abarbosa commited on
Commit
4ccf071
·
1 Parent(s): 3212f51

update large encoders; slm and update c5 gpt4o

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. runs/api_models/gpt-4o/gpt-4o-2024-11-20-zero-shot-C5-essay_only/evaluation_results.csv +2 -2
  2. runs/api_models/gpt-4o/gpt-4o-2024-11-20-zero-shot-C5-essay_only/gpt-4o-2024-11-20-grader-zero-shot-C5-essay_only_inference_results.jsonl +0 -0
  3. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only}/.hydra/config.yaml +2 -2
  4. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only}/.hydra/hydra.yaml +6 -5
  5. runs/large_models/bertimbau/jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/.hydra/overrides.yaml +1 -0
  6. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only}/bootstrap_confidence_intervals.csv +1 -1
  7. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only}/evaluation_results.csv +2 -2
  8. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only/jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only_inference_results.jsonl → jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only_inference_results.jsonl} +0 -0
  9. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only}/run_inference_experiment.log +105 -51
  10. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only}/.hydra/config.yaml +2 -2
  11. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only}/.hydra/hydra.yaml +6 -5
  12. runs/large_models/bertimbau/jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only/.hydra/overrides.yaml +1 -0
  13. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only}/bootstrap_confidence_intervals.csv +1 -1
  14. runs/large_models/bertimbau/jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only/evaluation_results.csv +2 -0
  15. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only/jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only_inference_results.jsonl → jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only/jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only_inference_results.jsonl} +0 -0
  16. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only}/run_inference_experiment.log +105 -51
  17. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only}/.hydra/config.yaml +2 -2
  18. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only}/.hydra/hydra.yaml +6 -5
  19. runs/large_models/bertimbau/jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only/.hydra/overrides.yaml +1 -0
  20. runs/large_models/bertimbau/jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only/bootstrap_confidence_intervals.csv +2 -0
  21. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only}/evaluation_results.csv +2 -2
  22. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only/jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only_inference_results.jsonl → jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only/jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only_inference_results.jsonl} +0 -0
  23. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only}/run_inference_experiment.log +105 -51
  24. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/.hydra/config.yaml +2 -2
  25. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/.hydra/hydra.yaml +6 -5
  26. runs/large_models/bertimbau/jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only/.hydra/overrides.yaml +1 -0
  27. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/bootstrap_confidence_intervals.csv +1 -1
  28. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/evaluation_results.csv +2 -2
  29. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only/jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only_inference_results.jsonl → jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only/jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only_inference_results.jsonl} +0 -0
  30. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/run_inference_experiment.log +105 -51
  31. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only}/.hydra/config.yaml +2 -2
  32. runs/large_models/bertimbau/jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only/.hydra/hydra.yaml +157 -0
  33. runs/large_models/bertimbau/jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only/.hydra/overrides.yaml +1 -0
  34. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only}/bootstrap_confidence_intervals.csv +1 -1
  35. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only}/evaluation_results.csv +2 -2
  36. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only/jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only_inference_results.jsonl → jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only/jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only_inference_results.jsonl} +0 -0
  37. runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only}/run_inference_experiment.log +105 -51
  38. runs/large_models/bertimbau/jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only/.hydra/overrides.yaml +0 -1
  39. runs/large_models/bertimbau/jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only/.hydra/overrides.yaml +0 -1
  40. runs/large_models/bertimbau/jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only/.hydra/overrides.yaml +0 -1
  41. runs/large_models/bertimbau/jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only/.hydra/overrides.yaml +0 -1
  42. runs/large_models/bertimbau/jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only/.hydra/hydra.yaml +0 -156
  43. runs/large_models/bertimbau/jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only/.hydra/overrides.yaml +0 -1
  44. runs/large_models/bertimbau/jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only/bootstrap_confidence_intervals.csv +0 -2
  45. runs/large_models/bertimbau/jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only/evaluation_results.csv +0 -2
  46. runs/slm_decoder_models/llama-3.1-8b/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16-llama31_classification_lora-C1-essay_only-r16/.hydra/hydra.yaml +3 -3
  47. runs/slm_decoder_models/llama-3.1-8b/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16-llama31_classification_lora-C1-essay_only-r16/bootstrap_confidence_intervals.csv +1 -1
  48. runs/slm_decoder_models/llama-3.1-8b/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16-llama31_classification_lora-C1-essay_only-r16/evaluation_results.csv +1 -1
  49. runs/slm_decoder_models/llama-3.1-8b/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16-llama31_classification_lora-C1-essay_only-r16/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16-llama31_classification_lora-C1-essay_only-r16_inference_results.jsonl +0 -0
  50. runs/slm_decoder_models/llama-3.1-8b/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16-llama31_classification_lora-C1-essay_only-r16/run_inference_experiment.log +68 -45
runs/api_models/gpt-4o/gpt-4o-2024-11-20-zero-shot-C5-essay_only/evaluation_results.csv CHANGED
@@ -1,2 +1,2 @@
1
- accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
- 0.3188405797101449,60.048289746247356,0.5487540742298391,0.07971014492753625,0.2921402969790066,0.3188405797101449,0.29828469022017406,16,112,4,6,13,81,25,19,3,96,18,21,10,92,21,15,0,106,0,32,2,109,26,1,2025-07-02 21:08:07,gpt-4o-2024-11-20-zero-shot-C5-essay_only
 
1
+ accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.3188405797101449,60.048289746247356,0.5487540742298391,0.07971014492753625,0.2921402969790066,0.3188405797101449,0.29828469022017406,16,112,4,6,13,81,25,19,3,96,18,21,10,92,21,15,0,106,0,32,2,109,26,1,2025-07-02 21:08:07,gpt-4o-2024-11-20-zero-shot-C5-essay_only
runs/api_models/gpt-4o/gpt-4o-2024-11-20-zero-shot-C5-essay_only/gpt-4o-2024-11-20-grader-zero-shot-C5-essay_only_inference_results.jsonl DELETED
The diff for this file is too large to render. See raw diff
 
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only}/.hydra/config.yaml RENAMED
@@ -20,12 +20,12 @@ post_training_results:
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
- name: kamel-usp/jbcs2025_bertimbau-large-C1
24
  type: encoder_classification
25
  num_labels: 6
26
  output_dir: ./results/bertimbau_large/C1
27
  logging_dir: ./logs/bertimbau_large/C1
28
- best_model_dir: ./results/bertimbau_large/C1/best_model
29
  tokenizer:
30
  name: neuralmind/bert-large-portuguese-cased
31
  dataset:
 
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
+ name: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only
24
  type: encoder_classification
25
  num_labels: 6
26
  output_dir: ./results/bertimbau_large/C1
27
  logging_dir: ./logs/bertimbau_large/C1
28
+ best_model_dir: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only
29
  tokenizer:
30
  name: neuralmind/bert-large-portuguese-cased
31
  dataset:
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only}/.hydra/hydra.yaml RENAMED
@@ -1,6 +1,6 @@
1
  hydra:
2
  run:
3
- dir: outputs/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
  sweep:
5
  dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
  subdir: ${hydra.job.num}
@@ -110,13 +110,14 @@ hydra:
110
  output_subdir: .hydra
111
  overrides:
112
  hydra:
 
113
  - hydra.mode=RUN
114
  task:
115
- - experiments=large_models/C3
116
  job:
117
  name: run_inference_experiment
118
  chdir: null
119
- override_dirname: experiments=large_models/C3
120
  id: ???
121
  num: ???
122
  config_name: config
@@ -141,9 +142,9 @@ hydra:
141
  - path: ''
142
  schema: structured
143
  provider: schema
144
- output_dir: /workspace/jbcs2025/outputs/2025-07-01/00-08-08
145
  choices:
146
- experiments: large_models/C3
147
  hydra/env: default
148
  hydra/callbacks: null
149
  hydra/job_logging: default
 
1
  hydra:
2
  run:
3
+ dir: inference_output/2025-07-10/01-10-43
4
  sweep:
5
  dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
  subdir: ${hydra.job.num}
 
110
  output_subdir: .hydra
111
  overrides:
112
  hydra:
113
+ - hydra.run.dir=inference_output/2025-07-10/01-10-43
114
  - hydra.mode=RUN
115
  task:
116
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only
117
  job:
118
  name: run_inference_experiment
119
  chdir: null
120
+ override_dirname: experiments=temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only
121
  id: ???
122
  num: ???
123
  config_name: config
 
142
  - path: ''
143
  schema: structured
144
  provider: schema
145
+ output_dir: /workspace/jbcs2025/inference_output/2025-07-10/01-10-43
146
  choices:
147
+ experiments: temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only
148
  hydra/env: default
149
  hydra/callbacks: null
150
  hydra/job_logging: default
runs/large_models/bertimbau/jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only}/bootstrap_confidence_intervals.csv RENAMED
@@ -1,2 +1,2 @@
1
  experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
- jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only,2025-07-01 00:02:02,0.7077306949563342,0.6143517863619989,0.7925777763902052,0.17822599002820627,0.5086103433798745,0.3864421058348054,0.6645304839656547,0.2780883781308493,0.7098050926433485,0.6316473666444833,0.7862820634470531,0.1546346968025698
 
1
  experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
+ jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only,2025-07-10 01:10:49,0.6822787596623211,0.586354115876401,0.7722799106018048,0.18592579472540383,0.4971683868103125,0.37489665684586737,0.6515710555984839,0.27667439875261657,0.6920329870783886,0.612322638598863,0.767705078861486,0.15538244026262293
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only}/evaluation_results.csv RENAMED
@@ -1,2 +1,2 @@
1
- accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
- 0.7028985507246377,24.55399256179405,0.7080553295362083,0.007246376811594235,0.4714726209463051,0.7028985507246377,0.7092465463174845,0,137,0,1,0,138,0,0,4,124,4,6,54,60,12,12,33,76,11,18,6,114,14,4,2025-07-01 00:02:02,jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only
 
1
+ accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.6884057971014492,25.02172968684897,0.6825694326120293,0.007246376811594235,0.4609419962901689,0.6884057971014492,0.6910750081919986,0,137,0,1,0,138,0,0,4,122,6,6,46,62,10,20,40,69,18,11,5,119,9,5,2025-07-10 01:10:49,jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only/jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only_inference_results.jsonl → jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only_inference_results.jsonl} RENAMED
The diff for this file is too large to render. See raw diff
 
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only}/run_inference_experiment.log RENAMED
@@ -1,5 +1,5 @@
1
- [2025-07-01 00:02:02,361][__main__][INFO] - Starting inference experiment
2
- [2025-07-01 00:02:02,362][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
@@ -21,12 +21,12 @@ post_training_results:
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
- name: kamel-usp/jbcs2025_bertimbau-large-C1
25
  type: encoder_classification
26
  num_labels: 6
27
  output_dir: ./results/bertimbau_large/C1
28
  logging_dir: ./logs/bertimbau_large/C1
29
- best_model_dir: ./results/bertimbau_large/C1/best_model
30
  tokenizer:
31
  name: neuralmind/bert-large-portuguese-cased
32
  dataset:
@@ -41,9 +41,9 @@ experiments:
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
- [2025-07-01 00:02:02,364][__main__][INFO] - Running inference with fine-tuned HF model
45
- [2025-07-01 00:02:08,354][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
46
- [2025-07-01 00:02:08,355][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
@@ -68,20 +68,14 @@ experiments:
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
- "transformers_version": "4.53.0",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
- [2025-07-01 00:02:10,698][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/vocab.txt
78
- [2025-07-01 00:02:10,698][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
79
- [2025-07-01 00:02:10,698][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/added_tokens.json
80
- [2025-07-01 00:02:10,698][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/special_tokens_map.json
81
- [2025-07-01 00:02:10,698][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/tokenizer_config.json
82
- [2025-07-01 00:02:10,698][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
83
- [2025-07-01 00:02:10,698][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
84
- [2025-07-01 00:02:10,699][transformers.configuration_utils][INFO] - Model config BertConfig {
85
  "architectures": [
86
  "BertForMaskedLM"
87
  ],
@@ -106,14 +100,20 @@ experiments:
106
  "pooler_size_per_head": 128,
107
  "pooler_type": "first_token_transform",
108
  "position_embedding_type": "absolute",
109
- "transformers_version": "4.53.0",
110
  "type_vocab_size": 2,
111
  "use_cache": true,
112
  "vocab_size": 29794
113
  }
114
 
115
- [2025-07-01 00:02:10,724][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
116
- [2025-07-01 00:02:10,724][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
@@ -138,18 +138,73 @@ experiments:
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
- "transformers_version": "4.53.0",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
- [2025-07-01 00:02:10,741][__main__][INFO] - Tokenizer function parameters- Padding:max_length; Truncation: True; Use Full Context: False
148
- [2025-07-01 00:02:10,943][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau-large-C1
149
- [2025-07-01 00:02:10,943][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau-large-C1
150
- [2025-07-01 00:02:11,801][__main__][INFO] - Model need ≈ 2.62 GiB to run inference and 6.36 for training
151
- [2025-07-01 00:02:12,612][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau-large-C1/snapshots/3e737c8fdb77192423f85a28a47c007d664a9aab/config.json
152
- [2025-07-01 00:02:12,613][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  "architectures": [
154
  "BertForSequenceClassification"
155
  ],
@@ -190,37 +245,36 @@ experiments:
190
  "pooler_size_per_head": 128,
191
  "pooler_type": "first_token_transform",
192
  "position_embedding_type": "absolute",
193
- "problem_type": "single_label_classification",
194
  "torch_dtype": "float32",
195
- "transformers_version": "4.53.0",
196
  "type_vocab_size": 2,
197
  "use_cache": true,
198
  "vocab_size": 29794
199
  }
200
 
201
- [2025-07-01 00:02:52,491][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau-large-C1/snapshots/3e737c8fdb77192423f85a28a47c007d664a9aab/model.safetensors
202
- [2025-07-01 00:02:52,492][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
203
- [2025-07-01 00:02:52,492][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
204
- [2025-07-01 00:02:53,107][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
205
 
206
- [2025-07-01 00:02:53,107][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bertimbau-large-C1.
207
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
208
- [2025-07-01 00:02:53,115][transformers.training_args][INFO] - PyTorch: setting up devices
209
- [2025-07-01 00:02:53,148][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
210
- [2025-07-01 00:02:53,153][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
211
- [2025-07-01 00:02:53,170][transformers.trainer][INFO] - Using auto half precision backend
212
- [2025-07-01 00:02:57,479][__main__][INFO] - Running inference on test dataset
213
- [2025-07-01 00:02:57,480][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: essay_text, reference, supporting_text, prompt, id_prompt, grades, id, essay_year. If essay_text, reference, supporting_text, prompt, id_prompt, grades, id, essay_year are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
214
- [2025-07-01 00:02:57,486][transformers.trainer][INFO] -
215
  ***** Running Prediction *****
216
- [2025-07-01 00:02:57,486][transformers.trainer][INFO] - Num examples = 138
217
- [2025-07-01 00:02:57,486][transformers.trainer][INFO] - Batch size = 16
218
- [2025-07-01 00:02:57,969][__main__][INFO] - Inference results saved to jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only_inference_results.jsonl
219
- [2025-07-01 00:02:57,975][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
220
- [2025-07-01 00:04:34,547][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
221
- [2025-07-01 00:04:34,547][__main__][INFO] - Bootstrap Confidence Intervals (95%):
222
- [2025-07-01 00:04:34,547][__main__][INFO] - QWK: 0.7077 [0.6144, 0.7926]
223
- [2025-07-01 00:04:34,547][__main__][INFO] - Macro_F1: 0.5086 [0.3864, 0.6645]
224
- [2025-07-01 00:04:34,547][__main__][INFO] - Weighted_F1: 0.7098 [0.6316, 0.7863]
225
- [2025-07-01 00:04:34,547][__main__][INFO] - Inference results: {'accuracy': 0.7028985507246377, 'RMSE': 24.55399256179405, 'QWK': 0.7080553295362083, 'HDIV': 0.007246376811594235, 'Macro_F1': 0.4714726209463051, 'Micro_F1': 0.7028985507246377, 'Weighted_F1': 0.7092465463174845, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(138), 'FP_1': np.int64(0), 'FN_1': np.int64(0), 'TP_2': np.int64(4), 'TN_2': np.int64(124), 'FP_2': np.int64(4), 'FN_2': np.int64(6), 'TP_3': np.int64(54), 'TN_3': np.int64(60), 'FP_3': np.int64(12), 'FN_3': np.int64(12), 'TP_4': np.int64(33), 'TN_4': np.int64(76), 'FP_4': np.int64(11), 'FN_4': np.int64(18), 'TP_5': np.int64(6), 'TN_5': np.int64(114), 'FP_5': np.int64(14), 'FN_5': np.int64(4)}
226
- [2025-07-01 00:04:34,547][__main__][INFO] - Inference experiment completed
 
1
+ [2025-07-10 01:10:49,396][__main__][INFO] - Starting inference experiment
2
+ [2025-07-10 01:10:49,398][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
 
