|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""CVIT IIIT-H PIB Multilingual Corpus""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{cvit-pib:multilingual-corpus, |
|
title = {Revisiting Low Resource Status of Indian Languages in Machine Translation}, |
|
authors={Jerin Philip, Shashank Siripragada, Vinay P. Namboodiri, C.V. Jawahar |
|
}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This new dataset is the large scale sentence aligned corpus in 11 Indian languages, |
|
viz. CVIT-PIB corpus that is the largest multilingual corpus available for Indian languages. |
|
""" |
|
|
|
_URL = "http://preon.iiit.ac.in/~jerin/resources/datasets/pib-v0.tar" |
|
|
|
_LanguagePairs = [ |
|
"or-ur", |
|
"ml-or", |
|
"bn-ta", |
|
"gu-mr", |
|
"hi-or", |
|
"en-or", |
|
"mr-ur", |
|
"en-ta", |
|
"hi-ta", |
|
"bn-en", |
|
"bn-or", |
|
"ml-ta", |
|
"gu-ur", |
|
"bn-ml", |
|
"ml-pa", |
|
"en-pa", |
|
"bn-hi", |
|
"hi-pa", |
|
"gu-te", |
|
"pa-ta", |
|
"hi-ml", |
|
"or-te", |
|
"en-ml", |
|
"en-hi", |
|
"bn-pa", |
|
"mr-te", |
|
"mr-pa", |
|
"bn-te", |
|
"gu-hi", |
|
"ta-ur", |
|
"te-ur", |
|
"or-pa", |
|
"gu-ml", |
|
"gu-pa", |
|
"hi-te", |
|
"en-te", |
|
"ml-te", |
|
"pa-ur", |
|
"hi-ur", |
|
"mr-or", |
|
"en-ur", |
|
"ml-ur", |
|
"bn-mr", |
|
"gu-ta", |
|
"pa-te", |
|
"bn-gu", |
|
"bn-ur", |
|
"ml-mr", |
|
"or-ta", |
|
"ta-te", |
|
"gu-or", |
|
"en-gu", |
|
"hi-mr", |
|
"mr-ta", |
|
"en-mr", |
|
] |
|
|
|
|
|
class PibConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for PIB""" |
|
|
|
def __init__(self, language_pair, **kwargs): |
|
super().__init__(**kwargs) |
|
""" |
|
|
|
Args: |
|
language_pair: language pair, you want to load |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
self.src, self.tgt = language_pair.split("-") |
|
|
|
|
|
class Pib(datasets.GeneratorBasedBuilder): |
|
"""This new dataset is the large scale sentence aligned corpus in 11 Indian languages, viz. |
|
CVIT-PIB corpus that is the largest multilingual corpus available for Indian languages. |
|
""" |
|
|
|
BUILDER_CONFIG_CLASS = PibConfig |
|
BUILDER_CONFIGS = [PibConfig(name=pair, description=_DESCRIPTION, language_pair=pair) for pair in _LanguagePairs] |
|
|
|
def _info(self): |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"translation": datasets.features.Translation(languages=(self.config.src, self.config.tgt))} |
|
), |
|
supervised_keys=(self.config.src, self.config.tgt), |
|
homepage="http://preon.iiit.ac.in/~jerin/bhasha/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
dl_dir = dl_manager.download_and_extract(_URL) |
|
|
|
data_dir = os.path.join(dl_dir, f"pib/{self.config.src}-{self.config.tgt}") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, f"train.{self.config.src}"), |
|
"labelpath": os.path.join(data_dir, f"train.{self.config.tgt}"), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, labelpath): |
|
""" Yields examples. """ |
|
with open(filepath, encoding="utf-8") as f1, open(labelpath, encoding="utf-8") as f2: |
|
src = f1.read().split("\n")[:-1] |
|
tgt = f2.read().split("\n")[:-1] |
|
for idx, (s, t) in enumerate(zip(src, tgt)): |
|
yield idx, {"translation": {self.config.src: s, self.config.tgt: t}} |
|
|