juletxara commited on
Commit
980c3bd
·
1 Parent(s): 3ad2e74

add script, readme, dataset info and dummy data

Browse files
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ desktop.ini
2
+ *.lock
README.md ADDED
@@ -0,0 +1,273 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pretty_name: TyDi QA
3
+ annotations_creators:
4
+ - crowdsourced
5
+ language_creators:
6
+ - crowdsourced
7
+ languages:
8
+ - en
9
+ - ar
10
+ - bn
11
+ - fi
12
+ - id
13
+ - ja
14
+ - sw
15
+ - ko
16
+ - ru
17
+ - te
18
+ - th
19
+ licenses:
20
+ - apache-2.0
21
+ multilinguality:
22
+ - multilingual
23
+ size_categories:
24
+ - unknown
25
+ source_datasets:
26
+ - extended|wikipedia
27
+ task_categories:
28
+ - question-answering
29
+ task_ids:
30
+ - extractive-qa
31
+ paperswithcode_id: tydi-qa
32
+ ---
33
+
34
+ # Dataset Card for "tydiqa"
35
+
36
+ ## Table of Contents
37
+ - [Dataset Description](#dataset-description)
38
+ - [Dataset Summary](#dataset-summary)
39
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
40
+ - [Languages](#languages)
41
+ - [Dataset Structure](#dataset-structure)
42
+ - [Data Instances](#data-instances)
43
+ - [Data Fields](#data-fields)
44
+ - [Data Splits](#data-splits)
45
+ - [Dataset Creation](#dataset-creation)
46
+ - [Curation Rationale](#curation-rationale)
47
+ - [Source Data](#source-data)
48
+ - [Annotations](#annotations)
49
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
50
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
51
+ - [Social Impact of Dataset](#social-impact-of-dataset)
52
+ - [Discussion of Biases](#discussion-of-biases)
53
+ - [Other Known Limitations](#other-known-limitations)
54
+ - [Additional Information](#additional-information)
55
+ - [Dataset Curators](#dataset-curators)
56
+ - [Licensing Information](#licensing-information)
57
+ - [Citation Information](#citation-information)
58
+ - [Contributions](#contributions)
59
+
60
+ ## Dataset Description
61
+
62
+ - **Homepage:** [https://github.com/google-research-datasets/tydiqa](https://github.com/google-research-datasets/tydiqa)
63
+ - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
64
+ - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
65
+ - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
66
+ - **Size of downloaded dataset files:** 3726.74 MB
67
+ - **Size of the generated dataset:** 5812.92 MB
68
+ - **Total amount of disk used:** 9539.67 MB
69
+
70
+ ### Dataset Summary
71
+
72
+ TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.
73
+ The languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language
74
+ expresses -- such that we expect models performing well on this set to generalize across a large number of the languages
75
+ in the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic
76
+ information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but
77
+ don’t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without
78
+ the use of translation (unlike MLQA and XQuAD).
79
+
80
+ We also include "translate-train" and "translate-test" splits for each non-English languages from XTREME (Hu et al., 2020). These splits are the automatic translations from English to each target language used in the XTREME paper [https://arxiv.org/abs/2003.11080]. The "translate-train" split purposefully ignores the non-English TyDiQA-GoldP training data to simulate the transfer learning scenario where original-language data is not available and system builders must rely on labeled English data plus existing machine translation systems.
81
+
82
+ ### Supported Tasks and Leaderboards
83
+
84
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
85
+
86
+ ### Languages
87
+
88
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
89
+
90
+ ## Dataset Structure
91
+
92
+ ### Data Instances
93
+
94
+ #### primary_task
95
+
96
+ - **Size of downloaded dataset files:** 1863.37 MB
97
+ - **Size of the generated dataset:** 5757.59 MB
98
+ - **Total amount of disk used:** 7620.96 MB
99
+
100
+ An example of 'validation' looks as follows.
101
+ ```
102
+ This example was too long and was cropped:
103
+
104
+ {
105
+ "annotations": {
106
+ "minimal_answers_end_byte": [-1, -1, -1],
107
+ "minimal_answers_start_byte": [-1, -1, -1],
108
+ "passage_answer_candidate_index": [-1, -1, -1],
109
+ "yes_no_answer": ["NONE", "NONE", "NONE"]
110
+ },
111
+ "document_plaintext": "\"\\nรองศาสตราจารย์[1] หม่อมราชวงศ์สุขุมพันธุ์ บริพัตร (22 กันยายน 2495 -) ผู้ว่าราชการกรุงเทพมหานครคนที่ 15 อดีตรองหัวหน้าพรรคปร...",
112
+ "document_title": "หม่อมราชวงศ์สุขุมพันธุ์ บริพัตร",
113
+ "document_url": "\"https://th.wikipedia.org/wiki/%E0%B8%AB%E0%B8%A1%E0%B9%88%E0%B8%AD%E0%B8%A1%E0%B8%A3%E0%B8%B2%E0%B8%8A%E0%B8%A7%E0%B8%87%E0%B8%...",
114
+ "language": "thai",
115
+ "passage_answer_candidates": "{\"plaintext_end_byte\": [494, 1779, 2931, 3904, 4506, 5588, 6383, 7122, 8224, 9375, 10473, 12563, 15134, 17765, 19863, 21902, 229...",
116
+ "question_text": "\"หม่อมราชวงศ์สุขุมพันธุ์ บริพัตร เรียนจบจากที่ไหน ?\"..."
