|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Dataset of disentangled IRC""" |
|
|
|
|
|
import glob |
|
import os |
|
from pathlib import Path |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{kummerfeld-etal-2019-large, |
|
title = "A Large-Scale Corpus for Conversation Disentanglement", |
|
author = "Kummerfeld, Jonathan K. and |
|
Gouravajhala, Sai R. and |
|
Peper, Joseph J. and |
|
Athreya, Vignesh and |
|
Gunasekara, Chulaka and |
|
Ganhotra, Jatin and |
|
Patel, Siva Sankalp and |
|
Polymenakos, Lazaros C and |
|
Lasecki, Walter", |
|
booktitle = "Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics", |
|
month = jul, |
|
year = "2019", |
|
address = "Florence, Italy", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/P19-1374", |
|
doi = "10.18653/v1/P19-1374", |
|
pages = "3846--3856", |
|
arxiv = "https://arxiv.org/abs/1810.11118", |
|
software = "https://jkk.name/irc-disentanglement", |
|
data = "https://jkk.name/irc-disentanglement", |
|
abstract = "Disentangling conversations mixed together in a single stream of messages is a difficult task, made harder by the lack of large manually annotated datasets. We created a new dataset of 77,563 messages manually annotated with reply-structure graphs that both disentangle conversations and define internal conversation structure. Our data is 16 times larger than all previously released datasets combined, the first to include adjudication of annotation disagreements, and the first to include context. We use our data to re-examine prior work, in particular, finding that 89% of conversations in a widely used dialogue corpus are either missing messages or contain extra messages. Our manually-annotated data presents an opportunity to develop robust data-driven methods for conversation disentanglement, which will help advance dialogue research.", |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Disentangling conversations mixed together in a single stream of messages is |
|
a difficult task, made harder by the lack of large manually annotated |
|
datasets. This new dataset of 77,563 messages manually annotated with |
|
reply-structure graphs that both disentangle conversations and define |
|
internal conversation structure. The dataset is 16 times larger than all |
|
previously released datasets combined, the first to include adjudication of |
|
annotation disagreements, and the first to include context. |
|
""" |
|
|
|
_HOMEPAGE = "https://jkk.name/irc-disentanglement/" |
|
|
|
_LICENSE = "Creative Commons Attribution 4.0 International Public License" |
|
|
|
_URL = "https://github.com/jkkummerfeld/irc-disentanglement/tarball/master" |
|
|
|
|
|
class IRCDisentangle(datasets.GeneratorBasedBuilder): |
|
"""IRCDisentangle dataset""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="ubuntu", |
|
version=VERSION, |
|
description="This part of the dataset is the annotated conversations from the Ubuntu channel", |
|
), |
|
datasets.BuilderConfig( |
|
name="channel_two", |
|
version=VERSION, |
|
description="This part of the dataset is the annotated conversations from the Channel Two", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "ubuntu" |
|
|
|
def _info(self): |
|
if self.config.name == "ubuntu": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"raw": datasets.Value("string"), |
|
"ascii": datasets.Value("string"), |
|
"tokenized": datasets.Value("string"), |
|
"date": datasets.Value("string"), |
|
"connections": datasets.features.Sequence(datasets.Value("int32")), |
|
} |
|
) |
|
elif self.config.name == "channel_two": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"raw": datasets.Value("string"), |
|
"ascii": datasets.Value("string"), |
|
"tokenized": datasets.Value("string"), |
|
"connections": datasets.features.Sequence(datasets.Value("int32")), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
dl_dir = dl_manager.download_and_extract(_URL) |
|
filepath = os.path.join(dl_dir, "jkkummerfeld-irc-disentanglement-35f0a40", "data") |
|
