|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import io |
|
|
|
import zstandard |
|
import jsonlines |
|
import datasets |
|
|
|
try: |
|
import simdjson |
|
parser = simdjson.Parser() |
|
def parse_json(x): |
|
try: |
|
return parser.parse(x).as_dict() |
|
except ValueError: |
|
return |
|
except ImportError: |
|
import json |
|
def parse_json(x): |
|
return json.loads(x) |
|
|
|
|
|
_DESCRIPTION = "Habr QnA Dataset" |
|
_URL = "questions.jsonl.zst" |
|
|
|
|
|
class YandexQFullDataset(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("0.0.1") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="default", version=VERSION, description=""), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "default" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("int32"), |
|
"author": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"description": datasets.Value("string"), |
|
"tags": datasets.Sequence(feature=datasets.Value("string")), |
|
"posted_at": datasets.Value("string"), |
|
"view_count": datasets.Value("int32"), |
|
"subscribers_count": datasets.Value("int32"), |
|
"complexity": datasets.Value("string"), |
|
"complexity_votes": datasets.Value("int32"), |
|
"comments": datasets.Sequence(feature={ |
|
"author": datasets.Value("string"), |
|
"posted_at": datasets.Value("string"), |
|
"body": datasets.Value("string") |
|
}), |
|
"answers": datasets.Sequence(feature={ |
|
"id": datasets.Value("int32"), |
|
"author": datasets.Value("string"), |
|
"posted_at": datasets.Value("string"), |
|
"body": datasets.Value("string"), |
|
"accepted": datasets.Value("bool"), |
|
"upvote_count": datasets.Value("int32"), |
|
"comments": datasets.Sequence(feature={ |
|
"author": datasets.Value("string"), |
|
"posted_at": datasets.Value("string"), |
|
"body": datasets.Value("string") |
|
}) |
|
}) |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_file = dl_manager.download(_URL) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"path": downloaded_file}), |
|
] |
|
|
|
def _generate_examples(self, path): |
|
with open(path, "rb") as f: |
|
cctx = zstandard.ZstdDecompressor() |
|
reader_stream = io.BufferedReader(cctx.stream_reader(f)) |
|
reader = jsonlines.Reader(reader_stream, loads=parse_json) |
|
for id_, item in enumerate(reader): |
|
yield id_, item |
|
|