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
+ name: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only
25
  type: encoder_classification
26
  num_labels: 6
27
  output_dir: ./results/bertimbau_large/C1
28
  logging_dir: ./logs/bertimbau_large/C1
29
+ best_model_dir: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only
30
  tokenizer:
31
  name: neuralmind/bert-large-portuguese-cased
32
  dataset:
 
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
+ [2025-07-10 01:10:49,400][__main__][INFO] - Running inference with fine-tuned HF model
45
+ [2025-07-10 01:10:55,009][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
46
+ [2025-07-10 01:10:55,010][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
 
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
+ "transformers_version": "4.53.1",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
+ [2025-07-10 01:10:55,328][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
78
+ [2025-07-10 01:10:55,328][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
79
  "architectures": [
80
  "BertForMaskedLM"
81
  ],
 
100
  "pooler_size_per_head": 128,
101
  "pooler_type": "first_token_transform",
102
  "position_embedding_type": "absolute",
103
+ "transformers_version": "4.53.1",
104
  "type_vocab_size": 2,
105
  "use_cache": true,
106
  "vocab_size": 29794
107
  }
108
 
109
+ [2025-07-10 01:10:55,537][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/vocab.txt
110
+ [2025-07-10 01:10:55,537][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
111
+ [2025-07-10 01:10:55,538][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/added_tokens.json
112
+ [2025-07-10 01:10:55,538][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/special_tokens_map.json
113
+ [2025-07-10 01:10:55,538][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/tokenizer_config.json
114
+ [2025-07-10 01:10:55,538][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
115
+ [2025-07-10 01:10:55,538][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
116
+ [2025-07-10 01:10:55,538][transformers.configuration_utils][INFO] - Model config BertConfig {
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
 
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
+ "transformers_version": "4.53.1",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
+ [2025-07-10 01:10:55,572][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
148
+ [2025-07-10 01:10:55,572][transformers.configuration_utils][INFO] - Model config BertConfig {
149
+ "architectures": [
150
+ "BertForMaskedLM"
151
+ ],
152
+ "attention_probs_dropout_prob": 0.1,
153
+ "classifier_dropout": null,
154
+ "directionality": "bidi",
155
+ "hidden_act": "gelu",
156
+ "hidden_dropout_prob": 0.1,
157
+ "hidden_size": 1024,
158
+ "initializer_range": 0.02,
159
+ "intermediate_size": 4096,
160
+ "layer_norm_eps": 1e-12,
161
+ "max_position_embeddings": 512,
162
+ "model_type": "bert",
163
+ "num_attention_heads": 16,
164
+ "num_hidden_layers": 24,
165
+ "output_past": true,
166
+ "pad_token_id": 0,
167
+ "pooler_fc_size": 768,
168
+ "pooler_num_attention_heads": 12,
169
+ "pooler_num_fc_layers": 3,
170
+ "pooler_size_per_head": 128,
171
+ "pooler_type": "first_token_transform",
172
+ "position_embedding_type": "absolute",
173
+ "transformers_version": "4.53.1",
174
+ "type_vocab_size": 2,
175
+ "use_cache": true,
176
+ "vocab_size": 29794
177
+ }
178
+
179
+ [2025-07-10 01:10:55,590][__main__][INFO] - Tokenizer function parameters- Padding:longest; Truncation: True; Use Full Context: False
180
+ [2025-07-10 01:10:56,012][__main__][INFO] -
181
+ Token statistics for 'train' split:
182
+ [2025-07-10 01:10:56,012][__main__][INFO] - Total examples: 500
183
+ [2025-07-10 01:10:56,012][__main__][INFO] - Min tokens: 512
184
+ [2025-07-10 01:10:56,012][__main__][INFO] - Max tokens: 512
185
+ [2025-07-10 01:10:56,012][__main__][INFO] - Avg tokens: 512.00
186
+ [2025-07-10 01:10:56,012][__main__][INFO] - Std tokens: 0.00
187
+ [2025-07-10 01:10:56,103][__main__][INFO] -
188
+ Token statistics for 'validation' split:
189
+ [2025-07-10 01:10:56,103][__main__][INFO] - Total examples: 132
190
+ [2025-07-10 01:10:56,103][__main__][INFO] - Min tokens: 512
191
+ [2025-07-10 01:10:56,103][__main__][INFO] - Max tokens: 512
192
+ [2025-07-10 01:10:56,103][__main__][INFO] - Avg tokens: 512.00
193
+ [2025-07-10 01:10:56,103][__main__][INFO] - Std tokens: 0.00
194
+ [2025-07-10 01:10:56,198][__main__][INFO] -
195
+ Token statistics for 'test' split:
196
+ [2025-07-10 01:10:56,198][__main__][INFO] - Total examples: 138
197
+ [2025-07-10 01:10:56,198][__main__][INFO] - Min tokens: 512
198
+ [2025-07-10 01:10:56,198][__main__][INFO] - Max tokens: 512
199
+ [2025-07-10 01:10:56,198][__main__][INFO] - Avg tokens: 512.00
200
+ [2025-07-10 01:10:56,198][__main__][INFO] - Std tokens: 0.00
201
+ [2025-07-10 01:10:56,198][__main__][INFO] - If token statistics are the same (max, avg, min) keep in mind that this is due to batched tokenization and padding.
202
+ [2025-07-10 01:10:56,198][__main__][INFO] - Model max length: 512. If it is the same as stats, then there is a high chance that sequences are being truncated.
203
+ [2025-07-10 01:10:56,198][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only
204
+ [2025-07-10 01:10:56,199][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only
205
+ [2025-07-10 01:10:57,324][__main__][INFO] - Model need ≈ 2.62 GiB to run inference and 6.36 for training
206
+ [2025-07-10 01:10:58,329][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only/snapshots/da30f459272b3b4c66170aa85fce0e1191eea445/config.json
207
+ [2025-07-10 01:10:58,330][transformers.configuration_utils][INFO] - Model config BertConfig {
208
  "architectures": [
209
  "BertForSequenceClassification"
210
  ],
 
245
  "pooler_size_per_head": 128,
246
  "pooler_type": "first_token_transform",
247
  "position_embedding_type": "absolute",
 
248
  "torch_dtype": "float32",
249
+ "transformers_version": "4.53.1",
250
  "type_vocab_size": 2,
251
  "use_cache": true,
252
  "vocab_size": 29794
253
  }
254
 
255
+ [2025-07-10 01:11:22,859][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only/snapshots/da30f459272b3b4c66170aa85fce0e1191eea445/model.safetensors
256
+ [2025-07-10 01:11:22,862][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
257
+ [2025-07-10 01:11:22,862][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
258
+ [2025-07-10 01:11:23,611][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
259
 
260
+ [2025-07-10 01:11:23,612][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only.
261
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
262
+ [2025-07-10 01:11:23,630][transformers.training_args][INFO] - PyTorch: setting up devices
263
+ [2025-07-10 01:11:23,654][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
264
+ [2025-07-10 01:11:23,667][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
265
+ [2025-07-10 01:11:23,697][transformers.trainer][INFO] - Using auto half precision backend
266
+ [2025-07-10 01:11:27,018][__main__][INFO] - Running inference on test dataset
267
+ [2025-07-10 01:11:27,019][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: reference, id, grades, essay_text, id_prompt, supporting_text, prompt, essay_year. If reference, id, grades, essay_text, id_prompt, supporting_text, prompt, essay_year are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
268
+ [2025-07-10 01:11:27,031][transformers.trainer][INFO] -
269
  ***** Running Prediction *****
270
+ [2025-07-10 01:11:27,032][transformers.trainer][INFO] - Num examples = 138
271
+ [2025-07-10 01:11:27,032][transformers.trainer][INFO] - Batch size = 16
272
+ [2025-07-10 01:11:28,595][__main__][INFO] - Inference results saved to jbcs2025_bert-large-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only_inference_results.jsonl
273
+ [2025-07-10 01:11:28,596][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
274
+ [2025-07-10 01:13:34,349][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
275
+ [2025-07-10 01:13:34,350][__main__][INFO] - Bootstrap Confidence Intervals (95%):
276
+ [2025-07-10 01:13:34,350][__main__][INFO] - QWK: 0.6823 [0.5864, 0.7723]
277
+ [2025-07-10 01:13:34,350][__main__][INFO] - Macro_F1: 0.4972 [0.3749, 0.6516]
278
+ [2025-07-10 01:13:34,350][__main__][INFO] - Weighted_F1: 0.6920 [0.6123, 0.7677]
279
+ [2025-07-10 01:13:34,350][__main__][INFO] - Inference results: {'accuracy': 0.6884057971014492, 'RMSE': 25.02172968684897, 'QWK': 0.6825694326120293, 'HDIV': 0.007246376811594235, 'Macro_F1': 0.4609419962901689, 'Micro_F1': 0.6884057971014492, 'Weighted_F1': 0.6910750081919986, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(138), 'FP_1': np.int64(0), 'FN_1': np.int64(0), 'TP_2': np.int64(4), 'TN_2': np.int64(122), 'FP_2': np.int64(6), 'FN_2': np.int64(6), 'TP_3': np.int64(46), 'TN_3': np.int64(62), 'FP_3': np.int64(10), 'FN_3': np.int64(20), 'TP_4': np.int64(40), 'TN_4': np.int64(69), 'FP_4': np.int64(18), 'FN_4': np.int64(11), 'TP_5': np.int64(5), 'TN_5': np.int64(119), 'FP_5': np.int64(9), 'FN_5': np.int64(5)}
280
+ [2025-07-10 01:13:34,354][__main__][INFO] - Inference experiment completed
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only}/.hydra/config.yaml RENAMED
@@ -20,12 +20,12 @@ post_training_results:
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
- name: kamel-usp/jbcs2025_bertimbau-large-C2
24
  type: encoder_classification
25
  num_labels: 6
26
  output_dir: ./results/bertimbau_large/C2
27
  logging_dir: ./logs/bertimbau_large/C2
28
- best_model_dir: ./results/bertimbau_large/C2/best_model
29
  tokenizer:
30
  name: neuralmind/bert-large-portuguese-cased
31
  dataset:
 
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
+ name: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only
24
  type: encoder_classification
25
  num_labels: 6
26
  output_dir: ./results/bertimbau_large/C2
27
  logging_dir: ./logs/bertimbau_large/C2
28
+ best_model_dir: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only
29
  tokenizer:
30
  name: neuralmind/bert-large-portuguese-cased
31
  dataset:
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only}/.hydra/hydra.yaml RENAMED
@@ -1,6 +1,6 @@
1
  hydra:
2
  run:
3
- dir: outputs/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
  sweep:
5
  dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
  subdir: ${hydra.job.num}
@@ -110,13 +110,14 @@ hydra:
110
  output_subdir: .hydra
111
  overrides:
112
  hydra:
 
113
  - hydra.mode=RUN
114
  task:
115
- - experiments=large_models/C2
116
  job:
117
  name: run_inference_experiment
118
  chdir: null
119
- override_dirname: experiments=large_models/C2
120
  id: ???
121
  num: ???
122
  config_name: config
@@ -141,9 +142,9 @@ hydra:
141
  - path: ''
142
  schema: structured
143
  provider: schema
144
- output_dir: /workspace/jbcs2025/outputs/2025-07-01/00-04-40
145
  choices:
146
- experiments: large_models/C2
147
  hydra/env: default
148
  hydra/callbacks: null
149
  hydra/job_logging: default
 
1
  hydra:
2
  run:
3
+ dir: inference_output/2025-07-10/01-13-40
4
  sweep:
5
  dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
  subdir: ${hydra.job.num}
 
110
  output_subdir: .hydra
111
  overrides:
112
  hydra:
113
+ - hydra.run.dir=inference_output/2025-07-10/01-13-40
114
  - hydra.mode=RUN
115
  task:
116
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only
117
  job:
118
  name: run_inference_experiment
119
  chdir: null
120
+ override_dirname: experiments=temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only
121
  id: ???
122
  num: ???
123
  config_name: config
 
142
  - path: ''
143
  schema: structured
144
  provider: schema
145
+ output_dir: /workspace/jbcs2025/inference_output/2025-07-10/01-13-40
146
  choices:
147
+ experiments: temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only
148
  hydra/env: default
149
  hydra/callbacks: null
150
  hydra/job_logging: default
runs/large_models/bertimbau/jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only/.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only}/bootstrap_confidence_intervals.csv RENAMED
@@ -1,2 +1,2 @@
1
  experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
- jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only,2025-07-01 00:10:41,0.5689578701688437,0.46148695261109535,0.6680998143802181,0.2066128617691228,0.3225465526202049,0.23384768292840824,0.4348878912682667,0.20104020833985847,0.5689840307021065,0.4868628663380702,0.6499047041941646,0.16304183785609438
 
1
  experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
+ jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only,2025-07-10 01:13:46,0.31345082186336776,0.14492296148559206,0.4709425779174953,0.32601961643190325,0.3376111572696462,0.25175523989642284,0.442912177116335,0.19115693721991217,0.4106064761329726,0.3275210469472954,0.49310656594887087,0.16558551900157548
runs/large_models/bertimbau/jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only/evaluation_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.39855072463768115,67.93005780671166,0.31696761677361585,0.1376811594202898,0.31891930577920913,0.39855072463768115,0.4108570406154947,0,137,0,1,16,73,30,19,3,114,19,2,16,79,8,35,10,102,10,16,10,102,16,10,2025-07-10 01:13:46,jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only/jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only_inference_results.jsonl → jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only/jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only_inference_results.jsonl} RENAMED
The diff for this file is too large to render. See raw diff
 
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only}/run_inference_experiment.log RENAMED
@@ -1,5 +1,5 @@
1
- [2025-07-01 00:04:40,281][__main__][INFO] - Starting inference experiment
2
- [2025-07-01 00:04:40,282][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
@@ -21,12 +21,12 @@ post_training_results:
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
- name: kamel-usp/jbcs2025_bertimbau-large-C2
25
  type: encoder_classification
26
  num_labels: 6
27
  output_dir: ./results/bertimbau_large/C2
28
  logging_dir: ./logs/bertimbau_large/C2
29
- best_model_dir: ./results/bertimbau_large/C2/best_model
30
  tokenizer:
31
  name: neuralmind/bert-large-portuguese-cased
32
  dataset:
@@ -41,9 +41,9 @@ experiments:
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
- [2025-07-01 00:04:40,284][__main__][INFO] - Running inference with fine-tuned HF model
45
- [2025-07-01 00:04:44,834][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
46
- [2025-07-01 00:04:44,835][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
@@ -68,20 +68,14 @@ experiments:
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
- "transformers_version": "4.53.0",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
- [2025-07-01 00:04:45,517][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/vocab.txt
78
- [2025-07-01 00:04:45,517][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
79
- [2025-07-01 00:04:45,517][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/added_tokens.json
80
- [2025-07-01 00:04:45,517][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/special_tokens_map.json
81
- [2025-07-01 00:04:45,517][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/tokenizer_config.json
82
- [2025-07-01 00:04:45,517][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
83
- [2025-07-01 00:04:45,517][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
84
- [2025-07-01 00:04:45,518][transformers.configuration_utils][INFO] - Model config BertConfig {
85
  "architectures": [
86
  "BertForMaskedLM"
87
  ],
@@ -106,14 +100,20 @@ experiments:
106
  "pooler_size_per_head": 128,
107
  "pooler_type": "first_token_transform",
108
  "position_embedding_type": "absolute",
109
- "transformers_version": "4.53.0",
110
  "type_vocab_size": 2,
111
  "use_cache": true,
112
  "vocab_size": 29794
113
  }
114
 
115
- [2025-07-01 00:04:45,543][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
116
- [2025-07-01 00:04:45,544][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
@@ -138,18 +138,73 @@ experiments:
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
- "transformers_version": "4.53.0",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
- [2025-07-01 00:04:45,560][__main__][INFO] - Tokenizer function parameters- Padding:max_length; Truncation: True; Use Full Context: False
148
- [2025-07-01 00:04:45,768][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau-large-C2
149
- [2025-07-01 00:04:45,768][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau-large-C2
150
- [2025-07-01 00:04:46,679][__main__][INFO] - Model need ≈ 2.62 GiB to run inference and 6.36 for training
151
- [2025-07-01 00:04:47,443][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau-large-C2/snapshots/620fd996ab1895fef2aa7b5f2281eebcbe48864d/config.json
152
- [2025-07-01 00:04:47,444][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  "architectures": [
154
  "BertForSequenceClassification"
155
  ],
@@ -190,37 +245,36 @@ experiments:
190
  "pooler_size_per_head": 128,
191
  "pooler_type": "first_token_transform",
192
  "position_embedding_type": "absolute",
193
- "problem_type": "single_label_classification",
194
  "torch_dtype": "float32",
195
- "transformers_version": "4.53.0",
196
  "type_vocab_size": 2,
197
  "use_cache": true,
198
  "vocab_size": 29794
199
  }
200
 
201
- [2025-07-01 00:06:18,742][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau-large-C2/snapshots/620fd996ab1895fef2aa7b5f2281eebcbe48864d/model.safetensors
202
- [2025-07-01 00:06:18,743][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
203
- [2025-07-01 00:06:18,743][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
204
- [2025-07-01 00:06:19,329][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
205
 
