|
|
|
|
|
|
|
|
|
|
|
import sys |
|
from prody import * |
|
import pandas as pd |
|
from rdkit import Chem |
|
from rdkit.Chem import AllChem |
|
from io import StringIO |
|
import requests |
|
|
|
from mpi4py import MPI |
|
from mpi4py.futures import MPICommExecutor |
|
from mpi4py.futures import MPIPoolExecutor |
|
|
|
import re |
|
from functools import partial |
|
import gzip |
|
from rdkit.Chem.Descriptors import ExactMolWt |
|
import numpy as np |
|
|
|
import os |
|
import random |
|
import traceback |
|
|
|
from openfold import data_transforms, protein |
|
from openfold.residue_constants import aatype_to_str_sequence |
|
import torch |
|
|
|
|
|
mol_wt_cutoff = 100 |
|
|
|
|
|
min_atoms = 3 |
|
|
|
|
|
punctuation_regex = r"""(\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])""" |
|
|
|
|
|
molecule_regex = r"""(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\|\/|:|~|@|\?|>>?|\*|\$|\%[0-9]{2}|[0-9])""" |
|
|
|
|
|
ubiquitous_ligands = ['PEG', 'ADP', 'FAD', 'NAD', 'ATP', 'MPD', 'NAP', 'GDP', 'MES', |
|
'GTP', 'FMN', 'HEC', 'TRS', 'CIT', 'PGE', 'ANP', 'SAH', 'NDP', |
|
'PG4', 'EPE', 'AMP', 'COA', 'MLI', 'FES', 'GNP', 'MRD', 'GSH', |
|
'FLC', 'AGS', 'NAI', 'SAM', 'PCW', '1PE', 'TLA', 'BOG', 'CYC', |
|
'UDP', 'PX4', 'NAG', 'IMP', 'POP', 'UMP', 'PLM', 'HEZ', 'TPP', |
|
'ACP', 'LDA', 'ACO', 'CLR', 'BGC', 'P6G', 'LMT', 'OGA', 'DTT', |
|
'POV', 'FBP', 'AKG', 'MLA', 'ADN', 'NHE', '7Q9', 'CMP', 'BTB', |
|
'PLP', 'CAC', 'SIN', 'C2E', '2AN', 'OCT', '17F', 'TAR', 'BTN', |
|
'XYP', 'MAN', '5GP', 'GAL', 'GLC', 'DTP', 'DGT', 'PEB', 'THP', |
|
'BEZ', 'CTP', 'GSP', 'HED', 'ADE', 'TYD', 'TTP', 'BNG', 'IHP', |
|
'FDA', 'PEP', 'ALF', 'APR', 'MTX', 'MLT', 'LU8', 'UTP', 'APC', |
|
'BLA', 'C8E', 'D10', 'CHT', 'BO2', '3BV', 'ORO', 'MPO', 'Y01', |
|
'OLC', 'B3P', 'G6P', 'PMP', 'D12', 'NDG', 'A3P', '78M', 'F6P', |
|
'U5P', 'PRP', 'UPG', 'THM', 'SFG', 'MYR', 'FEO', 'PG0', 'CXS', |
|
'AR6', 'CHD', 'WO4', 'C5P', 'UFP', 'GCP', 'HDD', 'SRT', 'STU', |
|
'CDP', 'TCL', '04C', 'MYA', 'URA', 'PLG', 'MTA', 'BMP', 'SAL', |
|
'TA1', 'UD1', 'OLA', 'BCN', 'LMR', 'BMA', 'OAA', 'TAM', 'MBO', |
|
'MMA', 'SPD', 'MTE', 'AP5', 'TMP', 'PGA', 'GLA', '3PG', 'FUL', |
|
'PQQ', '9TY', 'DUR', 'PPV', 'SPM', 'SIA', 'DUP', 'GTX', '1PG', |
|
'GUN', 'ETF', 'FDP', 'MFU', 'G2P', 'PC', 'DST', 'INI'] |
|
|
|
def get_protein_sequence_and_coords(receptor, pdb_str): |
|
chains = [chain.getChid() for chain in receptor.getHierView()] |
|
|
|
aatype = [] |
|
atom_positions = [] |
|
atom_mask = [] |
|
for chain in chains: |
|
p = protein.from_pdb_string(pdb_str, chain) |
|
aatype.append(p.aatype) |
|
atom_positions.append(p.atom_positions) |
|
atom_mask.append(p.atom_mask) |
|
|
|
|
|
aatype = np.concatenate(aatype) |
|
atom_positions = np.concatenate(atom_positions) |
