24yearsold commited on
Commit
60e52a4
·
verified ·
1 Parent(s): a57e2f9

Upload 2 files

Browse files
Files changed (2) hide show
  1. vis_utils.py +688 -0
  2. visualize.py +110 -0
vis_utils.py ADDED
@@ -0,0 +1,688 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import os.path as osp
3
+ import json
4
+ from typing import List, Union
5
+ import random
6
+
7
+ import yaml
8
+ from einops import rearrange, reduce
9
+ import torch
10
+ import torchvision.transforms.functional as tv_functional
11
+ import gzip
12
+ import numpy as np
13
+ import cv2
14
+ from PIL import Image
15
+ from torchvision.transforms.functional import pil_to_tensor
16
+
17
+
18
+ class Colors:
19
+ # Ultralytics color palette https://ultralytics.com/
20
+ def __init__(self):
21
+ # hex = matplotlib.colors.TABLEAU_COLORS.values()
22
+ # hexs = ('FF1010', '10FF10', 'FFF010', '100FFF', 'c0c0c0', 'FF3838', 'FF9D97', 'FF701F', 'FFB21D', 'CFD231', '48F90A', '92CC17', '3DDB86', '1A9334', '00D4BB',
23
+ # '2C99A8', '00C2FF', '344593', '6473FF', '0018EC', '8438FF', '520085', 'CB38FF', 'FF95C8', 'FF37C7')
24
+ hexs = [
25
+ '#4363d8',
26
+ '#9A6324',
27
+ '#808000',
28
+ '#469990',
29
+ '#000075',
30
+ '#e6194B',
31
+ '#f58231',
32
+ '#ffe119',
33
+ '#bfef45',
34
+ '#3cb44b',
35
+ '#42d4f4',
36
+ '#800000',
37
+ '#911eb4',
38
+ '#f032e6',
39
+ '#fabed4',
40
+ '#ffd8b1',
41
+ '#fffac8',
42
+ '#aaffc3',
43
+ '#dcbeff',
44
+ '#a9a9a9',
45
+ '#006400',
46
+ '#4169E1',
47
+ '#8B4513',
48
+ '#FA8072',
49
+ '#87CEEB',
50
+ '#FFD700',
51
+ '#ffffff',
52
+ '#000000',
53
+ ]
54
+ self.palette = [self.hex2rgb(f'#{c}') if not c.startswith('#') else self.hex2rgb(c) for c in hexs]
55
+ self.n = len(self.palette)
56
+
57
+ def __call__(self, i, bgr=False):
58
+ c = self.palette[int(i) % self.n]
59
+ return (c[2], c[1], c[0]) if bgr else c
60
+
61
+ @staticmethod
62
+ def hex2rgb(h): # rgb order (PIL)
63
+ return tuple(int(h[1 + i:1 + i + 2], 16) for i in (0, 2, 4))
64
+
65
+ DEFAULT_COLOR_PALETTE = Colors()
66
+ def get_color(idx):
67
+ if idx == -1:
68
+ return 255
69
+ else:
70
+ return DEFAULT_COLOR_PALETTE(idx)
71
+
72
+
73
+
74
+ VALID_BODY_PARTS_V2 = [
75
+ 'hair', 'headwear', 'face', 'eyes', 'eyewear', 'ears', 'earwear', 'nose', 'mouth',
76
+ 'neck', 'neckwear', 'topwear', 'handwear', 'bottomwear', 'legwear', 'footwear',
77
+ 'tail', 'wings', 'objects'
78
+ ]
79
+
80
+
81
+ def seed_everything(seed):
82
+ random.seed(seed)
83
+ np.random.seed(seed)
84
+ torch.manual_seed(seed)
85
+ torch.cuda.manual_seed_all(seed)
86
+
87
+
88
+ def load_image(imgp: str, mode="RGB", output_type='numpy'):
89
+ """
90
+ return RGB image as output_type
91
+ """
92
+ img = Image.open(imgp).convert(mode)
93
+ if output_type == 'numpy':
94
+ img = np.array(img)
95
+ if len(img.shape) == 2:
96
+ img = img[..., None]
97
+ return img
98
+
99
+
100
+ def bbox_intersection(xyxy, xyxy2):
101
+ x1, y1, x2, y2 = xyxy2
102
+ dx1, dy1, dx2, dy2 = xyxy
103
+ ix1, ix2 = max(x1, dx1), min(x2, dx2)
104
+ iy1, iy2 = max(y1, dy1), min(y2, dy2)
105
+ if ix2 >= ix1 and iy2 >= iy1:
106
+ return [ix1, iy1, ix2, iy2]
107
+ return None
108
+
109
+
110
+ _IMG2TENSOR_IMGTYPE = (Image.Image, np.ndarray, str)
111
+ _IMG2TENSOR_DIMORDER = ('bchw', 'chw', 'hwc')
112