206
- [2025-07-01 00:06:19,330][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bertimbau-large-C2.
207
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
208
- [2025-07-01 00:06:19,337][transformers.training_args][INFO] - PyTorch: setting up devices
209
- [2025-07-01 00:06:19,391][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
210
- [2025-07-01 00:06:19,396][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
211
- [2025-07-01 00:06:19,413][transformers.trainer][INFO] - Using auto half precision backend
212
- [2025-07-01 00:06:22,886][__main__][INFO] - Running inference on test dataset
213
- [2025-07-01 00:06:22,887][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: supporting_text, reference, id_prompt, prompt, id, grades, essay_year, essay_text. If supporting_text, reference, id_prompt, prompt, id, grades, essay_year, essay_text are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
214
- [2025-07-01 00:06:22,893][transformers.trainer][INFO] -
215
  ***** Running Prediction *****
216
- [2025-07-01 00:06:22,893][transformers.trainer][INFO] - Num examples = 138
217
- [2025-07-01 00:06:22,893][transformers.trainer][INFO] - Batch size = 16
218
- [2025-07-01 00:06:23,379][__main__][INFO] - Inference results saved to jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only_inference_results.jsonl
219
- [2025-07-01 00:06:23,384][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
220
- [2025-07-01 00:08:02,421][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
221
- [2025-07-01 00:08:02,421][__main__][INFO] - Bootstrap Confidence Intervals (95%):
222
- [2025-07-01 00:08:02,421][__main__][INFO] - QWK: 0.4215 [0.2689, 0.5652]
223
- [2025-07-01 00:08:02,421][__main__][INFO] - Macro_F1: 0.2837 [0.2126, 0.3709]
224
- [2025-07-01 00:08:02,421][__main__][INFO] - Weighted_F1: 0.3818 [0.2966, 0.4676]
225
- [2025-07-01 00:08:02,421][__main__][INFO] - Inference results: {'accuracy': 0.39855072463768115, 'RMSE': 62.22912315078803, 'QWK': 0.4242242542347474, 'HDIV': 0.13043478260869568, 'Macro_F1': 0.2673521459388278, 'Micro_F1': 0.39855072463768115, 'Weighted_F1': 0.38254856956135197, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(21), 'TN_1': np.int64(70), 'FP_1': np.int64(33), 'FN_1': np.int64(14), 'TP_2': np.int64(0), 'TN_2': np.int64(129), 'FP_2': np.int64(4), 'FN_2': np.int64(5), 'TP_3': np.int64(12), 'TN_3': np.int64(83), 'FP_3': np.int64(4), 'FN_3': np.int64(39), 'TP_4': np.int64(16), 'TN_4': np.int64(78), 'FP_4': np.int64(34), 'FN_4': np.int64(10), 'TP_5': np.int64(6), 'TN_5': np.int64(110), 'FP_5': np.int64(8), 'FN_5': np.int64(14)}
226
- [2025-07-01 00:08:02,421][__main__][INFO] - Inference experiment completed
 
1
+ [2025-07-10 01:13:46,409][__main__][INFO] - Starting inference experiment
2
+ [2025-07-10 01:13:46,411][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
 
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
+ name: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only
25
  type: encoder_classification
26
  num_labels: 6
27
  output_dir: ./results/bertimbau_large/C2
28
  logging_dir: ./logs/bertimbau_large/C2
29
+ best_model_dir: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only
30
  tokenizer:
31
  name: neuralmind/bert-large-portuguese-cased
32
  dataset:
 
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
+ [2025-07-10 01:13:46,413][__main__][INFO] - Running inference with fine-tuned HF model
45
+ [2025-07-10 01:13:51,408][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
46
+ [2025-07-10 01:13:51,409][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
 
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
+ "transformers_version": "4.53.1",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
+ [2025-07-10 01:13:51,618][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
78
+ [2025-07-10 01:13:51,618][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
79
  "architectures": [
80
  "BertForMaskedLM"
81
  ],
 
100
  "pooler_size_per_head": 128,
101
  "pooler_type": "first_token_transform",
102
  "position_embedding_type": "absolute",
103
+ "transformers_version": "4.53.1",
104
  "type_vocab_size": 2,
105
  "use_cache": true,
106
  "vocab_size": 29794
107
  }
108
 
109
+ [2025-07-10 01:13:51,813][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/vocab.txt
110
+ [2025-07-10 01:13:51,813][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
111
+ [2025-07-10 01:13:51,813][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/added_tokens.json
112
+ [2025-07-10 01:13:51,813][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/special_tokens_map.json
113
+ [2025-07-10 01:13:51,813][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/tokenizer_config.json
114
+ [2025-07-10 01:13:51,813][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
115
+ [2025-07-10 01:13:51,814][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
116
+ [2025-07-10 01:13:51,814][transformers.configuration_utils][INFO] - Model config BertConfig {
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
 
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
+ "transformers_version": "4.53.1",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
+ [2025-07-10 01:13:51,844][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
148
+ [2025-07-10 01:13:51,845][transformers.configuration_utils][INFO] - Model config BertConfig {
149
+ "architectures": [
150
+ "BertForMaskedLM"
151
+ ],
152
+ "attention_probs_dropout_prob": 0.1,
153
+ "classifier_dropout": null,
154
+ "directionality": "bidi",
155
+ "hidden_act": "gelu",
156
+ "hidden_dropout_prob": 0.1,
157
+ "hidden_size": 1024,
158
+ "initializer_range": 0.02,
159
+ "intermediate_size": 4096,
160
+ "layer_norm_eps": 1e-12,
161
+ "max_position_embeddings": 512,
162
+ "model_type": "bert",
163
+ "num_attention_heads": 16,
164
+ "num_hidden_layers": 24,
165
+ "output_past": true,
166
+ "pad_token_id": 0,
167
+ "pooler_fc_size": 768,
168
+ "pooler_num_attention_heads": 12,
169
+ "pooler_num_fc_layers": 3,
170
+ "pooler_size_per_head": 128,
171
+ "pooler_type": "first_token_transform",
172
+ "position_embedding_type": "absolute",
173
+ "transformers_version": "4.53.1",
174
+ "type_vocab_size": 2,
175
+ "use_cache": true,
176
+ "vocab_size": 29794
177
+ }
178
+
179
+ [2025-07-10 01:13:51,862][__main__][INFO] - Tokenizer function parameters- Padding:longest; Truncation: True; Use Full Context: False
180
+ [2025-07-10 01:13:52,270][__main__][INFO] -
181
+ Token statistics for 'train' split:
182
+ [2025-07-10 01:13:52,270][__main__][INFO] - Total examples: 500
183
+ [2025-07-10 01:13:52,270][__main__][INFO] - Min tokens: 512
184
+ [2025-07-10 01:13:52,270][__main__][INFO] - Max tokens: 512
185
+ [2025-07-10 01:13:52,270][__main__][INFO] - Avg tokens: 512.00
186
+ [2025-07-10 01:13:52,270][__main__][INFO] - Std tokens: 0.00
187
+ [2025-07-10 01:13:52,360][__main__][INFO] -
188
+ Token statistics for 'validation' split:
189
+ [2025-07-10 01:13:52,360][__main__][INFO] - Total examples: 132
190
+ [2025-07-10 01:13:52,360][__main__][INFO] - Min tokens: 512
191
+ [2025-07-10 01:13:52,360][__main__][INFO] - Max tokens: 512
192
+ [2025-07-10 01:13:52,360][__main__][INFO] - Avg tokens: 512.00
193
+ [2025-07-10 01:13:52,360][__main__][INFO] - Std tokens: 0.00
194
+ [2025-07-10 01:13:52,454][__main__][INFO] -
195
+ Token statistics for 'test' split:
196
+ [2025-07-10 01:13:52,454][__main__][INFO] - Total examples: 138
197
+ [2025-07-10 01:13:52,454][__main__][INFO] - Min tokens: 512
198
+ [2025-07-10 01:13:52,454][__main__][INFO] - Max tokens: 512
199
+ [2025-07-10 01:13:52,454][__main__][INFO] - Avg tokens: 512.00
200
+ [2025-07-10 01:13:52,454][__main__][INFO] - Std tokens: 0.00
201
+ [2025-07-10 01:13:52,454][__main__][INFO] - If token statistics are the same (max, avg, min) keep in mind that this is due to batched tokenization and padding.
202
+ [2025-07-10 01:13:52,454][__main__][INFO] - Model max length: 512. If it is the same as stats, then there is a high chance that sequences are being truncated.
203
+ [2025-07-10 01:13:52,455][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only
204
+ [2025-07-10 01:13:52,455][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only
205
+ [2025-07-10 01:13:53,423][__main__][INFO] - Model need ≈ 2.62 GiB to run inference and 6.36 for training
206
+ [2025-07-10 01:13:54,248][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only/snapshots/a8253d03c01bf4be8629e8e2c587013f34834335/config.json
207
+ [2025-07-10 01:13:54,248][transformers.configuration_utils][INFO] - Model config BertConfig {
208
  "architectures": [
209
  "BertForSequenceClassification"
210
  ],
 
245
  "pooler_size_per_head": 128,
246
  "pooler_type": "first_token_transform",
247
  "position_embedding_type": "absolute",
 
248
  "torch_dtype": "float32",
249
+ "transformers_version": "4.53.1",
250
  "type_vocab_size": 2,
251
  "use_cache": true,
252
  "vocab_size": 29794
253
  }
254
 
255
+ [2025-07-10 01:14:18,652][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only/snapshots/a8253d03c01bf4be8629e8e2c587013f34834335/model.safetensors
256
+ [2025-07-10 01:14:18,653][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
257
+ [2025-07-10 01:14:18,654][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
258
+ [2025-07-10 01:14:19,407][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
259
 
260
+ [2025-07-10 01:14:19,407][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only.
261
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
262
+ [2025-07-10 01:14:19,425][transformers.training_args][INFO] - PyTorch: setting up devices
263
+ [2025-07-10 01:14:19,450][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
264
+ [2025-07-10 01:14:19,465][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
265
+ [2025-07-10 01:14:19,499][transformers.trainer][INFO] - Using auto half precision backend
266
+ [2025-07-10 01:14:22,862][__main__][INFO] - Running inference on test dataset
267
+ [2025-07-10 01:14:22,864][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: prompt, reference, essay_text, essay_year, grades, id_prompt, id, supporting_text. If prompt, reference, essay_text, essay_year, grades, id_prompt, id, supporting_text are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
268
+ [2025-07-10 01:14:22,875][transformers.trainer][INFO] -
269
  ***** Running Prediction *****
270
+ [2025-07-10 01:14:22,876][transformers.trainer][INFO] - Num examples = 138
271
+ [2025-07-10 01:14:22,876][transformers.trainer][INFO] - Batch size = 16
272
+ [2025-07-10 01:14:24,390][__main__][INFO] - Inference results saved to jbcs2025_bert-large-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only_inference_results.jsonl
273
+ [2025-07-10 01:14:24,391][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
274
+ [2025-07-10 01:16:29,838][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
275
+ [2025-07-10 01:16:29,841][__main__][INFO] - Bootstrap Confidence Intervals (95%):
276
+ [2025-07-10 01:16:29,841][__main__][INFO] - QWK: 0.3135 [0.1449, 0.4709]
277
+ [2025-07-10 01:16:29,841][__main__][INFO] - Macro_F1: 0.3376 [0.2518, 0.4429]
278
+ [2025-07-10 01:16:29,841][__main__][INFO] - Weighted_F1: 0.4106 [0.3275, 0.4931]
279
+ [2025-07-10 01:16:29,841][__main__][INFO] - Inference results: {'accuracy': 0.39855072463768115, 'RMSE': 67.93005780671166, 'QWK': 0.31696761677361585, 'HDIV': 0.1376811594202898, 'Macro_F1': 0.31891930577920913, 'Micro_F1': 0.39855072463768115, 'Weighted_F1': 0.4108570406154947, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(16), 'TN_1': np.int64(73), 'FP_1': np.int64(30), 'FN_1': np.int64(19), 'TP_2': np.int64(3), 'TN_2': np.int64(114), 'FP_2': np.int64(19), 'FN_2': np.int64(2), 'TP_3': np.int64(16), 'TN_3': np.int64(79), 'FP_3': np.int64(8), 'FN_3': np.int64(35), 'TP_4': np.int64(10), 'TN_4': np.int64(102), 'FP_4': np.int64(10), 'FN_4': np.int64(16), 'TP_5': np.int64(10), 'TN_5': np.int64(102), 'FP_5': np.int64(16), 'FN_5': np.int64(10)}
280
+ [2025-07-10 01:16:29,843][__main__][INFO] - Inference experiment completed
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only}/.hydra/config.yaml RENAMED
@@ -20,12 +20,12 @@ post_training_results:
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
- name: kamel-usp/jbcs2025_bertimbau-large-C3
24
  type: encoder_classification
25
  num_labels: 6
26
  output_dir: ./results/bertimbau_large/C3
27
  logging_dir: ./logs/bertimbau_large/C3
28
- best_model_dir: ./results/bertimbau_large/C3/best_model
29
  tokenizer:
30
  name: neuralmind/bert-large-portuguese-cased
31
  dataset:
 
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
+ name: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only
24
  type: encoder_classification
25
  num_labels: 6
26
  output_dir: ./results/bertimbau_large/C3
27
  logging_dir: ./logs/bertimbau_large/C3
28
+ best_model_dir: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only
29
  tokenizer:
30
  name: neuralmind/bert-large-portuguese-cased
31
  dataset:
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only}/.hydra/hydra.yaml RENAMED
@@ -1,6 +1,6 @@
1
  hydra:
2
  run:
3
- dir: outputs/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
  sweep:
5
  dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
  subdir: ${hydra.job.num}
@@ -110,13 +110,14 @@ hydra:
110
  output_subdir: .hydra
111
  overrides:
112
  hydra:
 
113
  - hydra.mode=RUN
114
  task:
115
- - experiments=large_models/C1
116
  job:
117
  name: run_inference_experiment
118
  chdir: null
119
- override_dirname: experiments=large_models/C1
120
  id: ???
121
  num: ???
122
  config_name: config
@@ -141,9 +142,9 @@ hydra:
141
  - path: ''
142
  schema: structured
143
  provider: schema
144
- output_dir: /workspace/jbcs2025/outputs/2025-07-01/00-02-02
145
  choices:
146
- experiments: large_models/C1
147
  hydra/env: default
148
  hydra/callbacks: null
149
  hydra/job_logging: default
 
1
  hydra:
2
  run:
3
+ dir: inference_output/2025-07-10/01-16-36
4
  sweep:
5
  dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
  subdir: ${hydra.job.num}
 
110
  output_subdir: .hydra
111
  overrides:
112
  hydra:
113
+ - hydra.run.dir=inference_output/2025-07-10/01-16-36
114
  - hydra.mode=RUN
115
  task:
116
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only
117
  job:
118
  name: run_inference_experiment
119
  chdir: null
120
+ override_dirname: experiments=temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only
121
  id: ???
122
  num: ???
123
  config_name: config
 
142
  - path: ''
143
  schema: structured
144
  provider: schema
145
+ output_dir: /workspace/jbcs2025/inference_output/2025-07-10/01-16-36
146
  choices:
147
+ experiments: temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only
148
  hydra/env: default
149
  hydra/callbacks: null
150
  hydra/job_logging: default
runs/large_models/bertimbau/jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only/.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only
runs/large_models/bertimbau/jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only/bootstrap_confidence_intervals.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
+ jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only,2025-07-10 01:16:42,0.24545954800981098,0.09445649614356424,0.39034083613362736,0.29588433999006314,0.18382071874415615,0.12381966213862766,0.2605668201553197,0.13674715801669202,0.2556045233592953,0.1820167330799211,0.33321252550062413,0.15119579242070302
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only}/evaluation_results.csv RENAMED
@@ -1,2 +1,2 @@
1
- accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
- 0.39855072463768115,62.22912315078803,0.4242242542347474,0.13043478260869568,0.2673521459388278,0.39855072463768115,0.38254856956135197,0,137,0,1,21,70,33,14,0,129,4,5,12,83,4,39,16,78,34,10,6,110,8,14,2025-07-01 00:04:40,jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only
 
1
+ accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.2753623188405797,64.87446070815474,0.2477700693756193,0.13043478260869568,0.17399856052293136,0.2753623188405797,0.25553888306634265,0,137,0,1,9,66,43,20,0,118,2,18,9,74,19,36,19,71,29,19,1,124,7,6,2025-07-10 01:16:42,jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only/jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only_inference_results.jsonl → jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only/jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only_inference_results.jsonl} RENAMED
The diff for this file is too large to render. See raw diff
 
