|
"""EurlexResources""" |
|
|
|
import json |
|
|
|
import datasets |
|
|
|
try: |
|
import lzma as xz |
|
except ImportError: |
|
import pylzma as xz |
|
|
|
datasets.logging.set_verbosity_info() |
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_DESCRIPTION = """ |
|
""" |
|
|
|
_CITATION = """ |
|
""" |
|
|
|
_URL = "https://huggingface.co/datasets/joelito/eurlex_resources" |
|
_DATA_URL = f"{_URL}/resolve/main/data" |
|
|
|
_LANGUAGES = [ |
|
"bg", |
|
"cs", |
|
"da", |
|
"de", |
|
"el", |
|
"en", |
|
"es", |
|
"et", |
|
"fi", |
|
"fr", |
|
"ga", |
|
"hr", |
|
"hu", |
|
"it", |
|
"lt", |
|
"lv", |
|
"mt", |
|
"nl", |
|
"pl", |
|
"pt", |
|
"ro", |
|
"sk", |
|
"sl", |
|
"sv", |
|
] |
|
|
|
_RESOURCE_TYPES = ["caselaw", "decision", "directive", "intagr", "proposal", "recommendation", "regulation"] |
|
|
|
|
|
class EurlexResourcesConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for EurlexResources.""" |
|
|
|
def __init__(self, name: str, **kwargs): |
|
"""BuilderConfig for EurlexResources. |
|
Args: |
|
name: combination of language and resource_type with _ |
|
language: One of bg,cs,da,de,el,en,es,et,fi,fr,ga,hr,hu,it,lt,lv,mt,nl,pl,pt,ro,sk,sl,sv or all |
|
resource_type: One of caselaw, decision, directive, intagr, proposal, recommendation, regulation |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(EurlexResourcesConfig, self).__init__(**kwargs) |
|
self.name = name |
|
self.language = name.split("_")[0] |
|
self.resource_type = name.split("_")[1] |
|
|
|
|
|
class EurlexResources(datasets.GeneratorBasedBuilder): |
|
"""EurlexResources: A Corpus Covering the Largest EURLEX Resources""" |
|
|
|
BUILDER_CONFIGS = [EurlexResourcesConfig(f"{language}_{resource_type}") |
|
for resource_type in _RESOURCE_TYPES + ["all"] |
|
for language in _LANGUAGES + ["all"]] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"celex": datasets.Value("string"), |
|
"date": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_urls = [] |
|
languages = _LANGUAGES if self.config.language == "all" else [self.config.language] |
|
resource_types = _RESOURCE_TYPES if self.config.resource_type == "all" else [self.config.resource_type] |
|
for language in languages: |
|
for resource_type in resource_types: |
|
data_urls.append(f"{_DATA_URL}/{language}/{resource_type}.jsonl.xz") |
|
|
|
downloaded_files = dl_manager.download(data_urls) |
|
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": downloaded_files})] |
|
|
|
def _generate_examples(self, filepaths): |
|
"""This function returns the examples in the raw (text) form by iterating on all the files.""" |
|
id_ = 0 |
|
for filepath in filepaths: |
|
logger.info("Generating examples from = %s", filepath) |
|
try: |
|
with xz.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: |
|
for line in f: |
|
if line: |
|
example = json.loads(line) |
|
if example is not None and isinstance(example, dict): |
|
yield id_, { |
|
"celex": example.get("celex", ""), |
|
"date": example.get("date", ""), |
|
"title": example.get("title", ""), |
|
"text": example.get("text", ""), |
|
} |
|
id_ += 1 |
|
except: |
|
print("Error reading file:", filepath) |
|
|