+ def img2tensor(img: Union[Image.Image, np.ndarray, str, torch.Tensor], normalize = False, mean = 0., std = 255., dim_order: str = 'bchw', dtype=torch.float32, device: str = 'cpu', imread_mode='RGB'):
113
+
114
+ def _check_normalize_values(values, num_channels):
115
+ if isinstance(values, tuple):
116
+ values = list(values)
117
+ elif isinstance(values, (int, float, np.ScalarType)):
118
+ values = [values] * num_channels
119
+ else:
120
+ assert isinstance(values, (np.ndarray, list))
121
+ if len(values) > num_channels:
122
+ values = values[:num_channels]
123
+ assert len(values) == num_channels
124
+ return values
125
+
126
+ assert isinstance(img, _IMG2TENSOR_IMGTYPE)
127
+ assert dim_order in _IMG2TENSOR_DIMORDER
128
+
129
+ if isinstance(img, str):
130
+ img = load_image(img, mode=imread_mode)
131
+
132
+ if isinstance(img, Image.Image):
133
+ img = pil_to_tensor(img)
134
+ if dim_order == 'bchw':
135
+ img = img.unsqueeze(0)
136
+ elif dim_order == 'hwc':
137
+ img = img.permute((1, 2, 0))
138
+ else:
139
+ if img.ndim == 2:
140
+ img = img[..., None]
141
+ else:
142
+ assert img.ndim == 3
143
+ if dim_order == 'bchw':
144
+ img = rearrange(img, 'h w c -> c h w')[None, ...]
145
+ elif dim_order == 'chw':
146
+ img = rearrange(img, 'h w c -> c h w')
147
+ img = torch.from_numpy(np.ascontiguousarray(img))
148
+
149
+
150
+ img = img.to(device=device, dtype=dtype)
151
+
152
+ if normalize:
153
+
154
+ if dim_order == 'bchw':
155
+ c = img.shape[1]
156
+ elif dim_order == 'chw':
157
+ c = img.shape[0]
158
+ else:
159
+ c = img.shape[2]
160
+
161
+ if mean is not None and std is not None:
162
+ mean = _check_normalize_values(mean, c)
163
+ std = _check_normalize_values(std, c)
164
+ img = tv_functional.normalize(img, mean=mean, std=std)
165
+
166
+ return img
167
+
168
+
169
+
170
+ def optim_depth(part_dict_list, fullpage):
171
+ window = create_window(11, 1.5, 3)
172
+ depth_map = np.full(fullpage.shape[:2], 2, dtype=np.float32)
173
+
174
+ ssim_map = np.full(fullpage.shape[:2], 0., dtype=np.float32)
175
+ depth_order_map = np.full(fullpage.shape[:2], -1, dtype=np.int16)
176
+ color_order_map = depth_order_map.copy()
177
+ fullpage_torch = img2tensor(fullpage[..., :3])
178
+
179
+ for ii, pd in enumerate(part_dict_list):
180
+ x1, y1, x2, y2 = pd['xyxy']
181
+ xyxy = pd['xyxy']
182
+ mask = pd['mask']
183
+ region_torch = img2tensor(pd['img'][..., :3])
184
+ with torch.no_grad():
185
+ ssim_map_region = calculate_ssim_map(fullpage_torch[:, :, y1: y2, x1: x2], region_torch, window, 255, use_padding=True)
186
+ ssim_map_region = ssim_map_region.to(dtype=torch.float32, device='cpu')[0].numpy()
187
+ ssim_update_mask = np.bitwise_and(ssim_map_region > ssim_map[y1: y2, x1: x2], mask)
188
+
189
+ if np.any(ssim_update_mask):
190
+ upd_mask = ssim_update_mask.astype(np.int32)
191
+ color_order_map[y1: y2, x1: x2] = color_order_map[y1: y2, x1: x2] * (1-upd_mask) + upd_mask * np.full((y2 - y1, x2 - x1), ii, dtype=np.int16)
192
+ ssim_map[y1: y2, x1: x2] = ssim_map[y1: y2, x1: x2] * (1-upd_mask) + upd_mask * ssim_map_region
193
+
194
+ depth_update_mask = np.bitwise_and(pd['depth'] < depth_map[y1: y2, x1: x2], mask)
195
+ if np.any(depth_update_mask):
196
+ depth_map[y1: y2, x1: x2] = (1 - depth_update_mask) * depth_map[y1: y2, x1: x2] + depth_update_mask * pd['depth']
197
