idefics3ProcessorKwargs(ProcessingKwargs, total=False):
images_kwargs: Idefics3ImagesKwargs
_defaults = {
"text_kwargs": {
"add_special_tokens": True,
"padding": False,
"is_split_into_words": False,
},
"images_kwargs": {
"return_row_col_info": True,
},
}
Idefics3ProcessorKwargs.__annotations__["images_kwargs"] = Idefics3ImagesKwargs # python 3.8 compatibility
class Idefics3Processor(ProcessorMixin):
r"""
Constructs a Idefics3 processor which wraps a LLama tokenizer and Idefics3 image processor into a single processor.
[`Idefics3Processor`] offers all the functionalities of [`Idefics3ImageProcessor`] and [`Idefics3TokenizerFast`]. See
the docstring of [`~IdeficsProcessor.__call__`] and [`~IdeficsProcessor.decode`] for more information.
Args:
image_processor (`Idefics3ImageProcessor`):
An instance of [`Idefics3ImageProcessor`]. The image processor is a required input.
tokenizer (`PreTrainedTokenizerBase`, *optional*):
An instance of [`PreTrainedTokenizerBase`]. This should correspond with the model's text model. The tokenizer is a required input.
image_seq_len (`int`, *optional*, defaults to 169):
The length of the image sequence i.e. the number of <image> tokens per image in the input.
This parameter is used to build the string from the input prompt and image tokens and should match the
value the model used. It is computed as: image_seq_len = int(((image_size // patch_size) ** 2) / (scale_factor**2))
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
in a chat into a tokenizable string.
"""
attributes = ["image_processor", "tokenizer"]
image_processor_class = "Idefics3ImageProcessor"
tokenizer_class = "AutoTokenizer"
def __init__(self, image_processor, tokenizer=None, image_seq_len: int = 169, chat_template: str = None, **kwargs):
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
self.fake_image_token = AddedToken("<fake_token_around_image>", normalized=False, special=True)
self.image_token = AddedToken("<image>", normalized=False, special=True)
self.end_of_utterance_token = AddedToken("<end_of_utterance>", normalized=False, special=True)
self.global_image_tag = "<global-img>" # https://github.com/huggingface/transformers/pull/32473/files/8063e5e17362571b693f1db95167f5443a3be1b2#r1734825341
self.image_seq_len = image_seq_len
# This regex matches one or more occurrences of <global-img> tags (optionally surrounded by newline characters)
# or <row_x_col_y> tags (where x and y are digits, also optionally surrounded by newline characters).
self._regex_to_remove_extra_special_tokens = re.compile(r"(\n?<global-img>\n?|<row_\d+_col_\d+>\n?)+")
tokens_to_add = {
"additional_special_tokens": [
self.fake_image_token,
self.image_token,
self.end_of_utterance_token,
]
}
tokenizer.add_special_tokens(tokens_to_add)
super().__init__(image_processor, tokenizer, chat_template=chat_template, **kwargs)
def _extract_images_from_prompts(self, prompts):
prompt_images = []
for prompt in prompts:
images = []
for elem in prompt:
if is_valid_image(elem):
images.append(elem)
elif is_url(elem):
images.append(load_image(elem))
prompt_images.append(images)
return prompt_images
def __call__(
self,
images: Union[ImageInput, List[ImageInput], List[List[ImageInput]]] = None,
text: Union[TextInput, "PreTokenizedInput", List[TextInput], List["PreTokenizedInput"]] = None,
audio=None,
videos=None,
image_seq_len: Optional[int] = None,
**kwargs: Unpack[Idefics3ProcessorKwargs],
) -> BatchEncoding:
"""
Processes the input prompts and returns a BatchEncoding.
Example:
```python
>>> import requests
>>> from transformers import Idefics3Processor
>>> from transformers.image_utils import load_image
>>> processor = Idefics3Processor.from_pretrained("HuggingFaceM4/Idefics3-8B-Llama3")
>>> processor.image_processor.do_image_splitting = False # Force as False to simplify the example
>>> url1 = "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg"
>>> url2 = "https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg"
>>> image1, image2 = load_image(url1), load_image(url2)
>>> images = [[image1], [image2]]
>>> text = [
... "<image>In this image, we see",
... "bla bla bla<image>",
... ]
>>> outputs = processor(images=images, text=text, return_tensors="pt", padding=True)
>>> input_ids = outputs.input_ids
>>> input_tokens = processor.tokenizer.batch_decode(input_ids)
>>> print(input_tokens)
['<|begin_of_text|><fake_token_around_image><global-img>((<image>)*169)<fake_token_around_image> In this image, we see', '<|reserved_special_token_0|><|reserved_special_token_0|><|reserved_special_token_0|><|begin_of_text|>bla bla bla<fake_token_around_image><global-img>((<image>)*169)<fake_token_around_image>']
```
Args:
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, *optional*):
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
tensor. If is of type `List[ImageInput]`, it's assumed that this is for a single prompt i.e. of batch size 1.