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only}/run_inference_experiment.log RENAMED
@@ -1,5 +1,5 @@
1
- [2025-07-01 00:08:08,174][__main__][INFO] - Starting inference experiment
2
- [2025-07-01 00:08:08,175][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
@@ -21,12 +21,12 @@ post_training_results:
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
- name: kamel-usp/jbcs2025_bertimbau-large-C3
25
  type: encoder_classification
26
  num_labels: 6
27
  output_dir: ./results/bertimbau_large/C3
28
  logging_dir: ./logs/bertimbau_large/C3
29
- best_model_dir: ./results/bertimbau_large/C3/best_model
30
  tokenizer:
31
  name: neuralmind/bert-large-portuguese-cased
32
  dataset:
@@ -41,9 +41,9 @@ experiments:
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
- [2025-07-01 00:08:08,177][__main__][INFO] - Running inference with fine-tuned HF model
45
- [2025-07-01 00:08:12,983][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
46
- [2025-07-01 00:08:12,984][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
@@ -68,20 +68,14 @@ experiments:
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
- "transformers_version": "4.53.0",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
- [2025-07-01 00:08:13,201][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/vocab.txt
78
- [2025-07-01 00:08:13,201][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
79
- [2025-07-01 00:08:13,201][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/added_tokens.json
80
- [2025-07-01 00:08:13,201][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/special_tokens_map.json
81
- [2025-07-01 00:08:13,201][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/tokenizer_config.json
82
- [2025-07-01 00:08:13,201][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
83
- [2025-07-01 00:08:13,201][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
84
- [2025-07-01 00:08:13,202][transformers.configuration_utils][INFO] - Model config BertConfig {
85
  "architectures": [
86
  "BertForMaskedLM"
87
  ],
@@ -106,14 +100,20 @@ experiments:
106
  "pooler_size_per_head": 128,
107
  "pooler_type": "first_token_transform",
108
  "position_embedding_type": "absolute",
109
- "transformers_version": "4.53.0",
110
  "type_vocab_size": 2,
111
  "use_cache": true,
112
  "vocab_size": 29794
113
  }
114
 
115
- [2025-07-01 00:08:13,228][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
116
- [2025-07-01 00:08:13,229][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
@@ -138,18 +138,73 @@ experiments:
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
- "transformers_version": "4.53.0",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
- [2025-07-01 00:08:13,245][__main__][INFO] - Tokenizer function parameters- Padding:max_length; Truncation: True; Use Full Context: False
148
- [2025-07-01 00:08:13,452][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau-large-C3
149
- [2025-07-01 00:08:13,452][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau-large-C3
150
- [2025-07-01 00:08:14,514][__main__][INFO] - Model need ≈ 2.62 GiB to run inference and 6.36 for training
151
- [2025-07-01 00:08:15,376][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau-large-C3/snapshots/fc8d63cfeeb43af3963a4c9550e6c3c2e5276adf/config.json
152
- [2025-07-01 00:08:15,377][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  "architectures": [
154
  "BertForSequenceClassification"
155
  ],
@@ -190,37 +245,36 @@ experiments:
190
  "pooler_size_per_head": 128,
191
  "pooler_type": "first_token_transform",
192
  "position_embedding_type": "absolute",
193
- "problem_type": "single_label_classification",
194
  "torch_dtype": "float32",
195
- "transformers_version": "4.53.0",
196
  "type_vocab_size": 2,
197
  "use_cache": true,
198
  "vocab_size": 29794
199
  }
200
 
201
- [2025-07-01 00:08:54,977][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau-large-C3/snapshots/fc8d63cfeeb43af3963a4c9550e6c3c2e5276adf/model.safetensors
202
- [2025-07-01 00:08:54,978][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
203
- [2025-07-01 00:08:54,978][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
204
- [2025-07-01 00:08:55,595][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
205
 
206
- [2025-07-01 00:08:55,596][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bertimbau-large-C3.
207
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
208
- [2025-07-01 00:08:55,603][transformers.training_args][INFO] - PyTorch: setting up devices
209
- [2025-07-01 00:08:55,640][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
210
- [2025-07-01 00:08:55,645][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
211
- [2025-07-01 00:08:55,662][transformers.trainer][INFO] - Using auto half precision backend
212
- [2025-07-01 00:08:59,124][__main__][INFO] - Running inference on test dataset
213
- [2025-07-01 00:08:59,125][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: grades, prompt, id, id_prompt, essay_year, supporting_text, reference, essay_text. If grades, prompt, id, id_prompt, essay_year, supporting_text, reference, essay_text are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
214
- [2025-07-01 00:08:59,133][transformers.trainer][INFO] -
215
  ***** Running Prediction *****
216
- [2025-07-01 00:08:59,133][transformers.trainer][INFO] - Num examples = 138
217
- [2025-07-01 00:08:59,133][transformers.trainer][INFO] - Batch size = 16
218
- [2025-07-01 00:08:59,694][__main__][INFO] - Inference results saved to jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only_inference_results.jsonl
219
- [2025-07-01 00:08:59,699][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
220
- [2025-07-01 00:10:36,121][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
221
- [2025-07-01 00:10:36,122][__main__][INFO] - Bootstrap Confidence Intervals (95%):
222
- [2025-07-01 00:10:36,122][__main__][INFO] - QWK: 0.2668 [0.1309, 0.3967]
223
- [2025-07-01 00:10:36,122][__main__][INFO] - Macro_F1: 0.2055 [0.1392, 0.2902]
224
- [2025-07-01 00:10:36,122][__main__][INFO] - Weighted_F1: 0.2492 [0.1750, 0.3272]
225
- [2025-07-01 00:10:36,122][__main__][INFO] - Inference results: {'accuracy': 0.2898550724637681, 'RMSE': 51.07539184552491, 'QWK': 0.26937738246505727, 'HDIV': 0.021739130434782594, 'Macro_F1': 0.19411606228274925, 'Micro_F1': 0.2898550724637681, 'Weighted_F1': 0.24825898925023224, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(1), 'TN_1': np.int64(108), 'FP_1': np.int64(1), 'FN_1': np.int64(28), 'TP_2': np.int64(13), 'TN_2': np.int64(87), 'FP_2': np.int64(33), 'FN_2': np.int64(5), 'TP_3': np.int64(19), 'TN_3': np.int64(44), 'FP_3': np.int64(49), 'FN_3': np.int64(26), 'TP_4': np.int64(6), 'TN_4': np.int64(94), 'FP_4': np.int64(6), 'FN_4': np.int64(32), 'TP_5': np.int64(1), 'TN_5': np.int64(122), 'FP_5': np.int64(9), 'FN_5': np.int64(6)}
226
- [2025-07-01 00:10:36,122][__main__][INFO] - Inference experiment completed
 
1
+ [2025-07-10 01:16:42,095][__main__][INFO] - Starting inference experiment
2
+ [2025-07-10 01:16:42,097][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
 
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
+ name: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only
25
  type: encoder_classification
26
  num_labels: 6
27
  output_dir: ./results/bertimbau_large/C3
28
  logging_dir: ./logs/bertimbau_large/C3
29
+ best_model_dir: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only
30
  tokenizer:
31
  name: neuralmind/bert-large-portuguese-cased
32
  dataset:
 
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
+ [2025-07-10 01:16:42,099][__main__][INFO] - Running inference with fine-tuned HF model
45
+ [2025-07-10 01:16:46,973][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
46
+ [2025-07-10 01:16:46,974][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
 
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
+ "transformers_version": "4.53.1",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
+ [2025-07-10 01:16:47,174][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
78
+ [2025-07-10 01:16:47,175][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
79
  "architectures": [
80
  "BertForMaskedLM"
81
  ],
 
100
  "pooler_size_per_head": 128,
101
  "pooler_type": "first_token_transform",
102
  "position_embedding_type": "absolute",
103
+ "transformers_version": "4.53.1",
104
  "type_vocab_size": 2,
105
  "use_cache": true,
106
  "vocab_size": 29794
107
  }
108
 
109
+ [2025-07-10 01:16:47,374][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/vocab.txt
110
+ [2025-07-10 01:16:47,375][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
111
+ [2025-07-10 01:16:47,375][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/added_tokens.json
112
+ [2025-07-10 01:16:47,375][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/special_tokens_map.json
113
+ [2025-07-10 01:16:47,375][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/tokenizer_config.json
114
+ [2025-07-10 01:16:47,375][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
115
+ [2025-07-10 01:16:47,375][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
116
+ [2025-07-10 01:16:47,376][transformers.configuration_utils][INFO] - Model config BertConfig {
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
 
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
+ "transformers_version": "4.53.1",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
+ [2025-07-10 01:16:47,405][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
148
+ [2025-07-10 01:16:47,406][transformers.configuration_utils][INFO] - Model config BertConfig {
149
+ "architectures": [
150
+ "BertForMaskedLM"
151
+ ],
152
+ "attention_probs_dropout_prob": 0.1,
153
+ "classifier_dropout": null,
154
+ "directionality": "bidi",
155
+ "hidden_act": "gelu",
156
+ "hidden_dropout_prob": 0.1,
157
+ "hidden_size": 1024,
158
+ "initializer_range": 0.02,
159
+ "intermediate_size": 4096,
160
+ "layer_norm_eps": 1e-12,
161
+ "max_position_embeddings": 512,
162
+ "model_type": "bert",
163
+ "num_attention_heads": 16,
164
+ "num_hidden_layers": 24,
165
+ "output_past": true,
166
+ "pad_token_id": 0,
167
+ "pooler_fc_size": 768,
168
+ "pooler_num_attention_heads": 12,
169
+ "pooler_num_fc_layers": 3,
170
+ "pooler_size_per_head": 128,
171
+ "pooler_type": "first_token_transform",
172
+ "position_embedding_type": "absolute",
173
+ "transformers_version": "4.53.1",
174
+ "type_vocab_size": 2,
175
+ "use_cache": true,
176
+ "vocab_size": 29794
177
+ }
178
+
179
+ [2025-07-10 01:16:47,422][__main__][INFO] - Tokenizer function parameters- Padding:longest; Truncation: True; Use Full Context: False
180
+ [2025-07-10 01:16:47,831][__main__][INFO] -
181
+ Token statistics for 'train' split:
182
+ [2025-07-10 01:16:47,831][__main__][INFO] - Total examples: 500
183
+ [2025-07-10 01:16:47,831][__main__][INFO] - Min tokens: 512
184
+ [2025-07-10 01:16:47,831][__main__][INFO] - Max tokens: 512
185
+ [2025-07-10 01:16:47,831][__main__][INFO] - Avg tokens: 512.00
186
+ [2025-07-10 01:16:47,831][__main__][INFO] - Std tokens: 0.00
187
+ [2025-07-10 01:16:47,920][__main__][INFO] -
188
+ Token statistics for 'validation' split:
189
+ [2025-07-10 01:16:47,921][__main__][INFO] - Total examples: 132
190
+ [2025-07-10 01:16:47,921][__main__][INFO] - Min tokens: 512
191
+ [2025-07-10 01:16:47,921][__main__][INFO] - Max tokens: 512
192
+ [2025-07-10 01:16:47,921][__main__][INFO] - Avg tokens: 512.00
193
+ [2025-07-10 01:16:47,921][__main__][INFO] - Std tokens: 0.00
194
+ [2025-07-10 01:16:48,015][__main__][INFO] -
195
+ Token statistics for 'test' split:
196
+ [2025-07-10 01:16:48,015][__main__][INFO] - Total examples: 138
197
+ [2025-07-10 01:16:48,015][__main__][INFO] - Min tokens: 512
198
+ [2025-07-10 01:16:48,015][__main__][INFO] - Max tokens: 512
199
+ [2025-07-10 01:16:48,015][__main__][INFO] - Avg tokens: 512.00
200
+ [2025-07-10 01:16:48,015][__main__][INFO] - Std tokens: 0.00
201
+ [2025-07-10 01:16:48,015][__main__][INFO] - If token statistics are the same (max, avg, min) keep in mind that this is due to batched tokenization and padding.
202
+ [2025-07-10 01:16:48,015][__main__][INFO] - Model max length: 512. If it is the same as stats, then there is a high chance that sequences are being truncated.
203
+ [2025-07-10 01:16:48,016][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only
204
+ [2025-07-10 01:16:48,016][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only
205
+ [2025-07-10 01:16:48,940][__main__][INFO] - Model need ≈ 2.62 GiB to run inference and 6.36 for training
206
+ [2025-07-10 01:16:49,806][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only/snapshots/95506fbe9cc549ab2018d8ddd3a10010ee1c8d61/config.json
207
+ [2025-07-10 01:16:49,807][transformers.configuration_utils][INFO] - Model config BertConfig {
208
  "architectures": [
209
  "BertForSequenceClassification"
210
  ],
 
245
  "pooler_size_per_head": 128,
246
  "pooler_type": "first_token_transform",
247
  "position_embedding_type": "absolute",
 
248
  "torch_dtype": "float32",
249
+ "transformers_version": "4.53.1",
250
  "type_vocab_size": 2,
251
  "use_cache": true,
252
  "vocab_size": 29794
253
  }
254
 
255
+ [2025-07-10 01:17:16,434][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only/snapshots/95506fbe9cc549ab2018d8ddd3a10010ee1c8d61/model.safetensors
256
+ [2025-07-10 01:17:16,438][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
257
+ [2025-07-10 01:17:16,438][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
258
+ [2025-07-10 01:17:17,158][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
259
 
260
+ [2025-07-10 01:17:17,158][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only.
261
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
262
+ [2025-07-10 01:17:17,177][transformers.training_args][INFO] - PyTorch: setting up devices
263
+ [2025-07-10 01:17:17,200][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
264
+ [2025-07-10 01:17:17,210][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
265
+ [2025-07-10 01:17:17,245][transformers.trainer][INFO] - Using auto half precision backend
266
+ [2025-07-10 01:17:20,549][__main__][INFO] - Running inference on test dataset
267
+ [2025-07-10 01:17:20,550][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: grades, id, essay_year, supporting_text, reference, essay_text, id_prompt, prompt. If grades, id, essay_year, supporting_text, reference, essay_text, id_prompt, prompt are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
268
+ [2025-07-10 01:17:20,563][transformers.trainer][INFO] -
269
  ***** Running Prediction *****
270
+ [2025-07-10 01:17:20,563][transformers.trainer][INFO] - Num examples = 138
271
+ [2025-07-10 01:17:20,563][transformers.trainer][INFO] - Batch size = 16
272
+ [2025-07-10 01:17:22,039][__main__][INFO] - Inference results saved to jbcs2025_bert-large-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only_inference_results.jsonl
273
+ [2025-07-10 01:17:22,040][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
274
+ [2025-07-10 01:19:27,495][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
275
+ [2025-07-10 01:19:27,497][__main__][INFO] - Bootstrap Confidence Intervals (95%):
276
+ [2025-07-10 01:19:27,497][__main__][INFO] - QWK: 0.2455 [0.0945, 0.3903]
277
+ [2025-07-10 01:19:27,497][__main__][INFO] - Macro_F1: 0.1838 [0.1238, 0.2606]
278
+ [2025-07-10 01:19:27,497][__main__][INFO] - Weighted_F1: 0.2556 [0.1820, 0.3332]
279
+ [2025-07-10 01:19:27,498][__main__][INFO] - Inference results: {'accuracy': 0.2753623188405797, 'RMSE': 64.87446070815474, 'QWK': 0.2477700693756193, 'HDIV': 0.13043478260869568, 'Macro_F1': 0.17399856052293136, 'Micro_F1': 0.2753623188405797, 'Weighted_F1': 0.25553888306634265, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(9), 'TN_1': np.int64(66), 'FP_1': np.int64(43), 'FN_1': np.int64(20), 'TP_2': np.int64(0), 'TN_2': np.int64(118), 'FP_2': np.int64(2), 'FN_2': np.int64(18), 'TP_3': np.int64(9), 'TN_3': np.int64(74), 'FP_3': np.int64(19), 'FN_3': np.int64(36), 'TP_4': np.int64(19), 'TN_4': np.int64(71), 'FP_4': np.int64(29), 'FN_4': np.int64(19), 'TP_5': np.int64(1), 'TN_5': np.int64(124), 'FP_5': np.int64(7), 'FN_5': np.int64(6)}
280
+ [2025-07-10 01:19:27,503][__main__][INFO] - Inference experiment completed
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/.hydra/config.yaml RENAMED
@@ -20,12 +20,12 @@ post_training_results:
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
- name: kamel-usp/jbcs2025_bertimbau-large-C4
24
  type: encoder_classification
25
  num_labels: 6
26
  output_dir: ./results/bertimbau_large/C4
27
  logging_dir: ./logs/bertimbau_large/C4
28
- best_model_dir: ./results/bertimbau_large/C4/best_model
29
  tokenizer:
30
  name: neuralmind/bert-large-portuguese-cased
31
  dataset:
 
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
+ name: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only
24
  type: encoder_classification
25
  num_labels: 6
26
  output_dir: ./results/bertimbau_large/C4
27
  logging_dir: ./logs/bertimbau_large/C4
28
+ best_model_dir: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only
29
  tokenizer:
30
  name: neuralmind/bert-large-portuguese-cased
31
  dataset:
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/.hydra/hydra.yaml RENAMED
@@ -1,6 +1,6 @@
1
  hydra:
2
  run:
3
- dir: outputs/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
  sweep:
5
  dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
  subdir: ${hydra.job.num}
@@ -110,13 +110,14 @@ hydra:
110
  output_subdir: .hydra
111
  overrides:
112
  hydra:
 