+ depth_order_map[y1: y2, x1: x2] = (1 - depth_update_mask) * depth_order_map[y1: y2, x1: x2] + depth_update_mask * np.full((y2 - y1, x2 - x1), ii, dtype=np.int16)
198
+
199
+
200
+ for _ in range(1):
201
+ for ii in range(len(part_dict_list)):
202
+ pd = part_dict_list[ii]
203
+
204
+ # if pd['tag'] in {'face', 'topwear', 'nose'}:
205
+ # continue
206
+
207
+ x1, y1, x2, y2 = pd['xyxy']
208
+ mask = pd['mask']
209
+ color_mask = color_order_map[y1: y2, x1: x2] == ii
210
+ if not np.any(color_mask):
211
+ continue
212
+ depth = pd['depth']
213
+ depth_region = depth_map[y1: y2, x1: x2]
214
+ max_shift = np.max((depth - depth_region) * color_mask * mask)
215
+ if max_shift == 0:
216
+ continue
217
+ max_shift += 0.001
218
+ min_shift = np.min((depth - depth_region) * mask)
219
+ # print(min_shift)
220
+ shift_list = np.linspace(0., max_shift, num=20)
221
+ # shift_list = np.concat([np.linspace(0, min_shift, num=20), shift_list])
222
+
223
+ score_map = depth[..., None] - shift_list[None, None] < depth_region[..., None]
224
+ score_map = reduce((score_map == color_mask[..., None]).astype(np.float32) * mask[..., None], 'h w c -> c', reduction='mean')
225
+ shift = shift_list[np.argmax(score_map)]
226
+ if shift > 0:
227
+ depth -= shift
228
+ depth_update_mask = np.bitwise_and(depth < depth_region, mask)
229
+ depth_map[y1: y2, x1: x2] = (1 - depth_update_mask) * depth_map[y1: y2, x1: x2] + depth_update_mask * depth
230
+ pd['depth'] = depth
231
+
232
+
233
+
234
+
235
+ def load_parts(srcp, rotate=False):
236
+ srcimg = osp.join(srcp, 'src_img.png')
237
+ fullpage = np.array(Image.open(srcimg).convert('RGBA'))
238
+
239
+ infop = osp.join(srcp, 'info.json')
240
+ infos = json2dict(infop)
241
+
242
+ part_dict_list = []
243
+ tag2pd = {}
244
+ part_id = 0
245
+
246
+ min_sz = 12
247
+
248
+ if rotate:
249
+ fullpage = np.rot90(fullpage, 3, )
250
+
251
+ for tag, partdict in infos['parts'].items():
252
+ img = Image.open(osp.join(srcp, tag + '.png')).convert('RGBA')
253
+ depthp = osp.join(srcp, tag + '_depth.png')
254
+
255
+ img = np.array(img)
256
+ p_test = max(img.shape[:2]) // 10
257
+ mask = img[..., -1] > 10
258
+ if np.sum(mask[:-p_test, :-p_test]) > 4:
259
+ if rotate:
260
+ img = np.rot90(img, 3)
261
+ mask = np.rot90(mask, 3, )
262
+
263
+ xyxy = cv2.boundingRect(cv2.findNonZero(mask.astype(np.uint8)))
264
+ xyxy = np.array(xyxy)
265
+ h, w = xyxy[2:]
266
+ xyxy[2] += xyxy[0]
267
+ xyxy[3] += xyxy[1]
268
+ p = min_sz - w
269
+ if p > 0:
270
+ if xyxy[0] >= p:
271
+ xyxy[0] -= p
272
+ else:
273
+ xyxy[2] += p
274
+ p = min_sz - h
275
+ if p > 0:
276
+ if xyxy[1] >= p:
277
+ xyxy[1] -= p
278
+ else:
279
+ xyxy[3] += p
280
+
281
+ x1, y1, x2, y2 = xyxy
282
+ depth = np.array(Image.open(depthp).convert('L'))
283
+ if rotate:
284
+ depth = np.rot90(depth, 3)
285
+ dmin, dmax = partdict['depth_min'], partdict['depth_max']
286
+
287
+ mask = mask[y1: y2, x1: x2].copy()
288
+ img = img[y1: y2, x1: x2].copy()
289
+ depth = depth[y1: y2, x1: x2].copy()
290
+
291
+ depth = np.array(depth, dtype=np.float32) / 255 * (dmax - dmin) + dmin
292
+ tag2pd[tag] = {'img': img, 'depth': depth, 'part_id': part_id, 'xyxy': xyxy, 'mask': mask, 'tag': tag}
293
+ part_dict_list.append(tag2pd[tag])
294
+ part_id += 1
295
+
296
+ return fullpage, infos, part_dict_list
