mbqq / main.py
kihgfft's picture
Upload folder using huggingface_hub
01c7a56 verified
import argparse
import datetime
import importlib
import json
import os
import sys
import traceback
import warnings
from functools import partial
import numpy as np
import yaml
warnings.simplefilter("ignore", category=DeprecationWarning)
import hashlib
from pathlib import Path
from typing import Union
from accelerate import Accelerator
from accelerate.utils import InitProcessGroupKwargs
from loguru import logger as eval_logger
from lmms_eval import evaluator, utils
from lmms_eval.models import get_model
from lmms_eval.evaluator import request_caching_arg_to_dict
from lmms_eval.loggers import EvaluationTracker, WandbLogger
from lmms_eval.tasks import TaskManager
from lmms_eval.utils import (
make_table,
simple_parse_args_string,
)
from qmllm.quantization.quant_wrapper import qwrapper
from qmllm.models import get_process_model
from qmllm.calibration.pileval import get_calib_dataset
from qmllm.calibration.coco_vl import get_multimodal_calib_dataset
def _int_or_none_list_arg_type(min_len: int, max_len: int, defaults: str, value: str, split_char: str = ","):
def parse_value(item):
item = item.strip().lower()
if item == "none":
return None
try:
return int(item)
except ValueError:
raise argparse.ArgumentTypeError(f"{item} is not an integer or None")
items = [parse_value(v) for v in value.split(split_char)]
num_items = len(items)
if num_items == 1:
# Makes downstream handling the same for single and multiple values
items = items * max_len
elif num_items < min_len or num_items > max_len:
raise argparse.ArgumentTypeError(f"Argument requires {max_len} integers or None, separated by '{split_char}'")
elif num_items != max_len:
print(f"Argument requires {max_len} integers or None, separated by '{split_char}'. " "Missing values will be filled with defaults.")
default_items = [parse_value(v) for v in defaults.split(split_char)]
items.extend(default_items[num_items:]) # extend items list with missing defaults
return items
def check_argument_types(parser: argparse.ArgumentParser):
"""
Check to make sure all CLI args are typed, raises error if not
"""
for action in parser._actions:
if action.dest != "help" and not action.const:
if action.type is None:
raise ValueError(f"Argument '{action.dest}' doesn't have a type specified.")
else:
continue
def _handle_non_serializable(o):
if isinstance(o, np.int64) or isinstance(o, np.int32):
return int(o)
elif isinstance(o, set):
return list(o)
else:
return str(o)
def parse_eval_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument("--config", default="", help="Path to a yaml file specifying all eval arguments, will ignore cli arguments if specified")
parser.add_argument("--model", default="hf", help="Name of model e.g. `hf`")
parser.add_argument(
"--tasks",
default=None,
help="To get full list of tasks, use the command lmms-eval --tasks list",
)
parser.add_argument(
"--model_args",
default="",
help="String arguments for model, e.g. `pretrained=EleutherAI/pythia-160m,dtype=float32`",
)
parser.add_argument(
"--num_fewshot",
type=int,
default=None,
help="Number of examples in few-shot context",
)
parser.add_argument(
"--batch_size",
"-b",
type=str,
default=1,
metavar="auto|auto:N|N",
help="Acceptable values are 'auto', 'auto:N' or N, where N is an integer. Default 1.",
)
parser.add_argument(
"--max_batch_size",
type=int,
default=None,
metavar="N",
help="Maximal batch size to try with --batch_size auto.",
)
parser.add_argument(
"--device",
type=str,
default=None,
help="Device to use (e.g. cuda, cuda:0, cpu)",
)
parser.add_argument(
"--output_path",
default=None,
type=str,
metavar="= [dir/file.jsonl] [DIR]",
help="The path to the output file where the result metrics will be saved. If the path is a directory and log_samples is true, the results will be saved in the directory. Else the parent directory will be used.",
)