113
  - hydra.mode=RUN
114
  task:
115
- - experiments=large_models/C4
116
  job:
117
  name: run_inference_experiment
118
  chdir: null
119
- override_dirname: experiments=large_models/C4
120
  id: ???
121
  num: ???
122
  config_name: config
@@ -141,9 +142,9 @@ hydra:
141
  - path: ''
142
  schema: structured
143
  provider: schema
144
- output_dir: /workspace/jbcs2025/outputs/2025-07-01/00-10-41
145
  choices:
146
- experiments: large_models/C4
147
  hydra/env: default
148
  hydra/callbacks: null
149
  hydra/job_logging: default
 
1
  hydra:
2
  run:
3
+ dir: inference_output/2025-07-10/01-19-33
4
  sweep:
5
  dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
  subdir: ${hydra.job.num}
 
110
  output_subdir: .hydra
111
  overrides:
112
  hydra:
113
+ - hydra.run.dir=inference_output/2025-07-10/01-19-33
114
  - hydra.mode=RUN
115
  task:
116
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only
117
  job:
118
  name: run_inference_experiment
119
  chdir: null
120
+ override_dirname: experiments=temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only
121
  id: ???
122
  num: ???
123
  config_name: config
 
142
  - path: ''
143
  schema: structured
144
  provider: schema
145
+ output_dir: /workspace/jbcs2025/inference_output/2025-07-10/01-19-33
146
  choices:
147
+ experiments: temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only
148
  hydra/env: default
149
  hydra/callbacks: null
150
  hydra/job_logging: default
runs/large_models/bertimbau/jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only/.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/bootstrap_confidence_intervals.csv RENAMED
@@ -1,2 +1,2 @@
1
  experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
- jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only,2025-07-01 00:04:40,0.421524005294385,0.2688782617235809,0.5651890498796338,0.2963107881560529,0.28374338367400226,0.21261906130152639,0.3709122659559081,0.1582932046543817,0.38177503835634297,0.2966054262581051,0.4675676487920818,0.1709622225339767
 
1
  experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
+ jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only,2025-07-10 01:19:39,0.5942508582936158,0.4700019118242705,0.7064182815355218,0.2364163697112513,0.4619540479839987,0.29942982127027257,0.6409612672040503,0.34153144593377777,0.6059987254912385,0.5248203752695526,0.6834775202623181,0.1586571449927655
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/evaluation_results.csv RENAMED
@@ -1,2 +1,2 @@
1
- accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
- 0.2898550724637681,51.07539184552491,0.26937738246505727,0.021739130434782594,0.19411606228274925,0.2898550724637681,0.24825898925023224,0,137,0,1,1,108,1,28,13,87,33,5,19,44,49,26,6,94,6,32,1,122,9,6,2025-07-01 00:08:08,jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only
 
1
+ accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.5869565217391305,29.29114225312413,0.5985849056603774,0.007246376811594235,0.45502820381025977,0.5869565217391305,0.6030619269196934,0,137,0,1,1,136,1,0,5,114,15,4,42,52,10,34,29,69,23,17,4,125,8,1,2025-07-10 01:19:39,jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only/jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only_inference_results.jsonl → jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only/jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only_inference_results.jsonl} RENAMED
The diff for this file is too large to render. See raw diff
 
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/run_inference_experiment.log RENAMED
@@ -1,5 +1,5 @@
1
- [2025-07-01 00:10:41,832][__main__][INFO] - Starting inference experiment
2
- [2025-07-01 00:10:41,833][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
@@ -21,12 +21,12 @@ post_training_results:
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
- name: kamel-usp/jbcs2025_bertimbau-large-C4
25
  type: encoder_classification
26
  num_labels: 6
27
  output_dir: ./results/bertimbau_large/C4
28
  logging_dir: ./logs/bertimbau_large/C4
29
- best_model_dir: ./results/bertimbau_large/C4/best_model
30
  tokenizer:
31
  name: neuralmind/bert-large-portuguese-cased
32
  dataset:
@@ -41,9 +41,9 @@ experiments:
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
- [2025-07-01 00:10:41,835][__main__][INFO] - Running inference with fine-tuned HF model
45
- [2025-07-01 00:10:47,728][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
46
- [2025-07-01 00:10:47,729][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
@@ -68,20 +68,14 @@ experiments:
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
- "transformers_version": "4.53.0",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
- [2025-07-01 00:10:47,955][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/vocab.txt
78
- [2025-07-01 00:10:47,955][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
79
- [2025-07-01 00:10:47,955][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/added_tokens.json
80
- [2025-07-01 00:10:47,955][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/special_tokens_map.json
81
- [2025-07-01 00:10:47,955][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/tokenizer_config.json
82
- [2025-07-01 00:10:47,955][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
83
- [2025-07-01 00:10:47,955][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
84
- [2025-07-01 00:10:47,955][transformers.configuration_utils][INFO] - Model config BertConfig {
85
  "architectures": [
86
  "BertForMaskedLM"
87
  ],
@@ -106,14 +100,20 @@ experiments:
106
  "pooler_size_per_head": 128,
107
  "pooler_type": "first_token_transform",
108
  "position_embedding_type": "absolute",
109
- "transformers_version": "4.53.0",
110
  "type_vocab_size": 2,
111
  "use_cache": true,
112
  "vocab_size": 29794
113
  }
114
 
115
- [2025-07-01 00:10:47,981][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
116
- [2025-07-01 00:10:47,982][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
@@ -138,18 +138,73 @@ experiments:
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
- "transformers_version": "4.53.0",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
- [2025-07-01 00:10:47,998][__main__][INFO] - Tokenizer function parameters- Padding:max_length; Truncation: True; Use Full Context: False
148
- [2025-07-01 00:10:48,205][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau-large-C4
149
- [2025-07-01 00:10:48,205][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau-large-C4
150
- [2025-07-01 00:10:49,076][__main__][INFO] - Model need ≈ 2.62 GiB to run inference and 6.36 for training
151
- [2025-07-01 00:10:50,078][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau-large-C4/snapshots/e9e2cf7e79031197ee29e0150459a3788e5e8d38/config.json
152
- [2025-07-01 00:10:50,078][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  "architectures": [
154
  "BertForSequenceClassification"
155
  ],
@@ -190,37 +245,36 @@ experiments:
190
  "pooler_size_per_head": 128,
191
  "pooler_type": "first_token_transform",
192
  "position_embedding_type": "absolute",
193
- "problem_type": "single_label_classification",
194
  "torch_dtype": "float32",
195
- "transformers_version": "4.53.0",
196
  "type_vocab_size": 2,
197
  "use_cache": true,
198
  "vocab_size": 29794
199
  }
200
 
201
- [2025-07-01 00:11:28,782][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau-large-C4/snapshots/e9e2cf7e79031197ee29e0150459a3788e5e8d38/model.safetensors
202
- [2025-07-01 00:11:28,783][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
203
- [2025-07-01 00:11:28,783][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
204
- [2025-07-01 00:11:29,434][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
205
 
206
- [2025-07-01 00:11:29,434][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bertimbau-large-C4.
207
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
208
- [2025-07-01 00:11:29,442][transformers.training_args][INFO] - PyTorch: setting up devices
209
- [2025-07-01 00:11:29,480][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
210
- [2025-07-01 00:11:29,485][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
211
- [2025-07-01 00:11:29,503][transformers.trainer][INFO] - Using auto half precision backend
212
- [2025-07-01 00:11:33,779][__main__][INFO] - Running inference on test dataset
213
- [2025-07-01 00:11:33,780][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: prompt, essay_year, id, reference, supporting_text, essay_text, grades, id_prompt. If prompt, essay_year, id, reference, supporting_text, essay_text, grades, id_prompt are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
214
- [2025-07-01 00:11:33,787][transformers.trainer][INFO] -
215
  ***** Running Prediction *****
216
- [2025-07-01 00:11:33,787][transformers.trainer][INFO] - Num examples = 138
217
- [2025-07-01 00:11:33,787][transformers.trainer][INFO] - Batch size = 16
218
- [2025-07-01 00:11:34,275][__main__][INFO] - Inference results saved to jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only_inference_results.jsonl
219
- [2025-07-01 00:11:34,282][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
220
- [2025-07-01 00:13:11,390][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
221
- [2025-07-01 00:13:11,391][__main__][INFO] - Bootstrap Confidence Intervals (95%):
222
- [2025-07-01 00:13:11,391][__main__][INFO] - QWK: 0.5690 [0.4615, 0.6681]
223
- [2025-07-01 00:13:11,391][__main__][INFO] - Macro_F1: 0.3225 [0.2338, 0.4349]
224
- [2025-07-01 00:13:11,391][__main__][INFO] - Weighted_F1: 0.5690 [0.4869, 0.6499]
225
- [2025-07-01 00:13:11,391][__main__][INFO] - Inference results: {'accuracy': 0.5434782608695652, 'RMSE': 30.45547950507524, 'QWK': 0.5718939041414612, 'HDIV': 0.007246376811594235, 'Macro_F1': 0.30149864910503205, 'Micro_F1': 0.5434782608695652, 'Weighted_F1': 0.5677143444488495, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(135), 'FP_1': np.int64(2), 'FN_1': np.int64(1), 'TP_2': np.int64(6), 'TN_2': np.int64(109), 'FP_2': np.int64(20), 'FN_2': np.int64(3), 'TP_3': np.int64(40), 'TN_3': np.int64(50), 'FP_3': np.int64(12), 'FN_3': np.int64(36), 'TP_4': np.int64(27), 'TN_4': np.int64(71), 'FP_4': np.int64(21), 'FN_4': np.int64(19), 'TP_5': np.int64(2), 'TN_5': np.int64(125), 'FP_5': np.int64(8), 'FN_5': np.int64(3)}
226
- [2025-07-01 00:13:11,391][__main__][INFO] - Inference experiment completed
 
1
+ [2025-07-10 01:19:39,398][__main__][INFO] - Starting inference experiment
2
+ [2025-07-10 01:19:39,399][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
 
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
+ name: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only
25
  type: encoder_classification
26
  num_labels: 6
27
  output_dir: ./results/bertimbau_large/C4
28
  logging_dir: ./logs/bertimbau_large/C4
29
+ best_model_dir: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only
30
  tokenizer:
31
  name: neuralmind/bert-large-portuguese-cased
32
  dataset:
 
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
+ [2025-07-10 01:19:39,401][__main__][INFO] - Running inference with fine-tuned HF model
45
+ [2025-07-10 01:19:44,024][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
46
+ [2025-07-10 01:19:44,025][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
 
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
+ "transformers_version": "4.53.1",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
+ [2025-07-10 01:19:44,243][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
78
+ [2025-07-10 01:19:44,243][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
79
  "architectures": [
80
  "BertForMaskedLM"
81
  ],
 
100
  "pooler_size_per_head": 128,
101
  "pooler_type": "first_token_transform",
102
  "position_embedding_type": "absolute",
103
+ "transformers_version": "4.53.1",
104
  "type_vocab_size": 2,
105
  "use_cache": true,
106
  "vocab_size": 29794
107
  }
108
 
109
+ [2025-07-10 01:19:44,443][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/vocab.txt
110
+ [2025-07-10 01:19:44,443][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
111
+ [2025-07-10 01:19:44,443][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/added_tokens.json
112
+ [2025-07-10 01:19:44,443][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/special_tokens_map.json
113
+ [2025-07-10 01:19:44,443][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/tokenizer_config.json
114
+ [2025-07-10 01:19:44,443][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
115
+ [2025-07-10 01:19:44,443][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
116
+ [2025-07-10 01:19:44,444][transformers.configuration_utils][INFO] - Model config BertConfig {
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
 
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
+ "transformers_version": "4.53.1",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
+ [2025-07-10 01:19:44,474][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
148
+ [2025-07-10 01:19:44,475][transformers.configuration_utils][INFO] - Model config BertConfig {
149
+ "architectures": [
150
+ "BertForMaskedLM"
151
+ ],
152
+ "attention_probs_dropout_prob": 0.1,
153
+ "classifier_dropout": null,
154
+ "directionality": "bidi",
155
+ "hidden_act": "gelu",
156
+ "hidden_dropout_prob": 0.1,
157
+ "hidden_size": 1024,
158
+ "initializer_range": 0.02,
159
+ "intermediate_size": 4096,
160
+ "layer_norm_eps": 1e-12,
161
+ "max_position_embeddings": 512,
162
+ "model_type": "bert",
163
+ "num_attention_heads": 16,
164
+ "num_hidden_layers": 24,
165
+ "output_past": true,
166
+ "pad_token_id": 0,
167
+ "pooler_fc_size": 768,
168
+ "pooler_num_attention_heads": 12,
169
+ "pooler_num_fc_layers": 3,
170
+ "pooler_size_per_head": 128,
171
+ "pooler_type": "first_token_transform",
172
+ "position_embedding_type": "absolute",
173
+ "transformers_version": "4.53.1",
174
+ "type_vocab_size": 2,
175
+ "use_cache": true,
176
+ "vocab_size": 29794
177
+ }
178
+
179
+ [2025-07-10 01:19:44,492][__main__][INFO] - Tokenizer function parameters- Padding:longest; Truncation: True; Use Full Context: False
180
+ [2025-07-10 01:19:44,896][__main__][INFO] -
181
+ Token statistics for 'train' split:
182
+ [2025-07-10 01:19:44,896][__main__][INFO] - Total examples: 500
183
+ [2025-07-10 01:19:44,897][__main__][INFO] - Min tokens: 512
184
+ [2025-07-10 01:19:44,897][__main__][INFO] - Max tokens: 512
185
+ [2025-07-10 01:19:44,897][__main__][INFO] - Avg tokens: 512.00
186
+ [2025-07-10 01:19:44,897][__main__][INFO] - Std tokens: 0.00
187
+ [2025-07-10 01:19:44,985][__main__][INFO] -
188
+ Token statistics for 'validation' split:
189
+ [2025-07-10 01:19:44,985][__main__][INFO] - Total examples: 132
190
+ [2025-07-10 01:19:44,985][__main__][INFO] - Min tokens: 512
191
+ [2025-07-10 01:19:44,985][__main__][INFO] - Max tokens: 512
192
+ [2025-07-10 01:19:44,986][__main__][INFO] - Avg tokens: 512.00
193
+ [2025-07-10 01:19:44,986][__main__][INFO] - Std tokens: 0.00
194
+ [2025-07-10 01:19:45,083][__main__][INFO] -
195
+ Token statistics for 'test' split:
196
+ [2025-07-10 01:19:45,083][__main__][INFO] - Total examples: 138
197
+ [2025-07-10 01:19:45,083][__main__][INFO] - Min tokens: 512
198
+ [2025-07-10 01:19:45,083][__main__][INFO] - Max tokens: 512
199
+ [2025-07-10 01:19:45,083][__main__][INFO] - Avg tokens: 512.00
200
+ [2025-07-10 01:19:45,083][__main__][INFO] - Std tokens: 0.00
201
+ [2025-07-10 01:19:45,083][__main__][INFO] - If token statistics are the same (max, avg, min) keep in mind that this is due to batched tokenization and padding.
202
+ [2025-07-10 01:19:45,083][__main__][INFO] - Model max length: 512. If it is the same as stats, then there is a high chance that sequences are being truncated.
203
+ [2025-07-10 01:19:45,083][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only
204
+ [2025-07-10 01:19:45,084][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only
205
+ [2025-07-10 01:19:46,216][__main__][INFO] - Model need ≈ 2.62 GiB to run inference and 6.36 for training
206
+ [2025-07-10 01:19:47,074][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only/snapshots/0322eca1d32dfaf784bb8ad63fa85977ca109d48/config.json
207
+ [2025-07-10 01:19:47,075][transformers.configuration_utils][INFO] - Model config BertConfig {
208
  "architectures": [
209
  "BertForSequenceClassification"
210
  ],
 
245
  "pooler_size_per_head": 128,
246
  "pooler_type": "first_token_transform",
247
  "position_embedding_type": "absolute",
 
248
  "torch_dtype": "float32",
249
+ "transformers_version": "4.53.1",
250
  "type_vocab_size": 2,
251
  "use_cache": true,
252
  "vocab_size": 29794
253
  }
254
 
255
+ [2025-07-10 01:20:14,543][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only/snapshots/0322eca1d32dfaf784bb8ad63fa85977ca109d48/model.safetensors
256
+ [2025-07-10 01:20:14,546][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
257
+ [2025-07-10 01:20:14,546][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
258
+ [2025-07-10 01:20:15,314][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
259
 