297
+
298
+
299
+ def json2dict(json_path: str):
300
+ plower = json_path.lower()
301
+ if plower.endswith('.gz'):
302
+ with gzip.open(json_path, 'rt', encoding='utf8') as f:
303
+ metadata = json.load(f)
304
+ return metadata
305
+
306
+ if plower.endswith('.yaml'):
307
+ with open(json_path, 'r') as file:
308
+ metadata = yaml.load(file, yaml.CSafeLoader)
309
+ return metadata
310
+
311
+ with open(json_path, 'r', encoding='utf8') as f:
312
+ metadata = json.loads(f.read())
313
+ return metadata
314
+
315
+
316
+ # Source: https://github.com/One-sixth/ms_ssim_pytorch/blob/master/ssim.py
317
+
318
+ '''
319
+ code modified from
320
+ https://github.com/VainF/pytorch-msssim/blob/master/pytorch_msssim/ssim.py
321
+ '''
322
+
323
+ import torch
324
+ import torch.jit
325
+ import torch.nn.functional as F
326
+
327
+
328
+ @torch.jit.script
329
+ def create_window(window_size: int = 11, sigma: float = 1.5, channel: int = 3):
330
+ '''
331
+ Create 1-D gauss kernel
332
+ :param window_size: the size of gauss kernel
333
+ :param sigma: sigma of normal distribution
334
+ :param channel: input channel
335
+ :return: 1D kernel
336
+ '''
337
+ coords = torch.arange(window_size, dtype=torch.float)
338
+ coords -= window_size // 2
339
+
340
+ g = torch.exp(-(coords ** 2) / (2 * sigma ** 2))
341
+ g /= g.sum()
342
+
343
+ g = g.reshape(1, 1, 1, -1).repeat(channel, 1, 1, 1)
344
+ return g
345
+
346
+
347
+ @torch.jit.script
348
+ def _gaussian_filter(x, window_1d, use_padding: bool):
349
+ '''
350
+ Blur input with 1-D kernel
351
+ :param x: batch of tensors to be blured
352
+ :param window_1d: 1-D gauss kernel
353
+ :param use_padding: padding image before conv
354
+ :return: blured tensors
355
+ '''
356
+ C = x.shape[1]
357
+ padding = 0
358
+ if use_padding:
359
+ window_size = window_1d.shape[3]
360
+ padding = window_size // 2
361
+ out = F.conv2d(x, window_1d, stride=1, padding=(0, padding), groups=C)
362
+ out = F.conv2d(out, window_1d.transpose(2, 3), stride=1, padding=(padding, 0), groups=C)
363
+ return out
364
+
365
+
366
+ @torch.jit.script
367
+ def calculate_ssim_map(X, Y, window, data_range: float, use_padding: bool=True):
368
+ '''
369
+ Calculate ssim index for X and Y
370
+ :param X: images
371
+ :param Y: images
372
+ :param window: 1-D gauss kernel
373
+ :param data_range: value range of input images. (usually 1.0 or 255)
374
+ :param use_padding: padding image before conv
375
+ :return:
376
+ '''
377
+
378
+ K1 = 0.01
379
+ K2 = 0.03
380
+ compensation = 1.0
381
+
382
+ C1 = (K1 * data_range) ** 2
383
+ C2 = (K2 * data_range) ** 2
384
+
385
+ mu1 = _gaussian_filter(X, window, use_padding)
386
+ mu2 = _gaussian_filter(Y, window, use_padding)
387
+ sigma1_sq = _gaussian_filter(X * X, window, use_padding)
388
+ sigma2_sq = _gaussian_filter(Y * Y, window, use_padding)
389
+ sigma12 = _gaussian_filter(X * Y, window, use_padding)
390
+
391
+ mu1_sq = mu1.pow(2)
392
+ mu2_sq = mu2.pow(2)
393
+ mu1_mu2 = mu1 * mu2
394
+
395
+ sigma1_sq = compensation * (sigma1_sq - mu1_sq)
396
+ sigma2_sq = compensation * (sigma2_sq - mu2_sq)
397
+ sigma12 = compensation * (sigma12 - mu1_mu2)
398
+
399
+ cs_map = (2 * sigma12 + C2) / (sigma1_sq + sigma2_sq + C2)
400
+ # Fixed the issue that the negative value of cs_map caused ms_ssim to output Nan.
