Datasets:
ArXiv:
remove empty trailing sentences
Browse files- dataset_infos.json +1 -1
- legalglue.py +60 -3
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"german_ler": {"description": "description", "citation": "@inproceedings{leitner2019fine,\nauthor = {Elena Leitner and Georg Rehm and Julian Moreno-Schneider},\ntitle = {{Fine-grained Named Entity Recognition in Legal Documents}},\nbooktitle = {Semantic Systems. The Power of AI and Knowledge\n Graphs. Proceedings of the 15th International Conference\n (SEMANTiCS 2019)},\nyear = 2019,\neditor = {Maribel Acosta and Philippe Cudr\u00e9-Mauroux and Maria\n Maleshkova and Tassilo Pellegrini and Harald Sack and York\n Sure-Vetter},\nkeywords = {aip},\npublisher = {Springer},\nseries = {Lecture Notes in Computer Science},\nnumber = {11702},\naddress = {Karlsruhe, Germany},\nmonth = 9,\nnote = {10/11 September 2019},\npages = {272--287},\npdf = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-33220-4_20.pdf}}\n", "homepage": "https://github.com/elenanereiss/Legal-Entity-Recognition", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner_tags": {"feature": {"num_classes": 39, "names": ["B-AN", "B-EUN", "B-GRT", "B-GS", "B-INN", "B-LD", "B-LDS", "B-LIT", "B-MRK", "B-ORG", "B-PER", "B-RR", "B-RS", "B-ST", "B-STR", "B-UN", "B-VO", "B-VS", "B-VT", "I-AN", "I-EUN", "I-GRT", "I-GS", "I-INN", "I-LD", "I-LDS", "I-LIT", "I-MRK", "I-ORG", "I-PER", "I-RR", "I-RS", "I-ST", "I-STR", "I-UN", "I-VO", "I-VS", "I-VT", "O"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "legal_glue", "config_name": "german_ler", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes":
|
|
|
1 |
+
{"german_ler": {"description": "description", "citation": "@inproceedings{leitner2019fine,\nauthor = {Elena Leitner and Georg Rehm and Julian Moreno-Schneider},\ntitle = {{Fine-grained Named Entity Recognition in Legal Documents}},\nbooktitle = {Semantic Systems. The Power of AI and Knowledge\n Graphs. Proceedings of the 15th International Conference\n (SEMANTiCS 2019)},\nyear = 2019,\neditor = {Maribel Acosta and Philippe Cudr\u00e9-Mauroux and Maria\n Maleshkova and Tassilo Pellegrini and Harald Sack and York\n Sure-Vetter},\nkeywords = {aip},\npublisher = {Springer},\nseries = {Lecture Notes in Computer Science},\nnumber = {11702},\naddress = {Karlsruhe, Germany},\nmonth = 9,\nnote = {10/11 September 2019},\npages = {272--287},\npdf = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-33220-4_20.pdf}}\n", "homepage": "https://github.com/elenanereiss/Legal-Entity-Recognition", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner_tags": {"feature": {"num_classes": 39, "names": ["B-AN", "B-EUN", "B-GRT", "B-GS", "B-INN", "B-LD", "B-LDS", "B-LIT", "B-MRK", "B-ORG", "B-PER", "B-RR", "B-RS", "B-ST", "B-STR", "B-UN", "B-VO", "B-VS", "B-VT", "I-AN", "I-EUN", "I-GRT", "I-GS", "I-INN", "I-LD", "I-LDS", "I-LIT", "I-MRK", "I-ORG", "I-PER", "I-RR", "I-RS", "I-ST", "I-STR", "I-UN", "I-VO", "I-VS", "I-VT", "O"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "legal_glue", "config_name": "german_ler", "version": {"version_str": "1.1.0", "description": "", "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 38853928, "num_examples": 66723, "dataset_name": "legal_glue"}}, "download_checksums": {"https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/data/dataset_courts.zip": {"num_bytes": 4392913, "checksum": "f0427df5fb8bfdefe5228bc0fa0e75e9cfa782d1a78e32582cce096473c88567"}}, "download_size": 4392913, "post_processing_size": null, "dataset_size": 38853928, "size_in_bytes": 43246841}}
|
legalglue.py
CHANGED
@@ -68,6 +68,21 @@ GERMAN_LER = [
|
|
68 |
"I-VT",
|
69 |
"O"]
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
class LegalGlueConfig(datasets.BuilderConfig):
|
73 |
"""BuilderConfig for LegalGLUE."""