260
+ [2025-07-10 01:20:15,315][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only.
261
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
262
+ [2025-07-10 01:20:15,333][transformers.training_args][INFO] - PyTorch: setting up devices
263
+ [2025-07-10 01:20:15,364][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
264
+ [2025-07-10 01:20:15,377][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
265
+ [2025-07-10 01:20:15,409][transformers.trainer][INFO] - Using auto half precision backend
266
+ [2025-07-10 01:20:18,784][__main__][INFO] - Running inference on test dataset
267
+ [2025-07-10 01:20:18,785][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: reference, id_prompt, essay_year, prompt, essay_text, supporting_text, grades, id. If reference, id_prompt, essay_year, prompt, essay_text, supporting_text, grades, id are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
268
+ [2025-07-10 01:20:18,793][transformers.trainer][INFO] -
269
  ***** Running Prediction *****
270
+ [2025-07-10 01:20:18,793][transformers.trainer][INFO] - Num examples = 138
271
+ [2025-07-10 01:20:18,793][transformers.trainer][INFO] - Batch size = 16
272
+ [2025-07-10 01:20:20,322][__main__][INFO] - Inference results saved to jbcs2025_bert-large-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only_inference_results.jsonl
273
+ [2025-07-10 01:20:20,323][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
274
+ [2025-07-10 01:22:24,410][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
275
+ [2025-07-10 01:22:24,413][__main__][INFO] - Bootstrap Confidence Intervals (95%):
276
+ [2025-07-10 01:22:24,413][__main__][INFO] - QWK: 0.5943 [0.4700, 0.7064]
277
+ [2025-07-10 01:22:24,413][__main__][INFO] - Macro_F1: 0.4620 [0.2994, 0.6410]
278
+ [2025-07-10 01:22:24,413][__main__][INFO] - Weighted_F1: 0.6060 [0.5248, 0.6835]
279
+ [2025-07-10 01:22:24,413][__main__][INFO] - Inference results: {'accuracy': 0.5869565217391305, 'RMSE': 29.29114225312413, 'QWK': 0.5985849056603774, 'HDIV': 0.007246376811594235, 'Macro_F1': 0.45502820381025977, 'Micro_F1': 0.5869565217391305, 'Weighted_F1': 0.6030619269196934, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(1), 'TN_1': np.int64(136), 'FP_1': np.int64(1), 'FN_1': np.int64(0), 'TP_2': np.int64(5), 'TN_2': np.int64(114), 'FP_2': np.int64(15), 'FN_2': np.int64(4), 'TP_3': np.int64(42), 'TN_3': np.int64(52), 'FP_3': np.int64(10), 'FN_3': np.int64(34), 'TP_4': np.int64(29), 'TN_4': np.int64(69), 'FP_4': np.int64(23), 'FN_4': np.int64(17), 'TP_5': np.int64(4), 'TN_5': np.int64(125), 'FP_5': np.int64(8), 'FN_5': np.int64(1)}
280
+ [2025-07-10 01:22:24,419][__main__][INFO] - Inference experiment completed
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only}/.hydra/config.yaml RENAMED
@@ -20,12 +20,12 @@ post_training_results:
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
- name: kamel-usp/jbcs2025_bertimbau-large-C5
24
  type: encoder_classification
25
  num_labels: 6
26
  output_dir: ./results/bertimbau_large/C5
27
  logging_dir: ./logs/bertimbau_large/C5
28
- best_model_dir: ./results/bertimbau_large/C5/best_model
29
  tokenizer:
30
  name: neuralmind/bert-large-portuguese-cased
31
  dataset:
 
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
+ name: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only
24
  type: encoder_classification
25
  num_labels: 6
26
  output_dir: ./results/bertimbau_large/C5
27
  logging_dir: ./logs/bertimbau_large/C5
28
+ best_model_dir: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only
29
  tokenizer:
30
  name: neuralmind/bert-large-portuguese-cased
31
  dataset:
runs/large_models/bertimbau/jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only/.hydra/hydra.yaml ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: inference_output/2025-07-10/01-22-30
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ simple:
72
+ format: '[%(asctime)s][HYDRA] %(message)s'
73
+ handlers:
74
+ console:
75
+ class: logging.StreamHandler
76
+ formatter: simple
77
+ stream: ext://sys.stdout
78
+ root:
79
+ level: INFO
80
+ handlers:
81
+ - console
82
+ loggers:
83
+ logging_example:
84
+ level: DEBUG
85
+ disable_existing_loggers: false
86
+ job_logging:
87
+ version: 1
88
+ formatters:
89
+ simple:
90
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
+ handlers:
92
+ console:
93
+ class: logging.StreamHandler
94
+ formatter: simple
95
+ stream: ext://sys.stdout
96
+ file:
97
+ class: logging.FileHandler
98
+ formatter: simple
99
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
+ root:
101
+ level: INFO
102
+ handlers:
103
+ - console
104
+ - file
105
+ disable_existing_loggers: false
106
+ env: {}
107
+ mode: RUN
108
+ searchpath: []
109
+ callbacks: {}
110
+ output_subdir: .hydra
111
+ overrides:
112
+ hydra:
113
+ - hydra.run.dir=inference_output/2025-07-10/01-22-30
114
+ - hydra.mode=RUN
115
+ task:
116
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only
117
+ job:
118
+ name: run_inference_experiment
119
+ chdir: null
120
+ override_dirname: experiments=temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only
121
+ id: ???
122
+ num: ???
123
+ config_name: config
124
+ env_set: {}
125
+ env_copy: []
126
+ config:
127
+ override_dirname:
128
+ kv_sep: '='
129
+ item_sep: ','
130
+ exclude_keys: []
131
+ runtime:
132
+ version: 1.3.2
133
+ version_base: '1.1'
134
+ cwd: /workspace/jbcs2025
135
+ config_sources:
136
+ - path: hydra.conf
137
+ schema: pkg
138
+ provider: hydra
139
+ - path: /workspace/jbcs2025/configs
140
+ schema: file
141
+ provider: main
142
+ - path: ''
143
+ schema: structured
144
+ provider: schema
145
+ output_dir: /workspace/jbcs2025/inference_output/2025-07-10/01-22-30
146
+ choices:
147
+ experiments: temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only
148
+ hydra/env: default
149
+ hydra/callbacks: null
150
+ hydra/job_logging: default
151
+ hydra/hydra_logging: default
152
+ hydra/hydra_help: default
153
+ hydra/help: default
154
+ hydra/sweeper: basic
155
+ hydra/launcher: basic
156
+ hydra/output: default
157
+ verbose: false
runs/large_models/bertimbau/jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only/.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only}/bootstrap_confidence_intervals.csv RENAMED
@@ -1,2 +1,2 @@
1
  experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
- jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only,2025-07-01 00:08:08,0.26675529638544276,0.13086754944731044,0.3967413784980497,0.26587382905073925,0.20553535282282293,0.13922610890459958,0.29020915603986924,0.15098304713526967,0.2492329798786624,0.17501884398554457,0.32721551607766175,0.15219667209211718
 
1
  experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
+ jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only,2025-07-10 01:22:36,0.4570995991774188,0.3260729920596689,0.582680258986133,0.2566072669264641,0.3005407739499739,0.23044185263938957,0.3822276851313438,0.15178583249195424,0.35876023783511307,0.270756957437106,0.44869522570312514,0.17793826826601916
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only}/evaluation_results.csv RENAMED
@@ -1,2 +1,2 @@
1
- accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
- 0.5434782608695652,30.45547950507524,0.5718939041414612,0.007246376811594235,0.30149864910503205,0.5434782608695652,0.5677143444488495,0,137,0,1,0,135,2,1,6,109,20,3,40,50,12,36,27,71,21,19,2,125,8,3,2025-07-01 00:10:41,jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only
 
1
+ accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.41304347826086957,59.75796593554388,0.45915406932356084,0.14492753623188404,0.3013676792556103,0.41304347826086957,0.3597310868375336,5,115,1,17,6,94,12,26,14,82,32,10,3,112,1,22,29,71,35,3,0,135,0,3,2025-07-10 01:22:36,jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only/jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only_inference_results.jsonl → jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only/jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only_inference_results.jsonl} RENAMED
The diff for this file is too large to render. See raw diff
 
runs/large_models/bertimbau/{jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only → jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only}/run_inference_experiment.log RENAMED
@@ -1,5 +1,5 @@
1
- [2025-07-01 00:13:17,175][__main__][INFO] - Starting inference experiment
2
- [2025-07-01 00:13:17,176][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
@@ -21,12 +21,12 @@ post_training_results:
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
- name: kamel-usp/jbcs2025_bertimbau-large-C5
25
  type: encoder_classification
26
  num_labels: 6
27
  output_dir: ./results/bertimbau_large/C5
28
  logging_dir: ./logs/bertimbau_large/C5
29
- best_model_dir: ./results/bertimbau_large/C5/best_model
30
  tokenizer:
31
  name: neuralmind/bert-large-portuguese-cased
32
  dataset:
@@ -41,9 +41,9 @@ experiments:
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
- [2025-07-01 00:13:17,178][__main__][INFO] - Running inference with fine-tuned HF model
45
- [2025-07-01 00:13:21,935][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
46
- [2025-07-01 00:13:21,936][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
@@ -68,20 +68,14 @@ experiments:
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
- "transformers_version": "4.53.0",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
- [2025-07-01 00:13:22,154][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/vocab.txt
78
- [2025-07-01 00:13:22,154][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
79
- [2025-07-01 00:13:22,154][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/added_tokens.json
80
- [2025-07-01 00:13:22,154][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/special_tokens_map.json
81
- [2025-07-01 00:13:22,154][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/tokenizer_config.json
82
- [2025-07-01 00:13:22,154][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
83
- [2025-07-01 00:13:22,154][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
84
- [2025-07-01 00:13:22,155][transformers.configuration_utils][INFO] - Model config BertConfig {
85
  "architectures": [
86
  "BertForMaskedLM"
87
  ],
@@ -106,14 +100,20 @@ experiments:
106
  "pooler_size_per_head": 128,
107
  "pooler_type": "first_token_transform",
108
  "position_embedding_type": "absolute",
109
- "transformers_version": "4.53.0",
110
  "type_vocab_size": 2,
111
  "use_cache": true,
112
  "vocab_size": 29794
113
  }
114
 
115
- [2025-07-01 00:13:22,182][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
116
- [2025-07-01 00:13:22,182][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
@@ -138,18 +138,73 @@ experiments:
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
- "transformers_version": "4.53.0",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
- [2025-07-01 00:13:22,200][__main__][INFO] - Tokenizer function parameters- Padding:max_length; Truncation: True; Use Full Context: False
148
- [2025-07-01 00:13:22,405][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau-large-C5
149
- [2025-07-01 00:13:22,405][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau-large-C5
150
- [2025-07-01 00:13:23,299][__main__][INFO] - Model need ≈ 2.62 GiB to run inference and 6.36 for training
151
- [2025-07-01 00:13:24,131][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau-large-C5/snapshots/0c5e7dc4b09aa42297d3fcb051dbd7433b740d47/config.json
152
- [2025-07-01 00:13:24,132][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  "architectures": [
154
  "BertForSequenceClassification"
155
  ],
@@ -190,37 +245,36 @@ experiments:
190
  "pooler_size_per_head": 128,
191
  "pooler_type": "first_token_transform",
192
  "position_embedding_type": "absolute",
193
- "problem_type": "single_label_classification",
194
  "torch_dtype": "float32",
195
- "transformers_version": "4.53.0",
196
  "type_vocab_size": 2,
197
  "use_cache": true,
198
  "vocab_size": 29794
199
  }
200
 
201
- [2025-07-01 00:14:02,966][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau-large-C5/snapshots/0c5e7dc4b09aa42297d3fcb051dbd7433b740d47/model.safetensors
202
- [2025-07-01 00:14:02,967][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
203
- [2025-07-01 00:14:02,967][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
204
- [2025-07-01 00:14:03,581][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
205
 
206
- [2025-07-01 00:14:03,582][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bertimbau-large-C5.
207
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
208
- [2025-07-01 00:14:03,589][transformers.training_args][INFO] - PyTorch: setting up devices
209
- [2025-07-01 00:14:03,639][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
210
- [2025-07-01 00:14:03,644][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
211
- [2025-07-01 00:14:03,662][transformers.trainer][INFO] - Using auto half precision backend
212
- [2025-07-01 00:14:07,138][__main__][INFO] - Running inference on test dataset
213
- [2025-07-01 00:14:07,138][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: essay_year, id, reference, grades, supporting_text, essay_text, id_prompt, prompt. If essay_year, id, reference, grades, supporting_text, essay_text, id_prompt, prompt are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
214
- [2025-07-01 00:14:07,145][transformers.trainer][INFO] -
215
  ***** Running Prediction *****
216
- [2025-07-01 00:14:07,145][transformers.trainer][INFO] - Num examples = 138
217
- [2025-07-01 00:14:07,145][transformers.trainer][INFO] - Batch size = 16
218
- [2025-07-01 00:14:07,624][__main__][INFO] - Inference results saved to jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only_inference_results.jsonl
219
- [2025-07-01 00:14:07,631][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
220
- [2025-07-01 00:15:43,889][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
221
- [2025-07-01 00:15:43,889][__main__][INFO] - Bootstrap Confidence Intervals (95%):
222
- [2025-07-01 00:15:43,889][__main__][INFO] - QWK: 0.4766 [0.3498, 0.5988]
223
- [2025-07-01 00:15:43,889][__main__][INFO] - Macro_F1: 0.3186 [0.2331, 0.4147]
224
- [2025-07-01 00:15:43,889][__main__][INFO] - Weighted_F1: 0.3519 [0.2710, 0.4369]
225
- [2025-07-01 00:15:43,889][__main__][INFO] - Inference results: {'accuracy': 0.36231884057971014, 'RMSE': 61.10100926607787, 'QWK': 0.4785241515279538, 'HDIV': 0.14492753623188404, 'Macro_F1': 0.3255241258616379, 'Micro_F1': 0.36231884057971014, 'Weighted_F1': 0.3520852841017614, 'TP_0': np.int64(6), 'TN_0': np.int64(112), 'FP_0': np.int64(4), 'FN_0': np.int64(16), 'TP_1': np.int64(10), 'TN_1': np.int64(88), 'FP_1': np.int64(18), 'FN_1': np.int64(22), 'TP_2': np.int64(4), 'TN_2': np.int64(108), 'FP_2': np.int64(6), 'FN_2': np.int64(20), 'TP_3': np.int64(8), 'TN_3': np.int64(85), 'FP_3': np.int64(28), 'FN_3': np.int64(17), 'TP_4': np.int64(21), 'TN_4': np.int64(79), 'FP_4': np.int64(27), 'FN_4': np.int64(11), 'TP_5': np.int64(1), 'TN_5': np.int64(130), 'FP_5': np.int64(5), 'FN_5': np.int64(2)}
226
- [2025-07-01 00:15:43,890][__main__][INFO] - Inference experiment completed
 
1
+ [2025-07-10 01:22:36,158][__main__][INFO] - Starting inference experiment
2
+ [2025-07-10 01:22:36,160][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
 
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
+ name: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only
25
  type: encoder_classification
26
  num_labels: 6
27
  output_dir: ./results/bertimbau_large/C5
28
  logging_dir: ./logs/bertimbau_large/C5
29
+ best_model_dir: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only
30
  tokenizer:
31
  name: neuralmind/bert-large-portuguese-cased
32
  dataset:
 
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
+ [2025-07-10 01:22:36,162][__main__][INFO] - Running inference with fine-tuned HF model
45
+ [2025-07-10 01:22:40,872][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
46
+ [2025-07-10 01:22:40,873][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
 
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
+ "transformers_version": "4.53.1",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
+ [2025-07-10 01:22:41,085][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
78
+ [2025-07-10 01:22:41,086][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
79
  "architectures": [
80
  "BertForMaskedLM"
81
  ],
 
100
  "pooler_size_per_head": 128,
101
  "pooler_type": "first_token_transform",
102
  "position_embedding_type": "absolute",
103
+ "transformers_version": "4.53.1",
104
  "type_vocab_size": 2,
105
  "use_cache": true,
106
  "vocab_size": 29794
107
  }
108
 
109
+ [2025-07-10 01:22:41,339][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/vocab.txt
110
+ [2025-07-10 01:22:41,339][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
111
+ [2025-07-10 01:22:41,339][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/added_tokens.json
112
+ [2025-07-10 01:22:41,339][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/special_tokens_map.json
113
+ [2025-07-10 01:22:41,339][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/tokenizer_config.json
114
+ [2025-07-10 01:22:41,339][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
115
+ [2025-07-10 01:22:41,340][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
116
+ [2025-07-10 01:22:41,340][transformers.configuration_utils][INFO] - Model config BertConfig {
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
 
