ivelin commited on
Commit
ad1211b
1 Parent(s): c85c876

chore: checkpoint"

Browse files

Signed-off-by: ivelin <ivelin.eth@gmail.com>

Files changed (1) hide show
  1. ui_refexp.py +21 -17
ui_refexp.py CHANGED
@@ -19,7 +19,7 @@ import csv
19
  import glob
20
  import os
21
  import tensorflow as tf
22
-
23
  import datasets
24
 
25
  import numpy as np
@@ -52,7 +52,8 @@ _LICENSE = "CC BY 4.0"
52
  # The HuggingFace dataset library don't host the datasets but only point to the original files
53
  # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
54
  _DATA_URLs = {
55
- "ui_refexp": "https://huggingface.co/datasets/ncoop57/rico_captions/resolve/main/captions_hierarchies_images_filtered.zip",
 
56
  }
57
 
58
  _METADATA_URLS = {
@@ -64,8 +65,10 @@ _METADATA_URLS = {
64
  }
65
 
66
 
67
- def tfrecord2dict(raw_tfr_dataset: None):
68
- """Filter and convert refexp tfrecord file to dict object."""
 
 
69
  count = 0
70
  donut_refexp_dict = []
71
  for raw_record in raw_tfr_dataset:
@@ -76,9 +79,8 @@ def tfrecord2dict(raw_tfr_dataset: None):
76
  # print(f"feature keys: {example.features.feature.keys}")
77
  donut_refexp = {}
78
  image_id = example.features.feature['image/id'].bytes_list.value[0].decode()
79
- image_path = zipurl_template.format(image_id=image_id)
80
- donut_refexp["image_path"] = image_path
81
- donut_refexp["question"] = example.features.feature["image/ref_exp/text"].bytes_list.value[0].decode()
82
  object_idx = example.features.feature["image/ref_exp/label"].int64_list.value[0]
83
  object_idx = int(object_idx)
84
  # print(f"object_idx: {object_idx}")
@@ -88,7 +90,7 @@ def tfrecord2dict(raw_tfr_dataset: None):
88
  object_bb["ymin"] = example.features.feature['image/object/bbox/ymin'].float_list.value[object_idx]
89
  object_bb["xmax"] = example.features.feature['image/object/bbox/xmax'].float_list.value[object_idx]
90
  object_bb["ymax"] = example.features.feature['image/object/bbox/ymax'].float_list.value[object_idx]
91
- donut_refexp["answer"] = object_bb
92
  donut_refexp_dict.append(donut_refexp)
93
  if count != 3:
94
  continue
@@ -211,13 +213,15 @@ class UIRefExp(datasets.GeneratorBasedBuilder):
211
  # The `key` is here for legacy reason (tfds) and is not important in itself.
212
  # filter tfrecord and convert to json
213
 
214
- with open(metadata_path, encoding="utf-8") as f:
215
- files_to_keep = set(f.read().split("\n"))
 
 
216
  for file_path, file_obj in images:
217
- if file_path.startswith(_IMAGES_DIR):
218
- if file_path[len(_IMAGES_DIR): -len(".jpg")] in files_to_keep:
219
- label = file_path.split("/")[2]
220
- yield file_path, {
221
- "image": {"path": file_path, "bytes": file_obj.read()},
222
- "label": label,
223
- }
 
19
  import glob
20
  import os
21
  import tensorflow as tf
22
+ import re
23
  import datasets
24
 
25
  import numpy as np
 
52
  # The HuggingFace dataset library don't host the datasets but only point to the original files
53
  # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
54
  _DATA_URLs = {
55
+ "ui_refexp": "https://storage.googleapis.com/crowdstf-rico-uiuc-4540/rico_dataset_v0.1/unique_uis.tar.gz"
56
+ # "https://huggingface.co/datasets/ncoop57/rico_captions/resolve/main/captions_hierarchies_images_filtered.zip",
57
  }
58
 
59
  _METADATA_URLS = {
 
65
  }
66
 
67
 
68
+ def tfrecord2list(tfr_file: None):
69
+ """Filter and convert refexp tfrecord file to a list of dict object.
70
+ Each sample in the list is a dict with the following keys: (image_id, prompt, target_bounding_box)"""
71
+ test_raw_dataset = tf.data.TFRecordDataset([tfr_file])
72
  count = 0
73
  donut_refexp_dict = []
74
  for raw_record in raw_tfr_dataset:
 
79
  # print(f"feature keys: {example.features.feature.keys}")
80
  donut_refexp = {}
81
  image_id = example.features.feature['image/id'].bytes_list.value[0].decode()
82
+ donut_refexp["image_id"] = image_id
83
+ donut_refexp["prompt"] = example.features.feature["image/ref_exp/text"].bytes_list.value[0].decode()
 
84
  object_idx = example.features.feature["image/ref_exp/label"].int64_list.value[0]
85
  object_idx = int(object_idx)
86
  # print(f"object_idx: {object_idx}")
 
90
  object_bb["ymin"] = example.features.feature['image/object/bbox/ymin'].float_list.value[object_idx]
91
  object_bb["xmax"] = example.features.feature['image/object/bbox/xmax'].float_list.value[object_idx]
92
  object_bb["ymax"] = example.features.feature['image/object/bbox/ymax'].float_list.value[object_idx]
93
+ donut_refexp["target_bounding_box"] = object_bb
94
  donut_refexp_dict.append(donut_refexp)
95
  if count != 3:
96
  continue
 
213
  # The `key` is here for legacy reason (tfds) and is not important in itself.
214
  # filter tfrecord and convert to json
215
 
216
+ metadata = tfrecord2list(metadata_file)
217
+ files_to_keep = set()
218
+ for sample in metadata:
219
+ files_to_keep.add(sample["image_id"])
220
  for file_path, file_obj in images:
221
+ image_id = file_path.search("(\d+).jpg").group(1)
222
+ if image_id and image_id in files_to_keep:
223
+ label = file_path.split("/")[2]
224
+ yield file_path, {
225
+ "image": {"path": file_path, "bytes": file_obj.read()},
226
+ "label": label,
227
+ }