117
+ }
118
+ ```
119
+
120
+ #### secondary_task
121
+
122
+ - **Size of downloaded dataset files:** 1863.37 MB
123
+ - **Size of the generated dataset:** 55.34 MB
124
+ - **Total amount of disk used:** 1918.71 MB
125
+
126
+ An example of 'validation' looks as follows.
127
+ ```
128
+ This example was too long and was cropped:
129
+
130
+ {
131
+ "answers": {
132
+ "answer_start": [394],
133
+ "text": ["بطولتين"]
134
+ },
135
+ "context": "\"أقيمت البطولة 21 مرة، شارك في النهائيات 78 دولة، وعدد الفرق التي فازت بالبطولة حتى الآن 8 فرق، ويعد المنتخب البرازيلي الأكثر تت...",
136
+ "id": "arabic-2387335860751143628-1",
137
+ "question": "\"كم عدد مرات فوز الأوروغواي ببطولة كاس العالم لكرو القدم؟\"...",
138
+ "title": "قائمة نهائيات كأس العالم"
139
+ }
140
+ ```
141
+
142
+ ### Data Fields
143
+
144
+ The data fields are the same among all splits.
145
+
146
+ #### primary_task
147
+ - `passage_answer_candidates`: a dictionary feature containing:
148
+ - `plaintext_start_byte`: a `int32` feature.
149
+ - `plaintext_end_byte`: a `int32` feature.
150
+ - `question_text`: a `string` feature.
151
+ - `document_title`: a `string` feature.
152
+ - `language`: a `string` feature.
153
+ - `annotations`: a dictionary feature containing:
154
+ - `passage_answer_candidate_index`: a `int32` feature.
155
+ - `minimal_answers_start_byte`: a `int32` feature.
156
+ - `minimal_answers_end_byte`: a `int32` feature.
157
+ - `yes_no_answer`: a `string` feature.
158
+ - `document_plaintext`: a `string` feature.
159
+ - `document_url`: a `string` feature.
160
+
161
+ #### secondary_task
162
+ - `id`: a `string` feature.
163
+ - `title`: a `string` feature.
164
+ - `context`: a `string` feature.
165
+ - `question`: a `string` feature.
166
+ - `answers`: a dictionary feature containing:
167
+ - `text`: a `string` feature.
168
+ - `answer_start`: a `int32` feature.
169
+
170
+ ### Data Splits
171
+
172
+ | name | train | validation |
173
+ | -------------- | -----: | ---------: |
174
+ | primary_task | 166916 | 18670 |
175
+ | secondary_task | 49881 | 5077 |
176
+
177
+ ## Dataset Creation
178
+
179
+ ### Curation Rationale
180
+
181
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
182
+
183
+ ### Source Data
184
+
185
+ #### Initial Data Collection and Normalization
186
+
187
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
188
+
189
+ #### Who are the source language producers?
190
+
191
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
192
+
193
+ ### Annotations
194
+
195
+ #### Annotation process
196
+
197
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
198
+
199
+ #### Who are the annotators?
200
+
201
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
202
+
203
+ ### Personal and Sensitive Information
204
+
205
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
206
+
207
+ ## Considerations for Using the Data
208
+
209
+ ### Social Impact of Dataset
210
+
211
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
212
+
213
+ ### Discussion of Biases
214
+
215
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
216
+
217
+ ### Other Known Limitations
218
+
219
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
220
+
221
+ ## Additional Information
222
+
223
+ ### Dataset Curators
224
+
225
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
226
+
227
+ ### Licensing Information
228
+
229
+ [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
230
+
231
+ ### Citation Information
232
+
233
+ ```
234
+ @article{tydiqa,
235
+ title = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
236
+ author = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}
237
+ year = {2020},
238
+ journal = {Transactions of the Association for Computational Linguistics}
239
+ }
240
+
241
+
242
+
243
+
244
+
245
+ ```
246
+
247
+ ```
248
+ @inproceedings{ruder-etal-2021-xtreme,
249
+ title = "{XTREME}-{R}: Towards More Challenging and Nuanced Multilingual Evaluation",
250
+ author = "Ruder, Sebastian and
251
+ Constant, Noah and
252
+ Botha, Jan and
253
+ Siddhant, Aditya and
254
+ Firat, Orhan and
255
+ Fu, Jinlan and
256
+ Liu, Pengfei and
257
+ Hu, Junjie and
258
+ Garrette, Dan and
259
+ Neubig, Graham and
260
+ Johnson, Melvin",
261
+ booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
262
+ month = nov,
263
+ year = "2021",
264
+ address = "Online and Punta Cana, Dominican Republic",
265
+ publisher = "Association for Computational Linguistics",
266
+ url = "https://aclanthology.org/2021.emnlp-main.802",
267
+ doi = "10.18653/v1/2021.emnlp-main.802",
268
+ pages = "10215--10245",
269
+
270
+ }
271
+
272
+ }
273
+ ```
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"ar": {"description": "TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.\nThe languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language\nexpresses -- such that we expect models performing well on this set to generalize across a large number of the languages\nin the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic\ninformation-seeking task and avoid priming effects, questions are written by people who want to know the answer, but\ndon\u2019t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without\nthe use of translation (unlike MLQA and XQuAD).\n\nWe also include \"translate-train\" and \"translate-test\" splits for each non-English languages from XTREME (Hu et al., 2020). These splits are the automatic translations from English to each target language used in the XTREME paper [https://arxiv.org/abs/2003.11080]. The \"translate-train\" split purposefully ignores the non-English TyDiQA-GoldP training data to simulate the transfer learning scenario where original-language data is not available and system builders must rely on labeled English data plus existing machine translation systems.