401
+ cs_map = F.relu(cs_map)
402
+ ssim_map = ((2 * mu1_mu2 + C1) / (mu1_sq + mu2_sq + C1)) * cs_map
403
+
404
+ ssim_val = ssim_map.mean(dim=(1)) # reduce along CHW
405
+ return ssim_val
406
+
407
+
408
+ @torch.jit.script
409
+ def ssim(X, Y, window, data_range: float, use_padding: bool=False):
410
+ '''
411
+ Calculate ssim index for X and Y
412
+ :param X: images
413
+ :param Y: images
414
+ :param window: 1-D gauss kernel
415
+ :param data_range: value range of input images. (usually 1.0 or 255)
416
+ :param use_padding: padding image before conv
417
+ :return:
418
+ '''
419
+
420
+ K1 = 0.01
421
+ K2 = 0.03
422
+ compensation = 1.0
423
+
424
+ C1 = (K1 * data_range) ** 2
425
+ C2 = (K2 * data_range) ** 2
426
+
427
+ mu1 = _gaussian_filter(X, window, use_padding)
428
+ mu2 = _gaussian_filter(Y, window, use_padding)
429
+ sigma1_sq = _gaussian_filter(X * X, window, use_padding)
430
+ sigma2_sq = _gaussian_filter(Y * Y, window, use_padding)
431
+ sigma12 = _gaussian_filter(X * Y, window, use_padding)
432
+
433
+ mu1_sq = mu1.pow(2)
434
+ mu2_sq = mu2.pow(2)
435
+ mu1_mu2 = mu1 * mu2
436
+
437
+ sigma1_sq = compensation * (sigma1_sq - mu1_sq)
438
+ sigma2_sq = compensation * (sigma2_sq - mu2_sq)
439
+ sigma12 = compensation * (sigma12 - mu1_mu2)
440
+
441
+ cs_map = (2 * sigma12 + C2) / (sigma1_sq + sigma2_sq + C2)
442
+ # Fixed the issue that the negative value of cs_map caused ms_ssim to output Nan.
443
+ cs_map = F.relu(cs_map)
444
+ ssim_map = ((2 * mu1_mu2 + C1) / (mu1_sq + mu2_sq + C1)) * cs_map
445
+
446
+ ssim_val = ssim_map.mean(dim=(1, 2, 3)) # reduce along CHW
447
+ cs = cs_map.mean(dim=(1, 2, 3))
448
+
449
+ return ssim_val, cs
450
+
451
+
452
+ @torch.jit.script
453
+ def ms_ssim(X, Y, window, data_range: float, weights, use_padding: bool=False, eps: float=1e-8):
454
+ '''
455
+ interface of ms-ssim
456
+ :param X: a batch of images, (N,C,H,W)
457
+ :param Y: a batch of images, (N,C,H,W)
458
+ :param window: 1-D gauss kernel
459
+ :param data_range: value range of input images. (usually 1.0 or 255)
460
+ :param weights: weights for different levels
461
+ :param use_padding: padding image before conv
462
+ :param eps: use for avoid grad nan.
463
+ :return:
464
+ '''
465
+ weights = weights[:, None]
466
+
467
+ levels = weights.shape[0]
468
+ vals = []
469
+ for i in range(levels):
470
+ ss, cs = ssim(X, Y, window=window, data_range=data_range, use_padding=use_padding)
471
+
472
+ if i < levels-1:
473
+ vals.append(cs)
474
+ X = F.avg_pool2d(X, kernel_size=2, stride=2, ceil_mode=True)
475
+ Y = F.avg_pool2d(Y, kernel_size=2, stride=2, ceil_mode=True)
476
+ else:
477
+ vals.append(ss)
478
+
479
+ vals = torch.stack(vals, dim=0)
480
+ # Use for fix a issue. When c = a ** b and a is 0, c.backward() will cause the a.grad become inf.
481
+ vals = vals.clamp_min(eps)
482
+ # The origin ms-ssim op.
483
+ ms_ssim_val = torch.prod(vals[:-1] ** weights[:-1] * vals[-1:] ** weights[-1:], dim=0)
484
+ # The new ms-ssim op. But I don't know which is best.
485
+ # ms_ssim_val = torch.prod(vals ** weights, dim=0)
486
+ # In this file's image training demo. I feel the old ms-ssim more better. So I keep use old ms-ssim op.
487
+ return ms_ssim_val
488
+
489
+
490
+ class SSIMCriteria(torch.jit.ScriptModule):
491
+ __constants__ = ['data_range', 'use_padding']
492
+
493
+ def __init__(self, window_size=11, window_sigma=1.5, data_range=255., channel=3, use_padding=False):
494
+ '''
495
+ :param window_size: the size of gauss kernel
496
+ :param window_sigma: sigma of normal distribution
497
+ :param data_range: value range of input images. (usually 1.0 or 255)
498
+ :param channel: input channels (default: 3)
499
+ :param use_padding: padding image before conv
500
+ '''
501
+ super().__init__()
502
+ assert window_size % 2 == 1, 'Window size must be odd.'
