abarbosa commited on
Commit
3212f51
·
1 Parent(s): 836bcc8

update base models

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only}/.hydra/config.yaml +2 -2
  2. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only}/.hydra/hydra.yaml +6 -5
  3. runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/.hydra/overrides.yaml +1 -0
  4. runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/bootstrap_confidence_intervals.csv +2 -0
  5. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only}/evaluation_results.csv +2 -2
  6. runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only_inference_results.jsonl +0 -0
  7. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only}/run_inference_experiment.log +105 -51
  8. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only}/.hydra/config.yaml +4 -4
  9. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only}/.hydra/hydra.yaml +6 -5
  10. runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only/.hydra/overrides.yaml +1 -0
  11. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only}/bootstrap_confidence_intervals.csv +1 -1
  12. runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only/evaluation_results.csv +2 -0
  13. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only/jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only_inference_results.jsonl → jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only/jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only_inference_results.jsonl} +0 -0
  14. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only}/run_inference_experiment.log +108 -54
  15. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only}/.hydra/config.yaml +4 -4
  16. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only}/.hydra/hydra.yaml +6 -5
  17. runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only/.hydra/overrides.yaml +1 -0
  18. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only}/bootstrap_confidence_intervals.csv +1 -1
  19. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only}/evaluation_results.csv +2 -2
  20. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only/jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only_inference_results.jsonl → jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only/jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only_inference_results.jsonl} +0 -0
  21. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only}/run_inference_experiment.log +108 -54
  22. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/.hydra/config.yaml +4 -4
  23. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/.hydra/hydra.yaml +6 -5
  24. runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only/.hydra/overrides.yaml +1 -0
  25. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/bootstrap_confidence_intervals.csv +1 -1
  26. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/evaluation_results.csv +2 -2
  27. runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only/jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only_inference_results.jsonl +0 -0
  28. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/run_inference_experiment.log +107 -53
  29. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only}/.hydra/config.yaml +4 -4
  30. runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only/.hydra/hydra.yaml +157 -0
  31. runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only/.hydra/overrides.yaml +1 -0
  32. runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only/bootstrap_confidence_intervals.csv +2 -0
  33. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only}/evaluation_results.csv +2 -2
  34. runs/base_models/{mbert/jbcs2025_mbert_base-C5-encoder_classification-C5-essay_only/jbcs2025_mbert_base-C5-encoder_classification-C5-essay_only_inference_results.jsonl → bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only/jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only_inference_results.jsonl} +0 -0
  35. runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only}/run_inference_experiment.log +107 -53
  36. runs/base_models/bertimbau/jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only/.hydra/overrides.yaml +0 -1
  37. runs/base_models/bertimbau/jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only/.hydra/overrides.yaml +0 -1
  38. runs/base_models/bertimbau/jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only/.hydra/overrides.yaml +0 -1
  39. runs/base_models/bertimbau/jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only/.hydra/overrides.yaml +0 -1
  40. runs/base_models/bertimbau/jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only/.hydra/hydra.yaml +0 -156
  41. runs/base_models/bertimbau/jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only/.hydra/overrides.yaml +0 -1
  42. runs/base_models/bertimbau/jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only/bootstrap_confidence_intervals.csv +0 -2
  43. runs/base_models/bertimbau/jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only/evaluation_results.csv +0 -2
  44. runs/base_models/bertugues/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/.hydra/config.yaml +41 -0
  45. runs/base_models/bertugues/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/.hydra/hydra.yaml +157 -0
  46. runs/base_models/bertugues/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/.hydra/overrides.yaml +1 -0
  47. runs/base_models/bertugues/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/bootstrap_confidence_intervals.csv +2 -0
  48. runs/base_models/bertugues/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/evaluation_results.csv +2 -0
  49. runs/base_models/{bertimbau/jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only/jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only_inference_results.jsonl → bertugues/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only_inference_results.jsonl} +0 -0
  50. runs/base_models/bertugues/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/run_inference_experiment.log +250 -0
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only}/.hydra/config.yaml RENAMED
@@ -20,12 +20,12 @@ post_training_results:
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
- name: kamel-usp/jbcs2025_bertimbau_base-C1
24
  type: encoder_classification
25
  num_labels: 6
26
  output_dir: ./results/
27
  logging_dir: ./logs/
28
- best_model_dir: ./results/best_model
29
  tokenizer:
30
  name: neuralmind/bert-base-portuguese-cased
31
  dataset:
 
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
+ name: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only
24
  type: encoder_classification
25
  num_labels: 6
26
  output_dir: ./results/
27
  logging_dir: ./logs/
28
+ best_model_dir: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only
29
  tokenizer:
30
  name: neuralmind/bert-base-portuguese-cased
31
  dataset:
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only}/.hydra/hydra.yaml RENAMED
@@ -1,6 +1,6 @@
1
  hydra:
2
  run:
3
- dir: outputs/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
  sweep:
5
  dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
  subdir: ${hydra.job.num}
@@ -110,13 +110,14 @@ hydra:
110
  output_subdir: .hydra
111
  overrides:
112
  hydra:
 
113
  - hydra.mode=RUN
114
  task:
115
- - experiments=base_models/C3
116
  job:
117
  name: run_inference_experiment
118
  chdir: null
119
- override_dirname: experiments=base_models/C3
120
  id: ???
121
  num: ???
122
  config_name: config
@@ -141,9 +142,9 @@ hydra:
141
  - path: ''
142
  schema: structured
143
  provider: schema
144
- output_dir: /workspace/jbcs2025/outputs/2025-06-30/23-55-38
145
  choices:
146
- experiments: base_models/C3
147
  hydra/env: default
148
  hydra/callbacks: null
149
  hydra/job_logging: default
 
1
  hydra:
2
  run:
3
+ dir: inference_output/2025-07-10/00-30-43
4
  sweep:
5
  dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
  subdir: ${hydra.job.num}
 
110
  output_subdir: .hydra
111
  overrides:
112
  hydra:
113
+ - hydra.run.dir=inference_output/2025-07-10/00-30-43
114
  - hydra.mode=RUN
115
  task:
116
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only
117
  job:
118
  name: run_inference_experiment
119
  chdir: null
120
+ override_dirname: experiments=temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only
121
  id: ???
122
  num: ???
123
  config_name: config
 
142
  - path: ''
143
  schema: structured
144
  provider: schema
145
+ output_dir: /workspace/jbcs2025/inference_output/2025-07-10/00-30-43
146
  choices:
147
+ experiments: temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only
148
  hydra/env: default
149
  hydra/callbacks: null
150
  hydra/job_logging: default
runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only
runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/bootstrap_confidence_intervals.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
+ jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only,2025-07-10 00:30:49,0.5958170760500687,0.5050211692312583,0.6837528419789116,0.17873167274765334,0.40342568031357534,0.29995035727435776,0.5366313750336464,0.23668101775928868,0.5194883832140518,0.43316166991474553,0.6049356141130027,0.17177394419825714
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only}/evaluation_results.csv RENAMED
@@ -1,2 +1,2 @@
1
- accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
- 0.644927536231884,26.37521893583148,0.6742722265932337,0.007246376811594235,0.44138845418188133,0.644927536231884,0.6413771139990777,0,137,0,1,0,138,0,0,5,123,5,5,56,52,20,10,22,79,8,29,6,112,16,4,2025-06-30 23:51:41,jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only
 
1
+ accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.5144927536231884,31.20757990421976,0.5980582524271845,0.007246376811594235,0.37408319849679,0.5144927536231884,0.51825410693578,0,137,0,1,0,138,0,0,5,115,13,5,25,65,7,41,34,57,30,17,7,111,17,3,2025-07-10 00:30:49,jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only
runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only_inference_results.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only}/run_inference_experiment.log RENAMED
@@ -1,5 +1,5 @@
1
- [2025-06-30 23:51:41,386][__main__][INFO] - Starting inference experiment
2
- [2025-06-30 23:51:41,387][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
@@ -21,12 +21,12 @@ post_training_results:
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
- name: kamel-usp/jbcs2025_bertimbau_base-C1
25
  type: encoder_classification
26
  num_labels: 6
27
  output_dir: ./results/
28
  logging_dir: ./logs/
29
- best_model_dir: ./results/best_model
30
  tokenizer:
31
  name: neuralmind/bert-base-portuguese-cased
32
  dataset:
@@ -41,9 +41,9 @@ experiments:
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
- [2025-06-30 23:51:41,389][__main__][INFO] - Running inference with fine-tuned HF model
45
- [2025-06-30 23:51:46,517][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
46
- [2025-06-30 23:51:46,518][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
@@ -68,20 +68,14 @@ experiments:
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
- "transformers_version": "4.53.0",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
- [2025-06-30 23:51:46,722][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/vocab.txt
78
- [2025-06-30 23:51:46,722][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
79
- [2025-06-30 23:51:46,722][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/added_tokens.json
80
- [2025-06-30 23:51:46,722][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/special_tokens_map.json
81
- [2025-06-30 23:51:46,722][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/tokenizer_config.json
82
- [2025-06-30 23:51:46,722][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
83
- [2025-06-30 23:51:46,722][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
84
- [2025-06-30 23:51:46,723][transformers.configuration_utils][INFO] - Model config BertConfig {
85
  "architectures": [
86
  "BertForMaskedLM"
87
  ],
@@ -106,14 +100,20 @@ experiments:
106
  "pooler_size_per_head": 128,
107
  "pooler_type": "first_token_transform",
108
  "position_embedding_type": "absolute",
109
- "transformers_version": "4.53.0",
110
  "type_vocab_size": 2,
111
  "use_cache": true,
112
  "vocab_size": 29794
113
  }
114
 
115
- [2025-06-30 23:51:46,749][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
116
- [2025-06-30 23:51:46,749][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
@@ -138,18 +138,73 @@ experiments:
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
- "transformers_version": "4.53.0",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
- [2025-06-30 23:51:46,765][__main__][INFO] - Tokenizer function parameters- Padding:max_length; Truncation: True; Use Full Context: False
148
- [2025-06-30 23:51:46,816][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau_base-C1
149
- [2025-06-30 23:51:46,816][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau_base-C1
150
- [2025-06-30 23:51:47,523][__main__][INFO] - Model need ≈ 1.36 GiB to run inference and 2.58 for training
151
- [2025-06-30 23:51:47,758][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau_base-C1/snapshots/1ad2e0f61009276ce3c1d23b24b6f55e0eb102d8/config.json
152
- [2025-06-30 23:51:47,758][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  "architectures": [
154
  "BertForSequenceClassification"
155
  ],
@@ -190,37 +245,36 @@ experiments:
190
  "pooler_size_per_head": 128,
191
  "pooler_type": "first_token_transform",
192
  "position_embedding_type": "absolute",
193
- "problem_type": "single_label_classification",
194
  "torch_dtype": "float32",
195
- "transformers_version": "4.53.0",
196
  "type_vocab_size": 2,
197
  "use_cache": true,
198
  "vocab_size": 29794
199
  }
200
 
201
- [2025-06-30 23:51:47,903][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau_base-C1/snapshots/1ad2e0f61009276ce3c1d23b24b6f55e0eb102d8/model.safetensors
202
- [2025-06-30 23:51:47,903][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
203
- [2025-06-30 23:51:47,903][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
204
- [2025-06-30 23:51:48,334][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
205
 
206
- [2025-06-30 23:51:48,334][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bertimbau_base-C1.
207
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
208
- [2025-06-30 23:51:48,339][transformers.training_args][INFO] - PyTorch: setting up devices
209
- [2025-06-30 23:51:48,372][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
210
- [2025-06-30 23:51:48,376][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
211
- [2025-06-30 23:51:48,396][transformers.trainer][INFO] - Using auto half precision backend
212
- [2025-06-30 23:51:51,813][__main__][INFO] - Running inference on test dataset
213
- [2025-06-30 23:51:51,814][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: supporting_text, prompt, grades, reference, essay_text, essay_year, id, id_prompt. If supporting_text, prompt, grades, reference, essay_text, essay_year, id, id_prompt are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
214
- [2025-06-30 23:51:51,818][transformers.trainer][INFO] -
215
  ***** Running Prediction *****
216
- [2025-06-30 23:51:51,818][transformers.trainer][INFO] - Num examples = 138
217
- [2025-06-30 23:51:51,818][transformers.trainer][INFO] - Batch size = 16
218
- [2025-06-30 23:51:52,209][__main__][INFO] - Inference results saved to jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only_inference_results.jsonl
219
- [2025-06-30 23:51:52,214][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
220
- [2025-06-30 23:53:26,617][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
221
- [2025-06-30 23:53:26,617][__main__][INFO] - Bootstrap Confidence Intervals (95%):
222
- [2025-06-30 23:53:26,617][__main__][INFO] - QWK: 0.6727 [0.5787, 0.7587]
223
- [2025-06-30 23:53:26,617][__main__][INFO] - Macro_F1: 0.4757 [0.3600, 0.6232]
224
- [2025-06-30 23:53:26,617][__main__][INFO] - Weighted_F1: 0.6413 [0.5564, 0.7242]
225
- [2025-06-30 23:53:26,617][__main__][INFO] - Inference results: {'accuracy': 0.644927536231884, 'RMSE': 26.37521893583148, 'QWK': 0.6742722265932337, 'HDIV': 0.007246376811594235, 'Macro_F1': 0.44138845418188133, 'Micro_F1': 0.644927536231884, 'Weighted_F1': 0.6413771139990777, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(138), 'FP_1': np.int64(0), 'FN_1': np.int64(0), 'TP_2': np.int64(5), 'TN_2': np.int64(123), 'FP_2': np.int64(5), 'FN_2': np.int64(5), 'TP_3': np.int64(56), 'TN_3': np.int64(52), 'FP_3': np.int64(20), 'FN_3': np.int64(10), 'TP_4': np.int64(22), 'TN_4': np.int64(79), 'FP_4': np.int64(8), 'FN_4': np.int64(29), 'TP_5': np.int64(6), 'TN_5': np.int64(112), 'FP_5': np.int64(16), 'FN_5': np.int64(4)}
226
- [2025-06-30 23:53:26,617][__main__][INFO] - Inference experiment completed
 
1
+ [2025-07-10 00:30:49,125][__main__][INFO] - Starting inference experiment
2
+ [2025-07-10 00:30:49,127][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
 
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
+ name: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only
25
  type: encoder_classification
26
  num_labels: 6
27
  output_dir: ./results/
28
  logging_dir: ./logs/
29
+ best_model_dir: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only
30
  tokenizer:
31
  name: neuralmind/bert-base-portuguese-cased
32
  dataset:
 
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
+ [2025-07-10 00:30:49,129][__main__][INFO] - Running inference with fine-tuned HF model
45
+ [2025-07-10 00:30:53,775][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
46
+ [2025-07-10 00:30:53,776][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
 
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
+ "transformers_version": "4.53.1",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
+ [2025-07-10 00:30:54,000][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
78
+ [2025-07-10 00:30:54,000][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
79
  "architectures": [
80
  "BertForMaskedLM"
81
  ],
 
100
  "pooler_size_per_head": 128,
101
  "pooler_type": "first_token_transform",
102
  "position_embedding_type": "absolute",
103
+ "transformers_version": "4.53.1",
104
  "type_vocab_size": 2,
105
  "use_cache": true,
106
  "vocab_size": 29794
107
  }
108
 
109
+ [2025-07-10 00:30:54,217][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/vocab.txt
110
+ [2025-07-10 00:30:54,217][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
111
+ [2025-07-10 00:30:54,217][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/added_tokens.json
112
+ [2025-07-10 00:30:54,217][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/special_tokens_map.json
113
+ [2025-07-10 00:30:54,217][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/tokenizer_config.json
114
+ [2025-07-10 00:30:54,218][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
115
+ [2025-07-10 00:30:54,218][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
116
+ [2025-07-10 00:30:54,218][transformers.configuration_utils][INFO] - Model config BertConfig {
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
 
