Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
Spanish
Size:
10K - 100K
License:
''' | |
Procesar así los datos en el terminal: | |
import clinical_trials | |
from clinical_trials import ClinicalTrials | |
train_json = ClinicalTrials._generate_examples('train.json','train.conll') | |
x = json.dumps([item for item in train_json]) | |
outFile = open("train.json",'w',encoding="utf8") | |
print(x,file=outFile) | |
outFile.close() | |
''' | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_LICENSE = "Creative Commons Attribution 4.0 International" | |
_VERSION = "1.1.0" | |
_URL = "https://huggingface.co/datasets/lcampillos/CT-EBM-ES" | |
_TRAINING_FILE = "train.conll" | |
_DEV_FILE = "dev.conll" | |
_TEST_FILE = "test.conll" | |
class ClinicalTrialsConfig(datasets.BuilderConfig): | |
"""BuilderConfig for ClinicalTrials dataset.""" | |
def __init__(self, **kwargs): | |
super(ClinicalTrialsConfig, self).__init__(**kwargs) | |
class ClinicalTrials(datasets.GeneratorBasedBuilder): | |
"""ClinicalTrials dataset.""" | |
BUILDER_CONFIGS = [ | |
ClinicalTrialsConfig( | |
name="ClinicalTrials", | |
version=datasets.Version(_VERSION), | |
description="ClinicalTrials dataset"), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"ner_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
"O", | |
"B-ANAT", | |
"B-CHEM", | |
"B-DISO", | |
"B-PROC", | |
"I-ANAT", | |
"I-CHEM", | |
"I-DISO", | |
"I-PROC", | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
urls_to_download = { | |
"train": f"{_URL}{_TRAINING_FILE}", | |
"dev": f"{_URL}{_DEV_FILE}", | |
"test": f"{_URL}{_TEST_FILE}", | |
} | |
downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, filepath): | |
logger.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
guid = 0 | |
tokens = [] | |
pos_tags = [] | |
ner_tags = [] | |
for line in f: | |
if line == "": | |
if tokens: | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |
guid += 1 | |
tokens = [] | |
ner_tags = [] | |
else: | |
splits = line.split(" ") | |
tokens.append(splits[0]) | |
ner_tags.append(splits[-1].rstrip()) | |
# last example | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"ner_tags": ner_tags, | |
} | |