503
+ window = create_window(window_size, window_sigma, channel)
504
+ self.register_buffer('window', window)
505
+ self.data_range = data_range
506
+ self.use_padding = use_padding
507
+
508
+ @torch.jit.script_method
509
+ def forward(self, X, Y):
510
+ r = ssim(X, Y, window=self.window, data_range=self.data_range, use_padding=self.use_padding)
511
+ return r[0]
512
+
513
+
514
+ class MS_SSIM(torch.jit.ScriptModule):
515
+ __constants__ = ['data_range', 'use_padding', 'eps']
516
+
517
+ def __init__(self, window_size=11, window_sigma=1.5, data_range=255., channel=3, use_padding=False, weights=None, levels=None, eps=1e-8):
518
+ '''
519
+ class for ms-ssim
520
+ :param window_size: the size of gauss kernel
521
+ :param window_sigma: sigma of normal distribution
522
+ :param data_range: value range of input images. (usually 1.0 or 255)
523
+ :param channel: input channels
524
+ :param use_padding: padding image before conv
525
+ :param weights: weights for different levels. (default [0.0448, 0.2856, 0.3001, 0.2363, 0.1333])
526
+ :param levels: number of downsampling
527
+ :param eps: Use for fix a issue. When c = a ** b and a is 0, c.backward() will cause the a.grad become inf.
528
+ '''
529
+ super().__init__()
530
+ assert window_size % 2 == 1, 'Window size must be odd.'
531
+ self.data_range = data_range
532
+ self.use_padding = use_padding
533
+ self.eps = eps
534
+
535
+ window = create_window(window_size, window_sigma, channel)
536
+ self.register_buffer('window', window)
537
+
538
+ if weights is None:
539
+ weights = [0.0448, 0.2856, 0.3001, 0.2363, 0.1333]
540
+ weights = torch.tensor(weights, dtype=torch.float)
541
+
542
+ if levels is not None:
543
+ weights = weights[:levels]
544
+ weights = weights / weights.sum()
545
+
546
+ self.register_buffer('weights', weights)
547
+
548
+ @torch.jit.script_method
549
+ def forward(self, X, Y):
550
+ return ms_ssim(X, Y, window=self.window, data_range=self.data_range, weights=self.weights,
551
+ use_padding=self.use_padding, eps=self.eps)
552
+
553
+
554
+
555
+
556
+ def img_alpha_blending(
557
+ drawables: List[np.ndarray],
558
+ xyxy=None,
559
+ output_type='numpy',
560
+ final_size=None,
561
+ max_depth_val=255,
562
+ premultiplied=True,
563
+ ):
564
+ '''
565
+ final_size: (h, w)
566
+ '''
567
+
568
+ if isinstance(drawables, (np.ndarray, dict)):
569
+ drawables = [drawables]
570
+
571
+ # infer final scene size
572
+ if xyxy is not None:
573
+ final_size = [xyxy[3] - xyxy[1], xyxy[2] - xyxy[0]]
574
+ x1, y1, x2, y2 = xyxy
575
+ elif final_size is None:
576
+ d = drawables[0]
577
+ if isinstance(d, dict):
578
+ d = d['img']
579
+ final_size = d.shape[:2]
580
+
581
+ final_rgb = np.zeros((final_size[0], final_size[1], 3), dtype=np.float32)
582
+ final_alpha = np.zeros_like(final_rgb[..., [0]])
583
+ final_depth = None
584
+
585
+ for drawable_img in drawables:
586
+ dxyxy = None
587
+ depth = None
588
+ if isinstance(drawable_img, dict):
589
+ depth = drawable_img.get('depth', None)
590
+ tag = drawable_img.get('tag', None)
591
+ if depth is not None:
592
+ if depth.ndim == 2:
593
+ depth = depth[..., None]
594
+ if final_depth is None:
595
+ final_depth = np.full_like(final_alpha, fill_value=max_depth_val)
596
+ if 'xyxy' in drawable_img:
597
+ dxyxy = drawable_img['xyxy']
598
+ dx1, dy1, dx2, dy2 = dxyxy
599
+ drawable_img = drawable_img['img']
600
+ if dxyxy is not None:
601
+ if dx1 < 0:
602
+ drawable_img = drawable_img[:, -dx1:]
603
+ if depth is not None:
604
+ depth = depth[:, -dx1:]