parser.add_argument(
"--limit",
type=float,
default=None,
help="Limit the number of examples per task. " "If <1, limit is a percentage of the total number of examples.",
)
parser.add_argument(
"--use_cache",
"-c",
type=str,
default=None,
metavar="DIR",
help="A path to a sqlite db file for caching model responses. `None` if not caching.",
)
parser.add_argument(
"--cache_requests",
type=str,
default=None,
choices=["true", "refresh", "delete"],
help="Speed up evaluation by caching the building of dataset requests. `None` if not caching.",
)
parser.add_argument(
"--check_integrity",
action="store_true",
help="Whether to run the relevant part of the test suite for the tasks",
)
parser.add_argument(
"--write_out",
"-w",
action="store_true",
default=False,
help="Prints the prompt for the first few documents.",
)
parser.add_argument(
"--log_samples",
action="store_true",
default=False,
help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis",
)
parser.add_argument(
"--wandb_log_samples",
action="store_true",
default=False,
help="If True, write out all model outputs and documents for per-sample measurement and post-hoc analysis to Weights and Biases",
)
parser.add_argument(
"--log_samples_suffix",
type=str,
default="model_outputs",
help="Specify a suffix for the log_samples file name.",
)
parser.add_argument(
"--system_instruction",
type=str,
default=None,
help="System instruction to be used in the prompt",
)
parser.add_argument(
"--apply_chat_template",
action="store_true",
default=False,
help="If True, applies the chat template to the prompt",
)
parser.add_argument(
"--fewshot_as_multiturn",
action="store_true",
default=False,
help="If True, uses the fewshot as a multi-turn conversation",
)
parser.add_argument(
"--show_config",
action="store_true",
default=False,
help="If True, shows the the full config of all tasks at the end of the evaluation.",
)
parser.add_argument(
"--include_path",
type=str,
default=None,
help="Additional path to include if there are external tasks to include.",
)
parser.add_argument(
"--gen_kwargs",
default="",
help=("String arguments for model generation on greedy_until tasks," " e.g. `temperature=0,top_k=0,top_p=0`"),
)
parser.add_argument(
"--verbosity",
type=str,
default="INFO",
help="Log error when tasks are not registered.",
)
parser.add_argument(
"--wandb_args",
default="",
help="Comma separated string arguments passed to wandb.init, e.g. `project=lmms-eval,job_type=eval",
)
parser.add_argument(
"--timezone",
default="Asia/Singapore",
help="Timezone for datetime string, e.g. Asia/Singapore, America/New_York, America/Los_Angeles. You can check the full list via `import pytz; print(pytz.common_timezones)`",
)
parser.add_argument(
"--hf_hub_log_args",
type=str,
default="",
help="Comma separated string arguments passed to Hugging Face Hub's log function, e.g. `hub_results_org=EleutherAI,hub_repo_name=lm-eval-results`",
)
parser.add_argument(
"--predict_only",
"-x",
action="store_true",
default=False,
help="Use with --log_samples. Only model outputs will be saved and metrics will not be evaluated.",
)
default_seed_string = "0,1234,1234,1234"
parser.add_argument(
"--seed",
type=partial(_int_or_none_list_arg_type, 3, 4, default_seed_string),
default=default_seed_string, # for backward compatibility
help=(
"Set seed for python's random, numpy, torch, and fewshot sampling.\n"
"Accepts a comma-separated list of 4 values for python's random, numpy, torch, and fewshot sampling seeds, "
"respectively, or a single integer to set the same seed for all four.\n"
f"The values are either an integer or 'None' to not set the seed. Default is `{default_seed_string}` "
"(for backward compatibility).\n"
"E.g. `--seed 0,None,8,52` sets `random.seed(0)`, `torch.manual_seed(8)`, and fewshot sampling seed to 52. "
"Here numpy's seed is not set since the second value is `None`.\n"
"E.g, `--seed 42` sets all four seeds to 42."