|
@@ -128,7 +143,45 @@ class LegalGLUE(datasets.GeneratorBasedBuilder):
|
|
128 |
pages = {272--287},
|
129 |
pdf = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-33220-4_20.pdf}}
|
130 |
""")
|
131 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
]
|
133 |
|
134 |
def _info(self):
|
@@ -163,6 +216,9 @@ class LegalGLUE(datasets.GeneratorBasedBuilder):
|
|
163 |
"files": [os.path.join(archive,file) for file in self.config.data_files]#dl_manager.iter_archive(archive),
|
164 |
},
|
165 |
)]
|
|
|
|
|
|
|
166 |
# else:
|
167 |
# return [
|
168 |
# datasets.SplitGenerator(
|
@@ -213,8 +269,9 @@ class LegalGLUE(datasets.GeneratorBasedBuilder):
|
|
213 |
token, tag = line.split()
|
214 |
tokens.append(token)
|
215 |
tags.append(tag.rstrip())
|
216 |
-
|
217 |
-
|
|
|
218 |
|
219 |
for i,token in enumerate(texts):
|
220 |
tokens = texts[i]
|
|
|
68 |
"I-VT",
|
69 |
"O"]
|
70 |
|
71 |
+
LENER_BR=[
|
72 |
+
"O",
|
73 |
+
"B-ORGANIZACAO",
|
74 |
+
"I-ORGANIZACAO",
|
75 |
+
"B-PESSOA",
|
76 |
+
"I-PESSOA",
|
77 |
+
"B-TEMPO",
|
78 |
+
"I-TEMPO",
|
79 |
+
"B-LOCAL",
|
80 |
+
"I-LOCAL",
|
81 |
+
"B-LEGISLACAO",
|
82 |
+
"I-LEGISLACAO",
|
83 |
+
"B-JURISPRUDENCIA",
|
84 |
+
"I-JURISPRUDENCIA",
|
85 |
+
]
|
86 |
|
87 |
class LegalGlueConfig(datasets.BuilderConfig):
|
88 |
"""BuilderConfig for LegalGLUE."""
|
|
|
143 |
pages = {272--287},
|
144 |
pdf = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-33220-4_20.pdf}}
|
145 |
""")
|
146 |
+
),
|
147 |
+
# LegalGlueConfig(
|
148 |
+
# name="lener_br",
|
149 |
+
# description=textwrap.dedent(
|
150 |
+
# """\
|
151 |
+
# LeNER-Br is a Portuguese language dataset for named entity recognition
|
152 |
+
# applied to legal documents. LeNER-Br consists entirely of manually annotated
|
153 |
+
# legislation and legal cases texts and contains tags for persons, locations,
|
154 |
+
# time entities, organizations, legislation and legal cases.
|
155 |
+
# To compose the dataset, 66 legal documents from several Brazilian Courts were
|
156 |
+
# collected. Courts of superior and state levels were considered, such as Supremo
|
157 |
+
# Tribunal Federal, Superior Tribunal de Justiça, Tribunal de Justiça de Minas
|
158 |
+
# Gerais and Tribunal de Contas da União. In addition, four legislation documents
|
159 |
+
# were collected, such as "Lei Maria da Penha", giving a total of 70 documents
|
160 |
+
# """
|
161 |
+
# ),
|
162 |
+
# label_classes=LENER_BR,
|
163 |
+
# multi_label=False,
|
164 |
+
# data_url="https://github.com/peluz/lener-br/raw/master/leNER-Br/",
|
165 |
+
# data_files=["train/train.conll", "dev/dev.conll", "test/test.conll"],
|
166 |
+
# homepage="https://cic.unb.br/~teodecampos/LeNER-Br/",
|
167 |
+
# citation=textwrap.dedent("""\
|
168 |
+
# @inproceedings{luz_etal_propor2018,
|
169 |
+
# author = {Pedro H. {Luz de Araujo} and Te\'{o}filo E. {de Campos} and
|
170 |
+
# Renato R. R. {de Oliveira} and Matheus Stauffer and
|
171 |
+
# Samuel Couto and Paulo Bermejo},
|
172 |
+
# title = {{LeNER-Br}: a Dataset for Named Entity Recognition in {Brazilian} Legal Text},
|
173 |
+
# booktitle = {International Conference on the Computational Processing of Portuguese ({PROPOR})},
|
174 |
+
# publisher = {Springer},
|
175 |
+
# series = {Lecture Notes on Computer Science ({LNCS})},
|
176 |
+
# pages = {313--323},
|
177 |
+
# year = {2018},
|
178 |
+
# month = {September 24-26},
|
179 |
+
# address = {Canela, RS, Brazil},
|
180 |
+
# doi = {10.1007/978-3-319-99722-3_32},
|
181 |
+
# url = {https://cic.unb.br/~teodecampos/LeNER-Br/},
|
182 |
+
# }
|
183 |
+
# """)
|
184 |
+
# )
|
185 |
]
|
186 |
|
187 |
def _info(self):
|
|
|
216 |
"files": [os.path.join(archive,file) for file in self.config.data_files]#dl_manager.iter_archive(archive),
|
217 |
},
|
218 |
)]
|
219 |
+
#elif self.config_name == "lener_br":
|
220 |
+
|
221 |
+
|
222 |
# else:
|
223 |
# return [
|
224 |
# datasets.SplitGenerator(
|
|
|
269 |
token, tag = line.split()
|
270 |
tokens.append(token)
|
271 |
tags.append(tag.rstrip())
|
272 |
+
if tokens:
|
273 |
+
texts.append(tokens)
|
274 |
+
labels.append(tags)
|
275 |
|
276 |
for i,token in enumerate(texts):
|
277 |
tokens = texts[i]
|