605
+ dx1 = 0
606
+ if dy1 < 0:
607
+ drawable_img = drawable_img[-dy1:]
608
+ if depth is not None:
609
+ depth = depth[-dy1:]
610
+ dy1 = 0
611
+
612
+ if drawable_img.ndim == 3 and drawable_img.shape[-1] == 3:
613
+ drawable_alpha = np.ones_like(drawable_img[..., [-1]])
614
+ else:
615
+ drawable_alpha = drawable_img[..., [-1]] / 255
616
+
617
+ drawable_img = drawable_img[..., :3]
618
+
619
+ if xyxy is not None:
620
+ if dxyxy is None:
621
+ drawable_img = drawable_img[y1: y2, x1: x2]
622
+ else:
623
+ intersection = bbox_intersection(xyxy, dxyxy)
624
+ if intersection is None:
625
+ continue
626
+ ix1, iy1, ix2, iy2 = intersection
627
+ drawable_alpha = drawable_alpha[iy1-dy1: iy2-dy1, ix1-dx1: ix2-dx1]
628
+ final_alpha[iy1-y1: iy2-y1, ix1-x1: ix2-x1] += drawable_alpha
629
+ drawable_img = drawable_img[iy1-dy1: iy2-dy1, ix1-dx1: ix2-dx1]
630
+ final_rgb[iy1-y1: iy2-y1, ix1-x1: ix2-x1] = final_rgb[iy1-y1: iy2-y1, ix1-x1: ix2-x1] * (1-drawable_alpha) + drawable_img
631
+ continue
632
+
633
+ if dxyxy is None:
634
+ if depth is not None:
635
+ update_mask = (final_depth > depth).astype(np.uint8)
636
+ final_depth = update_mask * depth + (1-update_mask) * final_depth
637
+ final_rgb = update_mask * (final_rgb * (1-drawable_alpha) + drawable_img) + \
638
+ (1 - update_mask) * (drawable_img * (1-final_alpha) + final_rgb)
639
+ final_alpha = np.clip(final_alpha + drawable_alpha, 0, 1)
640
+ else:
641
+ final_alpha += drawable_alpha
642
+ final_alpha = np.clip(final_alpha, 0, 1)
643
+ if not premultiplied:
644
+ drawable_img = drawable_img * drawable_alpha
645
+ final_rgb = final_rgb * (1 - drawable_alpha) + drawable_img
646
+ else:
647
+ if depth is not None:
648
+ update_mask = (final_depth[dy1: dy2, dx1: dx2] > depth).astype(np.uint8)
649
+ update_mask = update_mask * (drawable_alpha > 0.1)
650
+ final_depth[dy1: dy2, dx1: dx2] = update_mask * depth + (1-update_mask) * final_depth[dy1: dy2, dx1: dx2]
651
+ final_rgb[dy1: dy2, dx1: dx2] = update_mask * (final_rgb[dy1: dy2, dx1: dx2] * (1-drawable_alpha) + drawable_img) + \
652
+ (1 - update_mask) * (drawable_img * (1-final_alpha[dy1: dy2, dx1: dx2]) + final_rgb[dy1: dy2, dx1: dx2])
653
+ final_alpha[dy1: dy2, dx1: dx2] = np.clip(final_alpha[dy1: dy2, dx1: dx2] + drawable_alpha, 0, 1)
654
+ else:
655
+ final_alpha[dy1: dy2, dx1: dx2] += drawable_alpha
656
+ final_alpha = np.clip(final_alpha, 0, 1)
657
+ final_rgb[dy1: dy2, dx1: dx2] = final_rgb[dy1: dy2, dx1: dx2] * (1-drawable_alpha) + drawable_img
658
+
659
+ final_alpha = np.clip(final_alpha, 0, 1) * 255
660
+ final = np.concatenate([final_rgb, final_alpha], axis=2)
661
+ final = np.clip(final, 0, 255).astype(np.uint8)
662
+
663
+ output_type = output_type.lower()
664
+ if output_type == 'pil':
665
+ final = Image.fromarray(final)
666
+ elif output_type == 'dict':
667
+ final = {
668
+ 'img': final
669
+ }
670
+ if final_depth is not None:
671
+ final['depth'] = final_depth
672
+
673
+ return final
674
+
675
+
676
+ def rgba_to_rgb_fixbg(img: np.ndarray, background_color=255):
677
+ if isinstance(img, Image.Image):
678
+ img = np.array(img)
679
+ assert img.ndim == 3
680
+ if img.shape[-1] == 3:
681
+ return img
682
+ if isinstance(background_color, int):
683
+ bg = np.full_like(img[..., :3], fill_value=background_color)
684
+ else:
685
+ background_color = np.array(background_color)[:3].astype(np.uint8)
686
+ bg = np.full_like(img[..., :3], fill_value=255)
687
+ bg[..., :3] = background_color
688
+ return img_alpha_blending([bg, img])[..., :3].copy()