|
atom_mask = np.concatenate(atom_mask) |
|
|
|
|
|
features = {'aatype': torch.tensor(aatype), |
|
'all_atom_positions': torch.tensor(atom_positions), |
|
'all_atom_mask': torch.tensor(atom_mask)} |
|
features = data_transforms.atom37_to_torsion_angles()(features) |
|
features = data_transforms.atom37_to_frames(features) |
|
features = data_transforms.make_atom14_masks(features) |
|
features = data_transforms.make_atom14_positions(features) |
|
features = {k: v.numpy() for k, v in features.items() if isinstance(v, torch.Tensor)} |
|
|
|
seq = aatype_to_str_sequence(aatype) |
|
|
|
return seq, features |
|
|
|
def tokenize_ligand(mol): |
|
|
|
smi = Chem.MolToSmiles(mol) |
|
|
|
|
|
atom_order = [int(s) for s in list(filter(None,re.sub(r'[\[\]]','',mol.GetProp("_smilesAtomOutputOrder")).split(',')))] |
|
|
|
|
|
tokens = list(filter(None, re.split(molecule_regex, smi))) |
|
|
|
|
|
masked_tokens = [re.sub(punctuation_regex,'',s) for s in tokens] |
|
|
|
k = 0 |
|
token_pos = [] |
|
for i,token in enumerate(masked_tokens): |
|
if token != '': |
|
token_pos.append(tuple(mol.GetConformer().GetAtomPosition(atom_order[k]))) |
|
k += 1 |
|
else: |
|
token_pos.append((np.nan, np.nan, np.nan)) |
|
|
|
k = 0 |
|
conf_2d = AllChem.Compute2DCoords(mol) |
|
token_pos_2d = [] |
|
atom_idx = [] |
|
for i,token in enumerate(masked_tokens): |
|
if token != '': |
|
token_pos_2d.append(tuple(mol.GetConformer(conf_2d).GetAtomPosition(atom_order[k]))) |
|
atom_idx.append(atom_order[k]) |
|
k += 1 |
|
else: |
|
token_pos_2d.append((0.,0.,0.)) |
|
atom_idx.append(None) |
|
|
|
return smi, token_pos, token_pos_2d, atom_idx |
|
|
|
def read_ligand_expo(): |
|
""" |
|
Read Ligand Expo data, try to find a file called |
|
Components-smiles-stereo-oe.smi in the current directory. |
|
If you can't find the file, grab it from the RCSB |
|
:return: Ligand Expo as a dictionary with ligand id as the key |
|
""" |
|
file_name = "Components-smiles-stereo-oe.smi" |
|
try: |
|
df = pd.read_csv(file_name, sep=r"[\t]+", |
|
header=None, |
|
names=["SMILES", "ID", "Name"], |
|
engine='python') |
|
except FileNotFoundError: |
|
url = f"http://ligand-expo.rcsb.org/dictionaries/{file_name}" |
|
print(url) |
|
r = requests.get(url, allow_redirects=True) |
|
open('Components-smiles-stereo-oe.smi', 'wb').write(r.content) |
|
df = pd.read_csv(file_name, sep="\t", |
|
header=None, |
|
names=["SMILES", "ID", "Name"], |
|
na_filter=False) |
|
return df |
|
|
|
|
|
def get_pdb_components(pdb_id): |
|
""" |
|
Split a protein-ligand pdb into protein and ligand components |
|
:param pdb_id: |
|
:return: |
|
""" |
|
with gzip.open(pdb_id,'rt') as f: |
|
pdb = parsePDBStream(f) |
|
|
|
protein = pdb.select('protein') |
|
ligand = pdb.select('not protein and not water') |
