""" trainvalsplit.py is a script that splits an MS COCO formatted dataset into train and val partitions. For sample usage, run from command line: Example: python trainvalsplit.py --help """ # Standard Library imports: import argparse import sys import subprocess from pathlib import Path # h4dlib imports: # import _import_helper # pylint: disable=unused-import # noqa: F401 # PROJ_ROOT = subprocess.check_output(["git", "rev-parse", "--show-toplevel"]).strip().decode("utf-8") try: PROJ_ROOT = subprocess.check_output(["git", "rev-parse", "--show-toplevel"]).strip().decode("utf-8") except subprocess.CalledProcessError: print("Error: Not inside a Git repository.") PROJ_ROOT = None print("PROJ ROOOOOOT: ", PROJ_ROOT) h4dlib_path = (Path(PROJ_ROOT) / "src/utilities/h4dlib").resolve() print(h4dlib_path) assert h4dlib_path.exists() if str(h4dlib_path) not in sys.path: sys.path.append(str(h4dlib_path)) from h4dlib.data.cocohelpers import CocoClassDistHelper, CocoJsonBuilder, split # Used to check the results of the split--all classes in both splits # should have at least this many annotations: _CLASS_COUNT_THRESHOLD = 0 def create_split( input_json: Path, output_path: Path, output_json_name: str, seed: int, test_size: float = 0.2, ) -> CocoClassDistHelper: """ Creates train/val split for the coco-formatted dataset defined by input_json. params: input_json: full path or Path object to coco-formatted input json file. output_path: full path or Path object to directory where outputted json will be saved. output_json_name: """ coco = CocoClassDistHelper(input_json) train_img_ids, val_img_ids = split( coco.img_ids, test_size=test_size, random_state=seed ) train_counts, train_percents = coco.get_class_dist(train_img_ids) val_counts, val_percents = coco.get_class_dist(val_img_ids) # Generate coco-formatted json's for train and val: def generate_coco_json(coco, split_type, img_ids): coco_builder = CocoJsonBuilder( coco.cats, dest_path=output_path, dest_name=output_json_name.format(split_type), ) for idx, img_id in enumerate(img_ids): coco_builder.add_image(coco.imgs[img_id], coco.imgToAnns[img_id]) coco_builder.save() generate_coco_json(coco, "train", train_img_ids) generate_coco_json(coco, "val", val_img_ids) return coco def verify_output( original_coco: CocoClassDistHelper, output_path: Path, output_json_name: str ) -> None: """ Verify that the outputted json's for the train/val split can be loaded, and have correct number of annotations, and minimum count for each class meets our threshold. """ def verify_split_part(output_json_name, split_part): json_path = output_path / output_json_name.format(split_part) print(f"Checking if we can load json via coco api:{json_path}...") coco = CocoClassDistHelper(json_path) counts, _ = coco.get_class_dist() assert min(counts.values()) >= _CLASS_COUNT_THRESHOLD, ( f"min class count ({min(counts.values())}) is " + f"lower than threshold of {_CLASS_COUNT_THRESHOLD}" ) print(f"{split_part} class counts: ", counts) return coco train_coco = verify_split_part(output_json_name, "train") val_coco = verify_split_part(output_json_name, "val") assert len(original_coco.imgs) == len(train_coco.imgs) + len( val_coco.imgs ), "Num Images in original data should equal sum of imgs in splits." assert len(original_coco.anns) == len(train_coco.anns) + len( val_coco.anns ), "Num annotations in original data should equal sum of those in splits." def main(args: argparse.Namespace): """ Creates train/val split and verifies output. params: opt: command line options (there are none right now) output_json_name: format-string of output file names, with a '{}' style placeholder where split type will be inserted. """ input_json = Path(args.input_json).resolve() assert input_json.exists(), str(input_json) assert input_json.is_file(), str(input_json) output_path = Path(args.output_dir).resolve() assert output_path.is_dir(), str(output_path) output_path.mkdir(exist_ok=True, parents=True) output_json_name = input_json.stem.replace("_full", "") + "_{}.json" original_coco = create_split( input_json, output_path, output_json_name, args.seed, args.val_split_size ) verify_output(original_coco, output_path, output_json_name) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--val_split_size", type=float, default=0.2) parser.add_argument( "--seed", type=int, help="Random seed. Use split_search.py to find a seed that generates a good split", ) parser.add_argument("--input_json", type=Path, help="Input json path") parser.add_argument("--output_dir", type=Path, help="Path to output json") args = parser.parse_args() main(args)