c4 / c4.py
system's picture
system HF staff
Update files from the datasets library (from 1.9.0)
bc5e00f
raw
history blame
3.29 kB
"""C4 dataset based on Common Crawl."""
import gzip
import json
import datasets
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """\
A colossal, cleaned version of Common Crawl's web crawl corpus.
Based on Common Crawl dataset: "https://commoncrawl.org".
This is the processed version of Google's C4 dataset by AllenAI.
"""
_CITATION = """
@article{2019t5,
author = {Colin Raffel and Noam Shazeer and Adam Roberts and Katherine Lee and Sharan Narang and Michael Matena and Yanqi Zhou and Wei Li and Peter J. Liu},
title = {Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer},
journal = {arXiv e-prints},
year = {2019},
archivePrefix = {arXiv},
eprint = {1910.10683},
}
"""
_URL = "https://github.com/allenai/allennlp/discussions/5056"
_VARIANTS = ["en", "realnewslike", "en.noblocklist", "en.noclean"]
_N_SHARDS_PER_SPLIT = {
"en": {"train": 1024, "validation": 8},
"realnewslike": {"train": 512, "validation": 1},
"en.noblocklist": {"train": 1024, "validation": 8},
"en.noclean": {"train": 7168, "validation": 64},
}
_DATA_URL = "https://huggingface.co/datasets/allenai/c4/resolve/1ddc917116b730e1859edef32896ec5c16be51d0/{name}/c4-{split}.{index:05d}-of-{n_shards:05d}.json.gz"
class C4(datasets.GeneratorBasedBuilder):
"""C4, a colossal, cleaned version of Common Crawl's web crawl corpus."""
BUILDER_CONFIGS = [datasets.BuilderConfig(name) for name in _VARIANTS]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"text": datasets.Value("string"),
"timestamp": datasets.Value("string"),
"url": datasets.Value("string"),
}
),
supervised_keys=None,
homepage=_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
data_urls = {}
for split in ["train", "validation"]:
n_shards = _N_SHARDS_PER_SPLIT[self.config.name][split]
data_urls[split] = [
_DATA_URL.format(name=self.config.name, split=split, index=index, n_shards=n_shards)
for index in range(n_shards)
]
train_downloaded_files = dl_manager.download(data_urls["train"])
validation_downloaded_files = dl_manager.download(data_urls["validation"])
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_downloaded_files}),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": validation_downloaded_files}
),
]
def _generate_examples(self, filepaths):
"""This function returns the examples in the raw (text) form by iterating on all the files."""
id_ = 0
for filepath in filepaths:
logger.info("generating examples from = %s", filepath)
with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
for line in f:
if line:
example = json.loads(line)
yield id_, example
id_ += 1