\n", "citation": "@article{tydiqa,\ntitle = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},\nauthor = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}\nyear = {2020},\njournal = {Transactions of the Association for Computational Linguistics}\n}\n", "homepage": "https://github.com/google-research-datasets/tydiqa", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "ty_di_qa", "config_name": "ar", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 15733091, "num_examples": 14805, "dataset_name": "ty_di_qa"}, "test": {"name": "test", "num_bytes": 996055, "num_examples": 921, "dataset_name": "ty_di_qa"}, "translate_train": {"name": "translate_train", "num_bytes": 3796109, "num_examples": 3661, "dataset_name": "ty_di_qa"}, "translate_test": {"name": "translate_test", "num_bytes": 1078536, "num_examples": 1594, "dataset_name": "ty_di_qa"}}, "download_checksums": {"https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/train/arabic-train.jsonl": {"num_bytes": 18354740, "checksum": "674aeb3cdc9202c4b7359a8df16d27f57153680f7d69a6bce54fffc102c33010"}, "https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/dev/arabic-dev.jsonl": {"num_bytes": 1230452, "checksum": "4f83dd49217fddca0cc9d3c5167146fbecf4dc075179e478ab19a2d1d4435e10"}, "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-train/tydiqa.translate.train.en-ar.json": {"num_bytes": 10341382, "checksum": "80afeb07f3794f8740d580ec2b27f44149e431ba36696ef86d175c2add6a53dd"}, "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-test/tydiqa.translate.test.ar-en.json": {"num_bytes": 1277232, "checksum": "5af382ecb05385bffa576bde8b5030d59fa3485105ae800067c32dd4eb804a37"}}, "download_size": 31203806, "post_processing_size": null, "dataset_size": 21603791, "size_in_bytes": 52807597}, "bn": {"description": "TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.\nThe languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language\nexpresses -- such that we expect models performing well on this set to generalize across a large number of the languages\nin the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic\ninformation-seeking task and avoid priming effects, questions are written by people who want to know the answer, but\ndon\u2019t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without\nthe use of translation (unlike MLQA and XQuAD).\n\nWe also include \"translate-train\" and \"translate-test\" splits for each non-English languages from XTREME (Hu et al., 2020). These splits are the automatic translations from English to each target language used in the XTREME paper [https://arxiv.org/abs/2003.11080]. The \"translate-train\" split purposefully ignores the non-English TyDiQA-GoldP training data to simulate the transfer learning scenario where original-language data is not available and system builders must rely on labeled English data plus existing machine translation systems.\n", "citation": "@article{tydiqa,\ntitle = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},\nauthor = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}\nyear = {2020},\njournal = {Transactions of the Association for Computational Linguistics}\n}\n", "homepage": "https://github.com/google-research-datasets/tydiqa", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "ty_di_qa", "config_name": "bn", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4516015, "num_examples": 2390, "dataset_name": "ty_di_qa"}, "test": {"name": "test", "num_bytes": 223512, "num_examples": 113, "dataset_name": "ty_di_qa"}, "translate_train": {"name": "translate_train", "num_bytes": 6300125, "num_examples": 3585, "dataset_name": "ty_di_qa"}, "translate_test": {"name": "translate_test", "num_bytes": 131609, "num_examples": 181, "dataset_name": "ty_di_qa"}}, "download_checksums": {"https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/train/bengali-train.jsonl": {"num_bytes": 4976496, "checksum": "cd9b920cc8565ec443d62b9e90252c820f8ea8f2a8516f411ae25a84468386b9"}, "https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/dev/bengali-dev.jsonl": {"num_bytes": 254180, "checksum": "a80de94ecd8cde2189f27ea812798aa43a8456f00351cae74924ad257aa02037"}, "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-train/tydiqa.translate.train.en-bn.json": {"num_bytes": 12416126, "checksum": "4cfbb849d550f69145789b291511c2a78320d96499c59062659148d8d4552754"}, "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-test/tydiqa.translate.test.bn-en.json": {"num_bytes": 153978, "checksum": "8b790e3bd7abdd6196a71383a25eeee20c0d48cb96decc04c3dde81cc84f8533"}}, "download_size": 17800780, "post_processing_size": null, "dataset_size": 11171261, "size_in_bytes": 28972041}, "fi": {"description": "TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.\nThe languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language\nexpresses -- such that we expect models performing well on this set to generalize across a large number of the languages\nin the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic\ninformation-seeking task and avoid priming effects, questions are written by people who want to know the answer, but\ndon\u2019t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without\nthe use of translation (unlike MLQA and XQuAD).\n\nWe also include \"translate-train\" and \"translate-test\" splits for each non-English languages from XTREME (Hu et al., 2020). These splits are the automatic translations from English to each target language used in the XTREME paper [https://arxiv.org/abs/2003.11080]. The \"translate-train\" split purposefully ignores the non-English TyDiQA-GoldP training data to simulate the transfer learning scenario where original-language data is not available and system builders must rely on labeled English data plus existing machine translation systems.