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
+ "transformers_version": "4.53.1",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
+ [2025-07-10 01:22:41,370][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-large-portuguese-cased/snapshots/aa302f6ea73b759f7df9cad58bd272127b67ec28/config.json
148
+ [2025-07-10 01:22:41,371][transformers.configuration_utils][INFO] - Model config BertConfig {
149
+ "architectures": [
150
+ "BertForMaskedLM"
151
+ ],
152
+ "attention_probs_dropout_prob": 0.1,
153
+ "classifier_dropout": null,
154
+ "directionality": "bidi",
155
+ "hidden_act": "gelu",
156
+ "hidden_dropout_prob": 0.1,
157
+ "hidden_size": 1024,
158
+ "initializer_range": 0.02,
159
+ "intermediate_size": 4096,
160
+ "layer_norm_eps": 1e-12,
161
+ "max_position_embeddings": 512,
162
+ "model_type": "bert",
163
+ "num_attention_heads": 16,
164
+ "num_hidden_layers": 24,
165
+ "output_past": true,
166
+ "pad_token_id": 0,
167
+ "pooler_fc_size": 768,
168
+ "pooler_num_attention_heads": 12,
169
+ "pooler_num_fc_layers": 3,
170
+ "pooler_size_per_head": 128,
171
+ "pooler_type": "first_token_transform",
172
+ "position_embedding_type": "absolute",
173
+ "transformers_version": "4.53.1",
174
+ "type_vocab_size": 2,
175
+ "use_cache": true,
176
+ "vocab_size": 29794
177
+ }
178
+
179
+ [2025-07-10 01:22:41,388][__main__][INFO] - Tokenizer function parameters- Padding:longest; Truncation: True; Use Full Context: False
180
+ [2025-07-10 01:22:41,797][__main__][INFO] -
181
+ Token statistics for 'train' split:
182
+ [2025-07-10 01:22:41,797][__main__][INFO] - Total examples: 500
183
+ [2025-07-10 01:22:41,797][__main__][INFO] - Min tokens: 512
184
+ [2025-07-10 01:22:41,797][__main__][INFO] - Max tokens: 512
185
+ [2025-07-10 01:22:41,797][__main__][INFO] - Avg tokens: 512.00
186
+ [2025-07-10 01:22:41,797][__main__][INFO] - Std tokens: 0.00
187
+ [2025-07-10 01:22:41,888][__main__][INFO] -
188
+ Token statistics for 'validation' split:
189
+ [2025-07-10 01:22:41,888][__main__][INFO] - Total examples: 132
190
+ [2025-07-10 01:22:41,888][__main__][INFO] - Min tokens: 512
191
+ [2025-07-10 01:22:41,888][__main__][INFO] - Max tokens: 512
192
+ [2025-07-10 01:22:41,888][__main__][INFO] - Avg tokens: 512.00
193
+ [2025-07-10 01:22:41,888][__main__][INFO] - Std tokens: 0.00
194
+ [2025-07-10 01:22:41,983][__main__][INFO] -
195
+ Token statistics for 'test' split:
196
+ [2025-07-10 01:22:41,983][__main__][INFO] - Total examples: 138
197
+ [2025-07-10 01:22:41,983][__main__][INFO] - Min tokens: 512
198
+ [2025-07-10 01:22:41,983][__main__][INFO] - Max tokens: 512
199
+ [2025-07-10 01:22:41,983][__main__][INFO] - Avg tokens: 512.00
200
+ [2025-07-10 01:22:41,983][__main__][INFO] - Std tokens: 0.00
201
+ [2025-07-10 01:22:41,983][__main__][INFO] - If token statistics are the same (max, avg, min) keep in mind that this is due to batched tokenization and padding.
202
+ [2025-07-10 01:22:41,983][__main__][INFO] - Model max length: 512. If it is the same as stats, then there is a high chance that sequences are being truncated.
203
+ [2025-07-10 01:22:41,983][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only
204
+ [2025-07-10 01:22:41,983][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only
205
+ [2025-07-10 01:22:43,230][__main__][INFO] - Model need ≈ 2.62 GiB to run inference and 6.36 for training
206
+ [2025-07-10 01:22:44,519][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only/snapshots/96dc152f3c31b3b49ac73d4d82b684487d6e2bf5/config.json
207
+ [2025-07-10 01:22:44,521][transformers.configuration_utils][INFO] - Model config BertConfig {
208
  "architectures": [
209
  "BertForSequenceClassification"
210
  ],
 
245
  "pooler_size_per_head": 128,
246
  "pooler_type": "first_token_transform",
247
  "position_embedding_type": "absolute",
 
248
  "torch_dtype": "float32",
249
+ "transformers_version": "4.53.1",
250
  "type_vocab_size": 2,
251
  "use_cache": true,
252
  "vocab_size": 29794
253
  }
254
 
255
+ [2025-07-10 01:23:10,193][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only/snapshots/96dc152f3c31b3b49ac73d4d82b684487d6e2bf5/model.safetensors
256
+ [2025-07-10 01:23:10,194][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
257
+ [2025-07-10 01:23:10,194][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
258
+ [2025-07-10 01:23:10,938][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
259
 
260
+ [2025-07-10 01:23:10,939][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only.
261
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
262
+ [2025-07-10 01:23:10,952][transformers.training_args][INFO] - PyTorch: setting up devices
263
+ [2025-07-10 01:23:10,975][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
264
+ [2025-07-10 01:23:10,982][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
265
+ [2025-07-10 01:23:11,007][transformers.trainer][INFO] - Using auto half precision backend
266
+ [2025-07-10 01:23:14,298][__main__][INFO] - Running inference on test dataset
267
+ [2025-07-10 01:23:14,299][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: id_prompt, prompt, reference, essay_year, grades, id, supporting_text, essay_text. If id_prompt, prompt, reference, essay_year, grades, id, supporting_text, essay_text are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
268
+ [2025-07-10 01:23:14,307][transformers.trainer][INFO] -
269
  ***** Running Prediction *****
270
+ [2025-07-10 01:23:14,307][transformers.trainer][INFO] - Num examples = 138
271
+ [2025-07-10 01:23:14,307][transformers.trainer][INFO] - Batch size = 16
272
+ [2025-07-10 01:23:15,542][__main__][INFO] - Inference results saved to jbcs2025_bert-large-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only_inference_results.jsonl
273
+ [2025-07-10 01:23:15,543][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
274
+ [2025-07-10 01:25:20,892][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
275
+ [2025-07-10 01:25:20,892][__main__][INFO] - Bootstrap Confidence Intervals (95%):
276
+ [2025-07-10 01:25:20,892][__main__][INFO] - QWK: 0.4571 [0.3261, 0.5827]
277
+ [2025-07-10 01:25:20,892][__main__][INFO] - Macro_F1: 0.3005 [0.2304, 0.3822]
278
+ [2025-07-10 01:25:20,892][__main__][INFO] - Weighted_F1: 0.3588 [0.2708, 0.4487]
279
+ [2025-07-10 01:25:20,892][__main__][INFO] - Inference results: {'accuracy': 0.41304347826086957, 'RMSE': 59.75796593554388, 'QWK': 0.45915406932356084, 'HDIV': 0.14492753623188404, 'Macro_F1': 0.3013676792556103, 'Micro_F1': 0.41304347826086957, 'Weighted_F1': 0.3597310868375336, 'TP_0': np.int64(5), 'TN_0': np.int64(115), 'FP_0': np.int64(1), 'FN_0': np.int64(17), 'TP_1': np.int64(6), 'TN_1': np.int64(94), 'FP_1': np.int64(12), 'FN_1': np.int64(26), 'TP_2': np.int64(14), 'TN_2': np.int64(82), 'FP_2': np.int64(32), 'FN_2': np.int64(10), 'TP_3': np.int64(3), 'TN_3': np.int64(112), 'FP_3': np.int64(1), 'FN_3': np.int64(22), 'TP_4': np.int64(29), 'TN_4': np.int64(71), 'FP_4': np.int64(35), 'FN_4': np.int64(3), 'TP_5': np.int64(0), 'TN_5': np.int64(135), 'FP_5': np.int64(0), 'FN_5': np.int64(3)}
280
+ [2025-07-10 01:25:20,892][__main__][INFO] - Inference experiment completed
runs/large_models/bertimbau/jbcs2025_bertimbau-large-C1-encoder_classification-C1-essay_only/.hydra/overrides.yaml DELETED
@@ -1 +0,0 @@
1
- - experiments=large_models/C1
 
 
runs/large_models/bertimbau/jbcs2025_bertimbau-large-C2-encoder_classification-C2-essay_only/.hydra/overrides.yaml DELETED
@@ -1 +0,0 @@
1
- - experiments=large_models/C2
 
 
runs/large_models/bertimbau/jbcs2025_bertimbau-large-C3-encoder_classification-C3-essay_only/.hydra/overrides.yaml DELETED
@@ -1 +0,0 @@
1
- - experiments=large_models/C3
 
 
runs/large_models/bertimbau/jbcs2025_bertimbau-large-C4-encoder_classification-C4-essay_only/.hydra/overrides.yaml DELETED
@@ -1 +0,0 @@
1
- - experiments=large_models/C4
 
 
runs/large_models/bertimbau/jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only/.hydra/hydra.yaml DELETED
@@ -1,156 +0,0 @@
1
- hydra:
2
- run:
3
- dir: outputs/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
- sweep:
5
- dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
- subdir: ${hydra.job.num}
7
- launcher:
8
- _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
- sweeper:
10
- _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
- max_batch_size: null
12
- params: null
13
- help:
14
- app_name: ${hydra.job.name}
15
- header: '${hydra.help.app_name} is powered by Hydra.
16
-
17
- '
18
- footer: 'Powered by Hydra (https://hydra.cc)
19
-
20
- Use --hydra-help to view Hydra specific help
21
-
22
- '
23
- template: '${hydra.help.header}
24
-
25
- == Configuration groups ==
26
-
27
- Compose your configuration from those groups (group=option)
28
-
29
-
30
- $APP_CONFIG_GROUPS
31
-
32
-
33
- == Config ==
34
-
35
- Override anything in the config (foo.bar=value)
36
-
37
-
38
- $CONFIG
39
-
40
-
41
- ${hydra.help.footer}
42
-
43
- '
44
- hydra_help:
45
- template: 'Hydra (${hydra.runtime.version})
46
-
47
- See https://hydra.cc for more info.
48
-
49
-
50
- == Flags ==
51
-
52
- $FLAGS_HELP
53
-
54
-
55
- == Configuration groups ==
56
-
57
- Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
- to command line)
59
-
60
-
61
- $HYDRA_CONFIG_GROUPS
62
-
63
-
64
- Use ''--cfg hydra'' to Show the Hydra config.
65
-
66
- '
67
- hydra_help: ???
68
- hydra_logging:
69
- version: 1
70
- formatters:
71
- simple:
72
- format: '[%(asctime)s][HYDRA] %(message)s'
73
- handlers:
74
- console:
75
- class: logging.StreamHandler
76
- formatter: simple
77
- stream: ext://sys.stdout
78
- root:
79
- level: INFO
80
- handlers:
81
- - console
82
- loggers:
83
- logging_example:
84
- level: DEBUG
85
- disable_existing_loggers: false
86
- job_logging:
87
- version: 1
88
- formatters:
89
- simple:
90
- format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
- handlers:
92
- console:
93
- class: logging.StreamHandler
94
- formatter: simple
95
- stream: ext://sys.stdout
96
- file:
97
- class: logging.FileHandler
98
- formatter: simple
99
- filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
- root:
101
- level: INFO
102
- handlers:
103
- - console
104
- - file
105
- disable_existing_loggers: false
106
- env: {}
107
- mode: RUN
108
- searchpath: []
109
- callbacks: {}
110
- output_subdir: .hydra
111
- overrides:
112
- hydra:
113
- - hydra.mode=RUN
114
- task:
115
- - experiments=large_models/C5
116
- job:
117
- name: run_inference_experiment
118
- chdir: null
119
- override_dirname: experiments=large_models/C5
120
- id: ???
121
- num: ???
122
- config_name: config
123
- env_set: {}
124
- env_copy: []
125
- config:
126
- override_dirname:
127
- kv_sep: '='
128
- item_sep: ','
129
- exclude_keys: []
130
- runtime:
131
- version: 1.3.2
132
- version_base: '1.1'
133
- cwd: /workspace/jbcs2025
134
- config_sources:
135
- - path: hydra.conf
136
- schema: pkg
137
- provider: hydra
138
- - path: /workspace/jbcs2025/configs
139
- schema: file
140
- provider: main
141
- - path: ''
142
- schema: structured
143
- provider: schema
144
- output_dir: /workspace/jbcs2025/outputs/2025-07-01/00-13-17
145
- choices:
146
- experiments: large_models/C5
147
- hydra/env: default
148
- hydra/callbacks: null
149
- hydra/job_logging: default
150
- hydra/hydra_logging: default
151
- hydra/hydra_help: default
152
- hydra/help: default
153
- hydra/sweeper: basic
154
- hydra/launcher: basic
155
- hydra/output: default
156
- verbose: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
runs/large_models/bertimbau/jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only/.hydra/overrides.yaml DELETED
@@ -1 +0,0 @@
1
- - experiments=large_models/C5
 
 
runs/large_models/bertimbau/jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only/bootstrap_confidence_intervals.csv DELETED
@@ -1,2 +0,0 @@
1
- experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
- jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only,2025-07-01 00:13:17,0.4765829843065011,0.34979869197784125,0.5987775413884535,0.24897884941061227,0.3185511976163596,0.23313502944056644,0.4147475443192737,0.18161251487870725,0.3518695561256887,0.2709850141597966,0.4369107158200968,0.16592570166030018
 
 
 
runs/large_models/bertimbau/jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only/evaluation_results.csv DELETED
@@ -1,2 +0,0 @@
1
- accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
- 0.36231884057971014,61.10100926607787,0.4785241515279538,0.14492753623188404,0.3255241258616379,0.36231884057971014,0.3520852841017614,6,112,4,16,10,88,18,22,4,108,6,20,8,85,28,17,21,79,27,11,1,130,5,2,2025-07-01 00:13:17,jbcs2025_bertimbau-large-C5-encoder_classification-C5-essay_only
 
 
 
runs/slm_decoder_models/llama-3.1-8b/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16-llama31_classification_lora-C1-essay_only-r16/.hydra/hydra.yaml CHANGED
@@ -1,6 +1,6 @@
1
  hydra:
2
  run:
3
- dir: inference_output/2025-07-06/16-22-15
4
  sweep:
5
  dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
  subdir: ${hydra.job.num}
@@ -110,7 +110,7 @@ hydra:
110
  output_subdir: .hydra
111
  overrides:
112
  hydra:
113
- - hydra.run.dir=inference_output/2025-07-06/16-22-15
114
  - hydra.mode=RUN
115
  task:
116
  - experiments=temp_inference/kamel-usp_jbcs2025_Llama-3_1-8B-llama31_classification_lora-C1-essay_only-r16
@@ -142,7 +142,7 @@ hydra:
142
  - path: ''
143
  schema: structured
144
  provider: schema
145
- output_dir: /workspace/jbcs2025/inference_output/2025-07-06/16-22-15
146
  choices:
147
  experiments: temp_inference/kamel-usp_jbcs2025_Llama-3_1-8B-llama31_classification_lora-C1-essay_only-r16
148
  hydra/env: default
 
1
  hydra:
2
  run:
3
+ dir: inference_output/2025-07-09/19-56-19
4
  sweep:
5
  dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
  subdir: ${hydra.job.num}
 
110
  output_subdir: .hydra
111
  overrides:
112
  hydra:
113
+ - hydra.run.dir=inference_output/2025-07-09/19-56-19
114
  - hydra.mode=RUN
115
  task:
116
  - experiments=temp_inference/kamel-usp_jbcs2025_Llama-3_1-8B-llama31_classification_lora-C1-essay_only-r16
 
142
  - path: ''
143
  schema: structured
144
  provider: schema
145
+ output_dir: /workspace/jbcs2025/inference_output/2025-07-09/19-56-19
146
  choices:
147
  experiments: temp_inference/kamel-usp_jbcs2025_Llama-3_1-8B-llama31_classification_lora-C1-essay_only-r16
148
  hydra/env: default
runs/slm_decoder_models/llama-3.1-8b/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16-llama31_classification_lora-C1-essay_only-r16/bootstrap_confidence_intervals.csv CHANGED
@@ -1,2 +1,2 @@
1
  experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
- jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16-llama31_classification_lora-C1-essay_only-r16,2025-07-06 16:22:20,0.6852010393656068,0.5881177044303095,0.7734829594694392,0.1853652550391297,0.5201141818478505,0.40078232785453927,0.6699223338679838,0.26914000601344457,0.6659186862378589,0.5849321458851546,0.7433844647084771,0.15845231882332245
 
1
  experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
+ jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16-llama31_classification_lora-C1-essay_only-r16,2025-07-09 19:56:26,0.6852010393656068,0.5881177044303095,0.7734829594694392,0.1853652550391297,0.5201141818478505,0.40078232785453927,0.6699223338679838,0.26914000601344457,0.6659186862378589,0.5849321458851546,0.7433844647084771,0.15845231882332245
runs/slm_decoder_models/llama-3.1-8b/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16-llama31_classification_lora-C1-essay_only-r16/evaluation_results.csv CHANGED
@@ -1,2 +1,2 @@
1
  accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
- 0.6594202898550725,25.931906372573962,0.6867564182842831,0.007246376811594235,0.48154898864576284,0.6594202898550725,0.6655256851610287,0,137,0,1,0,138,0,0,7,123,5,3,50,58,14,16,28,73,14,23,6,114,14,4,2025-07-06 16:22:20,jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16-llama31_classification_lora-C1-essay_only-r16
 
