layerdiff_eval / visualize.py
24yearsold's picture
Upload 2 files
60e52a4 verified
import os.path as osp
import os
import argparse
import numpy as np
import numpy as np
import cv2
import matplotlib.pyplot as plt
from matplotlib.lines import Line2D
from PIL import Image
import matplotlib.pyplot as plt
from vis_utils import *
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--saved', type=str, default=None)
parser.add_argument('--srcp', type=str)
args = parser.parse_args()
srcp = args.srcp
saved = args.saved
if saved is None:
saved = './'
os.makedirs(saved, exist_ok=True)
seed_everything(0)
# for srcp in tqdm(load_exec_list(exec_list)):
if osp.isfile(srcp):
srcp = osp.dirname(srcp)
try:
fullpage, infos, part_dict_list = load_parts(srcp)
except Exception as e:
print(f'failed to load {srcp}: \n')
print(e)
# optim_before = img_alpha_blending(part_dict_list, final_size=(1024, 1024))
optim_depth(part_dict_list, fullpage)
n_components = len(part_dict_list)
colors = []
tag_list = []
for ii in range(len(part_dict_list)):
pd = part_dict_list[ii]
depth = pd['depth']
h, w = depth.shape[:2]
pd['depth_median'] = np.median(depth[pd['mask']])
tag_list.append(pd['tag'])
color = get_color(VALID_BODY_PARTS_V2.index(pd['tag']))
alpha = pd['img'][..., 3]
colors.append(color)
pd['img'] = np.full((h, w, 4), (*color, 255))
pd['img'][..., 3] = alpha
# pd.pop('depth')
part_dict_list.sort(key=lambda x: x['depth_median'], reverse=True)
color_code = img_alpha_blending(part_dict_list, final_size=(1024, 1024))
save_dir = osp.join(saved, osp.basename(osp.dirname(srcp)))
os.makedirs(save_dir, exist_ok=True)
savep = osp.join(save_dir, osp.basename(srcp)) + '.png'
alpha = (color_code[..., [3]] / 255.) * 0.8
blended = alpha * color_code[..., :3] + (1 - alpha) * fullpage[..., :3]
result = np.round(blended).astype(np.uint8)
# print('xxxxx')
colors = np.array(colors)
colors = colors.astype(np.float32) / 255.
px = 1 / plt.rcParams['figure.dpi'] # pixel in inches
fig = plt.figure(figsize=(result.shape[1] * px, result.shape[0] * px), facecolor=[0, 0, 0, 0])
fnt_sz = int(5 * result.shape[0] / 256)
plt.rcParams['legend.fontsize'] = fnt_sz
lw = 5 * result.shape[0] / 256
lines = [Line2D([0], [0], color=colors[i], lw=lw)
for i in range(n_components)]
# c_labels = [all_labels[i] for i in all_labels]
plt.legend(lines,
tag_list,
mode="expand",
fancybox=False,
edgecolor="black",
# frameon=False,
shadow=False,
framealpha=0.)
plt.tight_layout(pad=0, w_pad=0, h_pad=0)
plt.axis('off')
fig.canvas.draw()
data = np.frombuffer(fig.canvas.buffer_rgba() , dtype=np.uint8)
plt.close(fig=fig)
data = data.reshape(fig.canvas.get_width_height()[::-1] + (4,))
dx, dy, dw, dh = cv2.boundingRect(cv2.findNonZero(data[..., 3]))
data = rgba_to_rgb_fixbg(data[:, dx: dx + dw])
data = cv2.copyMakeBorder(data, 0, 0, fnt_sz, fnt_sz, borderType=cv2.BORDER_CONSTANT, value=(255, 255, 255))
result = np.hstack((result, data))
Image.fromarray(result).save(savep)
print(f'result saved to {savep}')