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
+ "transformers_version": "4.53.1",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
+ [2025-07-10 00:30:54,254][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
148
+ [2025-07-10 00:30:54,255][transformers.configuration_utils][INFO] - Model config BertConfig {
149
+ "architectures": [
150
+ "BertForMaskedLM"
151
+ ],
152
+ "attention_probs_dropout_prob": 0.1,
153
+ "classifier_dropout": null,
154
+ "directionality": "bidi",
155
+ "hidden_act": "gelu",
156
+ "hidden_dropout_prob": 0.1,
157
+ "hidden_size": 768,
158
+ "initializer_range": 0.02,
159
+ "intermediate_size": 3072,
160
+ "layer_norm_eps": 1e-12,
161
+ "max_position_embeddings": 512,
162
+ "model_type": "bert",
163
+ "num_attention_heads": 12,
164
+ "num_hidden_layers": 12,
165
+ "output_past": true,
166
+ "pad_token_id": 0,
167
+ "pooler_fc_size": 768,
168
+ "pooler_num_attention_heads": 12,
169
+ "pooler_num_fc_layers": 3,
170
+ "pooler_size_per_head": 128,
171
+ "pooler_type": "first_token_transform",
172
+ "position_embedding_type": "absolute",
173
+ "transformers_version": "4.53.1",
174
+ "type_vocab_size": 2,
175
+ "use_cache": true,
176
+ "vocab_size": 29794
177
+ }
178
+
179
+ [2025-07-10 00:30:54,274][__main__][INFO] - Tokenizer function parameters- Padding:longest; Truncation: True; Use Full Context: False
180
+ [2025-07-10 00:30:54,745][__main__][INFO] -
181
+ Token statistics for 'train' split:
182
+ [2025-07-10 00:30:54,745][__main__][INFO] - Total examples: 500
183
+ [2025-07-10 00:30:54,745][__main__][INFO] - Min tokens: 512
184
+ [2025-07-10 00:30:54,746][__main__][INFO] - Max tokens: 512
185
+ [2025-07-10 00:30:54,746][__main__][INFO] - Avg tokens: 512.00
186
+ [2025-07-10 00:30:54,746][__main__][INFO] - Std tokens: 0.00
187
+ [2025-07-10 00:30:54,858][__main__][INFO] -
188
+ Token statistics for 'validation' split:
189
+ [2025-07-10 00:30:54,858][__main__][INFO] - Total examples: 132
190
+ [2025-07-10 00:30:54,858][__main__][INFO] - Min tokens: 512
191
+ [2025-07-10 00:30:54,858][__main__][INFO] - Max tokens: 512
192
+ [2025-07-10 00:30:54,858][__main__][INFO] - Avg tokens: 512.00
193
+ [2025-07-10 00:30:54,858][__main__][INFO] - Std tokens: 0.00
194
+ [2025-07-10 00:30:54,966][__main__][INFO] -
195
+ Token statistics for 'test' split:
196
+ [2025-07-10 00:30:54,966][__main__][INFO] - Total examples: 138
197
+ [2025-07-10 00:30:54,966][__main__][INFO] - Min tokens: 512
198
+ [2025-07-10 00:30:54,966][__main__][INFO] - Max tokens: 512
199
+ [2025-07-10 00:30:54,966][__main__][INFO] - Avg tokens: 512.00
200
+ [2025-07-10 00:30:54,966][__main__][INFO] - Std tokens: 0.00
201
+ [2025-07-10 00:30:54,966][__main__][INFO] - If token statistics are the same (max, avg, min) keep in mind that this is due to batched tokenization and padding.
202
+ [2025-07-10 00:30:54,966][__main__][INFO] - Model max length: 512. If it is the same as stats, then there is a high chance that sequences are being truncated.
203
+ [2025-07-10 00:30:54,967][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only
204
+ [2025-07-10 00:30:54,967][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only
205
+ [2025-07-10 00:30:55,690][__main__][INFO] - Model need ≈ 1.36 GiB to run inference and 2.58 for training
206
+ [2025-07-10 00:30:55,962][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only/snapshots/7ae84ea1c7bb39379d09e28c0d1de9ed08d5c308/config.json
207
+ [2025-07-10 00:30:55,963][transformers.configuration_utils][INFO] - Model config BertConfig {
208
  "architectures": [
209
  "BertForSequenceClassification"
210
  ],
 
245
  "pooler_size_per_head": 128,
246
  "pooler_type": "first_token_transform",
247
  "position_embedding_type": "absolute",
 
248
  "torch_dtype": "float32",
249
+ "transformers_version": "4.53.1",
250
  "type_vocab_size": 2,
251
  "use_cache": true,
252
  "vocab_size": 29794
253
  }
254
 
255
+ [2025-07-10 00:30:56,173][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only/snapshots/7ae84ea1c7bb39379d09e28c0d1de9ed08d5c308/model.safetensors
256
+ [2025-07-10 00:30:56,173][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
257
+ [2025-07-10 00:30:56,173][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
258
+ [2025-07-10 00:30:57,523][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
259
 
260
+ [2025-07-10 00:30:57,523][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only.
261
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
262
+ [2025-07-10 00:30:57,533][transformers.training_args][INFO] - PyTorch: setting up devices
263
+ [2025-07-10 00:30:57,557][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
264
+ [2025-07-10 00:30:57,564][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
265
+ [2025-07-10 00:30:57,589][transformers.trainer][INFO] - Using auto half precision backend
266
+ [2025-07-10 00:31:00,916][__main__][INFO] - Running inference on test dataset
267
+ [2025-07-10 00:31:00,917][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: supporting_text, id, prompt, reference, essay_year, id_prompt, grades, essay_text. If supporting_text, id, prompt, reference, essay_year, id_prompt, grades, essay_text are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
268
+ [2025-07-10 00:31:00,923][transformers.trainer][INFO] -
269
  ***** Running Prediction *****
270
+ [2025-07-10 00:31:00,924][transformers.trainer][INFO] - Num examples = 138
271
+ [2025-07-10 00:31:00,924][transformers.trainer][INFO] - Batch size = 16
272
+ [2025-07-10 00:31:01,737][__main__][INFO] - Inference results saved to jbcs2025_bert-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only_inference_results.jsonl
273
+ [2025-07-10 00:31:01,738][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
274
+ [2025-07-10 00:33:14,131][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
275
+ [2025-07-10 00:33:14,131][__main__][INFO] - Bootstrap Confidence Intervals (95%):
276
+ [2025-07-10 00:33:14,131][__main__][INFO] - QWK: 0.5958 [0.5050, 0.6838]
277
+ [2025-07-10 00:33:14,131][__main__][INFO] - Macro_F1: 0.4034 [0.3000, 0.5366]
278
+ [2025-07-10 00:33:14,131][__main__][INFO] - Weighted_F1: 0.5195 [0.4332, 0.6049]
279
+ [2025-07-10 00:33:14,132][__main__][INFO] - Inference results: {'accuracy': 0.5144927536231884, 'RMSE': 31.20757990421976, 'QWK': 0.5980582524271845, 'HDIV': 0.007246376811594235, 'Macro_F1': 0.37408319849679, 'Micro_F1': 0.5144927536231884, 'Weighted_F1': 0.51825410693578, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(138), 'FP_1': np.int64(0), 'FN_1': np.int64(0), 'TP_2': np.int64(5), 'TN_2': np.int64(115), 'FP_2': np.int64(13), 'FN_2': np.int64(5), 'TP_3': np.int64(25), 'TN_3': np.int64(65), 'FP_3': np.int64(7), 'FN_3': np.int64(41), 'TP_4': np.int64(34), 'TN_4': np.int64(57), 'FP_4': np.int64(30), 'FN_4': np.int64(17), 'TP_5': np.int64(7), 'TN_5': np.int64(111), 'FP_5': np.int64(17), 'FN_5': np.int64(3)}
280
+ [2025-07-10 00:33:14,133][__main__][INFO] - Inference experiment completed
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only}/.hydra/config.yaml RENAMED
@@ -20,12 +20,12 @@ post_training_results:
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
- name: kamel-usp/jbcs2025_bertimbau_base-C2
24
  type: encoder_classification
25
  num_labels: 6
26
- output_dir: ./results/mbert_base/C2
27
- logging_dir: ./logs/mbert_base/C2
28
- best_model_dir: ./results/mbert_base/C2/best_model
29
  tokenizer:
30
  name: neuralmind/bert-base-portuguese-cased
31
  dataset:
 
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
+ name: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only
24
  type: encoder_classification
25
  num_labels: 6
26
+ output_dir: ./results/
27
+ logging_dir: ./logs/
28
+ best_model_dir: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only
29
  tokenizer:
30
  name: neuralmind/bert-base-portuguese-cased
31
  dataset:
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only}/.hydra/hydra.yaml RENAMED
@@ -1,6 +1,6 @@
1
  hydra:
2
  run:
3
- dir: outputs/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
  sweep:
5
  dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
  subdir: ${hydra.job.num}
@@ -110,13 +110,14 @@ hydra:
110
  output_subdir: .hydra
111
  overrides:
112
  hydra:
 
113
  - hydra.mode=RUN
114
  task:
115
- - experiments=base_models/C1
116
  job:
117
  name: run_inference_experiment
118
  chdir: null
119
- override_dirname: experiments=base_models/C1
120
  id: ???
121
  num: ???
122
  config_name: config
@@ -141,9 +142,9 @@ hydra:
141
  - path: ''
142
  schema: structured
143
  provider: schema
144
- output_dir: /workspace/jbcs2025/outputs/2025-06-30/23-51-41
145
  choices:
146
- experiments: base_models/C1
147
  hydra/env: default
148
  hydra/callbacks: null
149
  hydra/job_logging: default
 
1
  hydra:
2
  run:
3
+ dir: inference_output/2025-07-10/00-33-18
4
  sweep:
5
  dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
  subdir: ${hydra.job.num}
 
110
  output_subdir: .hydra
111
  overrides:
112
  hydra:
113
+ - hydra.run.dir=inference_output/2025-07-10/00-33-18
114
  - hydra.mode=RUN
115
  task:
116
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only
117
  job:
118
  name: run_inference_experiment
119
  chdir: null
120
+ override_dirname: experiments=temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only
121
  id: ???
122
  num: ???
123
  config_name: config
 
142
  - path: ''
143
  schema: structured
144
  provider: schema
145
+ output_dir: /workspace/jbcs2025/inference_output/2025-07-10/00-33-18
146
  choices:
147
+ experiments: temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only
148
  hydra/env: default
149
  hydra/callbacks: null
150
  hydra/job_logging: default
runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only/.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only}/bootstrap_confidence_intervals.csv RENAMED
@@ -1,2 +1,2 @@
1
  experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
- jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only,2025-06-30 23:51:41,0.6726698793738349,0.5786694701512399,0.7587417074110893,0.18007223725984933,0.4756728951042896,0.36004609141863914,0.6232464233862081,0.2632003319675689,0.6413009122974154,0.556374600523932,0.7241688998827073,0.16779429935877532
 
1
  experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
+ jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only,2025-07-10 00:33:24,0.34458059523975704,0.1923734854942415,0.48687400610895387,0.2945005206147124,0.2628237843641066,0.18370517105663375,0.3615635882194743,0.17785841716284057,0.34854638571439245,0.2694481582021241,0.4294118073125417,0.1599636491104176
runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only/evaluation_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.34782608695652173,63.519938670433646,0.3477835723598436,0.1159420289855072,0.24903083028083028,0.34782608695652173,0.34937224611137657,0,137,0,1,17,70,33,18,1,124,9,4,19,66,21,32,6,92,20,20,5,111,7,15,2025-07-10 00:33:24,jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only/jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only_inference_results.jsonl → jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only/jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only_inference_results.jsonl} RENAMED
The diff for this file is too large to render. See raw diff
 
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only}/run_inference_experiment.log RENAMED
@@ -1,5 +1,5 @@
1
- [2025-06-30 23:55:38,582][__main__][INFO] - Starting inference experiment
2
- [2025-06-30 23:55:38,583][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
@@ -21,16 +21,16 @@ post_training_results:
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
- name: kamel-usp/jbcs2025_bertimbau_base-C3
25
  type: encoder_classification
26
  num_labels: 6
27
- output_dir: ./results/mbert_base/C3
28
- logging_dir: ./logs/mbert_base/C3
29
- best_model_dir: ./results/mbert_base/C3/best_model
30
  tokenizer:
31
  name: neuralmind/bert-base-portuguese-cased
32
  dataset:
33
- grade_index: 2
34
  use_full_context: false
35
  training_params:
36
  weight_decay: 0.01
@@ -41,9 +41,9 @@ experiments:
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
- [2025-06-30 23:55:38,585][__main__][INFO] - Running inference with fine-tuned HF model
45
- [2025-06-30 23:55:44,174][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
46
- [2025-06-30 23:55:44,176][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
@@ -68,20 +68,14 @@ experiments:
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
- "transformers_version": "4.53.0",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
- [2025-06-30 23:55:44,390][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/vocab.txt
78
- [2025-06-30 23:55:44,390][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
79
- [2025-06-30 23:55:44,390][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/added_tokens.json
80
- [2025-06-30 23:55:44,390][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/special_tokens_map.json
81
- [2025-06-30 23:55:44,390][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/tokenizer_config.json
82
- [2025-06-30 23:55:44,391][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
83
- [2025-06-30 23:55:44,391][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
84
- [2025-06-30 23:55:44,391][transformers.configuration_utils][INFO] - Model config BertConfig {
85
  "architectures": [
86
  "BertForMaskedLM"
87
  ],
@@ -106,14 +100,20 @@ experiments:
106
  "pooler_size_per_head": 128,
107
  "pooler_type": "first_token_transform",
108
  "position_embedding_type": "absolute",
109
- "transformers_version": "4.53.0",
110
  "type_vocab_size": 2,
111
  "use_cache": true,
112
  "vocab_size": 29794
113
  }
114
 
115
- [2025-06-30 23:55:44,421][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
116
- [2025-06-30 23:55:44,422][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
@@ -138,18 +138,73 @@ experiments:
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
- "transformers_version": "4.53.0",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
- [2025-06-30 23:55:44,438][__main__][INFO] - Tokenizer function parameters- Padding:max_length; Truncation: True; Use Full Context: False
148
- [2025-06-30 23:55:44,646][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau_base-C3
149
- [2025-06-30 23:55:44,646][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau_base-C3
150
- [2025-06-30 23:55:45,504][__main__][INFO] - Model need ≈ 1.36 GiB to run inference and 2.58 for training
151
- [2025-06-30 23:55:46,269][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau_base-C3/snapshots/bad03f1db697f1fb612e4d74bb55d6f0e8cd7a16/config.json
152
- [2025-06-30 23:55:46,270][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  "architectures": [
154
  "BertForSequenceClassification"
155
  ],
@@ -190,37 +245,36 @@ experiments:
190
  "pooler_size_per_head": 128,
191
  "pooler_type": "first_token_transform",
192
  "position_embedding_type": "absolute",
193
- "problem_type": "single_label_classification",
194
  "torch_dtype": "float32",
195
- "transformers_version": "4.53.0",
196
  "type_vocab_size": 2,
197
  "use_cache": true,
198
  "vocab_size": 29794
199
  }
200
 
201
- [2025-06-30 23:55:59,432][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau_base-C3/snapshots/bad03f1db697f1fb612e4d74bb55d6f0e8cd7a16/model.safetensors
202
- [2025-06-30 23:55:59,433][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
203
- [2025-06-30 23:55:59,433][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
204
- [2025-06-30 23:55:59,824][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
205
 
206
- [2025-06-30 23:55:59,825][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bertimbau_base-C3.
207
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
208
- [2025-06-30 23:55:59,830][transformers.training_args][INFO] - PyTorch: setting up devices
209
- [2025-06-30 23:55:59,868][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
210
- [2025-06-30 23:55:59,872][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
211
- [2025-06-30 23:55:59,891][transformers.trainer][INFO] - Using auto half precision backend
212
- [2025-06-30 23:56:03,371][__main__][INFO] - Running inference on test dataset
213
- [2025-06-30 23:56:03,372][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: reference, essay_text, essay_year, id, supporting_text, id_prompt, grades, prompt. If reference, essay_text, essay_year, id, supporting_text, id_prompt, grades, prompt are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
214
- [2025-06-30 23:56:03,376][transformers.trainer][INFO] -
215
  ***** Running Prediction *****
216
- [2025-06-30 23:56:03,376][transformers.trainer][INFO] - Num examples = 138
217
- [2025-06-30 23:56:03,377][transformers.trainer][INFO] - Batch size = 16
218
- [2025-06-30 23:56:03,760][__main__][INFO] - Inference results saved to jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only_inference_results.jsonl
219
- [2025-06-30 23:56:03,767][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
220
- [2025-06-30 23:57:39,277][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
221
- [2025-06-30 23:57:39,277][__main__][INFO] - Bootstrap Confidence Intervals (95%):
222
- [2025-06-30 23:57:39,277][__main__][INFO] - QWK: 0.3443 [0.2085, 0.4793]
223
- [2025-06-30 23:57:39,277][__main__][INFO] - Macro_F1: 0.2754 [0.2026, 0.3652]
224
- [2025-06-30 23:57:39,277][__main__][INFO] - Weighted_F1: 0.3357 [0.2573, 0.4166]
225
- [2025-06-30 23:57:39,277][__main__][INFO] - Inference results: {'accuracy': 0.37681159420289856, 'RMSE': 52.64042641120627, 'QWK': 0.3452054794520547, 'HDIV': 0.09420289855072461, 'Macro_F1': 0.25943499029705924, 'Micro_F1': 0.37681159420289856, 'Weighted_F1': 0.33380294701134283, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(109), 'FP_1': np.int64(0), 'FN_1': np.int64(29), 'TP_2': np.int64(13), 'TN_2': np.int64(101), 'FP_2': np.int64(19), 'FN_2': np.int64(5), 'TP_3': np.int64(20), 'TN_3': np.int64(71), 'FP_3': np.int64(22), 'FN_3': np.int64(25), 'TP_4': np.int64(17), 'TN_4': np.int64(67), 'FP_4': np.int64(33), 'FN_4': np.int64(21), 'TP_5': np.int64(2), 'TN_5': np.int64(119), 'FP_5': np.int64(12), 'FN_5': np.int64(5)}
226
- [2025-06-30 23:57:39,277][__main__][INFO] - Inference experiment completed
 
1
+ [2025-07-10 00:33:24,293][__main__][INFO] - Starting inference experiment
2
+ [2025-07-10 00:33:24,295][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
 
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
+ name: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only
25
  type: encoder_classification
26
  num_labels: 6
27
+ output_dir: ./results/
28
+ logging_dir: ./logs/
29
+ best_model_dir: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only
30
  tokenizer:
31
  name: neuralmind/bert-base-portuguese-cased
32
  dataset:
33
+ grade_index: 1
34
  use_full_context: false
35
  training_params:
36
  weight_decay: 0.01
 