\n", "citation": "@article{tydiqa,\ntitle = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},\nauthor = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}\nyear = {2020},\njournal = {Transactions of the Association for Computational Linguistics}\n}\n", "homepage": "https://github.com/google-research-datasets/tydiqa", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "ty_di_qa", "config_name": "fi", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4186282, "num_examples": 6855, "dataset_name": "ty_di_qa"}, "test": {"name": "test", "num_bytes": 557108, "num_examples": 782, "dataset_name": "ty_di_qa"}, "translate_train": {"name": "translate_train", "num_bytes": 2733693, "num_examples": 3670, "dataset_name": "ty_di_qa"}, "translate_test": {"name": "translate_test", "num_bytes": 756233, "num_examples": 1301, "dataset_name": "ty_di_qa"}}, "download_checksums": {"https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/train/finnish-train.jsonl": {"num_bytes": 5329446, "checksum": "e5eb49dd17070ce8776d4dd6d22bda6027e1029d02f5350b11436ad3f8e95d12"}, "https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/dev/finnish-dev.jsonl": {"num_bytes": 743895, "checksum": "8f5f7e27c3796c060d4b7e793cda571ef4023edaae21084bd641f204c84aac95"}, "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-train/tydiqa.translate.train.en-fi.json": {"num_bytes": 3452924, "checksum": "a6dd3caaa2118cd8975a1db288da90dc34d96a76ad5a1b7b0d9f521a2feb5726"}, "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-test/tydiqa.translate.test.fi-en.json": {"num_bytes": 920529, "checksum": "50235118f2f179e1ad5cb7fbbda532c0e0235bbd5d05af94bc2e65c537f8bbed"}}, "download_size": 10446794, "post_processing_size": null, "dataset_size": 8233316, "size_in_bytes": 18680110}, "id": {"description": "TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.\nThe languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language\nexpresses -- such that we expect models performing well on this set to generalize across a large number of the languages\nin the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic\ninformation-seeking task and avoid priming effects, questions are written by people who want to know the answer, but\ndon\u2019t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without\nthe use of translation (unlike MLQA and XQuAD).\n\nWe also include \"translate-train\" and \"translate-test\" splits for each non-English languages from XTREME (Hu et al., 2020). These splits are the automatic translations from English to each target language used in the XTREME paper [https://arxiv.org/abs/2003.11080]. The \"translate-train\" split purposefully ignores the non-English TyDiQA-GoldP training data to simulate the transfer learning scenario where original-language data is not available and system builders must rely on labeled English data plus existing machine translation systems.\n", "citation": "@article{tydiqa,\ntitle = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},\nauthor = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}\nyear = {2020},\njournal = {Transactions of the Association for Computational Linguistics}\n}\n", "homepage": "https://github.com/google-research-datasets/tydiqa", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "ty_di_qa", "config_name": "id", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 3868663, "num_examples": 5702, "dataset_name": "ty_di_qa"}, "test": {"name": "test", "num_bytes": 422761, "num_examples": 565, "dataset_name": "ty_di_qa"}, "translate_train": {"name": "translate_train", "num_bytes": 2636497, "num_examples": 3667, "dataset_name": "ty_di_qa"}, "translate_test": {"name": "translate_test", "num_bytes": 581099, "num_examples": 925, "dataset_name": "ty_di_qa"}}, "download_checksums": {"https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/train/indonesian-train.jsonl": {"num_bytes": 4837020, "checksum": "c959a3830b677b9aa18c88ba3dbbd4e4f50e06d3579951e2f0e987e629d8072b"}, "https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/dev/indonesian-dev.jsonl": {"num_bytes": 561052, "checksum": "711c7bcceb879560867801fcec71577bee68b0d06ffcc7bc168dd1a57c13ba71"}, "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-train/tydiqa.translate.train.en-id.json": {"num_bytes": 3054899, "checksum": "4342aa3beabba5b014f70dd0ccf9ca496ade85eae28c260032db6ad6a7ab22e6"}, "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-test/tydiqa.translate.test.id-en.json": {"num_bytes": 702384, "checksum": "21244c217eadfa0a47a8f8f3eb68fd46745b7f762d0f187bd667762f3458d1d0"}}, "download_size": 9155355, "post_processing_size": null, "dataset_size": 7509020, "size_in_bytes": 16664375}, "ko": {"description": "TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.\nThe languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language\nexpresses -- such that we expect models performing well on this set to generalize across a large number of the languages\nin the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic\ninformation-seeking task and avoid priming effects, questions are written by people who want to know the answer, but\ndon\u2019t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without\nthe use of translation (unlike MLQA and XQuAD).\n\nWe also include \"translate-train\" and \"translate-test\" splits for each non-English languages from XTREME (Hu et al., 2020). These splits are the automatic translations from English to each target language used in the XTREME paper [https://arxiv.org/abs/2003.11080]. The \"translate-train\" split purposefully ignores the non-English TyDiQA-GoldP training data to simulate the transfer learning scenario where original-language data is not available and system builders must rely on labeled English data plus existing machine translation systems.