Datasets:
Tasks:
Question Answering
Formats:
parquet
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""The COmmonsense Dataset Adversarially-authored by Humans (CODAH)""" | |
import csv | |
import datasets | |
_CITATION = """\ | |
@inproceedings{chen2019codah, | |
title={CODAH: An Adversarially-Authored Question Answering Dataset for Common Sense}, | |
author={Chen, Michael and D'Arcy, Mike and Liu, Alisa and Fernandez, Jared and Downey, Doug}, | |
booktitle={Proceedings of the 3rd Workshop on Evaluating Vector Space Representations for NLP}, | |
pages={63--69}, | |
year={2019} | |
} | |
""" | |
_DESCRIPTION = """\ | |
The COmmonsense Dataset Adversarially-authored by Humans (CODAH) is an evaluation set for commonsense \ | |
question-answering in the sentence completion style of SWAG. As opposed to other automatically \ | |
generated NLI datasets, CODAH is adversarially constructed by humans who can view feedback \ | |
from a pre-trained model and use this information to design challenging commonsense questions. \ | |
Our experimental results show that CODAH questions present a complementary extension to the SWAG dataset, testing additional modes of common sense. | |
""" | |
_URL = "https://raw.githubusercontent.com/Websail-NU/CODAH/master/data/" | |
_FULL_DATA_URL = _URL + "full_data.tsv" | |
QUESTION_CATEGORIES_MAPPING = { | |
"i": "Idioms", | |
"r": "Reference", | |
"p": "Polysemy", | |
"n": "Negation", | |
"q": "Quantitative", | |
"o": "Others", | |
} | |
class CodahConfig(datasets.BuilderConfig): | |
"""BuilderConfig for CODAH.""" | |
def __init__(self, fold=None, **kwargs): | |
"""BuilderConfig for CODAH. | |
Args: | |
fold: `string`, official cross validation fold. | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(CodahConfig, self).__init__(**kwargs) | |
self.fold = fold | |
class Codah(datasets.GeneratorBasedBuilder): | |
"""The COmmonsense Dataset Adversarially-authored by Humans (CODAH)""" | |
VERSION = datasets.Version("1.0.0") | |
BUILDER_CONFIGS = [ | |
CodahConfig(name="codah", version=datasets.Version("1.0.0"), description="Full CODAH dataset", fold=None), | |
CodahConfig( | |
name="fold_0", version=datasets.Version("1.0.0"), description="Official CV split (fold_0)", fold="fold_0" | |
), | |
CodahConfig( | |
name="fold_1", version=datasets.Version("1.0.0"), description="Official CV split (fold_1)", fold="fold_1" | |
), | |
CodahConfig( | |
name="fold_2", version=datasets.Version("1.0.0"), description="Official CV split (fold_2)", fold="fold_2" | |
), | |
CodahConfig( | |
name="fold_3", version=datasets.Version("1.0.0"), description="Official CV split (fold_3)", fold="fold_3" | |
), | |
CodahConfig( | |
name="fold_4", version=datasets.Version("1.0.0"), description="Official CV split (fold_4)", fold="fold_4" | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("int32"), | |
"question_category": datasets.features.ClassLabel( | |
names=["Idioms", "Reference", "Polysemy", "Negation", "Quantitative", "Others"] | |
), | |
"question_propmt": datasets.Value("string"), | |
"candidate_answers": datasets.features.Sequence(datasets.Value("string")), | |
"correct_answer_idx": datasets.Value("int32"), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://github.com/Websail-NU/CODAH", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
if self.config.name == "codah": | |
data_file = dl_manager.download(_FULL_DATA_URL) | |
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_file": data_file})] | |
base_url = f"{_URL}cv_split/{self.config.fold}/" | |
_urls = { | |
"train": base_url + "train.tsv", | |
"dev": base_url + "dev.tsv", | |
"test": base_url + "test.tsv", | |
} | |
downloaded_files = dl_manager.download_and_extract(_urls) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"data_file": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"data_file": downloaded_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"data_file": downloaded_files["test"]}), | |
] | |
def _generate_examples(self, data_file): | |
with open(data_file, encoding="utf-8") as f: | |
rows = csv.reader(f, delimiter="\t") | |
for i, row in enumerate(rows): | |
question_category = QUESTION_CATEGORIES_MAPPING[row[0]] if row[0] != "" else -1 | |
example = { | |
"id": i, | |
"question_category": question_category, | |
"question_propmt": row[1], | |
"candidate_answers": row[2:-1], | |
"correct_answer_idx": int(row[-1]), | |
} | |
yield i, example | |