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
+ [2025-07-10 00:33:24,297][__main__][INFO] - Running inference with fine-tuned HF model
45
+ [2025-07-10 00:33:29,586][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
46
+ [2025-07-10 00:33:29,587][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
 
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
+ "transformers_version": "4.53.1",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
+ [2025-07-10 00:33:29,802][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
78
+ [2025-07-10 00:33:29,803][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
79
  "architectures": [
80
  "BertForMaskedLM"
81
  ],
 
100
  "pooler_size_per_head": 128,
101
  "pooler_type": "first_token_transform",
102
  "position_embedding_type": "absolute",
103
+ "transformers_version": "4.53.1",
104
  "type_vocab_size": 2,
105
  "use_cache": true,
106
  "vocab_size": 29794
107
  }
108
 
109
+ [2025-07-10 00:33:29,988][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/vocab.txt
110
+ [2025-07-10 00:33:29,988][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
111
+ [2025-07-10 00:33:29,988][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/added_tokens.json
112
+ [2025-07-10 00:33:29,988][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/special_tokens_map.json
113
+ [2025-07-10 00:33:29,988][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/tokenizer_config.json
114
+ [2025-07-10 00:33:29,988][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
115
+ [2025-07-10 00:33:29,988][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
116
+ [2025-07-10 00:33:29,989][transformers.configuration_utils][INFO] - Model config BertConfig {
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
 
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
+ "transformers_version": "4.53.1",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
+ [2025-07-10 00:33:30,019][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
148
+ [2025-07-10 00:33:30,019][transformers.configuration_utils][INFO] - Model config BertConfig {
149
+ "architectures": [
150
+ "BertForMaskedLM"
151
+ ],
152
+ "attention_probs_dropout_prob": 0.1,
153
+ "classifier_dropout": null,
154
+ "directionality": "bidi",
155
+ "hidden_act": "gelu",
156
+ "hidden_dropout_prob": 0.1,
157
+ "hidden_size": 768,
158
+ "initializer_range": 0.02,
159
+ "intermediate_size": 3072,
160
+ "layer_norm_eps": 1e-12,
161
+ "max_position_embeddings": 512,
162
+ "model_type": "bert",
163
+ "num_attention_heads": 12,
164
+ "num_hidden_layers": 12,
165
+ "output_past": true,
166
+ "pad_token_id": 0,
167
+ "pooler_fc_size": 768,
168
+ "pooler_num_attention_heads": 12,
169
+ "pooler_num_fc_layers": 3,
170
+ "pooler_size_per_head": 128,
171
+ "pooler_type": "first_token_transform",
172
+ "position_embedding_type": "absolute",
173
+ "transformers_version": "4.53.1",
174
+ "type_vocab_size": 2,
175
+ "use_cache": true,
176
+ "vocab_size": 29794
177
+ }
178
+
179
+ [2025-07-10 00:33:30,037][__main__][INFO] - Tokenizer function parameters- Padding:longest; Truncation: True; Use Full Context: False
180
+ [2025-07-10 00:33:30,459][__main__][INFO] -
181
+ Token statistics for 'train' split:
182
+ [2025-07-10 00:33:30,459][__main__][INFO] - Total examples: 500
183
+ [2025-07-10 00:33:30,459][__main__][INFO] - Min tokens: 512
184
+ [2025-07-10 00:33:30,459][__main__][INFO] - Max tokens: 512
185
+ [2025-07-10 00:33:30,459][__main__][INFO] - Avg tokens: 512.00
186
+ [2025-07-10 00:33:30,459][__main__][INFO] - Std tokens: 0.00
187
+ [2025-07-10 00:33:30,550][__main__][INFO] -
188
+ Token statistics for 'validation' split:
189
+ [2025-07-10 00:33:30,550][__main__][INFO] - Total examples: 132
190
+ [2025-07-10 00:33:30,550][__main__][INFO] - Min tokens: 512
191
+ [2025-07-10 00:33:30,550][__main__][INFO] - Max tokens: 512
192
+ [2025-07-10 00:33:30,550][__main__][INFO] - Avg tokens: 512.00
193
+ [2025-07-10 00:33:30,550][__main__][INFO] - Std tokens: 0.00
194
+ [2025-07-10 00:33:30,644][__main__][INFO] -
195
+ Token statistics for 'test' split:
196
+ [2025-07-10 00:33:30,644][__main__][INFO] - Total examples: 138
197
+ [2025-07-10 00:33:30,644][__main__][INFO] - Min tokens: 512
198
+ [2025-07-10 00:33:30,644][__main__][INFO] - Max tokens: 512
199
+ [2025-07-10 00:33:30,644][__main__][INFO] - Avg tokens: 512.00
200
+ [2025-07-10 00:33:30,644][__main__][INFO] - Std tokens: 0.00
201
+ [2025-07-10 00:33:30,644][__main__][INFO] - If token statistics are the same (max, avg, min) keep in mind that this is due to batched tokenization and padding.
202
+ [2025-07-10 00:33:30,644][__main__][INFO] - Model max length: 512. If it is the same as stats, then there is a high chance that sequences are being truncated.
203
+ [2025-07-10 00:33:30,645][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only
204
+ [2025-07-10 00:33:30,645][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only
205
+ [2025-07-10 00:33:31,659][__main__][INFO] - Model need ≈ 1.36 GiB to run inference and 2.58 for training
206
+ [2025-07-10 00:33:32,456][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only/snapshots/05b2dbb38d9087976e945d31d5e052862b434715/config.json
207
+ [2025-07-10 00:33:32,457][transformers.configuration_utils][INFO] - Model config BertConfig {
208
  "architectures": [
209
  "BertForSequenceClassification"
210
  ],
 
245
  "pooler_size_per_head": 128,
246
  "pooler_type": "first_token_transform",
247
  "position_embedding_type": "absolute",
 
248
  "torch_dtype": "float32",
249
+ "transformers_version": "4.53.1",
250
  "type_vocab_size": 2,
251
  "use_cache": true,
252
  "vocab_size": 29794
253
  }
254
 
255
+ [2025-07-10 00:33:41,347][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only/snapshots/05b2dbb38d9087976e945d31d5e052862b434715/model.safetensors
256
+ [2025-07-10 00:33:41,348][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
257
+ [2025-07-10 00:33:41,349][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
258
+ [2025-07-10 00:33:41,748][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
259
 
260
+ [2025-07-10 00:33:41,748][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only.
261
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
262
+ [2025-07-10 00:33:41,758][transformers.training_args][INFO] - PyTorch: setting up devices
263
+ [2025-07-10 00:33:41,783][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
264
+ [2025-07-10 00:33:41,791][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
265
+ [2025-07-10 00:33:41,818][transformers.trainer][INFO] - Using auto half precision backend
266
+ [2025-07-10 00:33:45,118][__main__][INFO] - Running inference on test dataset
267
+ [2025-07-10 00:33:45,119][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: reference, prompt, essay_year, id_prompt, grades, essay_text, supporting_text, id. If reference, prompt, essay_year, id_prompt, grades, essay_text, supporting_text, id are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
268
+ [2025-07-10 00:33:45,125][transformers.trainer][INFO] -
269
  ***** Running Prediction *****
270
+ [2025-07-10 00:33:45,125][transformers.trainer][INFO] - Num examples = 138
271
+ [2025-07-10 00:33:45,126][transformers.trainer][INFO] - Batch size = 16
272
+ [2025-07-10 00:33:45,907][__main__][INFO] - Inference results saved to jbcs2025_bert-base-portuguese-cased-encoder_classification-C2-essay_only-encoder_classification-C2-essay_only_inference_results.jsonl
273
+ [2025-07-10 00:33:45,908][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
274
+ [2025-07-10 00:35:53,783][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
275
+ [2025-07-10 00:35:53,783][__main__][INFO] - Bootstrap Confidence Intervals (95%):
276
+ [2025-07-10 00:35:53,783][__main__][INFO] - QWK: 0.3446 [0.1924, 0.4869]
277
+ [2025-07-10 00:35:53,783][__main__][INFO] - Macro_F1: 0.2628 [0.1837, 0.3616]
278
+ [2025-07-10 00:35:53,783][__main__][INFO] - Weighted_F1: 0.3485 [0.2694, 0.4294]
279
+ [2025-07-10 00:35:53,783][__main__][INFO] - Inference results: {'accuracy': 0.34782608695652173, 'RMSE': 63.519938670433646, 'QWK': 0.3477835723598436, 'HDIV': 0.1159420289855072, 'Macro_F1': 0.24903083028083028, 'Micro_F1': 0.34782608695652173, 'Weighted_F1': 0.34937224611137657, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(17), 'TN_1': np.int64(70), 'FP_1': np.int64(33), 'FN_1': np.int64(18), 'TP_2': np.int64(1), 'TN_2': np.int64(124), 'FP_2': np.int64(9), 'FN_2': np.int64(4), 'TP_3': np.int64(19), 'TN_3': np.int64(66), 'FP_3': np.int64(21), 'FN_3': np.int64(32), 'TP_4': np.int64(6), 'TN_4': np.int64(92), 'FP_4': np.int64(20), 'FN_4': np.int64(20), 'TP_5': np.int64(5), 'TN_5': np.int64(111), 'FP_5': np.int64(7), 'FN_5': np.int64(15)}
280
+ [2025-07-10 00:35:53,783][__main__][INFO] - Inference experiment completed
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only}/.hydra/config.yaml RENAMED
@@ -20,12 +20,12 @@ post_training_results:
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
- name: kamel-usp/jbcs2025_bertimbau_base-C3
24
  type: encoder_classification
25
  num_labels: 6
26
- output_dir: ./results/mbert_base/C3
27
- logging_dir: ./logs/mbert_base/C3
28
- best_model_dir: ./results/mbert_base/C3/best_model
29
  tokenizer:
30
  name: neuralmind/bert-base-portuguese-cased
31
  dataset:
 
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
+ name: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only
24
  type: encoder_classification
25
  num_labels: 6
26
+ output_dir: ./results/
27
+ logging_dir: ./logs/
28
+ best_model_dir: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only
29
  tokenizer:
30
  name: neuralmind/bert-base-portuguese-cased
31
  dataset:
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only}/.hydra/hydra.yaml RENAMED
@@ -1,6 +1,6 @@
1
  hydra:
2
  run:
3
- dir: outputs/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
  sweep:
5
  dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
  subdir: ${hydra.job.num}
@@ -110,13 +110,14 @@ hydra:
110
  output_subdir: .hydra
111
  overrides:
112
  hydra:
 
113
  - hydra.mode=RUN
114
  task:
115
- - experiments=base_models/C2
116
  job:
117
  name: run_inference_experiment
118
  chdir: null
119
- override_dirname: experiments=base_models/C2
120
  id: ???
121
  num: ???
122
  config_name: config
@@ -141,9 +142,9 @@ hydra:
141
  - path: ''
142
  schema: structured
143
  provider: schema
144
- output_dir: /workspace/jbcs2025/outputs/2025-06-30/23-53-32
145
  choices:
146
- experiments: base_models/C2
147
  hydra/env: default
148
  hydra/callbacks: null
149
  hydra/job_logging: default
 
1
  hydra:
2
  run:
3
+ dir: inference_output/2025-07-10/00-35-58
4
  sweep:
5
  dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
  subdir: ${hydra.job.num}
 
110
  output_subdir: .hydra
111
  overrides:
112
  hydra:
113
+ - hydra.run.dir=inference_output/2025-07-10/00-35-58
114
  - hydra.mode=RUN
115
  task:
116
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only
117
  job:
118
  name: run_inference_experiment
119
  chdir: null
120
+ override_dirname: experiments=temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only
121
  id: ???
122
  num: ???
123
  config_name: config
 
142
  - path: ''
143
  schema: structured
144
  provider: schema
145
+ output_dir: /workspace/jbcs2025/inference_output/2025-07-10/00-35-58
146
  choices:
147
+ experiments: temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only
148
  hydra/env: default
149
  hydra/callbacks: null
150
  hydra/job_logging: default
runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only/.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only}/bootstrap_confidence_intervals.csv RENAMED
@@ -1,2 +1,2 @@
1
  experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
- jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only,2025-06-30 23:55:38,0.3442546344979946,0.20848447033589465,0.47933895194622367,0.270854481610329,0.27540748660610137,0.20263838658028993,0.36522069296926984,0.1625823063889799,0.33565410439112764,0.25734749784644845,0.4165551974170723,0.15920769957062386
 
1
  experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
+ jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only,2025-07-10 00:36:03,0.34693349366334814,0.1990600571882507,0.4852465288821567,0.286186471693906,0.23118176088630918,0.16413028510813224,0.3143442286349,0.15021394352676778,0.2678663440815833,0.19402110750115098,0.34536043688479334,0.15133932938364236
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only}/evaluation_results.csv RENAMED
@@ -1,2 +1,2 @@
1
- accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
- 0.644927536231884,26.37521893583148,0.6258134490238612,0.007246376811594235,0.36114488348530904,0.644927536231884,0.6545879036165807,0,137,0,1,0,137,0,1,5,118,11,4,51,49,13,25,30,74,18,16,3,126,7,2,2025-06-30 23:57:45,jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only
 
1
+ accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.3115942028985507,51.07539184552491,0.3491384731480316,0.050724637681159424,0.21826640792158034,0.3115942028985507,0.26630624081898446,0,137,0,1,0,107,2,29,14,94,26,4,18,57,36,27,9,81,19,29,2,119,12,5,2025-07-10 00:36:03,jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only/jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only_inference_results.jsonl → jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only/jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only_inference_results.jsonl} RENAMED
The diff for this file is too large to render. See raw diff
 
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only}/run_inference_experiment.log RENAMED
@@ -1,5 +1,5 @@
1
- [2025-06-30 23:53:32,300][__main__][INFO] - Starting inference experiment
2
- [2025-06-30 23:53:32,301][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
@@ -21,16 +21,16 @@ post_training_results:
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
- name: kamel-usp/jbcs2025_bertimbau_base-C2
25
  type: encoder_classification
26
  num_labels: 6
27
- output_dir: ./results/mbert_base/C2
28
- logging_dir: ./logs/mbert_base/C2
29
- best_model_dir: ./results/mbert_base/C2/best_model
30
  tokenizer:
31
  name: neuralmind/bert-base-portuguese-cased
32
  dataset:
33
- grade_index: 1
34
  use_full_context: false
35
  training_params:
36
  weight_decay: 0.01
@@ -41,9 +41,9 @@ experiments:
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
- [2025-06-30 23:53:32,303][__main__][INFO] - Running inference with fine-tuned HF model
45
- [2025-06-30 23:53:37,072][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
46
- [2025-06-30 23:53:37,073][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
@@ -68,20 +68,14 @@ experiments:
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
- "transformers_version": "4.53.0",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
- [2025-06-30 23:53:37,279][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/vocab.txt
78
- [2025-06-30 23:53:37,279][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
79
- [2025-06-30 23:53:37,279][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/added_tokens.json
80
- [2025-06-30 23:53:37,279][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/special_tokens_map.json
81
- [2025-06-30 23:53:37,279][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/tokenizer_config.json
82
- [2025-06-30 23:53:37,279][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
83
- [2025-06-30 23:53:37,279][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
84
- [2025-06-30 23:53:37,280][transformers.configuration_utils][INFO] - Model config BertConfig {
85
  "architectures": [
86
  "BertForMaskedLM"
87
  ],
@@ -106,14 +100,20 @@ experiments:
106
  "pooler_size_per_head": 128,
107
  "pooler_type": "first_token_transform",
108
  "position_embedding_type": "absolute",
109
- "transformers_version": "4.53.0",
110
  "type_vocab_size": 2,
111
  "use_cache": true,
112
  "vocab_size": 29794
113
  }
114
 
115
- [2025-06-30 23:53:37,305][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
116
- [2025-06-30 23:53:37,305][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
@@ -138,18 +138,73 @@ experiments:
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
- "transformers_version": "4.53.0",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
- [2025-06-30 23:53:37,322][__main__][INFO] - Tokenizer function parameters- Padding:max_length; Truncation: True; Use Full Context: False
148
- [2025-06-30 23:53:37,526][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau_base-C2
149
- [2025-06-30 23:53:37,526][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau_base-C2
150
- [2025-06-30 23:53:38,363][__main__][INFO] - Model need ≈ 1.36 GiB to run inference and 2.58 for training
151
- [2025-06-30 23:53:39,154][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau_base-C2/snapshots/3afae7b80c36bf0042b19778620a0ad1135b7135/config.json
152
- [2025-06-30 23:53:39,155][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  "architectures": [
154
  "BertForSequenceClassification"
155
  ],
@@ -190,37 +245,36 @@ experiments:
190
  "pooler_size_per_head": 128,
191
  "pooler_type": "first_token_transform",
192
  "position_embedding_type": "absolute",
193
- "problem_type": "single_label_classification",
194
  "torch_dtype": "float32",
195
- "transformers_version": "4.53.0",
196
  "type_vocab_size": 2,
197
  "use_cache": true,
198
  "vocab_size": 29794
199
  }
200
 
201
- [2025-06-30 23:53:51,890][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau_base-C2/snapshots/3afae7b80c36bf0042b19778620a0ad1135b7135/model.safetensors
202
- [2025-06-30 23:53:51,891][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
203
- [2025-06-30 23:53:51,891][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
204
- [2025-06-30 23:53:52,245][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
205
 