\n", "citation": "@article{tydiqa,\ntitle = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},\nauthor = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}\nyear = {2020},\njournal = {Transactions of the Association for Computational Linguistics}\n}\n", "homepage": "https://github.com/google-research-datasets/tydiqa", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "ty_di_qa", "config_name": "ko", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 218745, "num_examples": 276, "dataset_name": "ty_di_qa"}, "translate_train": {"name": "translate_train", "num_bytes": 2804022, "num_examples": 3607, "dataset_name": "ty_di_qa"}, "translate_test": {"name": "translate_test", "num_bytes": 250788, "num_examples": 411, "dataset_name": "ty_di_qa"}}, "download_checksums": {"https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/dev/korean-dev.jsonl": {"num_bytes": 284268, "checksum": "8fdeb7734d3dabb90f4597e9265886995b4d3678ec7d26c76b517e9ff3d3cd4c"}, "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-train/tydiqa.translate.train.en-ko.json": {"num_bytes": 5274729, "checksum": "e3b92339564a02095da6eb0641ca107a2ee38c53703158fb0eb0d3bec496ddfd"}, "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-test/tydiqa.translate.test.ko-en.json": {"num_bytes": 302394, "checksum": "9c22709cd9517b1f50591177e072b7d1e9eed56cd33b5a37ceb4137457e9b2a6"}}, "download_size": 5861391, "post_processing_size": null, "dataset_size": 3273555, "size_in_bytes": 9134946}, "ru": {"description": "TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.\nThe languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language\nexpresses -- such that we expect models performing well on this set to generalize across a large number of the languages\nin the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic\ninformation-seeking task and avoid priming effects, questions are written by people who want to know the answer, but\ndon\u2019t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without\nthe use of translation (unlike MLQA and XQuAD).\n\nWe also include \"translate-train\" and \"translate-test\" splits for each non-English languages from XTREME (Hu et al., 2020). These splits are the automatic translations from English to each target language used in the XTREME paper [https://arxiv.org/abs/2003.11080]. The \"translate-train\" split purposefully ignores the non-English TyDiQA-GoldP training data to simulate the transfer learning scenario where original-language data is not available and system builders must rely on labeled English data plus existing machine translation systems.\n", "citation": "@article{tydiqa,\ntitle = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},\nauthor = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}\nyear = {2020},\njournal = {Transactions of the Association for Computational Linguistics}\n}\n", "homepage": "https://github.com/google-research-datasets/tydiqa", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "ty_di_qa", "config_name": "ru", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 7793055, "num_examples": 6490, "dataset_name": "ty_di_qa"}, "test": {"name": "test", "num_bytes": 995262, "num_examples": 812, "dataset_name": "ty_di_qa"}, "translate_train": {"name": "translate_train", "num_bytes": 4179245, "num_examples": 3394, "dataset_name": "ty_di_qa"}, "translate_test": {"name": "translate_test", "num_bytes": 936798, "num_examples": 1437, "dataset_name": "ty_di_qa"}}, "download_checksums": {"https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/train/russian-train.jsonl": {"num_bytes": 9007696, "checksum": "f6eb7e3460ebb18ae1c2d1afb0a682b9674e308178d22a0463fe7d8ddaa282f5"}, "https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/dev/russian-dev.jsonl": {"num_bytes": 1210062, "checksum": "c5e18bed319cea27ab953b7a04d5f777c45fe43733590bb06c914d95dde9b6ff"}, "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-train/tydiqa.translate.train.en-ru.json": {"num_bytes": 11525665, "checksum": "d12fea5f5b54741e83288bba51dde29ad263863909f09336152aafc3ba51c34c"}, "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-test/tydiqa.translate.test.ru-en.json": {"num_bytes": 1119903, "checksum": "d9550dd86399386d8af3bd34df76716695ed6df729e0f085472acf87762cd758"}}, "download_size": 22863326, "post_processing_size": null, "dataset_size": 13904360, "size_in_bytes": 36767686}, "sw": {"description": "TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.\nThe languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language\nexpresses -- such that we expect models performing well on this set to generalize across a large number of the languages\nin the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic\ninformation-seeking task and avoid priming effects, questions are written by people who want to know the answer, but\ndon\u2019t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without\nthe use of translation (unlike MLQA and XQuAD).\n\nWe also include \"translate-train\" and \"translate-test\" splits for each non-English languages from XTREME (Hu et al., 2020). These splits are the automatic translations from English to each target language used in the XTREME paper [https://arxiv.org/abs/2003.11080]. The \"translate-train\" split purposefully ignores the non-English TyDiQA-GoldP training data to simulate the transfer learning scenario where original-language data is not available and system builders must rely on labeled English data plus existing machine translation systems.