),
)
parser.add_argument(
"--trust_remote_code",
action="store_true",
help="Sets trust_remote_code to True to execute code to create HF Datasets from the Hub",
)
# calibration parameters
parser.add_argument("--calib_data", default="pileval", choices=["pileval", "coco", None])
parser.add_argument("--data_path", default="", type=str)
parser.add_argument("--image_folder", default="", type=str)
parser.add_argument("--n_samples", default=128, type=int)
parser.add_argument("--interleave_format", action="store_true")
# TODO: quantization parameters
parser.add_argument("--method", default="awq", choices=["awq", "smoothquant", "mbq", "rtn", None])
parser.add_argument("--w_bit", default=8, type=int)
parser.add_argument("--a_bit", default=16, type=int)
parser.add_argument("--w_group", default=128, type=int)
parser.add_argument("--alpha", default=0.5, type=int)
parser.add_argument("--reweight", action="store_true")
parser.add_argument("--distort", action="store_true")
parser.add_argument("--loss_mode", default="mae", choices=["mae", "mse"])
parser.add_argument("--scale_path", default=None, type=str)
parser.add_argument("--run_process", action="store_true")
parser.add_argument("--pseudo_quant", action="store_true")
args = parser.parse_args()
return args
def cli_evaluate(args: Union[argparse.Namespace, None] = None) -> None:
if not args:
args = parse_eval_args()
# Check if no arguments were passed after parsing
if len(sys.argv) == 1:
print("┌───────────────────────────────────────────────────────────────────────────────┐")
print("│ Please provide arguments to evaluate the model. e.g. │")
print("│ `lmms-eval --model llava --model_path liuhaotian/llava-v1.6-7b --tasks okvqa` │")
print("│ Use `lmms-eval --help` for more information. │")
print("└───────────────────────────────────────────────────────────────────────────────┘")
sys.exit(1)
if args.wandb_args:
if "name" not in args.wandb_args:
name = f"{args.model}_{args.model_args}_{utils.get_datetime_str(timezone=args.timezone)}"
name = utils.sanitize_long_string(name)
args.wandb_args += f",name={name}"
wandb_logger = WandbLogger(**simple_parse_args_string(args.wandb_args))
# reset logger
eval_logger.remove()
eval_logger.add(sys.stdout, colorize=True, level=args.verbosity)
eval_logger.info(f"Verbosity set to {args.verbosity}")
os.environ["VERBOSITY"] = args.verbosity
os.environ["TOKENIZERS_PARALLELISM"] = "false"
args_list = []
results_list = []
if args.config:
if not os.path.exists(args.config):
raise ValueError(f"Config file does not exist: {args.config}")
with open(args.config, "r") as file:
config_args = yaml.safe_load(file)
config_args = [config_args] if type(config_args) != list else config_args
# multiple configs, create args list first
for config in config_args:
args_copy = argparse.Namespace(**vars(args))
for key, value in config.items():
setattr(args_copy, key, value)
args_list.append(args_copy)
else:
args_list.append(args)
# initialize Accelerator
kwargs_handler = InitProcessGroupKwargs(timeout=datetime.timedelta(seconds=60000))
accelerator = Accelerator(kwargs_handlers=[kwargs_handler])
if accelerator.is_main_process:
is_main_process = True
else:
is_main_process = False
for args in args_list:
try:
# if is_main_process and args.wandb_args: # thoughtfully we should only init wandb once, instead of multiple ranks to avoid network traffics and unwanted behaviors.