206
- [2025-06-30 23:53:52,245][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bertimbau_base-C2.
207
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
208
- [2025-06-30 23:53:52,251][transformers.training_args][INFO] - PyTorch: setting up devices
209
- [2025-06-30 23:53:52,307][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
210
- [2025-06-30 23:53:52,312][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
211
- [2025-06-30 23:53:52,330][transformers.trainer][INFO] - Using auto half precision backend
212
- [2025-06-30 23:53:55,801][__main__][INFO] - Running inference on test dataset
213
- [2025-06-30 23:53:55,802][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: id, reference, essay_year, supporting_text, prompt, grades, essay_text, id_prompt. If id, reference, essay_year, supporting_text, prompt, grades, essay_text, id_prompt are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
214
- [2025-06-30 23:53:55,806][transformers.trainer][INFO] -
215
  ***** Running Prediction *****
216
- [2025-06-30 23:53:55,806][transformers.trainer][INFO] - Num examples = 138
217
- [2025-06-30 23:53:55,806][transformers.trainer][INFO] - Batch size = 16
218
- [2025-06-30 23:53:56,214][__main__][INFO] - Inference results saved to jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only_inference_results.jsonl
219
- [2025-06-30 23:53:56,220][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
220
- [2025-06-30 23:55:32,845][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
221
- [2025-06-30 23:55:32,845][__main__][INFO] - Bootstrap Confidence Intervals (95%):
222
- [2025-06-30 23:55:32,845][__main__][INFO] - QWK: 0.4182 [0.2776, 0.5466]
223
- [2025-06-30 23:55:32,845][__main__][INFO] - Macro_F1: 0.2962 [0.2154, 0.3977]
224
- [2025-06-30 23:55:32,845][__main__][INFO] - Weighted_F1: 0.3818 [0.2993, 0.4641]
225
- [2025-06-30 23:55:32,845][__main__][INFO] - Inference results: {'accuracy': 0.37681159420289856, 'RMSE': 55.32512598464997, 'QWK': 0.4220445459737294, 'HDIV': 0.06521739130434778, 'Macro_F1': 0.2801049472150572, 'Micro_F1': 0.37681159420289856, 'Weighted_F1': 0.38226236003582026, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(13), 'TN_1': np.int64(90), 'FP_1': np.int64(13), 'FN_1': np.int64(22), 'TP_2': np.int64(3), 'TN_2': np.int64(112), 'FP_2': np.int64(21), 'FN_2': np.int64(2), 'TP_3': np.int64(25), 'TN_3': np.int64(56), 'FP_3': np.int64(31), 'FN_3': np.int64(26), 'TP_4': np.int64(5), 'TN_4': np.int64(99), 'FP_4': np.int64(13), 'FN_4': np.int64(21), 'TP_5': np.int64(6), 'TN_5': np.int64(110), 'FP_5': np.int64(8), 'FN_5': np.int64(14)}
226
- [2025-06-30 23:55:32,845][__main__][INFO] - Inference experiment completed
 
1
+ [2025-07-10 00:36:03,801][__main__][INFO] - Starting inference experiment
2
+ [2025-07-10 00:36:03,803][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
 
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
+ name: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only
25
  type: encoder_classification
26
  num_labels: 6
27
+ output_dir: ./results/
28
+ logging_dir: ./logs/
29
+ best_model_dir: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only
30
  tokenizer:
31
  name: neuralmind/bert-base-portuguese-cased
32
  dataset:
33
+ grade_index: 2
34
  use_full_context: false
35
  training_params:
36
  weight_decay: 0.01
 
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
+ [2025-07-10 00:36:03,805][__main__][INFO] - Running inference with fine-tuned HF model
45
+ [2025-07-10 00:36:09,107][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
46
+ [2025-07-10 00:36:09,108][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
 
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
+ "transformers_version": "4.53.1",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
+ [2025-07-10 00:36:09,328][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
78
+ [2025-07-10 00:36:09,329][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
79
  "architectures": [
80
  "BertForMaskedLM"
81
  ],
 
100
  "pooler_size_per_head": 128,
101
  "pooler_type": "first_token_transform",
102
  "position_embedding_type": "absolute",
103
+ "transformers_version": "4.53.1",
104
  "type_vocab_size": 2,
105
  "use_cache": true,
106
  "vocab_size": 29794
107
  }
108
 
109
+ [2025-07-10 00:36:09,524][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/vocab.txt
110
+ [2025-07-10 00:36:09,524][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
111
+ [2025-07-10 00:36:09,524][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/added_tokens.json
112
+ [2025-07-10 00:36:09,524][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/special_tokens_map.json
113
+ [2025-07-10 00:36:09,524][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/tokenizer_config.json
114
+ [2025-07-10 00:36:09,524][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
115
+ [2025-07-10 00:36:09,525][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
116
+ [2025-07-10 00:36:09,525][transformers.configuration_utils][INFO] - Model config BertConfig {
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
 
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
+ "transformers_version": "4.53.1",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
+ [2025-07-10 00:36:09,555][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
148
+ [2025-07-10 00:36:09,556][transformers.configuration_utils][INFO] - Model config BertConfig {
149
+ "architectures": [
150
+ "BertForMaskedLM"
151
+ ],
152
+ "attention_probs_dropout_prob": 0.1,
153
+ "classifier_dropout": null,
154
+ "directionality": "bidi",
155
+ "hidden_act": "gelu",
156
+ "hidden_dropout_prob": 0.1,
157
+ "hidden_size": 768,
158
+ "initializer_range": 0.02,
159
+ "intermediate_size": 3072,
160
+ "layer_norm_eps": 1e-12,
161
+ "max_position_embeddings": 512,
162
+ "model_type": "bert",
163
+ "num_attention_heads": 12,
164
+ "num_hidden_layers": 12,
165
+ "output_past": true,
166
+ "pad_token_id": 0,
167
+ "pooler_fc_size": 768,
168
+ "pooler_num_attention_heads": 12,
169
+ "pooler_num_fc_layers": 3,
170
+ "pooler_size_per_head": 128,
171
+ "pooler_type": "first_token_transform",
172
+ "position_embedding_type": "absolute",
173
+ "transformers_version": "4.53.1",
174
+ "type_vocab_size": 2,
175
+ "use_cache": true,
176
+ "vocab_size": 29794
177
+ }
178
+
179
+ [2025-07-10 00:36:09,573][__main__][INFO] - Tokenizer function parameters- Padding:longest; Truncation: True; Use Full Context: False
180
+ [2025-07-10 00:36:09,998][__main__][INFO] -
181
+ Token statistics for 'train' split:
182
+ [2025-07-10 00:36:09,998][__main__][INFO] - Total examples: 500
183
+ [2025-07-10 00:36:09,998][__main__][INFO] - Min tokens: 512
184
+ [2025-07-10 00:36:09,998][__main__][INFO] - Max tokens: 512
185
+ [2025-07-10 00:36:09,998][__main__][INFO] - Avg tokens: 512.00
186
+ [2025-07-10 00:36:09,998][__main__][INFO] - Std tokens: 0.00
187
+ [2025-07-10 00:36:10,092][__main__][INFO] -
188
+ Token statistics for 'validation' split:
189
+ [2025-07-10 00:36:10,092][__main__][INFO] - Total examples: 132
190
+ [2025-07-10 00:36:10,092][__main__][INFO] - Min tokens: 512
191
+ [2025-07-10 00:36:10,092][__main__][INFO] - Max tokens: 512
192
+ [2025-07-10 00:36:10,092][__main__][INFO] - Avg tokens: 512.00
193
+ [2025-07-10 00:36:10,092][__main__][INFO] - Std tokens: 0.00
194
+ [2025-07-10 00:36:10,186][__main__][INFO] -
195
+ Token statistics for 'test' split:
196
+ [2025-07-10 00:36:10,186][__main__][INFO] - Total examples: 138
197
+ [2025-07-10 00:36:10,186][__main__][INFO] - Min tokens: 512
198
+ [2025-07-10 00:36:10,186][__main__][INFO] - Max tokens: 512
199
+ [2025-07-10 00:36:10,186][__main__][INFO] - Avg tokens: 512.00
200
+ [2025-07-10 00:36:10,186][__main__][INFO] - Std tokens: 0.00
201
+ [2025-07-10 00:36:10,186][__main__][INFO] - If token statistics are the same (max, avg, min) keep in mind that this is due to batched tokenization and padding.
202
+ [2025-07-10 00:36:10,186][__main__][INFO] - Model max length: 512. If it is the same as stats, then there is a high chance that sequences are being truncated.
203
+ [2025-07-10 00:36:10,187][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only
204
+ [2025-07-10 00:36:10,187][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only
205
+ [2025-07-10 00:36:11,179][__main__][INFO] - Model need ≈ 1.36 GiB to run inference and 2.58 for training
206
+ [2025-07-10 00:36:11,981][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only/snapshots/b3bbed41224b673570856cd0c37769f629b1161a/config.json
207
+ [2025-07-10 00:36:11,982][transformers.configuration_utils][INFO] - Model config BertConfig {
208
  "architectures": [
209
  "BertForSequenceClassification"
210
  ],
 
245
  "pooler_size_per_head": 128,
246
  "pooler_type": "first_token_transform",
247
  "position_embedding_type": "absolute",
 
248
  "torch_dtype": "float32",
249
+ "transformers_version": "4.53.1",
250
  "type_vocab_size": 2,
251
  "use_cache": true,
252
  "vocab_size": 29794
253
  }
254
 
255
+ [2025-07-10 00:36:20,667][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only/snapshots/b3bbed41224b673570856cd0c37769f629b1161a/model.safetensors
256
+ [2025-07-10 00:36:20,668][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
257
+ [2025-07-10 00:36:20,668][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
258
+ [2025-07-10 00:36:21,051][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
259
 
260
+ [2025-07-10 00:36:21,051][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only.
261
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
262
+ [2025-07-10 00:36:21,060][transformers.training_args][INFO] - PyTorch: setting up devices
263
+ [2025-07-10 00:36:21,082][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
264
+ [2025-07-10 00:36:21,089][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
265
+ [2025-07-10 00:36:21,117][transformers.trainer][INFO] - Using auto half precision backend
266
+ [2025-07-10 00:36:24,486][__main__][INFO] - Running inference on test dataset
267
+ [2025-07-10 00:36:24,487][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: id_prompt, reference, prompt, essay_year, id, essay_text, grades, supporting_text. If id_prompt, reference, prompt, essay_year, id, essay_text, grades, supporting_text are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
268
+ [2025-07-10 00:36:24,493][transformers.trainer][INFO] -
269
  ***** Running Prediction *****
270
+ [2025-07-10 00:36:24,493][transformers.trainer][INFO] - Num examples = 138
271
+ [2025-07-10 00:36:24,494][transformers.trainer][INFO] - Batch size = 16
272
+ [2025-07-10 00:36:25,277][__main__][INFO] - Inference results saved to jbcs2025_bert-base-portuguese-cased-encoder_classification-C3-essay_only-encoder_classification-C3-essay_only_inference_results.jsonl
273
+ [2025-07-10 00:36:25,278][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
274
+ [2025-07-10 00:38:31,831][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
275
+ [2025-07-10 00:38:31,832][__main__][INFO] - Bootstrap Confidence Intervals (95%):
276
+ [2025-07-10 00:38:31,832][__main__][INFO] - QWK: 0.3469 [0.1991, 0.4852]
277
+ [2025-07-10 00:38:31,832][__main__][INFO] - Macro_F1: 0.2312 [0.1641, 0.3143]
278
+ [2025-07-10 00:38:31,832][__main__][INFO] - Weighted_F1: 0.2679 [0.1940, 0.3454]
279
+ [2025-07-10 00:38:31,832][__main__][INFO] - Inference results: {'accuracy': 0.3115942028985507, 'RMSE': 51.07539184552491, 'QWK': 0.3491384731480316, 'HDIV': 0.050724637681159424, 'Macro_F1': 0.21826640792158034, 'Micro_F1': 0.3115942028985507, 'Weighted_F1': 0.26630624081898446, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(107), 'FP_1': np.int64(2), 'FN_1': np.int64(29), 'TP_2': np.int64(14), 'TN_2': np.int64(94), 'FP_2': np.int64(26), 'FN_2': np.int64(4), 'TP_3': np.int64(18), 'TN_3': np.int64(57), 'FP_3': np.int64(36), 'FN_3': np.int64(27), 'TP_4': np.int64(9), 'TN_4': np.int64(81), 'FP_4': np.int64(19), 'FN_4': np.int64(29), 'TP_5': np.int64(2), 'TN_5': np.int64(119), 'FP_5': np.int64(12), 'FN_5': np.int64(5)}
280
+ [2025-07-10 00:38:31,832][__main__][INFO] - Inference experiment completed
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/.hydra/config.yaml RENAMED
@@ -20,12 +20,12 @@ post_training_results:
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
- name: kamel-usp/jbcs2025_bertimbau_base-C4
24
  type: encoder_classification
25
  num_labels: 6
26
- output_dir: ./results/bertimbau_base/C4
27
- logging_dir: ./logs/bertimbau_base/C4
28
- best_model_dir: ./results/bertimbau_base/C4/best_model
29
  tokenizer:
30
  name: neuralmind/bert-base-portuguese-cased
31
  dataset:
 
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
+ name: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only
24
  type: encoder_classification
25
  num_labels: 6
26
+ output_dir: ./results/
27
+ logging_dir: ./logs/
28
+ best_model_dir: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only
29
  tokenizer:
30
  name: neuralmind/bert-base-portuguese-cased
31
  dataset:
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/.hydra/hydra.yaml RENAMED
@@ -1,6 +1,6 @@
1
  hydra:
2
  run:
3
- dir: outputs/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
  sweep:
5
  dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
  subdir: ${hydra.job.num}
@@ -110,13 +110,14 @@ hydra:
110
  output_subdir: .hydra
111
  overrides:
112
  hydra:
 
113
  - hydra.mode=RUN
114
  task:
115
- - experiments=base_models/C4
116
  job:
117
  name: run_inference_experiment
118
  chdir: null
119
- override_dirname: experiments=base_models/C4
120
  id: ???
121
  num: ???
122
  config_name: config
@@ -141,9 +142,9 @@ hydra:
141
  - path: ''
142
  schema: structured
143
  provider: schema
144
- output_dir: /workspace/jbcs2025/outputs/2025-06-30/23-57-45
145
  choices:
146
- experiments: base_models/C4
147
  hydra/env: default
148
  hydra/callbacks: null
149
  hydra/job_logging: default
 
1
  hydra:
2
  run:
3
+ dir: inference_output/2025-07-10/00-38-36
4
  sweep:
5
  dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
  subdir: ${hydra.job.num}
 
110
  output_subdir: .hydra
111
  overrides:
112
  hydra:
113
+ - hydra.run.dir=inference_output/2025-07-10/00-38-36
114
  - hydra.mode=RUN
115
  task:
116
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only
117
  job:
118
  name: run_inference_experiment
119
  chdir: null
120
+ override_dirname: experiments=temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only
121
  id: ???
122
  num: ???
123
  config_name: config
 
142
  - path: ''
143
  schema: structured
144
  provider: schema
145
+ output_dir: /workspace/jbcs2025/inference_output/2025-07-10/00-38-36
146
  choices:
147
+ experiments: temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only
148
  hydra/env: default
149
  hydra/callbacks: null
150
  hydra/job_logging: default
runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only/.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/bootstrap_confidence_intervals.csv RENAMED
@@ -1,2 +1,2 @@
1
  experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
- jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only,2025-06-30 23:53:32,0.41819188204779456,0.27759865754644286,0.5466018786751335,0.2690032211286907,0.29623085261327686,0.21542890620802888,0.3976815226515651,0.18225261644353621,0.3817868369579885,0.2993269590182539,0.46412896590642116,0.16480200688816726
 
1
  experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
+ jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only,2025-07-10 00:38:42,0.5435296340232288,0.4184589340416943,0.6551030761025943,0.2366441420609,0.36421051718441505,0.254025794056358,0.5230880773040134,0.2690622832476554,0.5514773744123801,0.46507790634693985,0.6358729541143203,0.17079504776738047
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/evaluation_results.csv RENAMED
@@ -1,2 +1,2 @@
1
- accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
- 0.37681159420289856,52.64042641120627,0.3452054794520547,0.09420289855072461,0.25943499029705924,0.37681159420289856,0.33380294701134283,0,137,0,1,0,109,0,29,13,101,19,5,20,71,22,25,17,67,33,21,2,119,12,5,2025-06-30 23:55:38,jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only
 
