dataset_info:
features:
- name: pid
dtype: int64
- name: question
dtype: string
- name: decoded_image
dtype: image
- name: image
dtype: string
- name: answer
dtype: string
- name: task
dtype: string
- name: category
dtype: string
- name: complexity
dtype: int64
splits:
- name: GRAB
num_bytes: 466596459.9
num_examples: 2170
download_size: 406793109
dataset_size: 466596459.9
configs:
- config_name: default
data_files:
- split: GRAB
path: data/GRAB-*
license: mit
GRAB: A Challenging GRaph Analysis Benchmark for Large Multimodal Models
Dataset Description
- Homepage: https://grab-benchmark.github.io
- Paper: GRAB: A Challenging GRaph Analysis Benchmark for Large Multimodal Models
- Repository GRAB
- Leaderboard https://grab-benchmark.github.io
Dataset Summary
Large multimodal models (LMMs) have exhibited proficiencies across many visual tasks. Although numerous benchmarks exist to evaluate model performance, they increasingly have insufficient headroom and are unfit to evaluate the next generation of frontier LMMs.
To overcome this, we present GRAB, a challenging benchmark focused on the tasks human analysts might typically perform when interpreting figures. Such tasks include estimating the mean, intercepts or correlations of functions and data series and performing transforms.
We evaluate a suite of 20 LMMs on GRAB, finding it to be a challenging benchmark, with the current best model scoring just 21.7%.
Example usage
from datasets import load_dataset
# load dataset
grab_dataset = load_dataset("jonathan-roberts1/GRAB", split='GRAB')
"""
Dataset({
features: ['pid', 'question', 'decoded_image', 'image', 'answer', 'task', 'category', 'complexity'],
num_rows: 2170
})
"""
# query individual questions
grab_dataset[40] # e.g., the 41st element
"""
{'pid': 40, 'question': 'What is the value of the y-intercept of the function? Give your answer as an integer.',
'decoded_image': <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=5836x4842 at 0x12288EA60>,
'image': 'images/40.png', 'answer': '1', 'task': 'properties', 'category': 'Intercepts and Gradients',
'complexity': 0}
"""
question_40 = grab_dataset[40]['question'] # question
answer_40 = grab_dataset[40]['answer'] # ground truth answer
pil_image_40 = grab_dataset[0]['decoded_image']
Note -- the 'image' feature corresponds to filepaths in the images
dir in this repository: (https://huggingface.co/datasets/jonathan-roberts1/GRAB/resolve/main/images.zip)
Please visit our GitHub repository for example inference code.
Dataset Curators
This dataset was curated by Jonathan Roberts, Kai Han, and Samuel Albanie
Citation Information
@article{roberts2024grab,
title={GRAB: A Challenging GRaph Analysis Benchmark for Large Multimodal Models},
author={Roberts, Jonathan and Han, Kai and Albanie, Samuel},
journal={arXiv preprint arXiv:2408.11817},
year={2024}
}