covid19_emergency_event / convert_to_hf_dataset.py
joelniklaus's picture
added aggregate column for all events
4b0df17
import os
from pathlib import Path
import pandas as pd
# run pip install wget and pip install fasttext-langdetect for this to work
from ftlangdetect import detect
label_cols = [f"event{i}" for i in range(1, 9)]
data_path = Path("COVID19_emergency_event-main/annotations")
countries = ["belgium", "france", "hungary", "italy", "netherlands", "norway", "poland", "uk"]
train, validation, test = pd.DataFrame(), pd.DataFrame(), pd.DataFrame()
for country in countries:
country_train = pd.read_csv(data_path / country / "train_or.tsv", sep='\t', index_col="id")
country_validation = pd.read_csv(data_path / country / "dev_or.tsv", sep='\t', index_col="id")
country_test = pd.read_csv(data_path / country / "test_or.tsv", sep='\t', index_col="id")
country_train["country"] = country
country_validation["country"] = country
country_test["country"] = country
train = train.append(country_train)
validation = validation.append(country_validation)
test = test.append(country_test)
# train = pd.read_csv(data_path / "all_train_or.tsv", sep='\t', index_col="id")
# validation = pd.read_csv(data_path / "all_dev_or.tsv", sep='\t', index_col="id")
# test = pd.read_csv(data_path / "all_test_or.csv", sep='\t', index_col="id") # yes, it also has the tab as separator
country_to_lang = {"belgium": "fr", "france": "fr", "hungary": "hu", "italy": "it", "netherlands": "nl", "norway": "nb",
"poland": "pl", "uk": "en"}
# set language
train['language'] = train.country.apply(lambda x: country_to_lang[x])
validation['language'] = validation.country.apply(lambda x: country_to_lang[x])
test['language'] = test.country.apply(lambda x: country_to_lang[x])
# reorder columns
column_list = ["language", "country", "text"]
column_list.extend(label_cols)
train = train[column_list]
validation = validation[column_list]
test = test[column_list]
def aggregate_events(row):
all_events = []
for label_col in label_cols:
if row[label_col]:
all_events.append(label_col)
return all_events
train["all_events"] = train.apply(aggregate_events, axis=1)
validation["all_events"] = validation.apply(aggregate_events, axis=1)
test["all_events"] = test.apply(aggregate_events, axis=1)
# save splits
def save_splits_to_jsonl(config_name):
# save to jsonl files for huggingface
if config_name: os.makedirs(config_name, exist_ok=True)
train.to_json(os.path.join(config_name, "train.jsonl"), lines=True, orient="records", force_ascii=False)
validation.to_json(os.path.join(config_name, "validation.jsonl"), lines=True, orient="records", force_ascii=False)
test.to_json(os.path.join(config_name, "test.jsonl"), lines=True, orient="records", force_ascii=False)
save_splits_to_jsonl("")
def print_split_table_multi_label(splits, label_names):
data = {split_name: {} for split_name in splits.keys()}
for split_name, split in splits.items():
sum = 0
for label_name in label_names:
counts = split[label_name].value_counts()
data[split_name][label_name] = counts[True] if True in counts else 0
sum += data[split_name][label_name]
data[split_name]["total occurrences"] = sum
data[split_name]["split size"] = len(split.index)
table = pd.DataFrame(data)
print(table.to_markdown())
print_split_table_multi_label({"train": train, "validation": validation, "test": test}, label_cols)