1
  accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.6594202898550725,25.931906372573962,0.6867564182842831,0.007246376811594235,0.48154898864576284,0.6594202898550725,0.6655256851610287,0,137,0,1,0,138,0,0,7,123,5,3,50,58,14,16,28,73,14,23,6,114,14,4,2025-07-09 19:56:26,jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16-llama31_classification_lora-C1-essay_only-r16
runs/slm_decoder_models/llama-3.1-8b/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16-llama31_classification_lora-C1-essay_only-r16/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16-llama31_classification_lora-C1-essay_only-r16_inference_results.jsonl CHANGED
The diff for this file is too large to render. See raw diff
 
runs/slm_decoder_models/llama-3.1-8b/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16-llama31_classification_lora-C1-essay_only-r16/run_inference_experiment.log CHANGED
@@ -1,5 +1,5 @@
1
- [2025-07-06 16:22:20,211][__main__][INFO] - Starting inference experiment
2
- [2025-07-06 16:22:20,212][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
@@ -45,22 +45,45 @@ experiments:
45
  gradient_accumulation_steps: 2
46
  gradient_checkpointing: true
47
 
48
- [2025-07-06 16:22:20,214][__main__][INFO] - Running inference with fine-tuned HF model
49
- [2025-07-06 16:22:23,567][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at /tmp/models--meta-llama--Llama-3.1-8B/snapshots/d04e592bb4f6aa9cfee91e2e20afa771667e1d4b/tokenizer.json
50
- [2025-07-06 16:22:23,567][transformers.tokenization_utils_base][INFO] - loading file tokenizer.model from cache at None
51
- [2025-07-06 16:22:23,567][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at None
52
- [2025-07-06 16:22:23,567][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--meta-llama--Llama-3.1-8B/snapshots/d04e592bb4f6aa9cfee91e2e20afa771667e1d4b/special_tokens_map.json
53
- [2025-07-06 16:22:23,567][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--meta-llama--Llama-3.1-8B/snapshots/d04e592bb4f6aa9cfee91e2e20afa771667e1d4b/tokenizer_config.json
54
- [2025-07-06 16:22:23,567][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
55
- [2025-07-06 16:22:23,864][transformers.tokenization_utils_base][INFO] - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
56
- [2025-07-06 16:22:23,871][__main__][INFO] - Tokenizer function parameters- Padding:longest; Truncation: False; Use Full Context: False
57
- [2025-07-06 16:22:24,163][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16
58
- [2025-07-06 16:22:24,164][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16
59
- [2025-07-06 16:22:25,971][__main__][INFO] - Model need ≈ 46.09 GiB to run inference and 136.77 for training
60
- [2025-07-06 16:22:26,133][__main__][INFO] - Loading PEFT model configuration from kamel-usp/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16
61
- [2025-07-06 16:22:26,133][__main__][INFO] - Base model name: meta-llama/Llama-3.1-8B
62
- [2025-07-06 16:22:26,273][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--meta-llama--Llama-3.1-8B/snapshots/d04e592bb4f6aa9cfee91e2e20afa771667e1d4b/config.json
63
- [2025-07-06 16:22:26,275][transformers.configuration_utils][INFO] - Model config LlamaConfig {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64
  "architectures": [
65
  "LlamaForCausalLM"
66
  ],
@@ -107,38 +130,38 @@ experiments:
107
  "rope_theta": 500000.0,
108
  "tie_word_embeddings": false,
109
  "torch_dtype": "bfloat16",
110
- "transformers_version": "4.53.0",
111
  "use_cache": true,
112
  "vocab_size": 128256
113
  }
114
 
115
- [2025-07-06 16:22:26,422][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--meta-llama--Llama-3.1-8B/snapshots/d04e592bb4f6aa9cfee91e2e20afa771667e1d4b/model.safetensors.index.json
116
- [2025-07-06 16:22:26,422][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.bfloat16 as defined in model's config object
117
- [2025-07-06 16:22:26,422][transformers.modeling_utils][INFO] - Instantiating LlamaForSequenceClassification model under default dtype torch.bfloat16.
118
- [2025-07-06 16:22:29,885][transformers.modeling_utils][INFO] - Some weights of the model checkpoint at meta-llama/Llama-3.1-8B were not used when initializing LlamaForSequenceClassification: ['lm_head.weight']
119
  - This IS expected if you are initializing LlamaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
120
  - This IS NOT expected if you are initializing LlamaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
121
- [2025-07-06 16:22:29,885][transformers.modeling_utils][WARNING] - Some weights of LlamaForSequenceClassification were not initialized from the model checkpoint at meta-llama/Llama-3.1-8B and are newly initialized: ['score.weight']
122
  You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
123
- [2025-07-06 16:22:33,282][__main__][INFO] - Loaded fine-tuned PEFT model from kamel-usp/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16
124
- [2025-07-06 16:22:33,285][__main__][INFO] - None
125
- [2025-07-06 16:22:33,288][transformers.training_args][INFO] - PyTorch: setting up devices
126
- [2025-07-06 16:22:33,342][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
127
- [2025-07-06 16:22:33,347][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
128
- [2025-07-06 16:22:33,366][transformers.trainer][INFO] - Using auto half precision backend
129
- [2025-07-06 16:22:33,367][transformers.trainer][WARNING] - No label_names provided for model class `PeftModelForSequenceClassification`. Since `PeftModel` hides base models input arguments, if label_names is not given, label_names can't be set automatically within `Trainer`. Note that empty label_names list will be used instead.
130
- [2025-07-06 16:22:36,746][__main__][INFO] - Running inference on test dataset
131
- [2025-07-06 16:22:36,746][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `PeftModelForSequenceClassification.forward` and have been ignored: essay_year, reference, grades, id_prompt, essay_text, supporting_text, id, prompt. If essay_year, reference, grades, id_prompt, essay_text, supporting_text, id, prompt are not expected by `PeftModelForSequenceClassification.forward`, you can safely ignore this message.
132
- [2025-07-06 16:22:36,762][transformers.trainer][INFO] -
133
  ***** Running Prediction *****
134
- [2025-07-06 16:22:36,763][transformers.trainer][INFO] - Num examples = 138
135
- [2025-07-06 16:22:36,763][transformers.trainer][INFO] - Batch size = 4
136
- [2025-07-06 16:22:49,505][__main__][INFO] - Inference results saved to jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16-llama31_classification_lora-C1-essay_only-r16_inference_results.jsonl
137
- [2025-07-06 16:22:49,533][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
138
- [2025-07-06 16:24:20,979][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
139
- [2025-07-06 16:24:20,979][__main__][INFO] - Bootstrap Confidence Intervals (95%):
140
- [2025-07-06 16:24:20,979][__main__][INFO] - QWK: 0.6852 [0.5881, 0.7735]
141
- [2025-07-06 16:24:20,980][__main__][INFO] - Macro_F1: 0.5201 [0.4008, 0.6699]
142
- [2025-07-06 16:24:20,980][__main__][INFO] - Weighted_F1: 0.6659 [0.5849, 0.7434]
143
- [2025-07-06 16:24:20,980][__main__][INFO] - Inference results: {'accuracy': 0.6594202898550725, 'RMSE': 25.931906372573962, 'QWK': 0.6867564182842831, 'HDIV': 0.007246376811594235, 'Macro_F1': 0.48154898864576284, 'Micro_F1': 0.6594202898550725, 'Weighted_F1': 0.6655256851610287, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(138), 'FP_1': np.int64(0), 'FN_1': np.int64(0), 'TP_2': np.int64(7), 'TN_2': np.int64(123), 'FP_2': np.int64(5), 'FN_2': np.int64(3), 'TP_3': np.int64(50), 'TN_3': np.int64(58), 'FP_3': np.int64(14), 'FN_3': np.int64(16), 'TP_4': np.int64(28), 'TN_4': np.int64(73), 'FP_4': np.int64(14), 'FN_4': np.int64(23), 'TP_5': np.int64(6), 'TN_5': np.int64(114), 'FP_5': np.int64(14), 'FN_5': np.int64(4)}
144
- [2025-07-06 16:24:20,980][__main__][INFO] - Inference experiment completed
 
1
+ [2025-07-09 19:56:26,399][__main__][INFO] - Starting inference experiment
2
+ [2025-07-09 19:56:26,400][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
 
45
  gradient_accumulation_steps: 2
46
  gradient_checkpointing: true
47
 
48
+ [2025-07-09 19:56:26,404][__main__][INFO] - Running inference with fine-tuned HF model
49
+ [2025-07-09 19:56:31,012][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at /tmp/models--meta-llama--Llama-3.1-8B/snapshots/d04e592bb4f6aa9cfee91e2e20afa771667e1d4b/tokenizer.json
50
+ [2025-07-09 19:56:31,013][transformers.tokenization_utils_base][INFO] - loading file tokenizer.model from cache at None
51
+ [2025-07-09 19:56:31,013][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at None
52
+ [2025-07-09 19:56:31,013][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--meta-llama--Llama-3.1-8B/snapshots/d04e592bb4f6aa9cfee91e2e20afa771667e1d4b/special_tokens_map.json
53
+ [2025-07-09 19:56:31,013][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--meta-llama--Llama-3.1-8B/snapshots/d04e592bb4f6aa9cfee91e2e20afa771667e1d4b/tokenizer_config.json
54
+ [2025-07-09 19:56:31,013][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
55
+ [2025-07-09 19:56:31,557][transformers.tokenization_utils_base][INFO] - Special tokens have been added in the vocabulary, make sure the associated word embeddings are fine-tuned or trained.
56
+ [2025-07-09 19:56:31,566][__main__][INFO] - Tokenizer function parameters- Padding:longest; Truncation: False; Use Full Context: False
57
+ [2025-07-09 19:56:33,275][__main__][INFO] -
58
+ Token statistics for 'train' split:
59
+ [2025-07-09 19:56:33,275][__main__][INFO] - Total examples: 500
60
+ [2025-07-09 19:56:33,275][__main__][INFO] - Min tokens: 2479
61
+ [2025-07-09 19:56:33,275][__main__][INFO] - Max tokens: 2479
62
+ [2025-07-09 19:56:33,275][__main__][INFO] - Avg tokens: 2479.00
63
+ [2025-07-09 19:56:33,276][__main__][INFO] - Std tokens: 0.00
64
+ [2025-07-09 19:56:33,503][__main__][INFO] -
65
+ Token statistics for 'validation' split:
66
+ [2025-07-09 19:56:33,504][__main__][INFO] - Total examples: 132
67
+ [2025-07-09 19:56:33,504][__main__][INFO] - Min tokens: 2193
68
+ [2025-07-09 19:56:33,504][__main__][INFO] - Max tokens: 2193
69
+ [2025-07-09 19:56:33,504][__main__][INFO] - Avg tokens: 2193.00
70
+ [2025-07-09 19:56:33,504][__main__][INFO] - Std tokens: 0.00
71
+ [2025-07-09 19:56:33,753][__main__][INFO] -
72
+ Token statistics for 'test' split:
73
+ [2025-07-09 19:56:33,753][__main__][INFO] - Total examples: 138
74
+ [2025-07-09 19:56:33,753][__main__][INFO] - Min tokens: 2254
75
+ [2025-07-09 19:56:33,753][__main__][INFO] - Max tokens: 2254
76
+ [2025-07-09 19:56:33,753][__main__][INFO] - Avg tokens: 2254.00
77
+ [2025-07-09 19:56:33,753][__main__][INFO] - Std tokens: 0.00
78
+ [2025-07-09 19:56:33,753][__main__][INFO] - If token statistics are the same (max, avg, min) keep in mind that this is due to batched tokenization and padding.
79
+ [2025-07-09 19:56:33,753][__main__][INFO] - Model max length: 131072. If it is the same as stats, then there is a high chance that sequences are being truncated.
80
+ [2025-07-09 19:56:33,754][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16
81
+ [2025-07-09 19:56:33,754][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16
82
+ [2025-07-09 19:56:36,618][__main__][INFO] - Model need ≈ 46.09 GiB to run inference and 136.77 for training
83
+ [2025-07-09 19:56:36,879][__main__][INFO] - Loading PEFT model configuration from kamel-usp/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16
84
+ [2025-07-09 19:56:36,879][__main__][INFO] - Base model name: meta-llama/Llama-3.1-8B
85
+ [2025-07-09 19:56:37,086][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--meta-llama--Llama-3.1-8B/snapshots/d04e592bb4f6aa9cfee91e2e20afa771667e1d4b/config.json
86
+ [2025-07-09 19:56:37,089][transformers.configuration_utils][INFO] - Model config LlamaConfig {
87
  "architectures": [
88
  "LlamaForCausalLM"
89
  ],
 
130
  "rope_theta": 500000.0,
131
  "tie_word_embeddings": false,
132
  "torch_dtype": "bfloat16",
133
+ "transformers_version": "4.53.1",
134
  "use_cache": true,
135
  "vocab_size": 128256
136
  }
137
 
138
+ [2025-07-09 19:56:37,312][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--meta-llama--Llama-3.1-8B/snapshots/d04e592bb4f6aa9cfee91e2e20afa771667e1d4b/model.safetensors.index.json
139
+ [2025-07-09 19:56:37,313][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.bfloat16 as defined in model's config object
140
+ [2025-07-09 19:56:37,313][transformers.modeling_utils][INFO] - Instantiating LlamaForSequenceClassification model under default dtype torch.bfloat16.
141
+ [2025-07-09 19:56:41,901][transformers.modeling_utils][INFO] - Some weights of the model checkpoint at meta-llama/Llama-3.1-8B were not used when initializing LlamaForSequenceClassification: ['lm_head.weight']
142
  - This IS expected if you are initializing LlamaForSequenceClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).
143
  - This IS NOT expected if you are initializing LlamaForSequenceClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).
144
+ [2025-07-09 19:56:41,902][transformers.modeling_utils][WARNING] - Some weights of LlamaForSequenceClassification were not initialized from the model checkpoint at meta-llama/Llama-3.1-8B and are newly initialized: ['score.weight']
145
  You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
146
+ [2025-07-09 19:56:48,788][__main__][INFO] - Loaded fine-tuned PEFT model from kamel-usp/jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16
147
+ [2025-07-09 19:56:48,794][__main__][INFO] - None
148
+ [2025-07-09 19:56:48,806][transformers.training_args][INFO] - PyTorch: setting up devices
149
+ [2025-07-09 19:56:48,831][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
150
+ [2025-07-09 19:56:48,845][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
151
+ [2025-07-09 19:56:48,882][transformers.trainer][INFO] - Using auto half precision backend
152
+ [2025-07-09 19:56:48,883][transformers.trainer][WARNING] - No label_names provided for model class `PeftModelForSequenceClassification`. Since `PeftModel` hides base models input arguments, if label_names is not given, label_names can't be set automatically within `Trainer`. Note that empty label_names list will be used instead.
153
+ [2025-07-09 19:56:52,225][__main__][INFO] - Running inference on test dataset
154
+ [2025-07-09 19:56:52,226][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `PeftModelForSequenceClassification.forward` and have been ignored: grades, prompt, essay_year, essay_text, supporting_text, id, reference, id_prompt. If grades, prompt, essay_year, essay_text, supporting_text, id, reference, id_prompt are not expected by `PeftModelForSequenceClassification.forward`, you can safely ignore this message.
155
+ [2025-07-09 19:56:52,252][transformers.trainer][INFO] -
156
  ***** Running Prediction *****
157
+ [2025-07-09 19:56:52,252][transformers.trainer][INFO] - Num examples = 138
158
+ [2025-07-09 19:56:52,252][transformers.trainer][INFO] - Batch size = 4
159
+ [2025-07-09 19:57:52,735][__main__][INFO] - Inference results saved to jbcs2025_Llama-3.1-8B-llama31_classification_lora-C1-essay_only-r16-llama31_classification_lora-C1-essay_only-r16_inference_results.jsonl
160
+ [2025-07-09 19:57:52,737][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
161
+ [2025-07-09 20:00:05,966][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
162
+ [2025-07-09 20:00:05,967][__main__][INFO] - Bootstrap Confidence Intervals (95%):
163
+ [2025-07-09 20:00:05,967][__main__][INFO] - QWK: 0.6852 [0.5881, 0.7735]
164
+ [2025-07-09 20:00:05,967][__main__][INFO] - Macro_F1: 0.5201 [0.4008, 0.6699]
165
+ [2025-07-09 20:00:05,967][__main__][INFO] - Weighted_F1: 0.6659 [0.5849, 0.7434]
166
+ [2025-07-09 20:00:05,967][__main__][INFO] - Inference results: {'accuracy': 0.6594202898550725, 'RMSE': 25.931906372573962, 'QWK': 0.6867564182842831, 'HDIV': 0.007246376811594235, 'Macro_F1': 0.48154898864576284, 'Micro_F1': 0.6594202898550725, 'Weighted_F1': 0.6655256851610287, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(138), 'FP_1': np.int64(0), 'FN_1': np.int64(0), 'TP_2': np.int64(7), 'TN_2': np.int64(123), 'FP_2': np.int64(5), 'FN_2': np.int64(3), 'TP_3': np.int64(50), 'TN_3': np.int64(58), 'FP_3': np.int64(14), 'FN_3': np.int64(16), 'TP_4': np.int64(28), 'TN_4': np.int64(73), 'FP_4': np.int64(14), 'FN_4': np.int64(23), 'TP_5': np.int64(6), 'TN_5': np.int64(114), 'FP_5': np.int64(14), 'FN_5': np.int64(4)}
167
+ [2025-07-09 20:00:05,972][__main__][INFO] - Inference experiment completed