# wandb_logger = WandbLogger()
results, samples = cli_evaluate_single(args)
results_list.append(results)
accelerator.wait_for_everyone()
if is_main_process and args.wandb_args:
try:
wandb_logger.post_init(results)
wandb_logger.log_eval_result()
if args.wandb_log_samples and samples is not None:
wandb_logger.log_eval_samples(samples)
except Exception as e:
eval_logger.info(f"Logging to Weights and Biases failed due to {e}")
# wandb_logger.finish()
except Exception as e:
if args.verbosity == "DEBUG":
raise e
else:
traceback.print_exc()
eval_logger.error(f"Error during evaluation: {e}. Please set `--verbosity=DEBUG` to get more information.")
results_list.append(None)
for args, results in zip(args_list, results_list):
# cli_evaluate will return none if the process is not the main process (rank 0)
if results is not None:
print(f"{args.model} ({args.model_args}), gen_kwargs: ({args.gen_kwargs}), limit: {args.limit}, num_fewshot: {args.num_fewshot}, " f"batch_size: {args.batch_size}")
print(make_table(results))
if "groups" in results:
print(make_table(results, "groups"))
if args.wandb_args:
wandb_logger.run.finish()
def cli_evaluate_single(args: Union[argparse.Namespace, None] = None) -> None:
selected_task_list = args.tasks.split(",") if args.tasks else None
if args.include_path is not None:
eval_logger.info(f"Including path: {args.include_path}")
task_manager = TaskManager(args.verbosity, include_path=args.include_path, model_name=args.model)
# update the evaluation tracker args with the output path and the HF token
if args.output_path:
args.hf_hub_log_args += f",output_path={args.output_path}"
if os.environ.get("HF_TOKEN", None):
args.hf_hub_log_args += f",token={os.environ.get('HF_TOKEN')}"
evaluation_tracker_args = simple_parse_args_string(args.hf_hub_log_args)
eval_logger.info(f"Evaluation tracker args: {evaluation_tracker_args}")
evaluation_tracker = EvaluationTracker(**evaluation_tracker_args)
if args.predict_only:
args.log_samples = True
if (args.log_samples or args.predict_only) and not args.output_path:
raise ValueError("Specify --output_path if providing --log_samples or --predict_only")
if args.fewshot_as_multiturn and args.apply_chat_template is False:
raise ValueError("If fewshot_as_multiturn is set, apply_chat_template must be set to True.")
if (args.num_fewshot is None or args.num_fewshot == 0) and args.fewshot_as_multiturn:
raise ValueError("If fewshot_as_multiturn is set, num_fewshot must be greater than 0.")
if args.include_path is not None:
eval_logger.info(f"Including path: {args.include_path}")
if "push_samples_to_hub" in evaluation_tracker_args and not args.log_samples:
eval_logger.warning("Pushing samples to the Hub requires --log_samples to be set. Samples will not be pushed to the Hub.")
if args.limit:
eval_logger.warning(" --limit SHOULD ONLY BE USED FOR TESTING." "REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT.")
if os.environ.get("LMMS_EVAL_PLUGINS", None):
args.include_path = [args.include_path] if args.include_path else []
for plugin in os.environ["LMMS_EVAL_PLUGINS"].split(","):
package_tasks_location = importlib.util.find_spec(f"{plugin}.tasks").submodule_search_locations[0]
args.include_path.append(package_tasks_location)
if args.tasks is None:
eval_logger.error("Need to specify task to evaluate.")
sys.exit()
elif args.tasks == "list":
eval_logger.info("Available Tasks:\n - {}".format(f"\n - ".join(sorted(task_manager.list_all_tasks()))))
sys.exit()
elif args.tasks == "list_groups":
eval_logger.info(task_manager.list_all_tasks(list_subtasks=False, list_tags=False))
sys.exit()
elif args.tasks == "list_tags":
eval_logger.info(task_manager.list_all_tasks(list_groups=False, list_subtasks=False))
sys.exit()
elif args.tasks == "list_subtasks":
eval_logger.info(task_manager.list_all_tasks(list_groups=False, list_tags=False))
sys.exit()
else:
if os.path.isdir(args.tasks):
import glob
task_names = []
yaml_path = os.path.join(args.tasks, "*.yaml")
for yaml_file in glob.glob(yaml_path):
config = utils.load_yaml_config(yaml_file)
task_names.append(config)
else:
task_list = args.tasks.split(",")
task_names = task_manager.match_tasks(task_list)
for task in [task for task in task_list if task not in task_names]:
if os.path.isfile(task):
config = utils.load_yaml_config(task)
task_names.append(config)
task_missing = [task for task in task_list if task not in task_names and "*" not in task] # we don't want errors if a wildcard ("*") task name was used
if task_missing:
missing = ", ".join(task_missing)
eval_logger.error(
f"Tasks were not found: {missing}\n" f"{utils.SPACING}Try `lm-eval --tasks list` for list of available tasks",
)
raise ValueError(
f"Tasks not found: {missing}. Try `lm-eval --tasks {{list_groups,list_subtasks,list_tags,list}}` to list out all available names for task groupings; only (sub)tasks; tags; or all of the above, or pass '--verbosity DEBUG' to troubleshoot task registration issues."