|
return protein, ligand |
|
|
|
|
|
def process_ligand(ligand, res_name, df_expo): |
|
""" |
|
Add bond orders to a pdb ligand |
|
1. Select the ligand component with name "res_name" |
|
2. Get the corresponding SMILES from the Ligand Expo dictionary |
|
3. Create a template molecule from the SMILES in step 2 |
|
4. Write the PDB file to a stream |
|
5. Read the stream into an RDKit molecule |
|
6. Assign the bond orders from the template from step 3 |
|
:param ligand: ligand as generated by prody |
|
:param res_name: residue name of ligand to extract |
|
:param df_expo: dictionary with LigandExpo |
|
:return: molecule with bond orders assigned |
|
""" |
|
sub_smiles = df_expo[df_expo['ID'].values == res_name]['SMILES'].values[0] |
|
template = AllChem.MolFromSmiles(sub_smiles) |
|
|
|
allres = ligand.select(f"resname {res_name}") |
|
res = np.unique(allres.getResindices()) |
|
mols = [] |
|
for i in res: |
|
sub_mol = ligand.select(f"resname {res_name} and resindex {i}") |
|
output = StringIO() |
|
writePDBStream(output, sub_mol) |
|
pdb_string = output.getvalue() |
|
rd_mol = AllChem.MolFromPDBBlock(pdb_string) |
|
mols.append(AllChem.AssignBondOrdersFromTemplate(template, rd_mol)) |
|
return mols, template |
|
|
|
def rot_from_two_vecs(e0_unnormalized, e1_unnormalized): |
|
"""Create rotation matrices from unnormalized vectors for the x and y-axes. |
|
This creates a rotation matrix from two vectors using Gram-Schmidt |
|
orthogonalization. |
|
Args: |
|
e0_unnormalized: vectors lying along x-axis of resulting rotation |
|
e1_unnormalized: vectors lying in xy-plane of resulting rotation |
|
Returns: |
|
Rotations resulting from Gram-Schmidt procedure. |
|
""" |
|
|
|
e0 = e0_unnormalized / np.linalg.norm(e0_unnormalized) |
|
|
|
|
|
c = np.dot(e1_unnormalized, e0) |
|
e1 = e1_unnormalized - c * e0 |
|
e1 = e1 / np.linalg.norm(e1) |
|
|
|
|
|
e2 = np.cross(e0, e1) |
|
|
|
|
|
return np.stack([e0,e1,e2]).T |
|
|
|
def process_entry(df, pdb_fn): |
|
try: |
|
""" |
|
Slit pdb into protein and ligands, |
|
parse protein sequence and ligand tokens |
|
:param df: ligand expo data |
|
:param pdb_fn: pdb entry file name |
|
:return: |
|
""" |
|
protein, ligand = get_pdb_components(pdb_fn) |
|
|
|
pdb_name = os.path.basename(pdb_fn).split('.')[-3][3:] |
|
|
|
ligand_mols = [] |
|
ligand_names = [] |
|
ligand_bonds = [] |
|
if ligand is not None: |
|
|
|
res_name_list = list(set(ligand.getResnames())) |
|
for res in res_name_list: |
|
if res in ubiquitous_ligands: |
|
continue |
|
mols, template = process_ligand(ligand, res, df) |
|
|
|
mol_wt = ExactMolWt(template) |
|
natoms = template.GetNumAtoms() |
|
|
|
if mol_wt >= mol_wt_cutoff and natoms >= min_atoms: |
|
|
|
mols = mols[:1] |
|
ligand_mols += mols |
|
