Upload 2 files
Browse filesRemove the 'neutral' label in MARC-ja when 'remove_neutral' is specified in the config
- JGLUE.py +4 -3
- preprocess_marc_ja.py +5 -5
JGLUE.py
CHANGED
@@ -178,11 +178,12 @@ def dataset_info_jcommonsenseqa() -> ds.DatasetInfo:
|
|
178 |
)
|
179 |
|
180 |
|
181 |
-
def dataset_info_marc_ja() -> ds.DatasetInfo:
|
|
|
182 |
features = ds.Features(
|
183 |
{
|
184 |
"sentence": ds.Value("string"),
|
185 |
-
"label": ds.ClassLabel(num_classes=
|
186 |
"review_id": ds.Value("string"),
|
187 |
}
|
188 |
)
|
@@ -235,7 +236,7 @@ class JGLUE(ds.GeneratorBasedBuilder):
|
|
235 |
elif self.config.name == "JCommonsenseQA":
|
236 |
return dataset_info_jcommonsenseqa()
|
237 |
elif self.config.name == "MARC-ja":
|
238 |
-
return dataset_info_marc_ja()
|
239 |
else:
|
240 |
raise ValueError(f"Invalid config name: {self.config.name}")
|
241 |
|
|
|
178 |
)
|
179 |
|
180 |
|
181 |
+
def dataset_info_marc_ja(remove_netural: bool) -> ds.DatasetInfo:
|
182 |
+
labels = ["positive", "negative"] if remove_netural else ["positive", "negative", "neutral"]
|
183 |
features = ds.Features(
|
184 |
{
|
185 |
"sentence": ds.Value("string"),
|
186 |
+
"label": ds.ClassLabel(num_classes=len(labels), names=labels),
|
187 |
"review_id": ds.Value("string"),
|
188 |
}
|
189 |
)
|
|
|
236 |
elif self.config.name == "JCommonsenseQA":
|
237 |
return dataset_info_jcommonsenseqa()
|
238 |
elif self.config.name == "MARC-ja":
|
239 |
+
return dataset_info_marc_ja(self.config.remove_netural)
|
240 |
else:
|
241 |
raise ValueError(f"Invalid config name: {self.config.name}")
|
242 |
|
preprocess_marc_ja.py
CHANGED
@@ -23,7 +23,7 @@ class MarcJaConfig(ds.BuilderConfig):
|
|
23 |
is_han_to_zen: bool = False,
|
24 |
max_instance_num: Optional[int] = None,
|
25 |
max_char_length: int = 500,
|
26 |
-
|
27 |
train_ratio: float = 0.94,
|
28 |
val_ratio: float = 0.03,
|
29 |
test_ratio: float = 0.03,
|
@@ -55,20 +55,20 @@ class MarcJaConfig(ds.BuilderConfig):
|
|
55 |
self.is_han_to_zen = is_han_to_zen
|
56 |
self.max_instance_num = max_instance_num
|
57 |
self.max_char_length = max_char_length
|
58 |
-
self.
|
59 |
self.output_testset = output_testset
|
60 |
|
61 |
self.filter_review_id_list_valid = filter_review_id_list_valid
|
62 |
self.label_conv_review_id_list_valid = label_conv_review_id_list_valid
|
63 |
|
64 |
|
65 |
-
def get_label(rating: int,
|
66 |
if rating >= 4:
|
67 |
return "positive"
|
68 |
elif rating <= 2:
|
69 |
return "negative"
|
70 |
else:
|
71 |
-
if
|
72 |
return None
|
73 |
else:
|
74 |
return "neutral"
|
@@ -225,7 +225,7 @@ def preprocess_marc_ja(
|
|
225 |
|
226 |
# convert the rating to label
|
227 |
tqdm.pandas(dynamic_ncols=True, desc="Convert the rating to the label")
|
228 |
-
df = df.assign(label=df["rating"].progress_apply(lambda rating: get_label(rating, config.
|
229 |
|
230 |
# remove rows where the label is None
|
231 |
df = df[~df["label"].isnull()]
|
|
|
23 |
is_han_to_zen: bool = False,
|
24 |
max_instance_num: Optional[int] = None,
|
25 |
max_char_length: int = 500,
|
26 |
+
remove_netural: bool = True,
|
27 |
train_ratio: float = 0.94,
|
28 |
val_ratio: float = 0.03,
|
29 |
test_ratio: float = 0.03,
|
|
|
55 |
self.is_han_to_zen = is_han_to_zen
|
56 |
self.max_instance_num = max_instance_num
|
57 |
self.max_char_length = max_char_length
|
58 |
+
self.remove_netural = remove_netural
|
59 |
self.output_testset = output_testset
|
60 |
|
61 |
self.filter_review_id_list_valid = filter_review_id_list_valid
|
62 |
self.label_conv_review_id_list_valid = label_conv_review_id_list_valid
|
63 |
|
64 |
|
65 |
+
def get_label(rating: int, remove_netural: bool = False) -> Optional[str]:
|
66 |
if rating >= 4:
|
67 |
return "positive"
|
68 |
elif rating <= 2:
|
69 |
return "negative"
|
70 |
else:
|
71 |
+
if remove_netural:
|
72 |
return None
|
73 |
else:
|
74 |
return "neutral"
|
|
|
225 |
|
226 |
# convert the rating to label
|
227 |
tqdm.pandas(dynamic_ncols=True, desc="Convert the rating to the label")
|
228 |
+
df = df.assign(label=df["rating"].progress_apply(lambda rating: get_label(rating, config.remove_netural)))
|
229 |
|
230 |
# remove rows where the label is None
|
231 |
df = df[~df["label"].isnull()]
|