\n", "citation": "@article{tydiqa,\ntitle = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},\nauthor = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}\nyear = {2020},\njournal = {Transactions of the Association for Computational Linguistics}\n}\n", "homepage": "https://github.com/google-research-datasets/tydiqa", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "ty_di_qa", "config_name": "sw", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1216430, "num_examples": 2755, "dataset_name": "ty_di_qa"}, "test": {"name": "test", "num_bytes": 220448, "num_examples": 499, "dataset_name": "ty_di_qa"}, "translate_train": {"name": "translate_train", "num_bytes": 2620747, "num_examples": 3622, "dataset_name": "ty_di_qa"}, "translate_test": {"name": "translate_test", "num_bytes": 303729, "num_examples": 820, "dataset_name": "ty_di_qa"}}, "download_checksums": {"https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/train/swahili-train.jsonl": {"num_bytes": 1674213, "checksum": "689f69402351bbb9b65910200095eba6b28142e4df1a63d2e7c67095ba36db74"}, "https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/dev/swahili-dev.jsonl": {"num_bytes": 338358, "checksum": "25bc379190bc8040a9e2631322ecc3ae97940734f30f1f58bd452f0d57e808f0"}, "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-train/tydiqa.translate.train.en-sw.json": {"num_bytes": 3033277, "checksum": "791eca4d59c67827108997d4a5b4949055cd2e358ff8417d4d82081f960cc692"}, "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-test/tydiqa.translate.test.sw-en.json": {"num_bytes": 405346, "checksum": "0e44caac71cd4f2b446274219ce039109dfbcaab7458e225d48fb556251e23bc"}}, "download_size": 5451194, "post_processing_size": null, "dataset_size": 4361354, "size_in_bytes": 9812548}, "te": {"description": "TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.\nThe languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language\nexpresses -- such that we expect models performing well on this set to generalize across a large number of the languages\nin the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic\ninformation-seeking task and avoid priming effects, questions are written by people who want to know the answer, but\ndon\u2019t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without\nthe use of translation (unlike MLQA and XQuAD).\n\nWe also include \"translate-train\" and \"translate-test\" splits for each non-English languages from XTREME (Hu et al., 2020). These splits are the automatic translations from English to each target language used in the XTREME paper [https://arxiv.org/abs/2003.11080]. The \"translate-train\" split purposefully ignores the non-English TyDiQA-GoldP training data to simulate the transfer learning scenario where original-language data is not available and system builders must rely on labeled English data plus existing machine translation systems.\n", "citation": "@article{tydiqa,\ntitle = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},\nauthor = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}\nyear = {2020},\njournal = {Transactions of the Association for Computational Linguistics}\n}\n", "homepage": "https://github.com/google-research-datasets/tydiqa", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "ty_di_qa", "config_name": "te", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 9008236, "num_examples": 5563, "dataset_name": "ty_di_qa"}, "test": {"name": "test", "num_bytes": 986265, "num_examples": 669, "dataset_name": "ty_di_qa"}, "translate_train": {"name": "translate_train", "num_bytes": 6470212, "num_examples": 3658, "dataset_name": "ty_di_qa"}, "translate_test": {"name": "translate_test", "num_bytes": 692566, "num_examples": 1135, "dataset_name": "ty_di_qa"}}, "download_checksums": {"https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/train/telugu-train.jsonl": {"num_bytes": 10072178, "checksum": "d2af4ea2595b590a087694bf3afcb0767d18ebcc823a16bc24e3b96eb4aa10af"}, "https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/dev/telugu-dev.jsonl": {"num_bytes": 1169646, "checksum": "773077c8232407923ae9936a4fcfef919efd307a8c8227a5c89a97b9f4d79aba"}, "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-train/tydiqa.translate.train.en-te.json": {"num_bytes": 12746941, "checksum": "a86908174a36da1d0d9ffa223900159dafbda299a1b13be7721a2822bd5a69e5"}, "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-test/tydiqa.translate.test.te-en.json": {"num_bytes": 829082, "checksum": "c9a617a091562eab5e03bcc505a552fc6d6e4794c8c58d680eda6549698541b3"}}, "download_size": 24817847, "post_processing_size": null, "dataset_size": 17157279, "size_in_bytes": 41975126}, "en": {"description": "TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.\nThe languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language\nexpresses -- such that we expect models performing well on this set to generalize across a large number of the languages\nin the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic\ninformation-seeking task and avoid priming effects, questions are written by people who want to know the answer, but\ndon\u2019t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without\nthe use of translation (unlike MLQA and XQuAD).\n\nWe also include \"translate-train\" and \"translate-test\" splits for each non-English languages from XTREME (Hu et al., 2020). These splits are the automatic translations from English to each target language used in the XTREME paper [https://arxiv.org/abs/2003.11080]. The \"translate-train\" split purposefully ignores the non-English TyDiQA-GoldP training data to simulate the transfer learning scenario where original-language data is not available and system builders must rely on labeled English data plus existing machine translation systems.