ligand_names += [res]*len(mols) |
|
|
|
bonds = [] |
|
for b in template.GetBonds(): |
|
bonds.append((b.GetBeginAtomIdx(), b.GetEndAtomIdx())) |
|
ligand_bonds.append(bonds) |
|
|
|
|
|
ligand_smiles = [] |
|
ligand_xyz = [] |
|
ligand_xyz_2d = [] |
|
ligand_token_bonds = [] |
|
for mol, name, bonds in zip(ligand_mols, ligand_names, ligand_bonds): |
|
print('Processing {} and {}'.format(pdb_name, name)) |
|
smi, xyz, xyz_2d, atom_idx = tokenize_ligand(mol) |
|
ligand_smiles.append(smi) |
|
ligand_xyz.append(xyz) |
|
ligand_xyz_2d.append(xyz_2d) |
|
|
|
ligand_token_bonds.append([ (atom_idx.index(b[0]), atom_idx.index(b[1])) for b in bonds ]) |
|
|
|
pdb_str = StringIO() |
|
writePDBStream(pdb_str, protein) |
|
|
|
seq, features = get_protein_sequence_and_coords(protein, pdb_str.getvalue()) |
|
features = { 'rigidgroups_gt_frames': features['rigidgroups_gt_frames'], |
|
'torsion_angles_sin_cos': features['torsion_angles_sin_cos']} |
|
return pdb_name, seq, features, ligand_names, ligand_smiles, ligand_xyz, ligand_xyz_2d, ligand_token_bonds |
|
except Exception as e: |
|
print(traceback.format_exc()) |
|
print(repr(e)) |
|
|
|
def write_result(fn, data): |
|
|
|
pdb_id = [r[0] for r in data if r is not None for ligand in r[3]] |
|
seq = [r[1] for r in data if r is not None for ligand in r[3]] |
|
receptor_features = [r[2] for r in data if r is not None for ligand in r[3]] |
|
lig_id = [l for r in data if r is not None for l in r[3]] |
|
lig_smiles = [s for r in data if r is not None for s in r[4]] |
|
lig_xyz = [xyz for r in data if r is not None for xyz in r[5]] |
|
lig_xyz_2d = [xyz for r in data if r is not None for xyz in r[6]] |
|
lig_bonds = [b for r in data if r is not None for b in r[7]] |
|
|
|
import pandas as pd |
|
df = pd.DataFrame({ |
|
'pdb_id': pdb_id, |
|
'lig_id': lig_id, |
|
'seq': seq, |
|
'smiles': lig_smiles, |
|
'receptor_features': receptor_features, |
|
'ligand_xyz': lig_xyz, |
|
'ligand_xyz_2d': lig_xyz_2d, |
|
'ligand_bonds': lig_bonds}) |
|
df.to_pickle(fn) |
|
|
|
if __name__ == '__main__': |
|
import glob |
|
|
|
filenames = glob.glob('pdb/*/*.gz') |
|
filenames = sorted(filenames) |
|
|
|
random.seed(42) |
|
random.shuffle(filenames) |
|
|
|
split_idx = int(0.9*len(filenames)) |
|
train = filenames[:split_idx] |
|
test = filenames[split_idx:] |
|
|
|
comm = MPI.COMM_WORLD |
|
with MPICommExecutor(comm, root=0) as executor: |
|
|
|
if executor is not None: |
|
|
|
df = read_ligand_expo() |
|
|
|
result = executor.map(partial(process_entry, df), train, chunksize=128) |
|
result = list(result) |
|
|
|
write_result('data/pdb_train.p', result) |
|
|
|
result = executor.map(partial(process_entry, df), test, chunksize=128) |
|
result = list(result) |
|
|
|
write_result('data/pdb_test.p', result) |
|
|