1
+ accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.5362318840579711,31.20757990421976,0.5471167369901547,0.007246376811594235,0.31768171092726494,0.5362318840579711,0.5501656251760338,0,137,0,1,0,137,0,1,7,102,27,2,47,41,21,29,16,84,8,30,4,125,8,1,2025-07-10 00:38:42,jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only
runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only/jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only_inference_results.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only}/run_inference_experiment.log RENAMED
@@ -1,5 +1,5 @@
1
- [2025-06-30 23:57:45,116][__main__][INFO] - Starting inference experiment
2
- [2025-06-30 23:57:45,117][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
@@ -21,12 +21,12 @@ post_training_results:
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
- name: kamel-usp/jbcs2025_bertimbau_base-C4
25
  type: encoder_classification
26
  num_labels: 6
27
- output_dir: ./results/bertimbau_base/C4
28
- logging_dir: ./logs/bertimbau_base/C4
29
- best_model_dir: ./results/bertimbau_base/C4/best_model
30
  tokenizer:
31
  name: neuralmind/bert-base-portuguese-cased
32
  dataset:
@@ -41,9 +41,9 @@ experiments:
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
- [2025-06-30 23:57:45,119][__main__][INFO] - Running inference with fine-tuned HF model
45
- [2025-06-30 23:57:50,144][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
46
- [2025-06-30 23:57:50,145][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
@@ -68,20 +68,14 @@ experiments:
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
- "transformers_version": "4.53.0",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
- [2025-06-30 23:57:50,350][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/vocab.txt
78
- [2025-06-30 23:57:50,350][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
79
- [2025-06-30 23:57:50,350][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/added_tokens.json
80
- [2025-06-30 23:57:50,350][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/special_tokens_map.json
81
- [2025-06-30 23:57:50,350][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/tokenizer_config.json
82
- [2025-06-30 23:57:50,350][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
83
- [2025-06-30 23:57:50,350][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
84
- [2025-06-30 23:57:50,351][transformers.configuration_utils][INFO] - Model config BertConfig {
85
  "architectures": [
86
  "BertForMaskedLM"
87
  ],
@@ -106,14 +100,20 @@ experiments:
106
  "pooler_size_per_head": 128,
107
  "pooler_type": "first_token_transform",
108
  "position_embedding_type": "absolute",
109
- "transformers_version": "4.53.0",
110
  "type_vocab_size": 2,
111
  "use_cache": true,
112
  "vocab_size": 29794
113
  }
114
 
115
- [2025-06-30 23:57:50,376][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
116
- [2025-06-30 23:57:50,376][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
@@ -138,18 +138,73 @@ experiments:
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
- "transformers_version": "4.53.0",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
- [2025-06-30 23:57:50,392][__main__][INFO] - Tokenizer function parameters- Padding:max_length; Truncation: True; Use Full Context: False
148
- [2025-06-30 23:57:50,599][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau_base-C4
149
- [2025-06-30 23:57:50,599][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau_base-C4
150
- [2025-06-30 23:57:51,501][__main__][INFO] - Model need ≈ 1.36 GiB to run inference and 2.58 for training
151
- [2025-06-30 23:57:52,494][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau_base-C4/snapshots/be129129fc134c0e782ae9f62b33da331367ab7b/config.json
152
- [2025-06-30 23:57:52,494][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  "architectures": [
154
  "BertForSequenceClassification"
155
  ],
@@ -190,37 +245,36 @@ experiments:
190
  "pooler_size_per_head": 128,
191
  "pooler_type": "first_token_transform",
192
  "position_embedding_type": "absolute",
193
- "problem_type": "single_label_classification",
194
  "torch_dtype": "float32",
195
- "transformers_version": "4.53.0",
196
  "type_vocab_size": 2,
197
  "use_cache": true,
198
  "vocab_size": 29794
199
  }
200
 
201
- [2025-06-30 23:58:07,769][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau_base-C4/snapshots/be129129fc134c0e782ae9f62b33da331367ab7b/model.safetensors
202
- [2025-06-30 23:58:07,770][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
203
- [2025-06-30 23:58:07,770][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
204
- [2025-06-30 23:58:08,132][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
205
 
206
- [2025-06-30 23:58:08,133][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bertimbau_base-C4.
207
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
208
- [2025-06-30 23:58:08,138][transformers.training_args][INFO] - PyTorch: setting up devices
209
- [2025-06-30 23:58:08,191][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
210
- [2025-06-30 23:58:08,196][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
211
- [2025-06-30 23:58:08,215][transformers.trainer][INFO] - Using auto half precision backend
212
- [2025-06-30 23:58:11,691][__main__][INFO] - Running inference on test dataset
213
- [2025-06-30 23:58:11,692][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: reference, essay_text, supporting_text, grades, id_prompt, id, essay_year, prompt. If reference, essay_text, supporting_text, grades, id_prompt, id, essay_year, prompt are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
214
- [2025-06-30 23:58:11,696][transformers.trainer][INFO] -
215
  ***** Running Prediction *****
216
- [2025-06-30 23:58:11,696][transformers.trainer][INFO] - Num examples = 138
217
- [2025-06-30 23:58:11,696][transformers.trainer][INFO] - Batch size = 16
218
- [2025-06-30 23:58:12,089][__main__][INFO] - Inference results saved to jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only_inference_results.jsonl
219
- [2025-06-30 23:58:12,096][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
220
- [2025-06-30 23:59:49,674][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
221
- [2025-06-30 23:59:49,674][__main__][INFO] - Bootstrap Confidence Intervals (95%):
222
- [2025-06-30 23:59:49,674][__main__][INFO] - QWK: 0.6233 [0.5111, 0.7251]
223
- [2025-06-30 23:59:49,674][__main__][INFO] - Macro_F1: 0.4137 [0.2906, 0.5906]
224
- [2025-06-30 23:59:49,674][__main__][INFO] - Weighted_F1: 0.6557 [0.5749, 0.7321]
225
- [2025-06-30 23:59:49,674][__main__][INFO] - Inference results: {'accuracy': 0.644927536231884, 'RMSE': 26.37521893583148, 'QWK': 0.6258134490238612, 'HDIV': 0.007246376811594235, 'Macro_F1': 0.36114488348530904, 'Micro_F1': 0.644927536231884, 'Weighted_F1': 0.6545879036165807, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(137), 'FP_1': np.int64(0), 'FN_1': np.int64(1), 'TP_2': np.int64(5), 'TN_2': np.int64(118), 'FP_2': np.int64(11), 'FN_2': np.int64(4), 'TP_3': np.int64(51), 'TN_3': np.int64(49), 'FP_3': np.int64(13), 'FN_3': np.int64(25), 'TP_4': np.int64(30), 'TN_4': np.int64(74), 'FP_4': np.int64(18), 'FN_4': np.int64(16), 'TP_5': np.int64(3), 'TN_5': np.int64(126), 'FP_5': np.int64(7), 'FN_5': np.int64(2)}
226
- [2025-06-30 23:59:49,675][__main__][INFO] - Inference experiment completed
 
1
+ [2025-07-10 00:38:42,200][__main__][INFO] - Starting inference experiment
2
+ [2025-07-10 00:38:42,202][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
 
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
+ name: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only
25
  type: encoder_classification
26
  num_labels: 6
27
+ output_dir: ./results/
28
+ logging_dir: ./logs/
29
+ best_model_dir: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only
30
  tokenizer:
31
  name: neuralmind/bert-base-portuguese-cased
32
  dataset:
 
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
+ [2025-07-10 00:38:42,204][__main__][INFO] - Running inference with fine-tuned HF model
45
+ [2025-07-10 00:38:47,581][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
46
+ [2025-07-10 00:38:47,582][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
 
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
+ "transformers_version": "4.53.1",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
+ [2025-07-10 00:38:47,831][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
78
+ [2025-07-10 00:38:47,832][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
79
  "architectures": [
80
  "BertForMaskedLM"
81
  ],
 
100
  "pooler_size_per_head": 128,
101
  "pooler_type": "first_token_transform",
102
  "position_embedding_type": "absolute",
103
+ "transformers_version": "4.53.1",
104
  "type_vocab_size": 2,
105
  "use_cache": true,
106
  "vocab_size": 29794
107
  }
108
 
109
+ [2025-07-10 00:38:48,390][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/vocab.txt
110
+ [2025-07-10 00:38:48,390][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
111
+ [2025-07-10 00:38:48,390][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/added_tokens.json
112
+ [2025-07-10 00:38:48,390][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/special_tokens_map.json
113
+ [2025-07-10 00:38:48,390][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/tokenizer_config.json
114
+ [2025-07-10 00:38:48,390][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
115
+ [2025-07-10 00:38:48,391][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
116
+ [2025-07-10 00:38:48,391][transformers.configuration_utils][INFO] - Model config BertConfig {
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
 
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
+ "transformers_version": "4.53.1",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
+ [2025-07-10 00:38:48,421][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
148
+ [2025-07-10 00:38:48,421][transformers.configuration_utils][INFO] - Model config BertConfig {
149
+ "architectures": [
150
+ "BertForMaskedLM"
151
+ ],
152
+ "attention_probs_dropout_prob": 0.1,
153
+ "classifier_dropout": null,
154
+ "directionality": "bidi",
155
+ "hidden_act": "gelu",
156
+ "hidden_dropout_prob": 0.1,
157
+ "hidden_size": 768,
158
+ "initializer_range": 0.02,
159
+ "intermediate_size": 3072,
160
+ "layer_norm_eps": 1e-12,
161
+ "max_position_embeddings": 512,
162
+ "model_type": "bert",
163
+ "num_attention_heads": 12,
164
+ "num_hidden_layers": 12,
165
+ "output_past": true,
166
+ "pad_token_id": 0,
167
+ "pooler_fc_size": 768,
168
+ "pooler_num_attention_heads": 12,
169
+ "pooler_num_fc_layers": 3,
170
+ "pooler_size_per_head": 128,
171
+ "pooler_type": "first_token_transform",
172
+ "position_embedding_type": "absolute",
173
+ "transformers_version": "4.53.1",
174
+ "type_vocab_size": 2,
175
+ "use_cache": true,
176
+ "vocab_size": 29794
177
+ }
178
+
179
+ [2025-07-10 00:38:48,438][__main__][INFO] - Tokenizer function parameters- Padding:longest; Truncation: True; Use Full Context: False
180
+ [2025-07-10 00:38:48,876][__main__][INFO] -
181
+ Token statistics for 'train' split:
182
+ [2025-07-10 00:38:48,876][__main__][INFO] - Total examples: 500
183
+ [2025-07-10 00:38:48,876][__main__][INFO] - Min tokens: 512
184
+ [2025-07-10 00:38:48,876][__main__][INFO] - Max tokens: 512
185
+ [2025-07-10 00:38:48,876][__main__][INFO] - Avg tokens: 512.00
186
+ [2025-07-10 00:38:48,876][__main__][INFO] - Std tokens: 0.00
187
+ [2025-07-10 00:38:48,971][__main__][INFO] -
188
+ Token statistics for 'validation' split:
189
+ [2025-07-10 00:38:48,972][__main__][INFO] - Total examples: 132
190
+ [2025-07-10 00:38:48,972][__main__][INFO] - Min tokens: 512
191
+ [2025-07-10 00:38:48,972][__main__][INFO] - Max tokens: 512
192
+ [2025-07-10 00:38:48,972][__main__][INFO] - Avg tokens: 512.00
193
+ [2025-07-10 00:38:48,972][__main__][INFO] - Std tokens: 0.00
194
+ [2025-07-10 00:38:49,072][__main__][INFO] -
195
+ Token statistics for 'test' split:
196
+ [2025-07-10 00:38:49,072][__main__][INFO] - Total examples: 138
197
+ [2025-07-10 00:38:49,072][__main__][INFO] - Min tokens: 512
198
+ [2025-07-10 00:38:49,072][__main__][INFO] - Max tokens: 512
199
+ [2025-07-10 00:38:49,072][__main__][INFO] - Avg tokens: 512.00
200
+ [2025-07-10 00:38:49,072][__main__][INFO] - Std tokens: 0.00
201
+ [2025-07-10 00:38:49,072][__main__][INFO] - If token statistics are the same (max, avg, min) keep in mind that this is due to batched tokenization and padding.
202
+ [2025-07-10 00:38:49,072][__main__][INFO] - Model max length: 512. If it is the same as stats, then there is a high chance that sequences are being truncated.
203
+ [2025-07-10 00:38:49,073][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only
204
+ [2025-07-10 00:38:49,073][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only
205
+ [2025-07-10 00:38:50,033][__main__][INFO] - Model need ≈ 1.36 GiB to run inference and 2.58 for training
206
+ [2025-07-10 00:38:50,973][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only/snapshots/5ed8cb6c9c541d19f43a96b369ea78181d9617f0/config.json
207
+ [2025-07-10 00:38:50,974][transformers.configuration_utils][INFO] - Model config BertConfig {
208
  "architectures": [
209
  "BertForSequenceClassification"
210
  ],
 
245
  "pooler_size_per_head": 128,
246
  "pooler_type": "first_token_transform",
247
  "position_embedding_type": "absolute",
 
248
  "torch_dtype": "float32",
249
+ "transformers_version": "4.53.1",
250
  "type_vocab_size": 2,
251
  "use_cache": true,
252
  "vocab_size": 29794
253
  }
254
 
255
+ [2025-07-10 00:39:00,410][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only/snapshots/5ed8cb6c9c541d19f43a96b369ea78181d9617f0/model.safetensors
256
+ [2025-07-10 00:39:00,411][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
257
+ [2025-07-10 00:39:00,411][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
258
+ [2025-07-10 00:39:00,802][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
259
 
260
+ [2025-07-10 00:39:00,803][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only.
261
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
262
+ [2025-07-10 00:39:00,812][transformers.training_args][INFO] - PyTorch: setting up devices
263
+ [2025-07-10 00:39:00,836][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
264
+ [2025-07-10 00:39:00,843][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
265
+ [2025-07-10 00:39:00,871][transformers.trainer][INFO] - Using auto half precision backend
266
+ [2025-07-10 00:39:04,179][__main__][INFO] - Running inference on test dataset
267
+ [2025-07-10 00:39:04,180][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: grades, id, prompt, essay_year, reference, essay_text, supporting_text, id_prompt. If grades, id, prompt, essay_year, reference, essay_text, supporting_text, id_prompt are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
268
+ [2025-07-10 00:39:04,186][transformers.trainer][INFO] -
269
  ***** Running Prediction *****
270
+ [2025-07-10 00:39:04,186][transformers.trainer][INFO] - Num examples = 138
271
+ [2025-07-10 00:39:04,187][transformers.trainer][INFO] - Batch size = 16
272
+ [2025-07-10 00:39:05,077][__main__][INFO] - Inference results saved to jbcs2025_bert-base-portuguese-cased-encoder_classification-C4-essay_only-encoder_classification-C4-essay_only_inference_results.jsonl
273
+ [2025-07-10 00:39:05,078][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
274
+ [2025-07-10 00:41:12,570][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
275
+ [2025-07-10 00:41:12,570][__main__][INFO] - Bootstrap Confidence Intervals (95%):
276
+ [2025-07-10 00:41:12,570][__main__][INFO] - QWK: 0.5435 [0.4185, 0.6551]
277
+ [2025-07-10 00:41:12,570][__main__][INFO] - Macro_F1: 0.3642 [0.2540, 0.5231]
278
+ [2025-07-10 00:41:12,570][__main__][INFO] - Weighted_F1: 0.5515 [0.4651, 0.6359]
279
+ [2025-07-10 00:41:12,571][__main__][INFO] - Inference results: {'accuracy': 0.5362318840579711, 'RMSE': 31.20757990421976, 'QWK': 0.5471167369901547, 'HDIV': 0.007246376811594235, 'Macro_F1': 0.31768171092726494, 'Micro_F1': 0.5362318840579711, 'Weighted_F1': 0.5501656251760338, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(137), 'FP_1': np.int64(0), 'FN_1': np.int64(1), 'TP_2': np.int64(7), 'TN_2': np.int64(102), 'FP_2': np.int64(27), 'FN_2': np.int64(2), 'TP_3': np.int64(47), 'TN_3': np.int64(41), 'FP_3': np.int64(21), 'FN_3': np.int64(29), 'TP_4': np.int64(16), 'TN_4': np.int64(84), 'FP_4': np.int64(8), 'FN_4': np.int64(30), 'TP_5': np.int64(4), 'TN_5': np.int64(125), 'FP_5': np.int64(8), 'FN_5': np.int64(1)}
280
+ [2025-07-10 00:41:12,572][__main__][INFO] - Inference experiment completed
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only}/.hydra/config.yaml RENAMED
@@ -20,12 +20,12 @@ post_training_results:
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
- name: kamel-usp/jbcs2025_bertimbau_base-C5
24
  type: encoder_classification
25
  num_labels: 6
26
- output_dir: ./results/bertimbau_base/C5
27
- logging_dir: ./logs/bertimbau_base/C5
28
- best_model_dir: ./results/bertimbau_base/C5/best_model
29
  tokenizer:
30
  name: neuralmind/bert-base-portuguese-cased
31
  dataset:
 
