jainr3 commited on
Commit
4e600c9
Β·
1 Parent(s): 1c26606

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -73
README.md CHANGED
@@ -87,7 +87,7 @@ task_ids:
87
 
88
  ### Dataset Summary
89
 
90
- This is a subset of the DiffusionDB dataset which has been turned into pixel-style art.
91
 
92
  DiffusionDB is the first large-scale text-to-image prompt dataset. It contains **14 million** images generated by Stable Diffusion using prompts and hyperparameters specified by real users.
93
 
@@ -103,23 +103,20 @@ The text in the dataset is mostly English. It also contains other languages such
103
 
104
  ### Subset
105
 
106
- DiffusionDB provides two subsets (DiffusionDB 2M and DiffusionDB Large) to support different needs. The pixelated version of the data taken from the DiffusionDB 2M and has 2000 examples only.
107
 
108
  |Subset|Num of Images|Num of Unique Prompts|Size|Image Directory|Metadata Table|
109
  |:--|--:|--:|--:|--:|--:|
110
  |DiffusionDB-pixelart|2k|~1.5k|~1.6GB|`images/`|`metadata.parquet`|
111
 
112
- ##### Key Facts
113
-
114
- 1. Two subsets have a similar number of unique prompts, but DiffusionDB Large has much more images. DiffusionDB Large is a superset of DiffusionDB 2M.
115
- 2. Images in DiffusionDB 2M are stored in `png` format.
116
 
117
  ## Dataset Structure
118
 
119
  We use a modularized file structure to distribute DiffusionDB. The 2k images in DiffusionDB-pixelart are split into folders, where each folder contains 1,000 images and a JSON file that links these 1,000 images to their prompts and hyperparameters.
120
 
121
  ```bash
122
- # DiffusionDB 2M
123
  ./
124
  β”œβ”€β”€ images
125
  β”‚ β”œβ”€β”€ part-000001
@@ -224,72 +221,6 @@ from datasets import load_dataset
224
  dataset = load_dataset('jainr3/diffusiondb-pixelart', 'large_random_1k')
225
  ```
226
 
227
- #### Method 2. Use the PoloClub Downloader
228
-
229
- This repo includes a Python downloader [`download.py`](https://github.com/poloclub/diffusiondb/blob/main/scripts/download.py) that allows you to download and load DiffusionDB. You can use it from your command line. Below is an example of loading a subset of DiffusionDB.
230
-
231
- ##### Usage/Examples
232
-
233
- The script is run using command-line arguments as follows:
234
-
235
- - `-i` `--index` - File to download or lower bound of a range of files if `-r` is also set.
236
- - `-r` `--range` - Upper bound of range of files to download if `-i` is set.
237
- - `-o` `--output` - Name of custom output directory. Defaults to the current directory if not set.
238
- - `-z` `--unzip` - Unzip the file/files after downloading
239
- - `-l` `--large` - Download from Diffusion DB Large. Defaults to Diffusion DB 2M.
240
-
241
- ###### Downloading a single file
242
-
243
- The specific file to download is supplied as the number at the end of the file on HuggingFace. The script will automatically pad the number out and generate the URL.
244
-
245
- ```bash
246
- python download.py -i 23
247
- ```
248
-
249
- ###### Downloading a range of files
250
-
251
- The upper and lower bounds of the set of files to download are set by the `-i` and `-r` flags respectively.
252
-
253
- ```bash
254
- python download.py -i 1 -r 2000
255
- ```
256
-
257
- Note that this range will download the entire dataset. The script will ask you to confirm that you have 1.7Tb free at the download destination.
258
-
259
- ###### Downloading to a specific directory
260
-
261
- The script will default to the location of the dataset's `part` .zip files at `images/`. If you wish to move the download location, you should move these files as well or use a symbolic link.
262
-
263
- ```bash
264
- python download.py -i 1 -r 2000 -o /home/$USER/datahoarding/etc
265
- ```
266
-
267
- Again, the script will automatically add the `/` between the directory and the file when it downloads.
268
-
269
- ###### Setting the files to unzip once they've been downloaded
270
-
271
- The script is set to unzip the files _after_ all files have downloaded as both can be lengthy processes in certain circumstances.
272
-
273
- ```bash
274
- python download.py -i 1 -r 2000 -z
275
- ```
276
-
277
- #### Method 3. Use `metadata.parquet` (Text Only)
278
-
279
- If your task does not require images, then you can easily access all 2 million prompts and hyperparameters in the `metadata.parquet` table.
280
-
281
- ```python
282
- from urllib.request import urlretrieve
283
- import pandas as pd
284
-
285
- # Download the parquet table
286
- table_url = f'https://huggingface.co/datasets/poloclub/diffusiondb/resolve/main/metadata.parquet'
287
- urlretrieve(table_url, 'metadata.parquet')
288
-
289
- # Read the table using Pandas
290
- metadata_df = pd.read_parquet('metadata.parquet')
291
- ```
292
-
293
  ## Dataset Creation
294
 
295
  ### Curation Rationale
 
87
 
88
  ### Dataset Summary
89
 
90
+ **This is a subset of the DiffusionDB 2M dataset which has been turned into pixel-style art.**
91
 
92
  DiffusionDB is the first large-scale text-to-image prompt dataset. It contains **14 million** images generated by Stable Diffusion using prompts and hyperparameters specified by real users.
93
 
 
103
 
104
  ### Subset
105
 
106
+ DiffusionDB provides two subsets (DiffusionDB 2M and DiffusionDB Large) to support different needs. The pixelated version of the data was taken from the DiffusionDB 2M and has 2000 examples only.
107
 
108
  |Subset|Num of Images|Num of Unique Prompts|Size|Image Directory|Metadata Table|
109
  |:--|--:|--:|--:|--:|--:|
110
  |DiffusionDB-pixelart|2k|~1.5k|~1.6GB|`images/`|`metadata.parquet`|
111
 
112
+ Images in DiffusionDB-pixelart are stored in `png` format.
 
 
 
113
 
114
  ## Dataset Structure
115
 
116
  We use a modularized file structure to distribute DiffusionDB. The 2k images in DiffusionDB-pixelart are split into folders, where each folder contains 1,000 images and a JSON file that links these 1,000 images to their prompts and hyperparameters.
117
 
118
  ```bash
119
+ # DiffusionDB 2k
120
  ./
121
  β”œβ”€β”€ images
122
  β”‚ β”œβ”€β”€ part-000001
 
221
  dataset = load_dataset('jainr3/diffusiondb-pixelart', 'large_random_1k')
222
  ```
223
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224
  ## Dataset Creation
225
 
226
  ### Curation Rationale