\n", "citation": "@article{tydiqa,\ntitle = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},\nauthor = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}\nyear = {2020},\njournal = {Transactions of the Association for Computational Linguistics}\n}\n", "homepage": "https://github.com/google-research-datasets/tydiqa", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": [{"task": "question-answering-extractive", "question_column": "question", "context_column": "context", "answers_column": "answers"}], "builder_name": "ty_di_qa", "config_name": "en", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2618156, "num_examples": 3696, "dataset_name": "ty_di_qa"}, "test": {"name": "test", "num_bytes": 343810, "num_examples": 440, "dataset_name": "ty_di_qa"}}, "download_checksums": {"https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/train/english-train.jsonl": {"num_bytes": 3247982, "checksum": "88fe80b0766db187173e36815ec06b6f156d5f5411082e0b19151c8ba7f17ddb"}, "https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/dev/english-dev.jsonl": {"num_bytes": 448090, "checksum": "c98e0cb9d0fda7351d9a5fe61f1d25feaa4f035c316feeba522a6ae97dfaf18a"}}, "download_size": 3696072, "post_processing_size": null, "dataset_size": 2961966, "size_in_bytes": 6658038}}
dummy/ar/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:402e0a7bf0a29f21be9803a39d23d07c72165cdc558cf51019b798ba9c27751e
3
+ size 7916
dummy/bn/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8214dd99e07d9c2e052c9fe427b1569e0a7f68e42bfea980cf9d7598ef1ac0d
3
+ size 9718
dummy/en/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6751159762571ab1ed0f855898863d5b5d3a752eaba2b7bb63629eb92f85b765
3
+ size 4074
dummy/fi/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1bd0a7628cb7f834b52c54266c3480fcb299bfb83be6d89d10b1aea01d98a724
3
+ size 6934
dummy/id/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46f4ddad708d0b102f4193099a75c4395c26d31fe7885e174a8af8782357be9e
3
+ size 7682
dummy/ko/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e21a2d0e59e3fbb6f1897799a2d5db8daef621448c8360f5fb257670c1f3453a
3
+ size 6530
dummy/ru/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96d03b1b879a918e0347fbbde1393b9e34a155d19ddb4da3f4b19fa89e1886b7
3
+ size 9831
dummy/sw/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3366dd4657dbd8300eb24b31a00fea424e6d50a5e0acadae2580f3c417d82d8
3
+ size 6233
dummy/te/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d6835616c18a79e2d3a19ce17bfda13b589c00e901962ac49f9021ade784973
3
+ size 8443
tydiqa_xtreme.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import textwrap
3
+
4
+ import datasets
5
+ from datasets.tasks import QuestionAnsweringExtractive
6
+
7
+ # TODO(tydiqa): BibTeX citation
8
+ _CITATION = """\
9
+ @article{tydiqa,
10
+ title = {TyDi QA: A Benchmark for Information-Seeking Question Answering in Typologically Diverse Languages},
11
+ author = {Jonathan H. Clark and Eunsol Choi and Michael Collins and Dan Garrette and Tom Kwiatkowski and Vitaly Nikolaev and Jennimaria Palomaki}
12
+ year = {2020},
13
+ journal = {Transactions of the Association for Computational Linguistics}
14
+ }
15
+ """
16
+
17
+ # TODO(tydiqa):
18
+ _DESCRIPTION = """\
19
+ TyDi QA is a question answering dataset covering 11 typologically diverse languages with 204K question-answer pairs.
20
+ The languages of TyDi QA are diverse with regard to their typology -- the set of linguistic features that each language
21
+ expresses -- such that we expect models performing well on this set to generalize across a large number of the languages
22
+ in the world. It contains language phenomena that would not be found in English-only corpora. To provide a realistic
23
+ information-seeking task and avoid priming effects, questions are written by people who want to know the answer, but
24
+ don’t know the answer yet, (unlike SQuAD and its descendents) and the data is collected directly in each language without
25
+ the use of translation (unlike MLQA and XQuAD).
26
+
27
+ We also include "translate-train" and "translate-test" splits for each non-English languages from XTREME (Hu et al., 2020). These splits are the automatic translations from English to each target language used in the XTREME paper [https://arxiv.org/abs/2003.11080]. The "translate-train" split purposefully ignores the non-English TyDiQA-GoldP training data to simulate the transfer learning scenario where original-language data is not available and system builders must rely on labeled English data plus existing machine translation systems.
28
+ """
29
+
30
+ _LANG = {
31
+ "ar": "arabic",
32
+ "bn": "bengali",
33
+ "en": "english",
34
+ "fi": "finnish",
35
+ "id": "indonesian",
36
+ "ko": "korean",
37
+ "ru": "russian",
38
+ "sw": "swahili",
39
+ "te": "telugu",
40
+ }
41
+
42
+ _URL_FORMAT = "https://huggingface.co/datasets/khalidalt/tydiqa-goldp/resolve/main/{split}/{lang}-{split}.jsonl"
43
+ _TRANSLATE_TRAIN_URL_FORMAT = "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-train/tydiqa.translate.train.en-{lang}.json"
44
+ _TRANSLATE_TEST_URL_FORMAT = "https://storage.googleapis.com/xtreme_translations/TyDiQA-GoldP/translate-test/tydiqa.translate.test.{lang}-en.json"
45
+
46
+ _VERSION = datasets.Version("1.1.0", "")
47
+
48
+
49
+ class TyDiQAConfig(datasets.BuilderConfig):
50
+ """BuilderConfig for TydiQa."""
51
+
52
+ def __init__(self, lang, **kwargs):
53
+ """
54
+
55
+ Args:
56
+ lang: string, language for the input text
57
+ **kwargs: keyword arguments forwarded to super.
58
+ """
59
+ super(TyDiQAConfig, self).__init__(version=_VERSION, **kwargs)
60
+ self.lang = lang
61
+
62
+ class TyDiQA(datasets.GeneratorBasedBuilder):
63
+ """TyDi QA: Information-Seeking QA in Typologically Diverse Languages."""