text (`Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]`, *optional*):
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
Wherever an image token, `<image>` is encountered it is expanded to
`<fake_token_around_image>` + `<row_x_col_y>` + `<image>` * `image_seq_len` * <fake_token_around_image>`.
image_seq_len (`int`, *optional*):
The length of the image sequence. If not provided, the default value of self.image_seq_len is used.
image_seq_len should be equal to int(((image_size // patch_size) ** 2) / (scale_factor**2))
return_tensors (`Union[str, TensorType]`, *optional*):
If set, will return tensors of a particular framework. See [`PreTrainedTokenizerFast.__call__`] for more
information.
"""
if text is None and images is None:
raise ValueError("You must provide either `text` or `images`.")
output_kwargs = self._merge_kwargs(
Idefics3ProcessorKwargs,
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
**kwargs,
)
image_seq_len = image_seq_len if image_seq_len is not None else self.image_seq_len
n_images_in_text = []
n_images_in_images = []
inputs = BatchFeature()
if text is not None:
if isinstance(text, str):
text = [text]
elif not isinstance(text, list) and not isinstance(text[0], str):
raise ValueError("Invalid input text. Please provide a string, or a list of strings")
n_images_in_text = [sample.count(self.image_token.content) for sample in text]
if images is not None:
if is_image_or_image_url(images):
images = [[images]]
elif isinstance(images, list) and is_image_or_image_url(images[0]):
if text is not None:
if sum(n_images_in_text) != len(images):
raise ValueError(
f"The total number of {self.image_token.content} tokens in the prompts should be the same as the number of images passed."
f" Found {sum(n_images_in_text)} {self.image_token.content} tokens and {len(images)} images."
)
# Reorganize the images to match the prompts
cumsum_images_in_text = [0] + list(accumulate(n_images_in_text))
images = [
images[cumsum_images_in_text[i] : cumsum_images_in_text[i + 1]]
for i in range(len(n_images_in_text))
]
else:
images = [images]
elif (
not isinstance(images, list)
and not isinstance(images[0], list)
and not is_image_or_image_url(images[0][0])
):
raise ValueError(
"Invalid input images. Please provide a single image or a list of images or a list of list of images."
)
n_images_in_images = [len(sample) for sample in images]
# Load images if they are URLs
images = [[load_image(im) if is_url(im) else im for im in sample] for sample in images]
image_inputs = self.image_processor(images, **output_kwargs["images_kwargs"])
inputs.update(image_inputs)
if text is not None:
if n_images_in_images != n_images_in_text:
raise ValueError(
f"The number of images in the text {n_images_in_text} and images {n_images_in_images} should be the same."
)
image_rows = inputs.pop("rows", [[0] * len(text)])
image_cols = inputs.pop("cols", [[0] * len(text)])
fake_image_token = self.fake_image_token.content
image_token = self.image_token.content
global_img_token = self.global_image_tag
prompt_strings = []
for sample, sample_rows, sample_cols in zip(text, image_rows, image_cols):
# Replace the image token with fake tokens around the expanded image token sequence of length `image_seq_len`
image_prompt_strings = []
for n_rows, n_cols in zip(sample_rows, sample_cols):
image_prompt_string = get_image_prompt_string(
n_rows,
n_cols,
image_seq_len,
image_token=image_token,
fake_token_around_image=fake_image_token,
global_img_token=global_img_token,
)
image_prompt_strings.append(image_prompt_string)
split_sample = sample.split(image_token)
if len(split_sample) == 0:
raise ValueError("The image token should be present in the text.")