20
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
  experiments:
22
  model:
23
+ name: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only
24
  type: encoder_classification
25
  num_labels: 6
26
+ output_dir: ./results/
27
+ logging_dir: ./logs/
28
+ best_model_dir: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only
29
  tokenizer:
30
  name: neuralmind/bert-base-portuguese-cased
31
  dataset:
runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only/.hydra/hydra.yaml ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: inference_output/2025-07-10/00-41-17
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ simple:
72
+ format: '[%(asctime)s][HYDRA] %(message)s'
73
+ handlers:
74
+ console:
75
+ class: logging.StreamHandler
76
+ formatter: simple
77
+ stream: ext://sys.stdout
78
+ root:
79
+ level: INFO
80
+ handlers:
81
+ - console
82
+ loggers:
83
+ logging_example:
84
+ level: DEBUG
85
+ disable_existing_loggers: false
86
+ job_logging:
87
+ version: 1
88
+ formatters:
89
+ simple:
90
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
+ handlers:
92
+ console:
93
+ class: logging.StreamHandler
94
+ formatter: simple
95
+ stream: ext://sys.stdout
96
+ file:
97
+ class: logging.FileHandler
98
+ formatter: simple
99
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
+ root:
101
+ level: INFO
102
+ handlers:
103
+ - console
104
+ - file
105
+ disable_existing_loggers: false
106
+ env: {}
107
+ mode: RUN
108
+ searchpath: []
109
+ callbacks: {}
110
+ output_subdir: .hydra
111
+ overrides:
112
+ hydra:
113
+ - hydra.run.dir=inference_output/2025-07-10/00-41-17
114
+ - hydra.mode=RUN
115
+ task:
116
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only
117
+ job:
118
+ name: run_inference_experiment
119
+ chdir: null
120
+ override_dirname: experiments=temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only
121
+ id: ???
122
+ num: ???
123
+ config_name: config
124
+ env_set: {}
125
+ env_copy: []
126
+ config:
127
+ override_dirname:
128
+ kv_sep: '='
129
+ item_sep: ','
130
+ exclude_keys: []
131
+ runtime:
132
+ version: 1.3.2
133
+ version_base: '1.1'
134
+ cwd: /workspace/jbcs2025
135
+ config_sources:
136
+ - path: hydra.conf
137
+ schema: pkg
138
+ provider: hydra
139
+ - path: /workspace/jbcs2025/configs
140
+ schema: file
141
+ provider: main
142
+ - path: ''
143
+ schema: structured
144
+ provider: schema
145
+ output_dir: /workspace/jbcs2025/inference_output/2025-07-10/00-41-17
146
+ choices:
147
+ experiments: temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only
148
+ hydra/env: default
149
+ hydra/callbacks: null
150
+ hydra/job_logging: default
151
+ hydra/hydra_logging: default
152
+ hydra/hydra_help: default
153
+ hydra/help: default
154
+ hydra/sweeper: basic
155
+ hydra/launcher: basic
156
+ hydra/output: default
157
+ verbose: false
runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only/.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ - experiments=temp_inference/kamel-usp_jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only
runs/base_models/bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only/bootstrap_confidence_intervals.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
+ jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only,2025-07-10 00:41:22,0.6257235463885343,0.5090039348253902,0.7265976075113407,0.21759367268595053,0.3040685783009996,0.24405777738239762,0.3809607821665941,0.1369030047841965,0.3590255329781086,0.27462031936437037,0.44809835701310474,0.17347803764873437
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only}/evaluation_results.csv RENAMED
@@ -1,2 +1,2 @@
1
- accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
- 0.37681159420289856,55.32512598464997,0.4220445459737294,0.06521739130434778,0.2801049472150572,0.37681159420289856,0.38226236003582026,0,137,0,1,13,90,13,22,3,112,21,2,25,56,31,26,5,99,13,21,6,110,8,14,2025-06-30 23:53:32,jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only
 
1
+ accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.4057971014492754,52.53018455949943,0.629166290308012,0.07246376811594202,0.30402855742671303,0.4057971014492754,0.359115694090939,15,105,11,7,7,85,21,25,5,93,21,19,2,111,2,23,27,79,27,5,0,135,0,3,2025-07-10 00:41:22,jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only
runs/base_models/{mbert/jbcs2025_mbert_base-C5-encoder_classification-C5-essay_only/jbcs2025_mbert_base-C5-encoder_classification-C5-essay_only_inference_results.jsonl → bertimbau/jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only/jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only_inference_results.jsonl} RENAMED
The diff for this file is too large to render. See raw diff
 
runs/base_models/bertimbau/{jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only → jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only}/run_inference_experiment.log RENAMED
@@ -1,5 +1,5 @@
1
- [2025-06-30 23:59:55,461][__main__][INFO] - Starting inference experiment
2
- [2025-06-30 23:59:55,462][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
@@ -21,12 +21,12 @@ post_training_results:
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
- name: kamel-usp/jbcs2025_bertimbau_base-C5
25
  type: encoder_classification
26
  num_labels: 6
27
- output_dir: ./results/bertimbau_base/C5
28
- logging_dir: ./logs/bertimbau_base/C5
29
- best_model_dir: ./results/bertimbau_base/C5/best_model
30
  tokenizer:
31
  name: neuralmind/bert-base-portuguese-cased
32
  dataset:
@@ -41,9 +41,9 @@ experiments:
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
- [2025-06-30 23:59:55,464][__main__][INFO] - Running inference with fine-tuned HF model
45
- [2025-07-01 00:00:00,755][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
46
- [2025-07-01 00:00:00,756][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
@@ -68,20 +68,14 @@ experiments:
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
- "transformers_version": "4.53.0",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
- [2025-07-01 00:00:00,980][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/vocab.txt
78
- [2025-07-01 00:00:00,980][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
79
- [2025-07-01 00:00:00,980][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/added_tokens.json
80
- [2025-07-01 00:00:00,980][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/special_tokens_map.json
81
- [2025-07-01 00:00:00,980][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/tokenizer_config.json
82
- [2025-07-01 00:00:00,980][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
83
- [2025-07-01 00:00:00,980][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
84
- [2025-07-01 00:00:00,981][transformers.configuration_utils][INFO] - Model config BertConfig {
85
  "architectures": [
86
  "BertForMaskedLM"
87
  ],
@@ -106,14 +100,20 @@ experiments:
106
  "pooler_size_per_head": 128,
107
  "pooler_type": "first_token_transform",
108
  "position_embedding_type": "absolute",
109
- "transformers_version": "4.53.0",
110
  "type_vocab_size": 2,
111
  "use_cache": true,
112
  "vocab_size": 29794
113
  }
114
 
115
- [2025-07-01 00:00:01,006][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
116
- [2025-07-01 00:00:01,007][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
@@ -138,18 +138,73 @@ experiments:
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
- "transformers_version": "4.53.0",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
- [2025-07-01 00:00:01,023][__main__][INFO] - Tokenizer function parameters- Padding:max_length; Truncation: True; Use Full Context: False
148
- [2025-07-01 00:00:01,223][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau_base-C5
149
- [2025-07-01 00:00:01,223][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bertimbau_base-C5
150
- [2025-07-01 00:00:02,086][__main__][INFO] - Model need ≈ 1.36 GiB to run inference and 2.58 for training
151
- [2025-07-01 00:00:02,975][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau_base-C5/snapshots/fb36ac8b730b27c491174f81a69d6da1c0962026/config.json
152
- [2025-07-01 00:00:02,976][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
153
  "architectures": [
154
  "BertForSequenceClassification"
155
  ],
@@ -190,37 +245,36 @@ experiments:
190
  "pooler_size_per_head": 128,
191
  "pooler_type": "first_token_transform",
192
  "position_embedding_type": "absolute",
193
- "problem_type": "single_label_classification",
194
  "torch_dtype": "float32",
195
- "transformers_version": "4.53.0",
196
  "type_vocab_size": 2,
197
  "use_cache": true,
198
  "vocab_size": 29794
199
  }
200
 
201
- [2025-07-01 00:00:15,970][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bertimbau_base-C5/snapshots/fb36ac8b730b27c491174f81a69d6da1c0962026/model.safetensors
202
- [2025-07-01 00:00:15,970][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
203
- [2025-07-01 00:00:15,971][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
204
- [2025-07-01 00:00:16,336][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
205
 
206
- [2025-07-01 00:00:16,336][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bertimbau_base-C5.
207
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
208
- [2025-07-01 00:00:16,341][transformers.training_args][INFO] - PyTorch: setting up devices
209
- [2025-07-01 00:00:16,396][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
210
- [2025-07-01 00:00:16,401][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
211
- [2025-07-01 00:00:16,420][transformers.trainer][INFO] - Using auto half precision backend
212
- [2025-07-01 00:00:19,893][__main__][INFO] - Running inference on test dataset
213
- [2025-07-01 00:00:19,894][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: supporting_text, grades, essay_text, id_prompt, prompt, essay_year, reference, id. If supporting_text, grades, essay_text, id_prompt, prompt, essay_year, reference, id are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
214
- [2025-07-01 00:00:19,898][transformers.trainer][INFO] -
215
  ***** Running Prediction *****
216
- [2025-07-01 00:00:19,898][transformers.trainer][INFO] - Num examples = 138
217
- [2025-07-01 00:00:19,898][transformers.trainer][INFO] - Batch size = 16
218
- [2025-07-01 00:00:20,325][__main__][INFO] - Inference results saved to jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only_inference_results.jsonl
219
- [2025-07-01 00:00:20,331][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
220
- [2025-07-01 00:01:56,543][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
221
- [2025-07-01 00:01:56,543][__main__][INFO] - Bootstrap Confidence Intervals (95%):
222
- [2025-07-01 00:01:56,543][__main__][INFO] - QWK: 0.4735 [0.3402, 0.5948]
223
- [2025-07-01 00:01:56,543][__main__][INFO] - Macro_F1: 0.2047 [0.1470, 0.2727]
224
- [2025-07-01 00:01:56,543][__main__][INFO] - Weighted_F1: 0.2575 [0.1803, 0.3395]
225
- [2025-07-01 00:01:56,543][__main__][INFO] - Inference results: {'accuracy': 0.3188405797101449, 'RMSE': 61.2904702146299, 'QWK': 0.476219483623073, 'HDIV': 0.13043478260869568, 'Macro_F1': 0.2055897809038726, 'Micro_F1': 0.3188405797101449, 'Weighted_F1': 0.25808413038205613, 'TP_0': np.int64(3), 'TN_0': np.int64(113), 'FP_0': np.int64(3), 'FN_0': np.int64(19), 'TP_1': np.int64(9), 'TN_1': np.int64(71), 'FP_1': np.int64(35), 'FN_1': np.int64(23), 'TP_2': np.int64(3), 'TN_2': np.int64(103), 'FP_2': np.int64(11), 'FN_2': np.int64(21), 'TP_3': np.int64(1), 'TN_3': np.int64(108), 'FP_3': np.int64(5), 'FN_3': np.int64(24), 'TP_4': np.int64(28), 'TN_4': np.int64(66), 'FP_4': np.int64(40), 'FN_4': np.int64(4), 'TP_5': np.int64(0), 'TN_5': np.int64(135), 'FP_5': np.int64(0), 'FN_5': np.int64(3)}
226
- [2025-07-01 00:01:56,543][__main__][INFO] - Inference experiment completed
 
1
+ [2025-07-10 00:41:22,791][__main__][INFO] - Starting inference experiment
2
+ [2025-07-10 00:41:22,793][__main__][INFO] - cache_dir: /tmp/
3
  dataset:
4
  name: kamel-usp/aes_enem_dataset
5
  split: JBCS2025
 
21
  model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
  experiments:
23
  model:
24
+ name: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only
25
  type: encoder_classification
26
  num_labels: 6
27
+ output_dir: ./results/
28
+ logging_dir: ./logs/
29
+ best_model_dir: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only
30
  tokenizer:
31
  name: neuralmind/bert-base-portuguese-cased
32
  dataset:
 
41
  gradient_accumulation_steps: 1
42
  gradient_checkpointing: false
43
 
44
+ [2025-07-10 00:41:22,795][__main__][INFO] - Running inference with fine-tuned HF model
45
+ [2025-07-10 00:41:27,077][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
46
+ [2025-07-10 00:41:27,079][transformers.configuration_utils][INFO] - Model config BertConfig {
47
  "architectures": [
48
  "BertForMaskedLM"
49
  ],
 
68
  "pooler_size_per_head": 128,
69
  "pooler_type": "first_token_transform",
70
  "position_embedding_type": "absolute",
71
+ "transformers_version": "4.53.1",
72
  "type_vocab_size": 2,
73
  "use_cache": true,
74
  "vocab_size": 29794
75
  }
76
 
77
+ [2025-07-10 00:41:27,284][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
78
+ [2025-07-10 00:41:27,285][transformers.configuration_utils][INFO] - Model config BertConfig {
 
 
 
 
 
 
79
  "architectures": [
80
  "BertForMaskedLM"
81
  ],
 
100
  "pooler_size_per_head": 128,
101
  "pooler_type": "first_token_transform",
102
  "position_embedding_type": "absolute",
103
+ "transformers_version": "4.53.1",
104
  "type_vocab_size": 2,
105
  "use_cache": true,
106
  "vocab_size": 29794
107
  }
108
 
109
+ [2025-07-10 00:41:27,487][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/vocab.txt
110
+ [2025-07-10 00:41:27,487][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
111
+ [2025-07-10 00:41:27,487][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/added_tokens.json
112
+ [2025-07-10 00:41:27,487][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/special_tokens_map.json
113
+ [2025-07-10 00:41:27,487][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/tokenizer_config.json
114
+ [2025-07-10 00:41:27,487][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
115
+ [2025-07-10 00:41:27,487][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
116
+ [2025-07-10 00:41:27,488][transformers.configuration_utils][INFO] - Model config BertConfig {
117
  "architectures": [
118
  "BertForMaskedLM"
119
  ],
 
138
  "pooler_size_per_head": 128,
139
  "pooler_type": "first_token_transform",
140
  "position_embedding_type": "absolute",
141
+ "transformers_version": "4.53.1",
142
  "type_vocab_size": 2,
143
  "use_cache": true,
144
  "vocab_size": 29794
145
  }
146
 
147
+ [2025-07-10 00:41:27,520][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--neuralmind--bert-base-portuguese-cased/snapshots/94d69c95f98f7d5b2a8700c420230ae10def0baa/config.json
148
+ [2025-07-10 00:41:27,520][transformers.configuration_utils][INFO] - Model config BertConfig {
149
+ "architectures": [
150
+ "BertForMaskedLM"
151
+ ],
152
+ "attention_probs_dropout_prob": 0.1,
153
+ "classifier_dropout": null,
154
+ "directionality": "bidi",
155
+ "hidden_act": "gelu",
156
+ "hidden_dropout_prob": 0.1,
157
+ "hidden_size": 768,
158
+ "initializer_range": 0.02,
159
+ "intermediate_size": 3072,
160
+ "layer_norm_eps": 1e-12,
161
+ "max_position_embeddings": 512,
162
+ "model_type": "bert",
163
+ "num_attention_heads": 12,
164
+ "num_hidden_layers": 12,
165
+ "output_past": true,
166
+ "pad_token_id": 0,
167
+ "pooler_fc_size": 768,
168
+ "pooler_num_attention_heads": 12,
169
+ "pooler_num_fc_layers": 3,
170
+ "pooler_size_per_head": 128,
171
+ "pooler_type": "first_token_transform",
172
+ "position_embedding_type": "absolute",
173
+ "transformers_version": "4.53.1",
174
+ "type_vocab_size": 2,
175
+ "use_cache": true,
176
+ "vocab_size": 29794
177
+ }
178
+
179
+ [2025-07-10 00:41:27,539][__main__][INFO] - Tokenizer function parameters- Padding:longest; Truncation: True; Use Full Context: False
180
+ [2025-07-10 00:41:27,963][__main__][INFO] -
181
+ Token statistics for 'train' split:
182
+ [2025-07-10 00:41:27,964][__main__][INFO] - Total examples: 500
183
+ [2025-07-10 00:41:27,964][__main__][INFO] - Min tokens: 512
184
+ [2025-07-10 00:41:27,964][__main__][INFO] - Max tokens: 512
185
+ [2025-07-10 00:41:27,964][__main__][INFO] - Avg tokens: 512.00
186
+ [2025-07-10 00:41:27,964][__main__][INFO] - Std tokens: 0.00
187
+ [2025-07-10 00:41:28,061][__main__][INFO] -
188
+ Token statistics for 'validation' split:
189
+ [2025-07-10 00:41:28,061][__main__][INFO] - Total examples: 132
190
+ [2025-07-10 00:41:28,062][__main__][INFO] - Min tokens: 512
191
+ [2025-07-10 00:41:28,062][__main__][INFO] - Max tokens: 512
192
+ [2025-07-10 00:41:28,062][__main__][INFO] - Avg tokens: 512.00
193
+ [2025-07-10 00:41:28,062][__main__][INFO] - Std tokens: 0.00
194
+ [2025-07-10 00:41:28,162][__main__][INFO] -
195
+ Token statistics for 'test' split:
196
+ [2025-07-10 00:41:28,162][__main__][INFO] - Total examples: 138
197
+ [2025-07-10 00:41:28,162][__main__][INFO] - Min tokens: 512
198
+ [2025-07-10 00:41:28,162][__main__][INFO] - Max tokens: 512
199
+ [2025-07-10 00:41:28,162][__main__][INFO] - Avg tokens: 512.00
200
+ [2025-07-10 00:41:28,162][__main__][INFO] - Std tokens: 0.00
201
+ [2025-07-10 00:41:28,162][__main__][INFO] - If token statistics are the same (max, avg, min) keep in mind that this is due to batched tokenization and padding.
202
+ [2025-07-10 00:41:28,162][__main__][INFO] - Model max length: 512. If it is the same as stats, then there is a high chance that sequences are being truncated.
203
+ [2025-07-10 00:41:28,163][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only
204
+ [2025-07-10 00:41:28,163][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only
205
+ [2025-07-10 00:41:29,268][__main__][INFO] - Model need ≈ 1.36 GiB to run inference and 2.58 for training
206
+ [2025-07-10 00:41:30,165][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only/snapshots/15a44128caf634f8d6327daaa8b803cd4b8339f8/config.json
207
+ [2025-07-10 00:41:30,165][transformers.configuration_utils][INFO] - Model config BertConfig {
208
  "architectures": [
209
  "BertForSequenceClassification"
210
  ],
 
245
  "pooler_size_per_head": 128,
246
  "pooler_type": "first_token_transform",
247
  "position_embedding_type": "absolute",
 
248
  "torch_dtype": "float32",
249
+ "transformers_version": "4.53.1",
250
  "type_vocab_size": 2,
251
  "use_cache": true,
252
  "vocab_size": 29794
253
  }
254
 