64
+
65
+ BUILDER_CONFIGS = [
66
+ TyDiQAConfig(
67
+ name=lang,
68
+ lang=lang,
69
+ description=f"TyDiQA '{lang}' train and test splits, with machine-translated "
70
+ "translate-train/translate-test splits "
71
+ "from XTREME (Hu et al., 2020).",
72
+ ) for lang in _LANG if lang != "en"
73
+ ] + [
74
+ TyDiQAConfig(
75
+ name="en",
76
+ lang="en",
77
+ description="TyDiQA 'en' train and test splits.",
78
+ )
79
+ ]
80
+
81
+
82
+ def _info(self):
83
+ # TODO(tydiqa): Specifies the datasets.DatasetInfo object
84
+
85
+ return datasets.DatasetInfo(
86
+ description=_DESCRIPTION,
87
+ features=datasets.Features(
88
+ {
89
+ "id": datasets.Value("string"),
90
+ "context": datasets.Value("string"),
91
+ "question": datasets.Value("string"),
92
+ "answers": datasets.features.Sequence(
93
+ {
94
+ "text": datasets.Value("string"),
95
+ "answer_start": datasets.Value("int32"),
96
+ }
97
+ ),
98
+ }
99
+ ),
100
+ # No default supervised_keys (as we have to pass both question
101
+ # and context as input).
102
+ supervised_keys=None,
103
+ homepage="https://github.com/google-research-datasets/tydiqa",
104
+ citation=_CITATION,
105
+ task_templates=[
106
+ QuestionAnsweringExtractive(
107
+ question_column="question", context_column="context", answers_column="answers"
108
+ )
109
+ ],
110
+ )
111
+
112
+ def _split_generators(self, dl_manager):
113
+ """Returns SplitGenerators."""
114
+ # TODO(tydiqa): Downloads the data and defines the splits
115
+ # dl_manager is a datasets.download.DownloadManager that can be used to
116
+ # download and extract URLs
117
+ lang = self.config.lang
118
+
119
+ if lang == "en":
120
+ filepaths = dl_manager.download_and_extract({
121
+ "train": _URL_FORMAT.format(split="train", lang=_LANG[lang]),
122
+ "test": _URL_FORMAT.format(split="dev", lang=_LANG[lang])
123
+ })
124
+ elif lang == "ko":
125
+ filepaths = dl_manager.download_and_extract({
126
+ "test": _URL_FORMAT.format(split="dev", lang=_LANG[lang]),
127
+ "translate_train": _TRANSLATE_TRAIN_URL_FORMAT.format(lang=lang),
128
+ "translate_test": _TRANSLATE_TEST_URL_FORMAT.format(lang=lang),
129
+ })
130
+ else:
131
+ filepaths = dl_manager.download_and_extract({
132
+ "train": _URL_FORMAT.format(split="train", lang=_LANG[lang]),
133
+ "test": _URL_FORMAT.format(split="dev", lang=_LANG[lang]),
134
+ "translate_train": _TRANSLATE_TRAIN_URL_FORMAT.format(lang=lang),
135
+ "translate_test": _TRANSLATE_TEST_URL_FORMAT.format(lang=lang),
136
+ })
137
+
138
+ return [
139
+ datasets.SplitGenerator(
140
+ name=split,
141
+ # These kwargs will be passed to _generate_examples
142
+ gen_kwargs={"filepath": path},
143
+ ) for split, path in filepaths.items()
144
+ ]
145
+
146
+ def _generate_examples(self, filepath):
147
+ """Yields examples."""
148
+ # TODO(tydiqa): Yields (key, example) tuples from the dataset
149
+ with open(filepath, encoding="utf-8") as f:
150
+ num_lines = sum(1 for line in f)
151
+ with open(filepath, encoding="utf-8") as f:
152
+ if num_lines == 1:
153
+ data = json.load(f)
154
+ id_ = 0
155
+ for article in data["data"]:
156
+ for paragraph in article["paragraphs"]:
157
+ context = paragraph["context"].strip()
158
+ for qa in paragraph["qas"]:
159
+ question = qa["question"].strip()
160
+
161
+ answer_starts = [answer["answer_start"] for answer in qa["answers"]]
162
+ answers = [answer["text"].strip() for answer in qa["answers"]]
163
+
164
+ # Features currently used are "context", "question", and "answers".
165
+ # Others are extracted here for the ease of future expansions.
166
+ yield id_, {
167
+ "context": context,
168
+ "question": question,
169
+ "id": id_,
170
+ "answers": {
171
+ "answer_start": answer_starts,
172
+ "text": answers,
173
+ },
174
+ }
175
+ id_ += 1
176
+ else:
177
+ id_ = 0
178
+ for line in f:
179
+ data = json.loads(line)
180
+
181
+ context = data["passage_text"].strip()
182
+ question = data["question_text"].strip()
183
+ answer_starts = [answer["start_byte"] for answer in data["answers"]]
184
+ answers = [answer["text"].strip() for answer in data["answers"]]
185
+
186
+ yield id_, {
187
+ "context": context,
188
+ "question": question,
189
+ "id": id_,
190
+ "answers": {
191
+ "answer_start": answer_starts,
192
+ "text": answers,
193
+ },
194
+ }
195
+ id_ += 1