|
|
|
|
|
import datasets |
|
import pdb |
|
import jsonlines |
|
|
|
CITATION_BLOB = ''' |
|
@article{krishna2023usb, |
|
title={USB: A Unified Summarization Benchmark Across Tasks and Domains}, |
|
author={Krishna, Kundan and Gupta, Prakhar and Ramprasad, Sanjana and Wallace, Byron C and Bigham, Jeffrey P and Lipton, Zachary C}, |
|
booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023}, |
|
year={2023} |
|
} |
|
''' |
|
|
|
DESCRIPTION_BLOB = ''' |
|
The USB benchmark consists of labeled datasets for a collection of 8 tasks dealing with text summarization, |
|
particularly focusing on factuality and controllability of summary generation. |
|
Paper can be found here : https://arxiv.org/abs/2305.14296 |
|
''' |
|
|
|
|
|
class USBConfig(datasets.BuilderConfig): |
|
def __init__( |
|
self, |
|
text_features, |
|
label_column, |
|
citation=CITATION_BLOB, |
|
data_url="processed_data.tar.gz", |
|
label_classes=None, |
|
process_label=lambda x: x, |
|
**kwargs, |
|
): |
|
super(USBConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
self.text_features = text_features |
|
self.label_column = label_column |
|
|
|
self.citation = citation |
|
self.label_classes = label_classes |
|
self.process_label = process_label |
|
self.url = "https://github.com/kukrishna/usb" |
|
|
|
self.data_url=data_url |
|
|
|
|
|
class USB(datasets.GeneratorBasedBuilder): |
|
"""The Unified Summarization Benchmark.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
USBConfig( |
|
name="topicbased_summarization", |
|
description="Generate a short summary of the given article covering the given topic", |
|
text_features={"summ_idx": "int", "input_lines": "listsent", "topic_name": "sent", "output_lines":"listsent"}, |
|
label_column="output_lines", |
|
), |
|
USBConfig( |
|
name="fixing_factuality", |
|
description="Given a summary sentence (claim) and presented evidence from the article, edit the summary to remove unsupported or contradicting facts", |
|
text_features={"summ_idx": "int", "input_lines": "listsent", "initial_summary": "sent", "fixed_summary":"sent"}, |
|
label_column="fixed_summary", |
|
), |
|
USBConfig( |
|
name="unsupported_span_prediction", |
|
description="Given a summary sentence (claim) and presented evidence from the article, mark the parts of the summary which are not supported by the evidence by surrounding them with [] and [/] tags.", |
|
text_features={"summ_idx": "int", "input_lines": "listsent", "summary": "sent", "annotated_summary":"sent"}, |
|
label_column="annotated_summary", |
|
), |
|
USBConfig( |
|
name="evidence_extraction", |
|
description="Given an article and its summary, for each summary sentence, produce a minimal list of sentences from the article which provide sufficient evidence for all facts in the summary sentence.", |
|
text_features={"input_lines": "listsent", "summary_lines": "listsent", "evidence_labels":"listlistint"}, |
|
label_column="evidence_labels", |
|
), |
|
USBConfig( |
|
name="multisentence_compression", |
|
description="Given a list of sentences from an article, generate a single sentence summary of the presented cluster of sentences.", |
|
text_features={"summ_idx": "int", "input_lines": "listsent", "output_lines": "listsent"}, |
|
label_column="output_lines", |
|
), |
|
USBConfig( |
|
name="extractive_summarization", |
|
description="Given an article, generate an extractive summary by producing a subset o the article's sentences", |
|
text_features={"input_lines": "listsent", "labels": "listint"}, |
|
label_column="labels", |
|
), |
|
USBConfig( |
|
name="abstractive_summarization", |
|
description="Given an article, generate its abstractive summary", |
|
text_features={"input_lines": "listsent", "output_lines": "listsent"}, |
|
label_column="output_lines", |
|
), |
|
USBConfig( |
|
name="factuality_classification", |
|
description="Given a summary sentence (claim) and presented evidence from the article, predict whether all facts of the claim are supported by and in agreement with the presented evidence, or not.", |
|
text_features={"summ_idx": "int", "input_lines": "listsent", "summary_sent": "sent", "label":"int"}, |
|
label_column="label", |
|
), |
|
] |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
data_root = dl_manager.download_and_extract(self.config.data_url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": f"{data_root}/{self.config.name}/train.jsonl", |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_file": f"{data_root}/{self.config.name}/validation.jsonl", |
|
"split": "validation", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_file": f"{data_root}/{self.config.name}/test.jsonl", |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_file, split): |
|
with jsonlines.open(data_file) as f: |
|
for ex_idx,example in enumerate(f): |
|
example["id"] = example["id"]+":"+str(ex_idx) |
|
example["domain"] = example["id"].split("/")[0] |
|
yield example["id"], example |
|
|
|
def _info(self): |
|
features = {} |
|
features["id"] = datasets.Value("string") |
|
features["domain"] = datasets.Value("string") |
|
|
|
for (text_feature,dtype) in self.config.text_features.items(): |
|
hf_dtype = None |
|
if dtype=="int": |
|
hf_dtype = datasets.Value("int32") |
|
elif dtype=="listint": |
|
hf_dtype = datasets.Sequence(datasets.Value("int32")) |
|
elif dtype=="listlistint": |
|
hf_dtype = datasets.Sequence(datasets.Sequence(datasets.Value("int32"))) |
|
elif dtype=="sent": |
|
hf_dtype = datasets.Value("string") |
|
elif dtype=="listsent": |
|
hf_dtype = datasets.Sequence(datasets.Value("string")) |
|
else: |
|
raise NotImplementedError |
|
|
|
features[text_feature] = hf_dtype |
|
|
|
return datasets.DatasetInfo( |
|
description=DESCRIPTION_BLOB, |
|
features=datasets.Features(features), |
|
homepage=self.config.url, |
|
citation=self.config.citation, |
|
) |