)
eval_logger.info(f"Selected Tasks: {task_names}")
request_caching_args = request_caching_arg_to_dict(cache_requests=args.cache_requests)
datetime_str = utils.get_datetime_str(timezone=args.timezone)
# here we load MLLMs outside of the evaluator.
if args.model_args is None:
args.model_args = ""
ModelClass = get_model(args.model)
lm = ModelClass.create_from_arg_string(
args.model_args,
{
"batch_size": args.batch_size,
"device": args.device,
},
)
#
if args.pseudo_quant:
print("Pseudo quant...")
Process_ModelClass = get_process_model(args.model)
process_model = Process_ModelClass(lm._model,
lm._tokenizer,
lm.processor if hasattr(lm, 'processor') else None)
#
prompt_inputs = None
prompt_kwargs = None
#
qwrapper(process_model, prompt_inputs, prompt_kwargs, args)
results = evaluator.simple_evaluate(
model=args.model,
lm=lm,
model_args=args.model_args,
tasks=task_names,
num_fewshot=args.num_fewshot,
batch_size=args.batch_size,
max_batch_size=args.max_batch_size,
device=args.device,
use_cache=args.use_cache,
limit=args.limit,
check_integrity=args.check_integrity,
write_out=args.write_out,
log_samples=args.log_samples,
evaluation_tracker=evaluation_tracker,
system_instruction=args.system_instruction,
apply_chat_template=args.apply_chat_template,
fewshot_as_multiturn=args.fewshot_as_multiturn,
gen_kwargs=args.gen_kwargs,
task_manager=task_manager,
verbosity=args.verbosity,
predict_only=args.predict_only,
random_seed=args.seed[0],
numpy_random_seed=args.seed[1],
torch_random_seed=args.seed[2],
fewshot_random_seed=args.seed[3],
cli_args=args,
datetime_str=datetime_str,
**request_caching_args,
)
if results is not None:
if args.log_samples:
samples = results.pop("samples")
else:
samples = None
dumped = json.dumps(results, indent=4, default=_handle_non_serializable)
if args.show_config:
print(dumped)
batch_sizes = ",".join(map(str, results["config"]["batch_sizes"]))
evaluation_tracker.save_results_aggregated(results=results, samples=samples if args.log_samples else None, datetime_str=datetime_str)
if args.log_samples:
for task_name, config in results["configs"].items():
evaluation_tracker.save_results_samples(task_name=task_name, samples=samples[task_name])
if evaluation_tracker.push_results_to_hub or evaluation_tracker.push_samples_to_hub:
evaluation_tracker.recreate_metadata_card()
return results, samples
return None, None
def print_results(args, results):
print(f"{args.model} ({args.model_args}),\ngen_kwargs: ({args.gen_kwargs}),\nlimit: {args.limit},\nnum_fewshot: {args.num_fewshot},\nbatch_size: {args.batch_size}")
print(evaluator.make_table(results))
if "groups" in results:
print(evaluator.make_table(results, "groups"))
if __name__ == "__main__":
cli_evaluate()