visualize.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os.path as osp
2
+ import os
3
+ import argparse
4
+
5
+ import numpy as np
6
+ import numpy as np
7
+ import cv2
8
+ import matplotlib.pyplot as plt
9
+ from matplotlib.lines import Line2D
10
+ from PIL import Image
11
+
12
+ import matplotlib.pyplot as plt
13
+ from vis_utils import *
14
+
15
+
16
+
17
+ if __name__ == '__main__':
18
+
19
+ parser = argparse.ArgumentParser()
20
+ parser.add_argument('--saved', type=str, default=None)
21
+ parser.add_argument('--srcp', type=str)
22
+
23
+ args = parser.parse_args()
24
+ srcp = args.srcp
25
+ saved = args.saved
26
+
27
+ if saved is None:
28
+ saved = './'
29
+
30
+ os.makedirs(saved, exist_ok=True)
31
+
32
+ seed_everything(0)
33
+
34
+ # for srcp in tqdm(load_exec_list(exec_list)):
35
+ if osp.isfile(srcp):
36
+ srcp = osp.dirname(srcp)
37
+ try:
38
+ fullpage, infos, part_dict_list = load_parts(srcp)
39
+ except Exception as e:
40
+ print(f'failed to load {srcp}: \n')
41
+ print(e)
42
+
43
+ # optim_before = img_alpha_blending(part_dict_list, final_size=(1024, 1024))
44
+ optim_depth(part_dict_list, fullpage)
45
+
46
+ n_components = len(part_dict_list)
47
+
48
+ colors = []
49
+ tag_list = []
50
+ for ii in range(len(part_dict_list)):
51
+ pd = part_dict_list[ii]
52
+ depth = pd['depth']
53
+ h, w = depth.shape[:2]
54
+ pd['depth_median'] = np.median(depth[pd['mask']])
55
+ tag_list.append(pd['tag'])
56
+ color = get_color(VALID_BODY_PARTS_V2.index(pd['tag']))
57
+ alpha = pd['img'][..., 3]
58
+ colors.append(color)
59
+ pd['img'] = np.full((h, w, 4), (*color, 255))
60
+ pd['img'][..., 3] = alpha
61
+ # pd.pop('depth')
62
+
63
+ part_dict_list.sort(key=lambda x: x['depth_median'], reverse=True)
64
+ color_code = img_alpha_blending(part_dict_list, final_size=(1024, 1024))
65
+
66
+ save_dir = osp.join(saved, osp.basename(osp.dirname(srcp)))
67
+ os.makedirs(save_dir, exist_ok=True)
68
+ savep = osp.join(save_dir, osp.basename(srcp)) + '.png'
69
+
70
+ alpha = (color_code[..., [3]] / 255.) * 0.8
71
+ blended = alpha * color_code[..., :3] + (1 - alpha) * fullpage[..., :3]
72
+ result = np.round(blended).astype(np.uint8)
73
+
74
+ # print('xxxxx')
75
+
76
+ colors = np.array(colors)
77
+ colors = colors.astype(np.float32) / 255.
78
+ px = 1 / plt.rcParams['figure.dpi'] # pixel in inches
79
+ fig = plt.figure(figsize=(result.shape[1] * px, result.shape[0] * px), facecolor=[0, 0, 0, 0])
80
+
81
+ fnt_sz = int(5 * result.shape[0] / 256)
82
+ plt.rcParams['legend.fontsize'] = fnt_sz
83
+ lw = 5 * result.shape[0] / 256
84
+ lines = [Line2D([0], [0], color=colors[i], lw=lw)
85
+ for i in range(n_components)]
86
+ # c_labels = [all_labels[i] for i in all_labels]
87
+ plt.legend(lines,
88
+ tag_list,
89
+ mode="expand",
90
+ fancybox=False,
91
+ edgecolor="black",
92
+ # frameon=False,
93
+ shadow=False,
94
+ framealpha=0.)
95
+
96
+ plt.tight_layout(pad=0, w_pad=0, h_pad=0)
97
+ plt.axis('off')
98
+ fig.canvas.draw()
99
+ data = np.frombuffer(fig.canvas.buffer_rgba() , dtype=np.uint8)
100
+ plt.close(fig=fig)
101
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (4,))
102
+ dx, dy, dw, dh = cv2.boundingRect(cv2.findNonZero(data[..., 3]))
103
+
104
+ data = rgba_to_rgb_fixbg(data[:, dx: dx + dw])
105
+ data = cv2.copyMakeBorder(data, 0, 0, fnt_sz, fnt_sz, borderType=cv2.BORDER_CONSTANT, value=(255, 255, 255))
106
+
107
+ result = np.hstack((result, data))
108
+ Image.fromarray(result).save(savep)
109
+
110
+ print(f'result saved to {savep}')