GRES / src /data_scripts /trainvalsplit.py
jquenum's picture
Upload folder using huggingface_hub
16aa0e5 verified
"""
trainvalsplit.py is a script that splits an MS COCO formatted dataset into train and val
partitions. For sample usage, run from command line:
Example:
python trainvalsplit.py --help
"""
# Standard Library imports:
import argparse
import sys
import subprocess
from pathlib import Path
# h4dlib imports:
# import _import_helper # pylint: disable=unused-import # noqa: F401
# PROJ_ROOT = subprocess.check_output(["git", "rev-parse", "--show-toplevel"]).strip().decode("utf-8")
try:
PROJ_ROOT = subprocess.check_output(["git", "rev-parse", "--show-toplevel"]).strip().decode("utf-8")
except subprocess.CalledProcessError:
print("Error: Not inside a Git repository.")
PROJ_ROOT = None
print("PROJ ROOOOOOT: ", PROJ_ROOT)
h4dlib_path = (Path(PROJ_ROOT) / "src/utilities/h4dlib").resolve()
print(h4dlib_path)
assert h4dlib_path.exists()
if str(h4dlib_path) not in sys.path:
sys.path.append(str(h4dlib_path))
from h4dlib.data.cocohelpers import CocoClassDistHelper, CocoJsonBuilder, split
# Used to check the results of the split--all classes in both splits
# should have at least this many annotations:
_CLASS_COUNT_THRESHOLD = 0
def create_split(
input_json: Path,
output_path: Path,
output_json_name: str,
seed: int,
test_size: float = 0.2,
) -> CocoClassDistHelper:
"""
Creates train/val split for the coco-formatted dataset defined by input_json.
params:
input_json: full path or Path object to coco-formatted input json file.
output_path: full path or Path object to directory where outputted json will be
saved. output_json_name:
"""
coco = CocoClassDistHelper(input_json)
train_img_ids, val_img_ids = split(
coco.img_ids, test_size=test_size, random_state=seed
)
train_counts, train_percents = coco.get_class_dist(train_img_ids)
val_counts, val_percents = coco.get_class_dist(val_img_ids)
# Generate coco-formatted json's for train and val:
def generate_coco_json(coco, split_type, img_ids):
coco_builder = CocoJsonBuilder(
coco.cats,
dest_path=output_path,
dest_name=output_json_name.format(split_type),
)
for idx, img_id in enumerate(img_ids):
coco_builder.add_image(coco.imgs[img_id], coco.imgToAnns[img_id])
coco_builder.save()
generate_coco_json(coco, "train", train_img_ids)
generate_coco_json(coco, "val", val_img_ids)
return coco
def verify_output(
original_coco: CocoClassDistHelper, output_path: Path, output_json_name: str
) -> None:
"""
Verify that the outputted json's for the train/val split can be loaded, and
have correct number of annotations, and minimum count for each class meets
our threshold.
"""
def verify_split_part(output_json_name, split_part):
json_path = output_path / output_json_name.format(split_part)
print(f"Checking if we can load json via coco api:{json_path}...")
coco = CocoClassDistHelper(json_path)
counts, _ = coco.get_class_dist()
assert min(counts.values()) >= _CLASS_COUNT_THRESHOLD, (
f"min class count ({min(counts.values())}) is "
+ f"lower than threshold of {_CLASS_COUNT_THRESHOLD}"
)
print(f"{split_part} class counts: ", counts)
return coco
train_coco = verify_split_part(output_json_name, "train")
val_coco = verify_split_part(output_json_name, "val")
assert len(original_coco.imgs) == len(train_coco.imgs) + len(
val_coco.imgs
), "Num Images in original data should equal sum of imgs in splits."
assert len(original_coco.anns) == len(train_coco.anns) + len(
val_coco.anns
), "Num annotations in original data should equal sum of those in splits."
def main(args: argparse.Namespace):
"""
Creates train/val split and verifies output.
params:
opt: command line options (there are none right now)
output_json_name: format-string of output file names, with a '{}'
style placeholder where split type will be inserted.
"""
input_json = Path(args.input_json).resolve()
assert input_json.exists(), str(input_json)
assert input_json.is_file(), str(input_json)
output_path = Path(args.output_dir).resolve()
assert output_path.is_dir(), str(output_path)
output_path.mkdir(exist_ok=True, parents=True)
output_json_name = input_json.stem.replace("_full", "") + "_{}.json"
original_coco = create_split(
input_json, output_path, output_json_name, args.seed, args.val_split_size
)
verify_output(original_coco, output_path, output_json_name)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--val_split_size", type=float, default=0.2)
parser.add_argument(
"--seed",
type=int,
help="Random seed. Use split_search.py to find a seed that generates a good split",
)
parser.add_argument("--input_json", type=Path, help="Input json path")
parser.add_argument("--output_dir", type=Path, help="Path to output json")
args = parser.parse_args()
main(args)