|
--- |
|
license: unknown |
|
--- |
|
|
|
## Openrice Review Classification dataset |
|
|
|
From [github.com/Christainx/Dataset_Cantonese_Openrice](https://github.com/Christainx/Dataset_Cantonese_Openrice). |
|
|
|
The dataset includes 60k instances from Cantonese reviews in Openrice. |
|
|
|
The rating ranks from 1-star (very negative) to 5-star (very positive). The instances are shuffled in order to disperse reviews of same restaurant. |
|
|
|
### Code for the splits creation |
|
|
|
``` |
|
import datasets |
|
|
|
def load_openrice(): |
|
# https://github.com/Christainx/Dataset_Cantonese_Openrice/blob/master/Openrice_Cantonese.7z |
|
with open('Openrice_Cantonese.txt') as file: |
|
for i, line in enumerate(file): |
|
label = int(line[0]) |
|
text = line[1:].strip() |
|
yield {'text': text, 'label': label} |
|
|
|
|
|
ds = datasets.Dataset.from_generator(load_openrice) |
|
print(ds) |
|
dsd = ds.train_test_split(0.1, seed=42) |
|
dsd['test'].to_json('data/test.jsonl', orient='records', force_ascii=False) |
|
dsd['train'].to_json('data/train.jsonl', orient='records', force_ascii=False) |
|
print(dsd) |
|
``` |
|
|
|
## Citation |
|
``` |
|
@inproceedings{xiang2019sentiment, |
|
title={Sentiment Augmented Attention Network for Cantonese Restaurant Review Analysis}, |
|
author={Xiang, Rong and Jiao, Ying and Lu, Qin}, |
|
booktitle={Proceedings of the 8th KDD Workshop on Issues of Sentiment Discovery and Opinion Mining (WISDOM)}, |
|
pages={1--9}, |
|
year={2019}, |
|
organization={KDD WISDOM} |
|
} |
|
``` |