|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Fake News Filipino Dataset""" |
|
|
|
import csv |
|
import os |
|
|
|
import datasets |
|
from datasets.tasks import TextClassification |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Low-Resource Fake News Detection Corpora in Filipino. The first of its kind. Contains 3,206 expertly-labeled news samples, half of which are real and half of which are fake. |
|
""" |
|
|
|
_CITATION = """\ |
|
@inproceedings{cruz2020localization, |
|
title={Localization of Fake News Detection via Multitask Transfer Learning}, |
|
author={Cruz, Jan Christian Blaise and Tan, Julianne Agatha and Cheng, Charibeth}, |
|
booktitle={Proceedings of The 12th Language Resources and Evaluation Conference}, |
|
pages={2596--2604}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/jcblaisecruz02/Tagalog-fake-news" |
|
|
|
|
|
_LICENSE = "" |
|
|
|
_URL = "https://s3.us-east-2.amazonaws.com/blaisecruz.com/datasets/fakenews/fakenews.zip" |
|
|
|
|
|
class FakeNewsFilipino(datasets.GeneratorBasedBuilder): |
|
"""Low-Resource Fake News Detection Corpora in Filipino""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{"label": datasets.features.ClassLabel(names=["0", "1"]), "article": datasets.Value("string")} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
task_templates=[TextClassification(text_column="article", label_column="label")], |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = dl_manager.download_and_extract(_URL) |
|
train_path = os.path.join(data_dir, "fakenews", "full.csv") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": train_path, |
|
"split": "train", |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader( |
|
csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True |
|
) |
|
next(csv_reader) |
|
for id_, row in enumerate(csv_reader): |
|
label, article = row |
|
yield id_, {"label": label, "article": article} |
|
|