255
+ [2025-07-10 00:41:38,557][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only/snapshots/15a44128caf634f8d6327daaa8b803cd4b8339f8/model.safetensors
256
+ [2025-07-10 00:41:38,559][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
257
+ [2025-07-10 00:41:38,559][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
258
+ [2025-07-10 00:41:38,941][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
259
 
260
+ [2025-07-10 00:41:38,942][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only.
261
  If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
262
+ [2025-07-10 00:41:38,951][transformers.training_args][INFO] - PyTorch: setting up devices
263
+ [2025-07-10 00:41:38,976][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
264
+ [2025-07-10 00:41:38,985][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
265
+ [2025-07-10 00:41:39,013][transformers.trainer][INFO] - Using auto half precision backend
266
+ [2025-07-10 00:41:42,342][__main__][INFO] - Running inference on test dataset
267
+ [2025-07-10 00:41:42,344][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: id, id_prompt, supporting_text, grades, essay_text, prompt, reference, essay_year. If id, id_prompt, supporting_text, grades, essay_text, prompt, reference, essay_year are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
268
+ [2025-07-10 00:41:42,350][transformers.trainer][INFO] -
269
  ***** Running Prediction *****
270
+ [2025-07-10 00:41:42,350][transformers.trainer][INFO] - Num examples = 138
271
+ [2025-07-10 00:41:42,350][transformers.trainer][INFO] - Batch size = 16
272
+ [2025-07-10 00:41:43,340][__main__][INFO] - Inference results saved to jbcs2025_bert-base-portuguese-cased-encoder_classification-C5-essay_only-encoder_classification-C5-essay_only_inference_results.jsonl
273
+ [2025-07-10 00:41:43,341][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
274
+ [2025-07-10 00:43:47,972][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
275
+ [2025-07-10 00:43:47,972][__main__][INFO] - Bootstrap Confidence Intervals (95%):
276
+ [2025-07-10 00:43:47,972][__main__][INFO] - QWK: 0.6257 [0.5090, 0.7266]
277
+ [2025-07-10 00:43:47,972][__main__][INFO] - Macro_F1: 0.3041 [0.2441, 0.3810]
278
+ [2025-07-10 00:43:47,972][__main__][INFO] - Weighted_F1: 0.3590 [0.2746, 0.4481]
279
+ [2025-07-10 00:43:47,972][__main__][INFO] - Inference results: {'accuracy': 0.4057971014492754, 'RMSE': 52.53018455949943, 'QWK': 0.629166290308012, 'HDIV': 0.07246376811594202, 'Macro_F1': 0.30402855742671303, 'Micro_F1': 0.4057971014492754, 'Weighted_F1': 0.359115694090939, 'TP_0': np.int64(15), 'TN_0': np.int64(105), 'FP_0': np.int64(11), 'FN_0': np.int64(7), 'TP_1': np.int64(7), 'TN_1': np.int64(85), 'FP_1': np.int64(21), 'FN_1': np.int64(25), 'TP_2': np.int64(5), 'TN_2': np.int64(93), 'FP_2': np.int64(21), 'FN_2': np.int64(19), 'TP_3': np.int64(2), 'TN_3': np.int64(111), 'FP_3': np.int64(2), 'FN_3': np.int64(23), 'TP_4': np.int64(27), 'TN_4': np.int64(79), 'FP_4': np.int64(27), 'FN_4': np.int64(5), 'TP_5': np.int64(0), 'TN_5': np.int64(135), 'FP_5': np.int64(0), 'FN_5': np.int64(3)}
280
+ [2025-07-10 00:43:47,972][__main__][INFO] - Inference experiment completed
runs/base_models/bertimbau/jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only/.hydra/overrides.yaml DELETED
@@ -1 +0,0 @@
1
- - experiments=base_models/C1
 
 
runs/base_models/bertimbau/jbcs2025_bertimbau_base-C2-encoder_classification-C2-essay_only/.hydra/overrides.yaml DELETED
@@ -1 +0,0 @@
1
- - experiments=base_models/C2
 
 
runs/base_models/bertimbau/jbcs2025_bertimbau_base-C3-encoder_classification-C3-essay_only/.hydra/overrides.yaml DELETED
@@ -1 +0,0 @@
1
- - experiments=base_models/C3
 
 
runs/base_models/bertimbau/jbcs2025_bertimbau_base-C4-encoder_classification-C4-essay_only/.hydra/overrides.yaml DELETED
@@ -1 +0,0 @@
1
- - experiments=base_models/C4
 
 
runs/base_models/bertimbau/jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only/.hydra/hydra.yaml DELETED
@@ -1,156 +0,0 @@
1
- hydra:
2
- run:
3
- dir: outputs/${now:%Y-%m-%d}/${now:%H-%M-%S}
4
- sweep:
5
- dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
- subdir: ${hydra.job.num}
7
- launcher:
8
- _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
- sweeper:
10
- _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
- max_batch_size: null
12
- params: null
13
- help:
14
- app_name: ${hydra.job.name}
15
- header: '${hydra.help.app_name} is powered by Hydra.
16
-
17
- '
18
- footer: 'Powered by Hydra (https://hydra.cc)
19
-
20
- Use --hydra-help to view Hydra specific help
21
-
22
- '
23
- template: '${hydra.help.header}
24
-
25
- == Configuration groups ==
26
-
27
- Compose your configuration from those groups (group=option)
28
-
29
-
30
- $APP_CONFIG_GROUPS
31
-
32
-
33
- == Config ==
34
-
35
- Override anything in the config (foo.bar=value)
36
-
37
-
38
- $CONFIG
39
-
40
-
41
- ${hydra.help.footer}
42
-
43
- '
44
- hydra_help:
45
- template: 'Hydra (${hydra.runtime.version})
46
-
47
- See https://hydra.cc for more info.
48
-
49
-
50
- == Flags ==
51
-
52
- $FLAGS_HELP
53
-
54
-
55
- == Configuration groups ==
56
-
57
- Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
- to command line)
59
-
60
-
61
- $HYDRA_CONFIG_GROUPS
62
-
63
-
64
- Use ''--cfg hydra'' to Show the Hydra config.
65
-
66
- '
67
- hydra_help: ???
68
- hydra_logging:
69
- version: 1
70
- formatters:
71
- simple:
72
- format: '[%(asctime)s][HYDRA] %(message)s'
73
- handlers:
74
- console:
75
- class: logging.StreamHandler
76
- formatter: simple
77
- stream: ext://sys.stdout
78
- root:
79
- level: INFO
80
- handlers:
81
- - console
82
- loggers:
83
- logging_example:
84
- level: DEBUG
85
- disable_existing_loggers: false
86
- job_logging:
87
- version: 1
88
- formatters:
89
- simple:
90
- format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
- handlers:
92
- console:
93
- class: logging.StreamHandler
94
- formatter: simple
95
- stream: ext://sys.stdout
96
- file:
97
- class: logging.FileHandler
98
- formatter: simple
99
- filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
- root:
101
- level: INFO
102
- handlers:
103
- - console
104
- - file
105
- disable_existing_loggers: false
106
- env: {}
107
- mode: RUN
108
- searchpath: []
109
- callbacks: {}
110
- output_subdir: .hydra
111
- overrides:
112
- hydra:
113
- - hydra.mode=RUN
114
- task:
115
- - experiments=base_models/C5
116
- job:
117
- name: run_inference_experiment
118
- chdir: null
119
- override_dirname: experiments=base_models/C5
120
- id: ???
121
- num: ???
122
- config_name: config
123
- env_set: {}
124
- env_copy: []
125
- config:
126
- override_dirname:
127
- kv_sep: '='
128
- item_sep: ','
129
- exclude_keys: []
130
- runtime:
131
- version: 1.3.2
132
- version_base: '1.1'
133
- cwd: /workspace/jbcs2025
134
- config_sources:
135
- - path: hydra.conf
136
- schema: pkg
137
- provider: hydra
138
- - path: /workspace/jbcs2025/configs
139
- schema: file
140
- provider: main
141
- - path: ''
142
- schema: structured
143
- provider: schema
144
- output_dir: /workspace/jbcs2025/outputs/2025-06-30/23-59-55
145
- choices:
146
- experiments: base_models/C5
147
- hydra/env: default
148
- hydra/callbacks: null
149
- hydra/job_logging: default
150
- hydra/hydra_logging: default
151
- hydra/hydra_help: default
152
- hydra/help: default
153
- hydra/sweeper: basic
154
- hydra/launcher: basic
155
- hydra/output: default
156
- verbose: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
runs/base_models/bertimbau/jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only/.hydra/overrides.yaml DELETED
@@ -1 +0,0 @@
1
- - experiments=base_models/C5
 
 
runs/base_models/bertimbau/jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only/bootstrap_confidence_intervals.csv DELETED
@@ -1,2 +0,0 @@
1
- experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
- jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only,2025-06-30 23:59:55,0.47349799901126716,0.3401973117894254,0.5947975929869902,0.2546002811975648,0.20469588256838514,0.14697576658446224,0.27274642041824704,0.1257706538337848,0.25750931482031114,0.18034272476682853,0.33952288243091566,0.15918015766408714
 
 
 
runs/base_models/bertimbau/jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only/evaluation_results.csv DELETED
@@ -1,2 +0,0 @@
1
- accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
- 0.3188405797101449,61.2904702146299,0.476219483623073,0.13043478260869568,0.2055897809038726,0.3188405797101449,0.25808413038205613,3,113,3,19,9,71,35,23,3,103,11,21,1,108,5,24,28,66,40,4,0,135,0,3,2025-06-30 23:59:55,jbcs2025_bertimbau_base-C5-encoder_classification-C5-essay_only
 
 
 
runs/base_models/bertugues/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/.hydra/config.yaml ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ cache_dir: /tmp/
2
+ dataset:
3
+ name: kamel-usp/aes_enem_dataset
4
+ split: JBCS2025
5
+ training_params:
6
+ seed: 42
7
+ num_train_epochs: 20
8
+ logging_steps: 100
9
+ metric_for_best_model: QWK
10
+ bf16: true
11
+ bootstrap:
12
+ enabled: true
13
+ n_bootstrap: 10000
14
+ bootstrap_seed: 42
15
+ metrics:
16
+ - QWK
17
+ - Macro_F1
18
+ - Weighted_F1
19
+ post_training_results:
20
+ model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
21
+ experiments:
22
+ model:
23
+ name: kamel-usp/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only
24
+ type: encoder_classification
25
+ num_labels: 6
26
+ output_dir: ./results/
27
+ logging_dir: ./logs/
28
+ best_model_dir: kamel-usp/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only
29
+ tokenizer:
30
+ name: ricardoz/BERTugues-base-portuguese-cased
31
+ dataset:
32
+ grade_index: 0
33
+ use_full_context: false
34
+ training_params:
35
+ weight_decay: 0.01
36
+ warmup_ratio: 0.1
37
+ learning_rate: 5.0e-05
38
+ train_batch_size: 16
39
+ eval_batch_size: 16
40
+ gradient_accumulation_steps: 1
41
+ gradient_checkpointing: false
runs/base_models/bertugues/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/.hydra/hydra.yaml ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ hydra:
2
+ run:
3
+ dir: inference_output/2025-07-10/00-57-36
4
+ sweep:
5
+ dir: multirun/${now:%Y-%m-%d}/${now:%H-%M-%S}
6
+ subdir: ${hydra.job.num}
7
+ launcher:
8
+ _target_: hydra._internal.core_plugins.basic_launcher.BasicLauncher
9
+ sweeper:
10
+ _target_: hydra._internal.core_plugins.basic_sweeper.BasicSweeper
11
+ max_batch_size: null
12
+ params: null
13
+ help:
14
+ app_name: ${hydra.job.name}
15
+ header: '${hydra.help.app_name} is powered by Hydra.
16
+
17
+ '
18
+ footer: 'Powered by Hydra (https://hydra.cc)
19
+
20
+ Use --hydra-help to view Hydra specific help
21
+
22
+ '
23
+ template: '${hydra.help.header}
24
+
25
+ == Configuration groups ==
26
+
27
+ Compose your configuration from those groups (group=option)
28
+
29
+
30
+ $APP_CONFIG_GROUPS
31
+
32
+
33
+ == Config ==
34
+
35
+ Override anything in the config (foo.bar=value)
36
+
37
+
38
+ $CONFIG
39
+
40
+
41
+ ${hydra.help.footer}
42
+
43
+ '
44
+ hydra_help:
45
+ template: 'Hydra (${hydra.runtime.version})
46
+
47
+ See https://hydra.cc for more info.
48
+
49
+
50
+ == Flags ==
51
+
52
+ $FLAGS_HELP
53
+
54
+
55
+ == Configuration groups ==
56
+
57
+ Compose your configuration from those groups (For example, append hydra/job_logging=disabled
58
+ to command line)
59
+
60
+
61
+ $HYDRA_CONFIG_GROUPS
62
+
63
+
64
+ Use ''--cfg hydra'' to Show the Hydra config.
65
+
66
+ '
67
+ hydra_help: ???
68
+ hydra_logging:
69
+ version: 1
70
+ formatters:
71
+ simple:
72
+ format: '[%(asctime)s][HYDRA] %(message)s'
73
+ handlers:
74
+ console:
75
+ class: logging.StreamHandler
76
+ formatter: simple
77
+ stream: ext://sys.stdout
78
+ root:
79
+ level: INFO
80
+ handlers:
81
+ - console
82
+ loggers:
83
+ logging_example:
84
+ level: DEBUG
85
+ disable_existing_loggers: false
86
+ job_logging:
87
+ version: 1
88
+ formatters:
89
+ simple:
90
+ format: '[%(asctime)s][%(name)s][%(levelname)s] - %(message)s'
91
+ handlers:
92
+ console:
93
+ class: logging.StreamHandler
94
+ formatter: simple
95
+ stream: ext://sys.stdout
96
+ file:
97
+ class: logging.FileHandler
98
+ formatter: simple
99
+ filename: ${hydra.runtime.output_dir}/${hydra.job.name}.log
100
+ root:
101
+ level: INFO
102
+ handlers:
103
+ - console
104
+ - file
105
+ disable_existing_loggers: false
106
+ env: {}
107
+ mode: RUN
108
+ searchpath: []
109
+ callbacks: {}
110
+ output_subdir: .hydra
111
+ overrides:
112
+ hydra:
113
+ - hydra.run.dir=inference_output/2025-07-10/00-57-36
114
+ - hydra.mode=RUN
115
+ task:
116
+ - experiments=temp_inference/kamel-usp_jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only
117
+ job:
118
+ name: run_inference_experiment
119
+ chdir: null
120
+ override_dirname: experiments=temp_inference/kamel-usp_jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only
121
+ id: ???
122
+ num: ???
123
+ config_name: config
124
+ env_set: {}
125
+ env_copy: []
126
+ config:
127
+ override_dirname:
128
+ kv_sep: '='
129
+ item_sep: ','
130
+ exclude_keys: []
131
+ runtime:
132
+ version: 1.3.2
133
+ version_base: '1.1'
134
+ cwd: /workspace/jbcs2025
135
+ config_sources:
136
+ - path: hydra.conf
137
+ schema: pkg
138
+ provider: hydra
139
+ - path: /workspace/jbcs2025/configs
140
+ schema: file
141
+ provider: main
142
+ - path: ''
143
+ schema: structured
144
+ provider: schema
145
+ output_dir: /workspace/jbcs2025/inference_output/2025-07-10/00-57-36
146
+ choices:
147
+ experiments: temp_inference/kamel-usp_jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only
148
+ hydra/env: default
149
+ hydra/callbacks: null
150
+ hydra/job_logging: default
151
+ hydra/hydra_logging: default
152
+ hydra/hydra_help: default
153
+ hydra/help: default
154
+ hydra/sweeper: basic
155
+ hydra/launcher: basic
156
+ hydra/output: default
157
+ verbose: false
runs/base_models/bertugues/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/.hydra/overrides.yaml ADDED
@@ -0,0 +1 @@
 