# Place in the image prompt strings where the image tokens are
sample = split_sample[0]
for i, image_prompt_string in enumerate(image_prompt_strings):
sample += image_prompt_string + split_sample[i + 1]
prompt_strings.append(sample)
text_inputs = self.tokenizer(text=prompt_strings, **output_kwargs["text_kwargs"])
inputs.update(text_inputs)
elif text is not None:
if any(n_images_in_text):
raise ValueError(
f"Found {sum(n_images_in_text)} {self.image_token.content} tokens in the text but no images were passed."
)
text_inputs = self.tokenizer(text=text, **output_kwargs["text_kwargs"])
inputs.update(text_inputs)
return inputs
def batch_decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Idefics3TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
batched_decode_output = self.tokenizer.batch_decode(*args, **kwargs)
return [self._regex_to_remove_extra_special_tokens.sub("<image>", s) for s in batched_decode_output]
def decode(self, *args, **kwargs):
"""
This method forwards all its arguments to Idefics3TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
decode_output = self.tokenizer.decode(*args, **kwargs)
return self._regex_to_remove_extra_special_tokens.sub("<image>", decode_output)
@property
def model_input_names(self):
tokenizer_input_names = self.tokenizer.model_input_names
image_processor_input_names = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
__all__ = ["Idefics3Processor"]
|
transformers/src/transformers/models/idefics3/processing_idefics3.py/0
|
{
"file_path": "transformers/src/transformers/models/idefics3/processing_idefics3.py",
"repo_id": "transformers",
"token_count": 7310
}
| 125 |
# coding=utf-8
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""InstructBLIP model configuration"""
from ...configuration_utils import PretrainedConfig
from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from ...utils import logging
from ..auto import CONFIG_MAPPING, AutoConfig
logger = logging.get_logger(__name__)
class InstructBlipVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`InstructBlipVisionModel`]. It is used to
instantiate a InstructBLIP vision encoder according to the specified arguments, defining the model architecture.
Instantiating a configuration defaults will yield a similar configuration to that of the InstructBLIP
[Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 1408):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 6144):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 39):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 16):
Number of attention heads for each attention layer in the Transformer encoder.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 14):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"gelu"` are supported. to 1e-5): The epsilon used by the layer
normalization layers.
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 1e-10):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
qkv_bias (`bool`, *optional*, defaults to `True`):
Whether to add a bias to the queries and values in the self-attention layers.
Example:
```python
>>> from transformers import InstructBlipVisionConfig, InstructBlipVisionModel
>>> # Initializing a InstructBlipVisionConfig with Salesforce/instruct-blip-flan-t5 style configuration
>>> configuration = InstructBlipVisionConfig()
>>> # Initializing a InstructBlipVisionModel (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration
>>> model = InstructBlipVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "instructblip_vision_model"
base_config_key = "vision_config"
def __init__(
self,
hidden_size=1408,
intermediate_size=6144,
num_hidden_layers=39,
num_attention_heads=16,
image_size=224,
patch_size=14,
hidden_act="gelu",
layer_norm_eps=1e-6,
attention_dropout=0.0,
initializer_range=1e-10,
qkv_bias=True,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.qkv_bias = qkv_bias
class InstructBlipQFormerConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`InstructBlipQFormerModel`]. It is used to
instantiate a InstructBLIP Querying Transformer (Q-Former) model according to the specified arguments, defining the
model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
the InstructBLIP [Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5)
architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs.
Read the documentation from [`PretrainedConfig`] for more information.
Note that [`InstructBlipQFormerModel`] is very similar to [`BertLMHeadModel`] with interleaved cross-attention.
Args:
vocab_size (`int`, *optional*, defaults to 30522):
Vocabulary size of the Q-Former model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling the model.
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"silu"` and `"gelu_new"` are supported.
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
The dropout ratio for the attention probabilities.
max_position_embeddings (`int`, *optional*, defaults to 512):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
The epsilon used by the layer normalization layers.
pad_token_id (`int`, *optional*, defaults to 0):
Token id used for padding sequences.
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
cross_attention_frequency (`int`, *optional*, defaults to 2):
The frequency of adding cross-attention to the Transformer layers.
encoder_hidden_size (`int`, *optional*, defaults to 1408):
The hidden size of the hidden states for cross-attention.
