ecoset / README.md
DiGyt's picture
added install req in index
9945ae3
|
raw
history blame
6.76 kB
---
pretty_name: Ecoset
license: cc
source_datasets:
- original
task_categories:
- image-classification
- image
task_ids:
- multi-class-image-classification
- other-other-image-classification
- image-classification
- other-image-classification
paperswithcode_id: ecoset
---
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Installation](#installation)
- [Install requirements](#install-requirements)
- [Download settings](#download-settings)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://www.kietzmannlab.org/ecoset](https://www.kietzmannlab.org/ecoset/)
- **Repository:** [https://codeocean.com/capsule/9570390/tree/v1](https://codeocean.com/capsule/9570390/tree/v1)
- **Paper:** [https://www.pnas.org/doi/full/10.1073/pnas.2011417118](https://doi.org/10.1073/pnas.2011417118)
- **Point of Contact:** [tim.kietzmann@uni-osnabrueck.de](tim.kietzmann@uni-osnabrueck.de)
### Dataset Summary
Tired of all the dogs in ImageNet (ILSVRC)? Then ecoset is here for you. 1.5m images
from 565 basic level categories, chosen to be both (i) frequent in linguistic usage,
and (ii) rated by human observers as concrete (e.g. ‘table’ is concrete, ‘romance’
is not).
Ecoset is a typical image recognition dataset, combining images of objects with appropriate
labels (one label per image). Importantly, ecoset is intended to provide higher ecological
validity than its counterparts, with a mislabelling error rate < 5% and filtered for NSFW content.
For more information on the dataset, consider reading the [original publication](https://doi.org/10.1073/pnas.2011417118).
Ecoset consists of a train, test, and validation subset which all are openly available to the user.
### Supported Tasks and Leaderboards
Ecoset is a large multi-class single-label object recognition image dataset (similar to ImageNet).
## Installation
### Install Requirements
In order to work with ecoset, please make sure to install the s3 compatible version of huggingface datasets, which should include the `s3fs`, `botocore` and `boto3` modules:
```bash
pip install datasets[s3]
```
### Download Settings
Please set `ignore_verifications=True`. when downloading this dataset, else the download will result in an error:
```python
from datasets import load_dataset
dataset = load_dataset("DiGyt/ecoset", ignore_verifications=True)
```
## Dataset Structure
We show detailed information for all the configurations of the dataset. Currently, there is only one setting (`Full`) available, containing all data.
### Data Instances
#### Full
- **Size of downloaded dataset files:** 155 GB
- **Total amount of disk used:** 311 GB
## Dataset Creation
A total of 565 categories were selected based on the following: 1) their word frequency in American television and film subtitles (SUBTLEX_US), 2) the perceived concreteness by human observers, and 3) the availability of a minimum of 700 images. Images were sourced via the overall ImageNet database (the same resource used for ILSVRC 2012) or obtained under CC BY-NC-SA 2.0 license from Bing image search and Flickr. Thorough data cleaning procedures were put in place to remove duplicates and to assure an expected misclassification rate per category of <4%.
### Curation Rationale
...TODO
### Source Data
The source data is available under: [https://codeocean.com/capsule/9570390/tree/v1](https://codeocean.com/capsule/9570390/tree/v1)
### Annotations
Each ecoset image folder is annotated with class labels according to the main object depicted in a class of images. No further annotations are added to the dataset.
### Personal and Sensitive Information
The dataset was tested to exclude sensitive images using Yahoo's Open NSFW detection model, removing all image with an NSFW score above 0.8. For this dataset, only images with secured license information was used, which should prevent the inclusion of images without consent of the image's authors and subjects. Despite these measures, it is possible that the images in the dataset contain personal and sensitive information.
## Considerations for Using the Data
### Social Impact of Dataset
...TODO
### Discussion of Biases
Despite best efforts to provide an ecologically valid dataset, ecoset is likely to contain biased data. The category selection of ecoset was based on human concreteness ratings and word frequencies in a corpus consisting of American television and film subtitles. This undoubtedly biases the category selection toward Western cultures. Image inclusion was based on the availability via Bing/Flickr search results as well as the existence of relevant ImageNet categories. Images depicting people, specifically the categories “man,” “woman,” and “child,” were not sampled according to census distributions (age, ethnicity, gender, etc.).
### Other Known Limitations
In addition to points mentioned in [Discussion of Biases](#discussion-of-biases), ecoset image and category distributions do not reflect the naturalistic, egocentric visual input typically encountered in the everyday life of infant and adults.
## Additional Information
### Dataset Curators
The corpus was put together by Johannes Mehrer, Courtney J. Spoerer, Emer C. Jones, Nikolaus Kriegeskorte, and Tim C. Kietzmann.
### Licensing Information
Ecoset is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 2.0 license (cc-by-nc-sa-2.0).
### Citation Information
```
@article{mehrer2021ecologically,
title={An ecologically motivated image dataset for deep learning yields better models of human vision},
author={Mehrer, Johannes and Spoerer, Courtney J and Jones, Emer C and Kriegeskorte, Nikolaus and Kietzmann, Tim C},
journal={Proceedings of the National Academy of Sciences},
volume={118},
number={8},
pages={e2011417118},
year={2021},
publisher={National Acad Sciences}
}
```
### Contributions
Thanks to #TODO