 
1
+ - experiments=temp_inference/kamel-usp_jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only
runs/base_models/bertugues/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/bootstrap_confidence_intervals.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ experiment_id,timestamp,QWK_mean,QWK_lower_95ci,QWK_upper_95ci,QWK_ci_width,Macro_F1_mean,Macro_F1_lower_95ci,Macro_F1_upper_95ci,Macro_F1_ci_width,Weighted_F1_mean,Weighted_F1_lower_95ci,Weighted_F1_upper_95ci,Weighted_F1_ci_width
2
+ jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only,2025-07-10 00:57:41,0.6118239365325281,0.5155564145265364,0.7026110342235472,0.18705461969701076,0.41828021220630307,0.3165853797061227,0.5526803717911853,0.23609499208506263,0.5627013765718267,0.4791976087167935,0.6438201797903147,0.16462257107352118
runs/base_models/bertugues/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/evaluation_results.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ accuracy,RMSE,QWK,HDIV,Macro_F1,Micro_F1,Weighted_F1,TP_0,TN_0,FP_0,FN_0,TP_1,TN_1,FP_1,FN_1,TP_2,TN_2,FP_2,FN_2,TP_3,TN_3,FP_3,FN_3,TP_4,TN_4,FP_4,FN_4,TP_5,TN_5,FP_5,FN_5,timestamp,id
2
+ 0.5434782608695652,30.45547950507524,0.6139860139860139,0.007246376811594235,0.38733766233766237,0.5434782608695652,0.5620203065855239,0,137,0,1,0,138,0,0,7,109,19,3,35,61,11,31,28,67,20,23,5,115,13,5,2025-07-10 00:57:41,jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only
runs/base_models/{bertimbau/jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only/jbcs2025_bertimbau_base-C1-encoder_classification-C1-essay_only_inference_results.jsonl → bertugues/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only_inference_results.jsonl} RENAMED
The diff for this file is too large to render. See raw diff
 
runs/base_models/bertugues/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only/run_inference_experiment.log ADDED
@@ -0,0 +1,250 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [2025-07-10 00:57:41,959][__main__][INFO] - Starting inference experiment
2
+ [2025-07-10 00:57:41,961][__main__][INFO] - cache_dir: /tmp/
3
+ dataset:
4
+ name: kamel-usp/aes_enem_dataset
5
+ split: JBCS2025
6
+ training_params:
7
+ seed: 42
8
+ num_train_epochs: 20
9
+ logging_steps: 100
10
+ metric_for_best_model: QWK
11
+ bf16: true
12
+ bootstrap:
13
+ enabled: true
14
+ n_bootstrap: 10000
15
+ bootstrap_seed: 42
16
+ metrics:
17
+ - QWK
18
+ - Macro_F1
19
+ - Weighted_F1
20
+ post_training_results:
21
+ model_path: /workspace/jbcs2025/outputs/2025-03-24/20-42-59
22
+ experiments:
23
+ model:
24
+ name: kamel-usp/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only
25
+ type: encoder_classification
26
+ num_labels: 6
27
+ output_dir: ./results/
28
+ logging_dir: ./logs/
29
+ best_model_dir: kamel-usp/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only
30
+ tokenizer:
31
+ name: ricardoz/BERTugues-base-portuguese-cased
32
+ dataset:
33
+ grade_index: 0
34
+ use_full_context: false
35
+ training_params:
36
+ weight_decay: 0.01
37
+ warmup_ratio: 0.1
38
+ learning_rate: 5.0e-05
39
+ train_batch_size: 16
40
+ eval_batch_size: 16
41
+ gradient_accumulation_steps: 1
42
+ gradient_checkpointing: false
43
+
44
+ [2025-07-10 00:57:41,963][__main__][INFO] - Running inference with fine-tuned HF model
45
+ [2025-07-10 00:57:47,898][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--ricardoz--BERTugues-base-portuguese-cased/snapshots/76022866e209716d673e144cc9186f7b20830967/config.json
46
+ [2025-07-10 00:57:47,899][transformers.configuration_utils][INFO] - Model config BertConfig {
47
+ "architectures": [
48
+ "BertForPreTraining"
49
+ ],
50
+ "attention_probs_dropout_prob": 0.1,
51
+ "classifier_dropout": null,
52
+ "hidden_act": "gelu",
53
+ "hidden_dropout_prob": 0.1,
54
+ "hidden_size": 768,
55
+ "initializer_range": 0.02,
56
+ "intermediate_size": 3072,
57
+ "layer_norm_eps": 1e-12,
58
+ "max_position_embeddings": 512,
59
+ "model_type": "bert",
60
+ "num_attention_heads": 12,
61
+ "num_hidden_layers": 12,
62
+ "pad_token_id": 0,
63
+ "position_embedding_type": "absolute",
64
+ "torch_dtype": "float32",
65
+ "transformers_version": "4.53.1",
66
+ "type_vocab_size": 2,
67
+ "use_cache": true,
68
+ "vocab_size": 30522
69
+ }
70
+
71
+ [2025-07-10 00:57:48,108][transformers.models.auto.tokenization_auto][INFO] - Could not locate the tokenizer configuration file, will try to use the model config instead.
72
+ [2025-07-10 00:57:48,331][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--ricardoz--BERTugues-base-portuguese-cased/snapshots/76022866e209716d673e144cc9186f7b20830967/config.json
73
+ [2025-07-10 00:57:48,332][transformers.configuration_utils][INFO] - Model config BertConfig {
74
+ "architectures": [
75
+ "BertForPreTraining"
76
+ ],
77
+ "attention_probs_dropout_prob": 0.1,
78
+ "classifier_dropout": null,
79
+ "hidden_act": "gelu",
80
+ "hidden_dropout_prob": 0.1,
81
+ "hidden_size": 768,
82
+ "initializer_range": 0.02,
83
+ "intermediate_size": 3072,
84
+ "layer_norm_eps": 1e-12,
85
+ "max_position_embeddings": 512,
86
+ "model_type": "bert",
87
+ "num_attention_heads": 12,
88
+ "num_hidden_layers": 12,
89
+ "pad_token_id": 0,
90
+ "position_embedding_type": "absolute",
91
+ "torch_dtype": "float32",
92
+ "transformers_version": "4.53.1",
93
+ "type_vocab_size": 2,
94
+ "use_cache": true,
95
+ "vocab_size": 30522
96
+ }
97
+
98
+ [2025-07-10 00:57:48,944][transformers.tokenization_utils_base][INFO] - loading file vocab.txt from cache at /tmp/models--ricardoz--BERTugues-base-portuguese-cased/snapshots/76022866e209716d673e144cc9186f7b20830967/vocab.txt
99
+ [2025-07-10 00:57:48,944][transformers.tokenization_utils_base][INFO] - loading file tokenizer.json from cache at None
100
+ [2025-07-10 00:57:48,944][transformers.tokenization_utils_base][INFO] - loading file added_tokens.json from cache at None
101
+ [2025-07-10 00:57:48,944][transformers.tokenization_utils_base][INFO] - loading file special_tokens_map.json from cache at None
102
+ [2025-07-10 00:57:48,944][transformers.tokenization_utils_base][INFO] - loading file tokenizer_config.json from cache at None
103
+ [2025-07-10 00:57:48,944][transformers.tokenization_utils_base][INFO] - loading file chat_template.jinja from cache at None
104
+ [2025-07-10 00:57:48,944][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--ricardoz--BERTugues-base-portuguese-cased/snapshots/76022866e209716d673e144cc9186f7b20830967/config.json
105
+ [2025-07-10 00:57:48,945][transformers.configuration_utils][INFO] - Model config BertConfig {
106
+ "architectures": [
107
+ "BertForPreTraining"
108
+ ],
109
+ "attention_probs_dropout_prob": 0.1,
110
+ "classifier_dropout": null,
111
+ "hidden_act": "gelu",
112
+ "hidden_dropout_prob": 0.1,
113
+ "hidden_size": 768,
114
+ "initializer_range": 0.02,
115
+ "intermediate_size": 3072,
116
+ "layer_norm_eps": 1e-12,
117
+ "max_position_embeddings": 512,
118
+ "model_type": "bert",
119
+ "num_attention_heads": 12,
120
+ "num_hidden_layers": 12,
121
+ "pad_token_id": 0,
122
+ "position_embedding_type": "absolute",
123
+ "torch_dtype": "float32",
124
+ "transformers_version": "4.53.1",
125
+ "type_vocab_size": 2,
126
+ "use_cache": true,
127
+ "vocab_size": 30522
128
+ }
129
+
130
+ [2025-07-10 00:57:48,977][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--ricardoz--BERTugues-base-portuguese-cased/snapshots/76022866e209716d673e144cc9186f7b20830967/config.json
131
+ [2025-07-10 00:57:48,978][transformers.configuration_utils][INFO] - Model config BertConfig {
132
+ "architectures": [
133
+ "BertForPreTraining"
134
+ ],
135
+ "attention_probs_dropout_prob": 0.1,
136
+ "classifier_dropout": null,
137
+ "hidden_act": "gelu",
138
+ "hidden_dropout_prob": 0.1,
139
+ "hidden_size": 768,
140
+ "initializer_range": 0.02,
141
+ "intermediate_size": 3072,
142
+ "layer_norm_eps": 1e-12,
143
+ "max_position_embeddings": 512,
144
+ "model_type": "bert",
145
+ "num_attention_heads": 12,
146
+ "num_hidden_layers": 12,
147
+ "pad_token_id": 0,
148
+ "position_embedding_type": "absolute",
149
+ "torch_dtype": "float32",
150
+ "transformers_version": "4.53.1",
151
+ "type_vocab_size": 2,
152
+ "use_cache": true,
153
+ "vocab_size": 30522
154
+ }
155
+
156
+ [2025-07-10 00:57:48,996][__main__][INFO] - Tokenizer function parameters- Padding:longest; Truncation: True; Use Full Context: False
157
+ [2025-07-10 00:57:49,407][__main__][INFO] -
158
+ Token statistics for 'train' split:
159
+ [2025-07-10 00:57:49,407][__main__][INFO] - Total examples: 500
160
+ [2025-07-10 00:57:49,407][__main__][INFO] - Min tokens: 512
161
+ [2025-07-10 00:57:49,407][__main__][INFO] - Max tokens: 512
162
+ [2025-07-10 00:57:49,407][__main__][INFO] - Avg tokens: 512.00
163
+ [2025-07-10 00:57:49,407][__main__][INFO] - Std tokens: 0.00
164
+ [2025-07-10 00:57:49,497][__main__][INFO] -
165
+ Token statistics for 'validation' split:
166
+ [2025-07-10 00:57:49,497][__main__][INFO] - Total examples: 132
167
+ [2025-07-10 00:57:49,497][__main__][INFO] - Min tokens: 512
168
+ [2025-07-10 00:57:49,497][__main__][INFO] - Max tokens: 512
169
+ [2025-07-10 00:57:49,497][__main__][INFO] - Avg tokens: 512.00
170
+ [2025-07-10 00:57:49,497][__main__][INFO] - Std tokens: 0.00
171
+ [2025-07-10 00:57:49,593][__main__][INFO] -
172
+ Token statistics for 'test' split:
173
+ [2025-07-10 00:57:49,593][__main__][INFO] - Total examples: 138
174
+ [2025-07-10 00:57:49,593][__main__][INFO] - Min tokens: 512
175
+ [2025-07-10 00:57:49,593][__main__][INFO] - Max tokens: 512
176
+ [2025-07-10 00:57:49,593][__main__][INFO] - Avg tokens: 512.00
177
+ [2025-07-10 00:57:49,593][__main__][INFO] - Std tokens: 0.00
178
+ [2025-07-10 00:57:49,593][__main__][INFO] - If token statistics are the same (max, avg, min) keep in mind that this is due to batched tokenization and padding.
179
+ [2025-07-10 00:57:49,593][__main__][INFO] - Model max length: 512. If it is the same as stats, then there is a high chance that sequences are being truncated.
180
+ [2025-07-10 00:57:49,593][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only
181
+ [2025-07-10 00:57:49,593][__main__][INFO] - Loading model from: kamel-usp/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only
182
+ [2025-07-10 00:57:50,956][__main__][INFO] - Model need ≈ 1.36 GiB to run inference and 2.59 for training
183
+ [2025-07-10 00:57:51,848][transformers.configuration_utils][INFO] - loading configuration file config.json from cache at /tmp/models--kamel-usp--jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only/snapshots/c8b174c3e6521d94d4c8700c5ae1a12ea8a389b1/config.json
184
+ [2025-07-10 00:57:51,849][transformers.configuration_utils][INFO] - Model config BertConfig {
185
+ "architectures": [
186
+ "BertForSequenceClassification"
187
+ ],
188
+ "attention_probs_dropout_prob": 0.1,
189
+ "classifier_dropout": null,
190
+ "hidden_act": "gelu",
191
+ "hidden_dropout_prob": 0.1,
192
+ "hidden_size": 768,
193
+ "id2label": {
194
+ "0": 0,
195
+ "1": 40,
196
+ "2": 80,
197
+ "3": 120,
198
+ "4": 160,
199
+ "5": 200
200
+ },
201
+ "initializer_range": 0.02,
202
+ "intermediate_size": 3072,
203
+ "label2id": {
204
+ "0": 0,
205
+ "40": 1,
206
+ "80": 2,
207
+ "120": 3,
208
+ "160": 4,
209
+ "200": 5
210
+ },
211
+ "layer_norm_eps": 1e-12,
212
+ "max_position_embeddings": 512,
213
+ "model_type": "bert",
214
+ "num_attention_heads": 12,
215
+ "num_hidden_layers": 12,
216
+ "pad_token_id": 0,
217
+ "position_embedding_type": "absolute",
218
+ "torch_dtype": "float32",
219
+ "transformers_version": "4.53.1",
220
+ "type_vocab_size": 2,
221
+ "use_cache": true,
222
+ "vocab_size": 30522
223
+ }
224
+
225
+ [2025-07-10 00:58:00,510][transformers.modeling_utils][INFO] - loading weights file model.safetensors from cache at /tmp/models--kamel-usp--jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only/snapshots/c8b174c3e6521d94d4c8700c5ae1a12ea8a389b1/model.safetensors
226
+ [2025-07-10 00:58:00,511][transformers.modeling_utils][INFO] - Will use torch_dtype=torch.float32 as defined in model's config object
227
+ [2025-07-10 00:58:00,511][transformers.modeling_utils][INFO] - Instantiating BertForSequenceClassification model under default dtype torch.float32.
228
+ [2025-07-10 00:58:00,897][transformers.modeling_utils][INFO] - All model checkpoint weights were used when initializing BertForSequenceClassification.
229
+
230
+ [2025-07-10 00:58:00,897][transformers.modeling_utils][INFO] - All the weights of BertForSequenceClassification were initialized from the model checkpoint at kamel-usp/jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only.
231
+ If your task is similar to the task the model of the checkpoint was trained on, you can already use BertForSequenceClassification for predictions without further training.
232
+ [2025-07-10 00:58:00,906][transformers.training_args][INFO] - PyTorch: setting up devices
233
+ [2025-07-10 00:58:00,930][transformers.training_args][INFO] - The default value for the training argument `--report_to` will change in v5 (from all installed integrations to none). In v5, you will need to use `--report_to all` to get the same behavior as now. You should start updating your code and make this info disappear :-).
234
+ [2025-07-10 00:58:00,937][transformers.trainer][INFO] - You have loaded a model on multiple GPUs. `is_model_parallel` attribute will be force-set to `True` to avoid any unexpected behavior such as device placement mismatching.
235
+ [2025-07-10 00:58:00,963][transformers.trainer][INFO] - Using auto half precision backend
236
+ [2025-07-10 00:58:04,297][__main__][INFO] - Running inference on test dataset
237
+ [2025-07-10 00:58:04,298][transformers.trainer][INFO] - The following columns in the test set don't have a corresponding argument in `BertForSequenceClassification.forward` and have been ignored: supporting_text, grades, prompt, id_prompt, id, essay_year, essay_text, reference. If supporting_text, grades, prompt, id_prompt, id, essay_year, essay_text, reference are not expected by `BertForSequenceClassification.forward`, you can safely ignore this message.
238
+ [2025-07-10 00:58:04,307][transformers.trainer][INFO] -
239
+ ***** Running Prediction *****
240
+ [2025-07-10 00:58:04,307][transformers.trainer][INFO] - Num examples = 138
241
+ [2025-07-10 00:58:04,307][transformers.trainer][INFO] - Batch size = 16
242
+ [2025-07-10 00:58:05,176][__main__][INFO] - Inference results saved to jbcs2025_BERTugues-base-portuguese-cased-encoder_classification-C1-essay_only-encoder_classification-C1-essay_only_inference_results.jsonl
243
+ [2025-07-10 00:58:05,177][__main__][INFO] - Computing bootstrap confidence intervals for metrics: ['QWK', 'Macro_F1', 'Weighted_F1']
244
+ [2025-07-10 01:00:09,857][__main__][INFO] - Bootstrap CI results saved to bootstrap_confidence_intervals.csv
245
+ [2025-07-10 01:00:09,857][__main__][INFO] - Bootstrap Confidence Intervals (95%):
246
+ [2025-07-10 01:00:09,857][__main__][INFO] - QWK: 0.6118 [0.5156, 0.7026]
247
+ [2025-07-10 01:00:09,857][__main__][INFO] - Macro_F1: 0.4183 [0.3166, 0.5527]
248
+ [2025-07-10 01:00:09,857][__main__][INFO] - Weighted_F1: 0.5627 [0.4792, 0.6438]
249
+ [2025-07-10 01:00:09,857][__main__][INFO] - Inference results: {'accuracy': 0.5434782608695652, 'RMSE': 30.45547950507524, 'QWK': 0.6139860139860139, 'HDIV': 0.007246376811594235, 'Macro_F1': 0.38733766233766237, 'Micro_F1': 0.5434782608695652, 'Weighted_F1': 0.5620203065855239, 'TP_0': np.int64(0), 'TN_0': np.int64(137), 'FP_0': np.int64(0), 'FN_0': np.int64(1), 'TP_1': np.int64(0), 'TN_1': np.int64(138), 'FP_1': np.int64(0), 'FN_1': np.int64(0), 'TP_2': np.int64(7), 'TN_2': np.int64(109), 'FP_2': np.int64(19), 'FN_2': np.int64(3), 'TP_3': np.int64(35), 'TN_3': np.int64(61), 'FP_3': np.int64(11), 'FN_3': np.int64(31), 'TP_4': np.int64(28), 'TN_4': np.int64(67), 'FP_4': np.int64(20), 'FN_4': np.int64(23), 'TP_5': np.int64(5), 'TN_5': np.int64(115), 'FP_5': np.int64(13), 'FN_5': np.int64(5)}
250
+ [2025-07-10 01:00:09,858][__main__][INFO] - Inference experiment completed