|
""" |
|
trainvalsplit.py is a script that splits an MS COCO formatted dataset into train and val |
|
partitions. For sample usage, run from command line: |
|
|
|
Example: |
|
python trainvalsplit.py --help |
|
""" |
|
|
|
|
|
import argparse |
|
import sys |
|
import subprocess |
|
from pathlib import Path |
|
|
|
|
|
|
|
|
|
try: |
|
PROJ_ROOT = subprocess.check_output(["git", "rev-parse", "--show-toplevel"]).strip().decode("utf-8") |
|
except subprocess.CalledProcessError: |
|
print("Error: Not inside a Git repository.") |
|
PROJ_ROOT = None |
|
|
|
print("PROJ ROOOOOOT: ", PROJ_ROOT) |
|
h4dlib_path = (Path(PROJ_ROOT) / "src/utilities/h4dlib").resolve() |
|
print(h4dlib_path) |
|
assert h4dlib_path.exists() |
|
if str(h4dlib_path) not in sys.path: |
|
sys.path.append(str(h4dlib_path)) |
|
|
|
|
|
from h4dlib.data.cocohelpers import CocoClassDistHelper, CocoJsonBuilder, split |
|
|
|
|
|
|
|
_CLASS_COUNT_THRESHOLD = 0 |
|
|
|
|
|
def create_split( |
|
input_json: Path, |
|
output_path: Path, |
|
output_json_name: str, |
|
seed: int, |
|
test_size: float = 0.2, |
|
) -> CocoClassDistHelper: |
|
""" |
|
Creates train/val split for the coco-formatted dataset defined by input_json. |
|
|
|
params: |
|
input_json: full path or Path object to coco-formatted input json file. |
|
output_path: full path or Path object to directory where outputted json will be |
|
saved. output_json_name: |
|
""" |
|
coco = CocoClassDistHelper(input_json) |
|
train_img_ids, val_img_ids = split( |
|
coco.img_ids, test_size=test_size, random_state=seed |
|
) |
|
train_counts, train_percents = coco.get_class_dist(train_img_ids) |
|
val_counts, val_percents = coco.get_class_dist(val_img_ids) |
|
|
|
|
|
def generate_coco_json(coco, split_type, img_ids): |
|
coco_builder = CocoJsonBuilder( |
|
coco.cats, |
|
dest_path=output_path, |
|
dest_name=output_json_name.format(split_type), |
|
) |
|
for idx, img_id in enumerate(img_ids): |
|
coco_builder.add_image(coco.imgs[img_id], coco.imgToAnns[img_id]) |
|
coco_builder.save() |
|
|
|
generate_coco_json(coco, "train", train_img_ids) |
|
generate_coco_json(coco, "val", val_img_ids) |
|
return coco |
|
|
|
|
|
def verify_output( |
|
original_coco: CocoClassDistHelper, output_path: Path, output_json_name: str |
|
) -> None: |
|
""" |
|
Verify that the outputted json's for the train/val split can be loaded, and |
|
have correct number of annotations, and minimum count for each class meets |
|
our threshold. |
|
""" |
|
|
|
def verify_split_part(output_json_name, split_part): |
|
json_path = output_path / output_json_name.format(split_part) |
|
print(f"Checking if we can load json via coco api:{json_path}...") |
|
coco = CocoClassDistHelper(json_path) |
|
counts, _ = coco.get_class_dist() |
|
assert min(counts.values()) >= _CLASS_COUNT_THRESHOLD, ( |
|
f"min class count ({min(counts.values())}) is " |
|
+ f"lower than threshold of {_CLASS_COUNT_THRESHOLD}" |
|
) |
|
print(f"{split_part} class counts: ", counts) |
|
return coco |
|
|
|
train_coco = verify_split_part(output_json_name, "train") |
|
val_coco = verify_split_part(output_json_name, "val") |
|
assert len(original_coco.imgs) == len(train_coco.imgs) + len( |
|
val_coco.imgs |
|
), "Num Images in original data should equal sum of imgs in splits." |
|
assert len(original_coco.anns) == len(train_coco.anns) + len( |
|
val_coco.anns |
|
), "Num annotations in original data should equal sum of those in splits." |
|
|
|
|
|
def main(args: argparse.Namespace): |
|
""" |
|
Creates train/val split and verifies output. |
|
params: |
|
opt: command line options (there are none right now) |
|
output_json_name: format-string of output file names, with a '{}' |
|
style placeholder where split type will be inserted. |
|
""" |
|
input_json = Path(args.input_json).resolve() |
|
assert input_json.exists(), str(input_json) |
|
assert input_json.is_file(), str(input_json) |
|
|
|
output_path = Path(args.output_dir).resolve() |
|
assert output_path.is_dir(), str(output_path) |
|
output_path.mkdir(exist_ok=True, parents=True) |
|
output_json_name = input_json.stem.replace("_full", "") + "_{}.json" |
|
original_coco = create_split( |
|
input_json, output_path, output_json_name, args.seed, args.val_split_size |
|
) |
|
verify_output(original_coco, output_path, output_json_name) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--val_split_size", type=float, default=0.2) |
|
parser.add_argument( |
|
"--seed", |
|
type=int, |
|
help="Random seed. Use split_search.py to find a seed that generates a good split", |
|
) |
|
parser.add_argument("--input_json", type=Path, help="Input json path") |
|
parser.add_argument("--output_dir", type=Path, help="Path to output json") |
|
args = parser.parse_args() |
|
main(args) |
|
|