split_names = {datasets.Split.TRAIN: "train", datasets.Split.VALIDATION: "dev", datasets.Split.TEST: "test"} |
|
if self.config.name == "ubuntu": |
|
return [ |
|
datasets.SplitGenerator( |
|
name=split, |
|
gen_kwargs={ |
|
"filepath": os.path.join(filepath, split_name), |
|
"split": split_name, |
|
}, |
|
) |
|
for split, split_name in split_names.items() |
|
] |
|
elif self.config.name == "channel_two": |
|
filepath = os.path.join(filepath, "channel-two") |
|
return [ |
|
datasets.SplitGenerator( |
|
name="dev", |
|
gen_kwargs={ |
|
"filepath": filepath, |
|
"split": "dev", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="pilot", |
|
gen_kwargs={ |
|
"filepath": filepath, |
|
"split": "pilot", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="test", |
|
gen_kwargs={ |
|
"filepath": filepath, |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="pilot_dev", |
|
gen_kwargs={ |
|
"filepath": filepath, |
|
"split": "pilot-dev", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name="all_", |
|
gen_kwargs={ |
|
"filepath": filepath, |
|
"split": "all", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Yields examples.""" |
|
|
|
if self.config.name == "ubuntu": |
|
|
|
all_files = sorted(glob.glob(os.path.join(filepath, "*.annotation.txt"))) |
|
all_dates = [Path(filename).name[:10] for filename in all_files] |
|
all_info = [Path(filename).name[10:-15] for filename in all_files] |
|
|
|
elif self.config.name == "channel_two": |
|
|
|
all_dates = ["_"] |
|
all_info = ["_"] |
|
|
|
last_id = 0 |
|
id_ = 0 |
|
|
|
for date, info in zip(all_dates, all_info): |
|
|
|
if self.config.name == "ubuntu": |
|
|
|
raw_path = os.path.join(filepath, f"{date}{info}.raw.txt") |
|
ascii_path = os.path.join(filepath, f"{date}{info}.ascii.txt") |
|
tok_path = os.path.join(filepath, f"{date}{info}.tok.txt") |
|
annot_path = os.path.join(filepath, f"{date}{info}.annotation.txt") |
|
|
|
elif self.config.name == "channel_two": |
|
|
|
raw_path = os.path.join(filepath, f"channel-two.{split}.raw.txt") |
|
ascii_path = os.path.join(filepath, f"channel-two.{split}.ascii.txt") |
|
tok_path = os.path.join(filepath, f"channel-two.{split}.tok.txt") |
|
annot_path = os.path.join(filepath, f"channel-two.{split}.annotation.txt") |
|
|
|
with open(raw_path, encoding="utf-8") as f_raw, open(ascii_path, encoding="utf-8") as f_ascii, open( |
|
tok_path, encoding="utf-8" |
|
) as f_tok, open(annot_path, encoding="utf-8") as f_annot: |
|
|
|
|
|
raw_sentences = f_raw.read().split("\n") |
|
ascii_sentences = f_ascii.read().split("\n") |
|
tok_sentences = f_tok.read().split("\n") |
|
annot_lines = f_annot.read().split("\n") |
|
|
|
assert ( |
|
len(raw_sentences) == len(ascii_sentences) == len(tok_sentences) |
|
), "Sizes do not match: %d vs %d vs %d for Raw Sentences vs Ascii Sentences vs Tokenized Sentences." % ( |
|
len(raw_sentences), |
|
len(ascii_sentences), |
|
len(tok_sentences), |
|
) |
|
|
|
annotation_pairs = [] |
|
|
|
|
|
for annot in annot_lines: |
|
line = annot.split(" ") |
|
if len(line) > 1: |
|
annotation_pairs.append((int(line[0]), int(line[1]))) |
|
|
|
annotations = dict() |
|
for row in range(last_id, last_id + len(raw_sentences)): |
|
annotations[row] = set() |
|
|
|
for (a, b) in annotation_pairs: |
|
|
|
if last_id + a not in annotations: |
|
annotations[last_id + a] = set() |
|
if last_id + b not in annotations: |
|
annotations[last_id + b] = set() |
|
|
|
|
|
annotations[last_id + a].add(last_id + b) |
|
annotations[last_id + b].add(last_id + a) |
|
|
|
for i in range(len(raw_sentences)): |
|
|
|
if self.config.name == "ubuntu": |
|
yield id_, { |
|
"id": id_, |
|
"raw": raw_sentences[i], |
|
"ascii": ascii_sentences[i], |
|
"tokenized": tok_sentences[i], |
|
"date": date, |
|
"connections": sorted(annotations[id_]), |
|
} |
|
elif self.config.name == "channel_two": |
|
yield id_, { |
|
"id": id_, |
|
"raw": raw_sentences[i], |
|
"ascii": ascii_sentences[i], |
|
"tokenized": tok_sentences[i], |
|
"connections": sorted(annotations[i]), |
|
} |
|
id_ += 1 |
|
|
|
|
|
last_id = id_ |
|
|