Update README.md
Browse files
README.md
CHANGED
@@ -362,6 +362,57 @@ dataset_info:
|
|
362 |
download_size: 6290637578
|
363 |
dataset_size: 6495083614.0
|
364 |
---
|
365 |
-
# Dataset
|
366 |
|
367 |
-
[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
362 |
download_size: 6290637578
|
363 |
dataset_size: 6495083614.0
|
364 |
---
|
365 |
+
# Quick!Draw! Dataset (per-row bin format)
|
366 |
|
367 |
+
This is the full 50M-row dataset from [QuickDraw! dataset](https://github.com/googlecreativelab/quickdraw-dataset). The row for each drawing contains a byte-encoded packed representation of the drawing and data, which you can unpack using the following snippet:
|
368 |
+
|
369 |
+
```
|
370 |
+
def unpack_drawing(file_handle):
|
371 |
+
key_id, = unpack('Q', file_handle.read(8))
|
372 |
+
country_code, = unpack('2s', file_handle.read(2))
|
373 |
+
recognized, = unpack('b', file_handle.read(1))
|
374 |
+
timestamp, = unpack('I', file_handle.read(4))
|
375 |
+
n_strokes, = unpack('H', file_handle.read(2))
|
376 |
+
image = []
|
377 |
+
n_bytes = 17
|
378 |
+
for i in range(n_strokes):
|
379 |
+
n_points, = unpack('H', file_handle.read(2))
|
380 |
+
fmt = str(n_points) + 'B'
|
381 |
+
x = unpack(fmt, file_handle.read(n_points))
|
382 |
+
y = unpack(fmt, file_handle.read(n_points))
|
383 |
+
image.append((x, y))
|
384 |
+
n_bytes += 2 + 2*n_points
|
385 |
+
result = {
|
386 |
+
'key_id': key_id,
|
387 |
+
'country_code': country_code,
|
388 |
+
'recognized': recognized,
|
389 |
+
'timestamp': timestamp,
|
390 |
+
'image': image,
|
391 |
+
}
|
392 |
+
return result
|
393 |
+
```
|
394 |
+
|
395 |
+
The `image` in the above is still in line vector format. To convert render this to a raster image (I recommend you do this on-the-fly in a pre-processor):
|
396 |
+
|
397 |
+
```
|
398 |
+
# packed bin -> RGB PIL
|
399 |
+
def binToPIL(packed_drawing):
|
400 |
+
padding = 8
|
401 |
+
radius = 7
|
402 |
+
scale = (224.0-(2*padding)) / 256
|
403 |
+
|
404 |
+
unpacked = unpack_drawing(io.BytesIO(packed_drawing))
|
405 |
+
unpacked_image = unpacked['image']
|
406 |
+
image = np.full((224,224), 255, np.uint8)
|
407 |
+
for stroke in unpacked['image']:
|
408 |
+
prevX = round(stroke[0][0]*scale)
|
409 |
+
prevY = round(stroke[1][0]*scale)
|
410 |
+
for i in range(1, len(stroke[0])):
|
411 |
+
x = round(stroke[0][i]*scale)
|
412 |
+
y = round(stroke[1][i]*scale)
|
413 |
+
cv2.line(image, (padding+prevX, padding+prevY), (padding+x, padding+y), 0, radius, -1)
|
414 |
+
prevX = x
|
415 |
+
prevY = y
|
416 |
+
pilImage = Image.fromarray(image).convert("RGB")
|
417 |
+
return pilImage
|
418 |
+
```
|