Examples:
```python
>>> from transformers import InstructBlipQFormerConfig, InstructBlipQFormerModel
>>> # Initializing a InstructBLIP Salesforce/instruct-blip-flan-t5 style configuration
>>> configuration = InstructBlipQFormerConfig()
>>> # Initializing a model (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration
>>> model = InstructBlipQFormerModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "instructblip_qformer"
base_config_key = "qformer_config"
def __init__(
self,
vocab_size=30522,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
initializer_range=0.02,
layer_norm_eps=1e-12,
pad_token_id=0,
position_embedding_type="absolute",
cross_attention_frequency=2,
encoder_hidden_size=1408,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.cross_attention_frequency = cross_attention_frequency
self.encoder_hidden_size = encoder_hidden_size
class InstructBlipConfig(PretrainedConfig):
r"""
[`InstructBlipConfig`] is the configuration class to store the configuration of a
[`InstructBlipForConditionalGeneration`]. It is used to instantiate a InstructBLIP model according to the specified
arguments, defining the vision model, Q-Former model and language model configs. Instantiating a configuration with
the defaults will yield a similar configuration to that of the InstructBLIP
[Salesforce/instruct-blip-flan-t5](https://huggingface.co/Salesforce/instruct-blip-flan-t5) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`InstructBlipVisionConfig`].
qformer_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`InstructBlipQFormerConfig`].
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize any [`PretrainedConfig`].
num_query_tokens (`int`, *optional*, defaults to 32):
The number of query tokens passed through the Transformer.
image_token_index (`int`, *optional*):
Token index of special image token.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import (
... InstructBlipVisionConfig,
... InstructBlipQFormerConfig,
... OPTConfig,
... InstructBlipConfig,
... InstructBlipForConditionalGeneration,
... )
>>> # Initializing a InstructBlipConfig with Salesforce/instruct-blip-flan-t5 style configuration
>>> configuration = InstructBlipConfig()
>>> # Initializing a InstructBlipForConditionalGeneration (with random weights) from the Salesforce/instruct-blip-flan-t5 style configuration
>>> model = InstructBlipForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a InstructBlipConfig from a InstructBlipVisionConfig, InstructBlipQFormerConfig and any PretrainedConfig
>>> # Initializing InstructBLIP vision, InstructBLIP Q-Former and language model configurations
>>> vision_config = InstructBlipVisionConfig()
>>> qformer_config = InstructBlipQFormerConfig()
>>> text_config = OPTConfig()
>>> config = InstructBlipConfig.from_text_vision_configs(vision_config, qformer_config, text_config)
```"""
model_type = "instructblip"
sub_configs = {
"text_config": AutoConfig,
"qformer_config": InstructBlipQFormerConfig,
"vision_config": InstructBlipVisionConfig,
}
def __init__(
self,
vision_config=None,
qformer_config=None,
text_config=None,
num_query_tokens=32,
image_token_index=None,
**kwargs,
):
super().__init__(**kwargs)
if vision_config is None:
vision_config = {}
logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values.")
if qformer_config is None:
qformer_config = {}
logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.")
if text_config is None:
text_config = {}
logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`).")
self.vision_config = InstructBlipVisionConfig(**vision_config)
self.qformer_config = InstructBlipQFormerConfig(**qformer_config)
text_model_type = text_config["model_type"] if "model_type" in text_config else "opt"
self.text_config = CONFIG_MAPPING[text_model_type](**text_config)
self.num_query_tokens = num_query_tokens
self.image_token_index = image_token_index
self.qformer_config.encoder_hidden_size = self.vision_config.hidden_size
self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
self.initializer_factor = 1.0
self.initializer_range = 0.02
@classmethod
def from_vision_qformer_text_configs(
cls,
vision_config: InstructBlipVisionConfig,
qformer_config: InstructBlipQFormerConfig,
text_config: PretrainedConfig,
**kwargs,
):
r"""
Instantiate a [`InstructBlipConfig`] (or a derived class) from a InstructBLIP vision model, Q-Former and
language model configurations.
Returns:
[`InstructBlipConfig`]: An instance of a configuration object
"""
return cls(
vision_config=vision_config.to_dict(),
qformer_config=qformer_config.to_dict(),
text_config=text_config.to_dict(),
**kwargs,
)
__all__ = ["InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig"]
|
transformers/src/transformers/models/instructblip/configuration_instructblip.py/0
|
{
"file_path": "transformers/src/transformers/models/instructblip/configuration_instructblip.py",
"repo_id": "transformers",
"token_count": 5771
}
| 126 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.